
I N T E G R A T E D S Y S T E M S

PSOSYSTEM

GETTING STARTED

68K Processors

MRI Release

Copyright 1991 - 1996 Integrated Systems, Inc. All rights reserved. Printed in U.S.A.

Integrated Systems, Inc. • 3260 Jay Street • Santa Clara, CA 95054-3309
Support: 408-980-1500, x501 or 1-800-458-7767
FAX: 408-980-0400 (corporate); 408-980-1647 (support)
e-mail: psos_support@isi.com • Home Page: http://www.isi.com

LICENSED SOFTWARE - CONFIDENTIAL/PROPRIETARY

This document and the associated software contain information proprietary to
Integrated Systems, Inc., or its licensors and may be used only in accordance with the
Integrated Systems license agreement under which this package is provided. No part
of this document may be copied, reproduced, transmitted, translated, or reduced to
any electronic medium or machine-readable form without the prior written consent of
Integrated Systems.

Integrated Systems makes no representation with respect to the contents, and
assumes no responsibility for any errors that might appear in this document.
Integrated Systems specifically disclaims any implied warranties of merchantability or
fitness for a particular purpose. This publication and the contents hereof are subject
to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS252.227-7013 or its equivalent. Unpublished rights reserved under
the copyright laws of the United States.

TRADEMARKS

The following are trademarks of Integrated Systems, Inc.:

ESp, OpEN, pHILE+, pNA+, pREPC+, pRISM, pROBE+, pRPC+, pSOS, pSOS+,
pSOS+m, pSOSim, pSOSystem, pX11+, SpOTLIGHT.

All other products mentioned are the trademarks, service marks, or registered
trademarks of their respective holders.

Document Title: pSOSystem Getting Started:
68K Processors MRI Release

Part Number: 000-5001-004
Revision Date: March 1996

pSOSystem Getting Started iii

Contents

Contents

About This Manual

Purpose .. xi

Audience... xi

Organization ...xii

Related Documentation..xiii

Support ..xv

Notation Conventions...xvi

1 Introduction to the pSOSystem Environment

1.1 Target Architecture ... 1-1

1.1.1 pSOSystem Software.. 1-3

1.1.2 Application Code.. 1-3

1.2 Host Development System Layout ... 1-3

1.2.1 Configuration Files .. 1-4

1.2.2 Board-Support Packages.. 1-5

1.2.3 System Library .. 1-5

1.2.4 Working Directory.. 1-5

Contents

iv pSOSystem Getting Started

1.2.5 Sample Applications .. 1-9

1.3 Standard Download/Debug Sequence ... 1-10

1.3.1 Requirements for Downloading the Executable Image....... 1-11

1.3.2 Starting the Executable Image ... 1-11

1.3.3 Debugging the Operating System and Application Code....1-12

1.4 pSOSystem Boot ROMs ... 1-13

1.4.1 Inside the Boot ROMs .. 1-13

1.4.2 Using the Boot ROMs... 1-13

2 pSOSystem Tutorial for Workstation Hosts

2.1 Recommended Software and Hardware.. 2-2

2.2 Creating a Working Directory .. 2-3

2.3 hello Sample Application ... 2-3

2.4 Building an Executable Image ... 2-4

2.5 Downloading the Executable Image ... 2-5

2.5.1 Starting the Boot ROMs ... 2-5

2.5.2 Downloading the Executable Image File 2-7

2.5.3 Starting the Executable Image ... 2-8

2.5.4 Executing the hello Sample Application.............................. 2-8

2.6 Printing When Using XRAY Over a Serial Channel 2-12

2.6.1 Dedicating the Serial Channel to XRAY 2-13

3 pSOSystem Tutorial for PC Hosts

3.1 Recommended Software and Hardware.. 3-2

3.2 Creating a Working Directory .. 3-3

3.3 hello Sample Application ... 3-3

3.4 Building an Executable Image ... 3-5

3.5 Downloading the Executable Image ... 3-5

3.5.1 Starting the Boot ROMs ... 3-6

3.5.2 Downloading the Executable Image 3-8

3.5.3 Starting the Executable Image ... 3-8

3.5.4 Executing the hello Sample Application.............................. 3-9

3.6 Printing When Using XRAY Over a Serial Channel 3-13

Contents

pSOSystem Getting Started v

3.6.1 Dedicating the Serial Channel to the XRAY Debugger....... 3-14

3.7 Using XRAY Debugger for pSOSystem Over Ethernet................... 3-14

3.7.1 Connecting to the Network... 3-15

3.7.2 Adding pNA+ to the Downloaded System 3-15

3.7.3 XRAY Debugger for pSOSystem Output Over Ethernet 3-15

4 XRAY Debugger for pSOSystem Tutorial: Multiple Windows Version

4.1 xraydemo Sample Application ... 4-2

4.2 Creating an Executable Image ... 4-3

4.2.1 Customizing The Operating System.................................... 4-3

4.2.2 Building The Executable Image .. 4-4

4.3 Using XRAY Over a Serial Channel .. 4-5

4.3.1 Reconfiguring the ROMs for a Serial Channel..................... 4-5

4.3.2 Invoking the XRAY Debugger for a Serial Channel.............. 4-7

4.3.3 Changing the Baud Rate for a Serial Channel 4-7

4.4 Using XRAY Debugger for pSOSystem Over Ethernet..................... 4-9

4.4.1 Connecting to the Network... 4-9

4.4.2 Adding pNA+ to the Downloaded System 4-9

4.4.3 Reconfiguring the ROMs for Ethernet............................... 4-10

4.4.4 Invoking the XRAY Debugger Over Ethernet..................... 4-12

4.5 Initializing XRAY Debugger for pSOSystem.................................. 4-12

4.6 Starting the Downloaded Operating System................................. 4-17

4.7 XRAY Debugger for pSOSystem Product Description 4-19

4.7.1 Command Conventions.. 4-19

4.7.2 Online Help ... 4-19

4.8 Tutorial Output.. 4-20

4.9 Running the System Debug Mode Tutorial 4-21

4.9.1 Memory Manipulation and Windows 4-21

4.9.2 Starting the pSOS+ Kernel ... 4-22

4.9.3 High-Level Mode and Assembly-Language Mode............... 4-24

4.9.4 Stepping C/C++ Statements... 4-24

4.9.5 Queries and Breakpoints ... 4-26

4.9.6 Clearing Breakpoints ... 4-30

4.9.7 Querying Queues... 4-31

Contents

vi pSOSystem Getting Started

4.9.8 Symbols and Variables... 4-33

4.9.9 Profiling ... 4-37

4.9.10 Interactive System Calls and I/O...................................... 4-38

5 XRAY Debugger for pSOSystem Tutorial: Viewport Version

5.1 xraydemo Sample Application ... 5-2

5.2 Creating an Executable Image ... 5-3

5.2.1 Customize Your Operating System 5-3

5.2.2 Building the Executable Image ... 5-4

5.3 Using XRAY Over a Serial Channel .. 5-5

5.3.1 Reconfiguring the ROMs for a Serial Channel 5-5

5.3.2 Invoking XRAY over a Serial Channel 5-7

5.3.3 Changing the Baud Rate for a Serial Channel..................... 5-9

5.4 Using XRAY Debugger for pSOSystem Over Ethernet................... 5-10

5.4.1 Connecting to the Network ... 5-10

5.4.2 Reconfiguring the ROMs for Ethernet 5-11

5.4.3 Invoking XRAY on the Host for Ethernet........................... 5-13

5.5 Starting the Downloaded Operating System................................. 5-13

5.5.1 Using the osboot Command ... 5-13

5.6 Running the System Debug Mode Tutorial................................... 5-14

5.6.1 Memory Manipulation and Viewports 5-15

5.6.2 Starting the pSOS+ Kernel ... 5-17

5.6.3 High-Level Mode and Assembly-Language Mode 5-19

5.6.4 Queries and Breakpoints ... 5-21

5.6.5 Symbols and Variables... 5-26

5.6.6 Profiling ... 5-31

5.6.7 Interactive System Calls and I/O...................................... 5-32

6 Shared Memory Multiprocessing Tutorial

6.1 Introduction.. 6-1

6.2 mpdemo Sample Application ... 6-2

6.2.1 Client Task Execution .. 6-4

6.2.2 Server Task Execution ... 6-4

Contents

pSOSystem Getting Started vii

6.2.3 Console Output ... 6-5

6.2.4 Soft-Fail and Rejoin ... 6-5

6.3 Planning the Target System.. 6-5

6.3.1 Assigning Node Numbers ... 6-6

6.3.2 VMEbus Memory Addresses... 6-6

6.3.3 Selecting a Directory Address... 6-6

6.4 Setting Up the Hardware ... 6-7

6.5 Testing the Hardware .. 6-8

6.6 Creating a Working Directory .. 6-9

6.7 Building, Downloading, and Starting the Executable Images 6-9

6.7.1 Configuring and Downloading to Node 1 6-10

6.7.2 Configuring and Downloading to Other Nodes 6-11

6.8 Running the Sample Application ... 6-11

7 Configuration and Startup

7.1 Overview ... 7-1

7.1.1 System Configuration File .. 7-3

7.1.2 Parameter Storage and the Startup Dialog 7-3

7.2 sys_conf.h... 7-4

7.2.1 Storage and Dialog Parameters .. 7-4

7.2.2 Operating System Components .. 7-5

7.2.3 Serial Channel Configuration ... 7-6

7.2.4 LAN Configuration ... 7-7

7.2.5 Shared Memory Configuration ... 7-7

7.2.6 Miscellaneous Parameters.. 7-8

7.2.7 I/O Devices.. 7-9

7.2.8 Component Configuration Parameters.............................. 7-10

7.3 Adding Drivers to the System .. 7-16

7.4 Using the Boot ROMs.. 7-17

7.4.1 pROBE+ Boot ROM.. 7-18

7.4.2 TFTP Boot ROM ... 7-21

7.5 System Startup Sequence ... 7-30

7.6 Component Customizations .. 7-33

Contents

viii pSOSystem Getting Started

8 Application Examples

8.1 fpsp .. 8-2

8.2 hello.. 8-3

8.3 pnabench.. 8-3

8.4 xraydemo .. 8-4

8.5 proberom .. 8-4

8.6 tftp.. 8-5

8.7 philepna.. 8-7

8.8 nfs .. 8-9

9 Understanding and Developing Board-Support Packages

9.1 template Directory... 9-2

9.1.1 Template File List... 9-2

9.1.2 Detailed Function Description.. 9-4

9.2 devices Directory... 9-21

9.2.1 devices Directory File List .. 9-22

9.2.2 Detailed Function Description.. 9-27

9.3 Configuration Files.. 9-53

9.3.1 Configuration File List.. 9-53

9.3.2 Detailed Function Description.. 9-56

9.4 drivers Directory ... 9-66

9.4.1 drivers Directory File List ... 9-66

9.4.2 Detailed File Description .. 9-69

9.5 include Directory Files .. 9-78

9.6 System Files.. 9-80

9.6.1 os Directory ... 9-80

9.6.2 libc Directory ... 9-83

A Board-Specific Information

A.1 Motorola FADS68302 ..A-2

A.1.1 ROM Installation and Hardware SetupA-2

A.1.2 Flash Memory Programming ..A-2

A.1.3 Serial Channel Usage...A-4

Contents

pSOSystem Getting Started ix

A.1.4 Memory Layout..A-4

A.1.5 Making pSOSystem Flash Code..A-5

A.2 Motorola EVS-68332...A-7

A.2.1 ROM Installation and Hardware Setup...............................A-7

A.2.2 Memory Layout..A-8

A.2.3 Making a pSOSystem Boot ROM ..A-9

A.2.4 Additional Information ...A-10

A.3 Motorola EVS-68340...A-11

A.3.1 ROM Installation and Hardware Setup.............................A-11

A.3.2 Memory Layout..A-12

A.3.3 Making a pSOSystem Boot ROMA-13

A.3.4 Additional Information ...A-14

A.4 Motorola MVME162 ..A-14

A.4.1 ROM Installation and Hardware Setup.............................A-14

A.4.2 Serial Channel Usage...A-15

A.4.3 Memory Layout..A-15

A.4.4 Making a pSOSystem Boot ROMA-16

A.4.5 VMEbus Configuration Information..................................A-17

A.5 Motorola MVME162LX ..A-18

A.5.1 ROM Installation and Hardware Setup.............................A-18

A.5.2 Serial Channel Usage...A-19

A.5.3 Memory Layout..A-19

A.5.4 Making a pSOSystem Boot ROMA-20

A.5.5 VMEbus Configuration Information..................................A-21

A.6 Motorola MVME162FX ..A-22

A.6.1 ROM Installation and Hardware Setup.............................A-22

A.6.2 Serial Channel Usage...A-22

A.6.3 Memory Layout..A-22

A.6.4 Making a pSOSystem Boot ROMA-24

A.6.5 VMEbus Configuration Information..................................A-24

A.7 Motorola MVME167 ..A-25

A.7.1 ROM Installation and Hardware Setup.............................A-25

A.7.2 Serial Channel Usage...A-26

A.7.3 Memory Layout..A-26

A.7.4 Making a pSOSystem Boot ROMA-27

Contents

x pSOSystem Getting Started

A.7.5 VMEbus Configuration Information..................................A-28

A.8 Motorola MVME177 ..A-29

A.8.1 ROM Installation and Hardware SetupA-29

A.8.2 Serial Channel Usage...A-29

A.8.3 Memory Layout ..A-29

A.8.4 Making a pSOSystem Boot ROMA-31

A.8.5 VMEbus Configuration Information..................................A-32

A.9 Motorola QUADS-68360..A-33

A.9.1 Hardware Setup...A-33

A.9.2 Flash Memory Programming ..A-33

A.9.3 Serial Channel Usage...A-35

A.9.4 Memory Layout ..A-35

A.9.5 Making the pSOSystem Flash Boot Code..........................A-36

A.9.6 Special Notes ...A-37

A.10 EST SBC360 Evaluation Board ...A-38

A.10.1 Hardware Setup...A-38

A.10.2 SCC Channel Usage ...A-39

A.10.3 SMC Channel Usage ..A-39

A.10.4 Memory Layout ..A-39

A.10.5 Making the pSOSystem ROM Boot Code...........................A-41

A.10.6 Pinout Diagram..A-41

Glossary

Index

pSOSystem Getting Started xi

About This Manual

Purpose
This manual is part of a documentation set that describes pSOSystem,
the modular, high-performance real-time operating system from
Integrated Systems.

This manual provides introductory information about the operation of
pSOSystem, including tutorials for pSOSystem, the XRAY Debugger for
pSOSystem, and shared memory multiprocessing.

Read this manual to gain an understanding of how to begin using the
various software components in pSOSystem.

Audience
This manual is targeted for application developers who have a familiarity
with UNIX terms and want to begin using pSOSystem.

About This Manual

xii pSOSystem Getting Started

Organization
This manual is organized as follows:

Chapter 1, ‘‘Introduction to the pSOSystem Environment,”
introduces you to the organization and operating theory of
pSOSystem.

Chapter 2, ‘‘pSOSystem Tutorial for Workstation Hosts,” guides
you through the process of bringing up and starting pSOSystem on
a target system.

Chapter 3, ‘‘pSOSystem Tutorial for PC Hosts,” guides you through
the process of bringing up and starting pSOSystem on a target
system.

Chapter 4, ‘‘XRAY Debugger for pSOSystem Tutorial: Multiple
Windows Version,” presents a tutorial you can use to learn the
XRAY Source-Level Debugger from a SunOS or Solaris host.

Chapter 5, ‘‘XRAY Debugger for pSOSystem Tutorial: Viewport
Version,” presents a tutorial you can use to learn the XRAY Source-
Level Debugger on an HP, RS6000, or PC host.

Chapter 6, ‘‘Shared Memory Multiprocessing Tutorial,” discusses
how to use pSOSystem in a multiprocessor configuration running
the pSOS+m kernel.

Chapter 7, ‘‘Configuration and Startup,” gives an overview of the
configuration table associated with the corresponding pSOSystem
component, tells how to start up each component, contains
formulas for changing the starting address of software
components, and defines the trap vectors.

Chapter 8, ‘‘Application Examples,” provides a detailed description
of the example applications in the $PSS_ROOT/apps directory.

Chapter 9, ‘‘Understanding and Developing Board-Support
Packages,” explains how to develop a board-support package (BSP)
for either a custom or unsupported target board.

Appendix A, ‘‘Board-Specific Information,” gives information for
various individual CPU boards that run Integrated Systems
products, and information on switch settings, Boot PROM
installation, and on serial channel usage.

A glossary provides definitions of several key pSOSystem terms.

About This Manual

pSOSystem Getting Started xiii

Related Documentation
As you read this manual, you may also want to refer to the other
manuals in the standard documentation set:

■ pSOSystem Installation Guide describes the installation of
pSOSystem on UNIX and PC hosts.

■ pSOSystem System Concepts contains detailed descriptions of the
pSOS+ real-time kernel, the pSOS+m multiprocessing kernel,
network programming, the pHILE+ file system manager, the pREPC
ANSI C library, and the input/output system.

■ pSOSystem Programmer’s Reference contains detailed descriptions
of system services, interfaces and drivers, configuration tables, and
memory usage.

■ pSOSystem System Calls provides a reference of pSOS+, pHILE+,
pREPC+, pNA+, and pRPC+ system calls and error codes.

■ pROBE+ User’s Guide describes how to use the pROBE+ system-
level analyzer for monitoring pSOSystem execution.

Based on your software configuration, you may need to refer to one or
more of the following manuals:

■ C++ Support Package User’s Manual documents the C++ support
services including the pSOSystem C++ Classes (library) and support
for the C++ run-time library.

■ ESp User’s Manual: PC Hosts and ESp User’s Guide: Workstation
Hosts document the ESp front-end analyzer, which displays
application activities, and the pMONT component, the target
resident application monitor.

■ LAP Driver User’s Guide describes the interfaces provided by the
LAP (Link Access Protocol) drivers for OpEN product, including the
LAPB and LABD frame-level products.

■ OpEN: OSI Lower Layers User’s Guide describes how to use the
pSOSystem Open System Interconnections (OSI) product named
OPeN: OSI Lower Layers.

■ OpEN User’s Manual describes how to install and use the
pSOSystem OpEN (Open Protocol Embedded Networking) product.

About This Manual

xiv pSOSystem Getting Started

■ OSPF User’s Guide describes the Open Shortest Path First (OSPF)
pSOSystem protocol driver.

■ Point-to-Point Protocol Driver’s User’s Guide describes how to install
and use the pSOSystem Point-to-Point Protocol (PPP) product.

■ SNMP User’s Manual describes the internal structure and operation
of SNMP, the Simple Network Management Protocol product from
Integrated Systems. It also describes how to install and use the
SNMP Management Information Base (MIB) Compiler.

■ TCP/IP for OPeN User’s Guide describes how to use the pSOSystem
Streams-based TCP/IP for OpEN (Open Protocol Embedded
Networking) product.

■ XRAY Debugger for pSOSystem User’s Guide describes how to use
the XRAY Debugger to debug pSOSystem applications.

■ X.25 User’s Guide describes the interfaces provided by the X.25 for
Open multiplexing driver that implements the packet level protocol
defined by the CCITT.

About This Manual

pSOSystem Getting Started xv

Support
Customers in the United States can contact Integrated Systems using
one of the following methods:

■ Call 408-980-1500, extension 501, or 1-800-458-7767.

■ Send a Fax to 408-980-1647.

■ Send e-mail to psos_support@isi.com.

International customers can contact their local pSOSystem distributor
for assistance or call 408-980-1500, extension 501.

Before contacting Integrated Systems Technical Support, it is helpful to
have the following information:

■ The exact version of the pSOSystem software you are running. This
information is in the $PSS_ROOT/include/version.h file.

■ Your customer ID. This is a 4-digit customer number assigned by
Integrated Systems.

Integrated Systems actively seeks suggestions and comments. Please
send your comments by e-mail to ideas@isi.com.

About This Manual

xvi pSOSystem Getting Started

Notation Conventions
The following notation conventions are used in this manual:

■ Function names (q_receive), filenames (pdefs.h), pathnames
(usr/psosroot/bsps/), keywords (int), UNIX program names (tip
and cu), and operators (!) that you must type exactly as shown are
in bold. Code examples also appear in bold.

■ Italics indicate that a user-defined value or name (drive:pathname)
can be substituted for the italicized words shown. Italics also
indicate emphasis, such as when important terms are introduced.

■ Keynames [Enter] are shown within square brackets. Keynames
separated by hyphens are typed together. For example, to type
[Control-Shift-e], hold down the [Control] and [Shift] keys and type
the letter e.

■ Code examples are shown in constant width.

■ Hexadecimal numbers are preceded by 0x or 0X (for example,
0xDEADDEAD).

NOTE: This manual uses the breve symbol (•) to indicate a required
space.

pSOSystem Getting Started 1-1

1 Introduction to the
pSOSystem Environment

This chapter introduces the internal organization and operating theory
of the pSOSystem environment. Read this chapter before you attempt to
use the tutorials in subsequent chapters.

1.1 Target Architecture
The purpose of the pSOSystem environment is to help you develop an
application on a host system, then download and run the application on
an embedded computer. The embedded computer is called the target
system. The description of the pSOSystem environment begins with the
target system architecture. The description of the host system starts in
Section 1.2, ‘‘Host Development System Layout.” For an illustration of
the relationship between the host and the target system, see Figure 1-1
on page 1-2.

Chapter 1. Introduction to the pSOSystem Environment

1-2 pSOSystem Getting Started

Figure 1-1 Architecture of pSOSystem

In a pSOSystem environment model, the target system software is
usually an application that you develop on the host, as shown in
Figure 1-1. Two major software elements run on the target hardware: the
pSOSystem software and the application code. You link these elements
together on the host system and download this combination to the target.
The downloaded software is called an executable image.

You do not necessarily have to link the application code and the
pSOSystem software before you download them as one executable image.
Instead, you can use the pSOSystem Loader at runtime to load
application modules to the target. (For a detailed description of the
Loader, see the description of system services in the pSOSystem
Programmer’s Reference.) For simplicity, this manual assumes that you
use one executable image.

pSOSystem Host

UNIX workstation or PC
Running

an executable image of pSOSystem

pSOSystem Target

pSOSystem lets you
develop an application

for an embedded system.

Chapter 1. Introduction to the pSOSystem Environment

pSOSystem Getting Started 1-3

1.1.1 pSOSystem Software

The pSOSystem software provides a standard set of services for the
application code and debugging tools. It almost always contains the
pSOS+ real-time kernel and frequently contains the following companion
software elements:

■ pROBE+, pNA+, and pHILE+ components

■ Device drivers and interrupt handlers for the target hardware

■ Configuration tables used to customize the operating system
for a particular target system

The pSOSystem software is a combination of standard components,
system configuration code, and hardware-specific environment code.
The hardware-specific code is known as a pSOSystem Board-Support
Package, or BSP. Integrated Systems provides BSPs for a number of
commercially available target boards. If you are using one of these
boards, you can begin developing pSOSystem application code
immediately. If you are using unsupported or custom hardware, you
must provide a board-support package for the target system. For detailed
information on board-support packages, see Chapter 9, ‘‘Understanding
and Developing Board-Support Packages.”

1.1.2 Application Code

The application code is what makes one target system different from
another. It implements the functional behavior of the target system.
Normally, application code is very specialized and contains few standard
software elements, if any. It is usually developed from scratch, although
you can utilize code fragments from the sample applications that come
with the pSOSystem software.

1.2 Host Development System Layout
pSOSystem code consists of read-only object libraries, include files, and
source files. The code can be kept in a central location on the host system
so that multiple users can have access to it. The directory tree that
contains this shared code is the pSOSystem directory tree, and its root
directory is the pSOSystem root directory. Within pSOSystem source files,

Chapter 1. Introduction to the pSOSystem Environment

1-4 pSOSystem Getting Started

pathnames generally begin with PSS_ROOT. You should set the
environment variable PSS_ROOT to the pathname of the pSOSystem root
directory, as explained in the pSOSystem Installation Guide.

You can create a pSOSystem executable image from any directory in the
host system, not just within the pSOSystem root directory tree. A
directory where you create an executable image is called a working
directory. For information on the contents of this directory, see
Section 1.2.4, ‘‘Working Directory.” For information on the executable
image and how to create a working directory, see Chapter 2, ‘‘pSOSystem
Tutorial for Workstation Hosts.”

1.2.1 Configuration Files

Source files that control the configuration of the pSOSystem
environment are called configuration files. Configuration files exist for all
systems built with the pSOSystem software, and these files are compiled
and linked into the executable image. A set of the common configuration
files resides in the directory PSS_ROOT/configs/std. You should not
need to make changes to these common files.

The configuration files contain parameters that control the behavior of
the pSOSystem software. Examples of these parameters are the baud
rate for the serial channels, IP addresses in networked systems, and the
operating mode for the pROBE+ debugger. You can change these
parameters either when you build the pSOSystem environment or
through an interactive startup dialog during run-time startup. For
detailed information on configuration parameters, see Chapter 7,
‘‘Configuration and Startup.”

Configuration parameters are normally specified at system build time by
the values you supply in the system configuration file sys_conf.h. This
system configuration file resides in the working directory. An option in
sys_conf.h allows you to specify that the operating system try to locate
saved versions of these parameters in the target board’s nonvolatile
storage area. This is useful when you are using the pSOSystem Boot
ROMs because the executable image you then download can use the
same parameter values you give to the Boot ROMs. You can also enable
a special startup dialog that allows you to change the parameters at
runtime start-up through an RS-232 connection. Both of these options
are enabled by definitions in sys_conf.h.

Chapter 1. Introduction to the pSOSystem Environment

pSOSystem Getting Started 1-5

The C source files in PSS_ROOT/configs/std contain numerous
conditional compilation statements that are controlled by the contents of
sys_conf.h. The dialog.c file contains the source code for the optional
system startup dialog. Most of the other files contain the startup code
that builds the configuration tables for the various operating system
components. These files are provided as read-only source files; you
should not need to modify them.

In addition to the source files, PSS_ROOT/configs/std contains a file
called config.mk, which the application’s makefile must include. The
directives in config.mk compile the files in the std directory.

1.2.2 Board-Support Packages

Directory PSS_ROOT/bsps contains a collection of directories that are
included in the pSOSystem software. Each directory in PSS_ROOT/bsps
contains a board-support package (BSP) that corresponds to a specific
board. For example, the following path:

PSS_ROOT/bsps/boardname

indicates a board-support directory for boardname. For a detailed
description of BSPs, see Appendix A, ‘‘Board-Specific Information.”

1.2.3 System Library

The sys.lib file in the PSS_ROOT/sys/os/ directory is the system
library. It contains the various operating system components and the
runtime bindings that the application uses to make system calls to these
components. The system library is usually built once as part of the
pSOSystem host installation. It needs to be rebuilt only when you receive
new or updated software components. For additional information about
the system library, see the pSOSystem Installation Guide.

1.2.4 Working Directory

The pSOSystem executable image is built from within a working
directory. The working directory contains the application code. Its
location does not depend on the location of the pSOSystem root
directory. A working directory must contain the following:

■ A system configuration file (sys_conf.h)

■ A makefile

Chapter 1. Introduction to the pSOSystem Environment

1-6 pSOSystem Getting Started

■ A driver configuration file (drv_conf.c)

■ Application code

1.2.4.1 System Configuration File

The system configuration file sys_conf.h is a C include file that must
reside in the working directory. The sys_conf.h file has many elements
and affects many aspects of the pSOSystem environment. The following
list illustrates the range of items that sys_conf.h controls, namely:

■ Which pSOSystem components are built into the executable
image.

■ Which peripheral devices are enabled.

■ Whether a startup dialog is included.

■ How the system initialization code is compiled.

■ Various entries in the individual component configuration
tables, such as the numbers of tasks, queues, and other
objects, for the pSOS+ environment.

For a detailed description of the sys_conf.h file, see Chapter 7,
‘‘Configuration and Startup.”

Each of the pSOSystem sample applications includes an example
sys_conf.h file tailored to fit the application as described in
Section 1.2.5, ‘‘Sample Applications.” However, you may still need to
change some parameters, such as the IP address of the target board.

1.2.4.2 makefile

This section describes the rules for writing a makefile to build a
pSOSystem application.

The first items in the makefile are the following macro definitions:

PSS_BSP Supplies the pathname of the pSOSystem board-
support package you use to build the executable
image. This is usually one of the subdirectories of
PSS_ROOT/bsps.

PSS_DRVOBJS Defines a list of object files and/or libraries for
drivers that you have added to the pSOSystem
environment. It must include at least drv_conf.o.
For a detailed description of how to add drivers to

Chapter 1. Introduction to the pSOSystem Environment

pSOSystem Getting Started 1-7

a system, see Chapter 7, ‘‘Configuration and
Startup.”

PSS_APPOBJS Defines a list of all the object files and/or object
libraries that make up the application.

After the preceding macro definitions, the makefile must have the
following lines:

PSS_CONFIG=$(PSS_ROOT)/configs/std
include $(PSS_BSP)/bsp.mk
include $(PSS_CONFIG)/config.mk

The remainder of the makefile contains the rules that define how to
build application modules. The *.mk files that you include define several
macros. These macros are used in the following makefile commands:

CC Invokes the C compiler

COPTS Specifies options for the C compiler that are
appropriate for building an executable image

AS Invokes the assembler

AOPTS Specifies options for the assembler that are appropriate
for building an executable image

The following is an example makefile for building an application that
contains three object modules (root, task 1, and task 2).

PSS_BSP=$(PSS_ROOT)/bsps/cvme964

PSS_DRVOBJS=drv_conf.o

PSS_APPOBJS= root.o task1.o task2.o

PSS_CONFIG=$(PSS_ROOT)/configs/std

include $(PSS_BSP)/bsp.mk

include $(PSS_CONFIG)/config.mk

root.o: root.c
$(CC) $(COPTS) -o root.o root.c

task1.o: task1.c incl.h
$(CC) $(COPTS) -o task1.o task1.c

task2.o: task2.c incl.h
$(CC) $(COPTS) -o task2.o task2.c

drv_conf.o: drv_conf.o \
makefile \
sys_conf.h \

Chapter 1. Introduction to the pSOSystem Environment

1-8 pSOSystem Getting Started

$(PSS_ROOT /include/bspfuncs.h \
$(PSS_ROOT /include/configs.h \
$(PSS_ROOT /include/sysvars.h \
$(PSS_ROOT /bsp.h \
$(CC) $(COPTS) -o drv_conf.o drv_conf.c

When you invoke make to build the pSOSystem executable image,
specify one of the following output targets for make:

ram.hex An executable image in S-record format for Motorola
processors or Intel Extended Hexadecimal format for
Intel processors, suitable to download to the target
board’s RAM.

ram.x An executable image in IEEE-695 format, suitable to
load to the target board’s RAM with the XRAY Debugger
for pSOSystem.

rom.hex An executable image in S-record format for Motorola
processors or Intel Extended Hexadecimal format for
Intel processors, suitable for placement in ROM.

rom.x An executable image in IEEE-695 format, suitable for
placement in ROM. It is seldom useful for producing
ROMs unless the PROM programmer accepts IEEE-695
formatted input files.

os.hex An executable image of the pSOSystem software in
S-record format for Motorola processors or Intel
Extended Hexadecimal format for Intel processors
without the application.

os.x An executable image of the pSOSystem software in
IEEE-695 format, without the application.

app.hex An executable image of the application (without the
operating system) in S-record format for Motorola
processors or Intel Extended Hexadecimal format for
Intel processors.

app.x An executable image of the application (without the
operating system) in IEEE-695 format.

NOTE: If you don’t specify a target, the first target found in the
application’s makefile is built.

Chapter 1. Introduction to the pSOSystem Environment

pSOSystem Getting Started 1-9

To build a system for downloading to the target board’s RAM through the
pROBE+ debugger, for example, you would enter the following:

make ram.hex

The pSOSystem build process also produces an ASCII map file. The map
file contains a load map and cross-reference listing of symbols. Its name
is ram.map, rom.map, os.map, or app.map, depending on the output
target you specify.

1.2.4.3 Driver Configuration File

The driver configuration file drv_conf.c contains two routines that are
called during system startup to install pSOSystem drivers in the
appropriate tables. Each of the pSOSystem sample applications includes
an example driver configuration file. Normally, you don’t need to edit this
file unless you are adding special or custom drivers to the pSOSystem
environment. For a detailed description of how to add drivers to a
system, see Chapter 7, ‘‘Configuration and Startup.”

1.2.5 Sample Applications

Directory PSS_ROOT/apps has a number of subdirectories, each
subdirectory containing a pSOSystem sample application. The sample
applications allow you to build, download, and run an executable image
without writing a single line of code if you use a supported target
platform. Integrated Systems recommends that you use one of these
sample applications as a starting point for developing your own
application. The examples in Chapter 2, ‘‘pSOSystem Tutorial for
Workstation Hosts,” show how to do this. Along with source code for the
application, each sample application directory includes a properly
structured makefile and the pSOSystem configuration files.

Each sample application is designed to illustrate a different aspect of
pSOSystem. Source code is provided for all samples, and you can use the
source code for each sample as a starting point for an application or as
a learning tool. Each sample resides in its own subdirectory, and each
subdirectory contains a readme file with detailed information about the
sample. The pSOSystem base package includes the following samples in
the apps directory:

hello This sample program prints a message to either the
target’s serial port or the XRAY standard output screen.
The hello program is used by Chapter 2, ‘‘pSOSystem

Chapter 1. Introduction to the pSOSystem Environment

1-10 pSOSystem Getting Started

Tutorial for Workstation Hosts,” and Chapter 3,
‘‘pSOSystem Tutorial for PC Hosts.”

pnabench This sample program runs a benchmark program that
measures TCP throughput.

xraydemo This sample program is used by Chapter 4, ‘‘XRAY
Debugger for pSOSystem Tutorial: Multiple Windows
Version,” and Chapter 5, ‘‘XRAY Debugger for pSOSystem
Tutorial: Viewport Version.”

proberom This is the application that is used to build pSOSystem
Boot ROMs for non-networking systems.

tftp This application is used to build the pSOSystem Boot
ROMs for networking systems. It includes a TFTP
bootloader program for loading and starting a pSOSystem
executable image.

philepna This application demonstrates the use of pSOS+, pHILE+,
pNA+, and pREPC+.

nfs This application demonstrates the use of pSOSystem NFS
client services.

xray_cxx This application demonstrates the use of the C++ Support
Package.

The next chapter explains how to use a sample application by copying it
to a local working directory. You can also create new applications by
taking code fragments from different samples and combining them. For
more information about sample programs, see Chapter 8, ‘‘Application
Examples.”

1.3 Standard Download/Debug Sequence
After an executable image is created, the next steps are to download it to
the target system, initiate its execution, and begin debugging. This
section provides a brief introduction to this process.

The description in this section assumes that the pROBE+ debugger has
been configured into the pSOSystem environment. The pROBE+
debugger is used to debug application code either directly or through a

Chapter 1. Introduction to the pSOSystem Environment

pSOSystem Getting Started 1-11

source-level debugger. You can remove the pROBE+ debugger after fully
debugging the executable image.

1.3.1 Requirements for Downloading the Executable Image

An executable image does not depend on the way it is downloaded or its
execution initiated. You can use tools such as ROM monitors or in-circuit
emulators that can read the following formats:

■ Motorola S-record for Motorola processors

■ Intel Extended Hexadecimal for Intel processors

■ IEEE-695 for source-level debuggers

The pSOSystem software provides ROM monitors called pSOSystem Boot
ROMs for all supported boards. (For descriptions of supported boards,
see Appendix A, ‘‘Board-Specific Information.”) The ROM monitors are
described in “Section 1.4, ‘‘pSOSystem Boot ROMs,” and in greater detail
in the pSOSystem Programmer’s Reference.

The executable image generated with MRI tools is automatically placed
at its final execution address, so no user-supplied relocation address or
offsets are required for downloading.

1.3.2 Starting the Executable Image

The executable image is started by passing control to its start address.
An image’s start address depends on the hardware and thus can vary
from board to board. You can find the start of the code section in the
ram.map file.

For executable images built with pSOSystem, the starting address is the
start of the code section + 8. For example, if the code section starts at
0xA0060000, the starting address is 0xA0060008.

When control passes to the start address, the pROBE+ debugger gains
control and waits for further input. Neither the components nor the
application code is yet initialized or running.

The pROBE+ debugger operates in either stand-alone or remote mode. In
stand-alone mode, the pROBE+ debugger is controlled through a
terminal connected to the target hardware. In remote mode, the pROBE+
debugger acts as a back-end to a source-level debugger on the host
system. They are connected either through a serial channel or a network
connection. The operating mode of the pROBE+ debugger and the

Chapter 1. Introduction to the pSOSystem Environment

1-12 pSOSystem Getting Started

communication medium (when using remote mode) are specified in the
sys_conf.h file. The three possible operating modes are as follows:

■ The pROBE+ debugger operating stand-alone

■ A source-level debugger and the pROBE+ debugger
communicating over a serial channel

■ A source-level debugger and the pROBE+ debugger
communicating over an Ethernet network

The pROBE+ debugger operating in stand-alone mode may be adequate
for your initial needs; however, you may find that a source-level debugger
running over a serial channel or an Ethernet network provides additional
benefits. To communicate over an Ethernet network, you will need the
pNA+ TCP/IP Network Manager.

1.3.3 Debugging the Operating System and Application Code

When the pSOSystem software first begins operation, the pROBE+
debugger comes up and awaits further input from its console. Usually,
you initialize the remainder of the pSOSystem software now. The
pROBE+ debugger has commands to initialize the pSOS+ kernel and
other components. After component initialization, control returns to the
pROBE+ debugger. Note that the application code has not yet started.

After the pSOSystem software has been initialized, the pSOS+ ROOT and
IDLE tasks have been created, and execution of the ROOT task is
pending. Normally, you would also set one or more breakpoints before
you start ROOT. The pROBE+ debugger uses the go command to pass
control to the application code’s ROOT task. Descriptions of this and
other commands appear in the forthcoming tutorials.

In summary, initiating and debugging an executable image involves the
following steps:

1. Loading the executable image into the target system

2. Passing control to the start address of the executable image

3. Starting the pSOS+ kernel

4. Setting desired breakpoints, if any

5. Starting the application

The examples in subsequent chapters demonstrate these steps.

Chapter 1. Introduction to the pSOSystem Environment

pSOSystem Getting Started 1-13

1.4 pSOSystem Boot ROMs
One way to download and start an image is by using the ROM monitors
that are available for all supported target boards or can be built using
either the proberom or tftp sample application. The ROM monitors are
called Boot ROMs. This section provides an overview of how the ROMs are
used to download and start an executable image.

1.4.1 Inside the Boot ROMs

A pSOSystem Boot ROM set is actually a pSOSystem executable image
burned into ROM. Two types of Boot ROMs are available:

■ ROMs that contain just the pROBE+ debugger allow you to
download and start an executable image through an RS-232
connection to the host. They use either the stand-alone
pROBE+ debugger or the pROBE+ debugger with a source-
level debugger.

■ ROMs that contain the pNA+ network manager, the pSOS+
kernel, and a TFTP bootloader application in addition to the
pROBE+ debugger let you use a network connection between
the pROBE+ debugger and a source-level debugger to
download and start the executable image. These ROMs can
optionally use an automatic bootloader, rather than the
pROBE+ debugger or a source-level debugger, to load and start
the image. The bootloader uses the TFTP protocol, so the host
system must have a running TFTP server.

A target board’s capability determines which ROM set is supplied. The
full-featured TFTP ROMs are supplied for boards whenever possible.
Boards that lack networking capability come with pROBE-only ROMs.

The source code for the ROMs is supplied as a pSOSystem sample
application. You can build the ROMs for your target board from the
supplied source code.

1.4.2 Using the Boot ROMs

The ROM-resident pSOSystem software is not the same as the version
contained in the executable image. The executable image has the
following dependencies on the Boot ROMs:

■ The downloaded code must not overwrite the RAM that the
Boot ROMs use. No memory conflicts must occur between the

Chapter 1. Introduction to the pSOSystem Environment

1-14 pSOSystem Getting Started

Boot ROMs and linker command files for a supported board.
See Appendix A for the board-specific memory usage.

■ The Boot ROMs and the downloaded system can optionally
share certain operating parameters, such as the serial channel
baud rate and the board’s IP address in a networked system.

To help avoid any confusion, code modules within the ROMs are prefixed
with the word ROM, and those in the executable image are prefixed with
the word downloaded. For example, the pROBE+ debugger in the Boot
ROMs is referred to as the ROM-pROBE+ debugger and the pSOSystem
software in the executable image is called the downloaded operating
system.

When you start the downloaded operating system, its operation may
seem very similar to the ROM operating system. Consider, for example,
the Boot ROMs you configure to run with the pROBE+ debugger from a
terminal. Later, by using the ROM-pROBE+ debugger you download and
start the executable image. The downloaded pROBE+ debugger is also
configured to run from a terminal, so no differences appear. It is
important, however, to understand that you are now monitoring a
different instance of the pROBE+ debugger. Instructions for these
procedures appear in the Chapter 2, ‘‘pSOSystem Tutorial for
Workstation Hosts.” Subsequent chapters contain several examples of
Boot ROM usage.

When using Boot ROMs, you typically take the following steps:

1. Reset or power-on the CPU board, bringing control into the
Boot ROM’s configuration mode.

2. Configure the ROMs, as needed. The ROM-pROBE+ debugger
can be configured to operate in stand-alone mode, or with a
source-level debugger over a serial channel or network
connection.

3. Exit ROM configuration mode, initiating execution of the ROM
operating system. This primarily means starting the ROM
pROBE+ debugger.

4. Use the ROM pROBE+ debugger (or a source-level debugger) to
download the executable image.

5. Use the ROM pROBE+ debugger (or a source-level debugger) to
pass control to the start address of the executable image.

Chapter 1. Introduction to the pSOSystem Environment

pSOSystem Getting Started 1-15

6. Continue as described in Section 1.3, ‘‘Standard Download/
Debug Sequence.”

For more information about Boot ROMs, see Appendix A, ‘‘Board-Specific
Information.”

Chapter 1. Introduction to the pSOSystem Environment

1-16 pSOSystem Getting Started

pSOSystem Getting Started 2-1

2 pSOSystem Tutorial for
Workstation Hosts

This chapter is for pSOSystem users who are developing applications
from UNIX workstations. The tutorial in this chapter helps you gain
hands-on experience with the pSOSystem environment by building,
downloading, and running an executable image. The executable image
you build contains a sample application called hello. The hello sample
resembles the Hello World program familiar to most programmers. It
prints a short message and exits.

By following the examples in this chapter, you can learn how to complete
the following tasks:

■ Configure the pSOSystem software for execution in a
particular hardware environment.

■ Combine operating system and application code into an
executable image.

■ Transfer the executable image to the target system and
execute it under the control of the pROBE+ debugger.

Chapter 2. pSOSystem Tutorial for Workstation Hosts

2-2 pSOSystem Getting Started

2.1 Recommended Software and Hardware
This chapter contains explanations and commands you can execute with
the following hardware and software:

■ This tutorial assumes you have installed the pSOS+ kernel,
the pSOSystem standard components, one or more compilers,
and a source-level debugger.

■ This tutorial assumes you are using the pROBE+ debugger
although the pSOSystem software does not require it.

■ The examples in this chapter use the pSOSystem Boot ROMs,
although the pSOSystem environment does not require them.
The Boot ROMs depend on the pROBE+ debugger for
downloading and other services.

■ Many examples assume a terminal emulation program is
running on the host (for example, cu or tip on a UNIX system).
Although the pSOSystem software does not require an
emulator, the examples in this tutorial require an emulator.

The examples in this tutorial have target hardware dependencies. The
pSOSystem software includes fully operable board-support packages for
the supported CPU boards described in Appendix A, ‘‘Board-Specific
Information.” This chapter is based on the use of these supported boards
for the following reasons:

■ Developing a pSOSystem board-support package for an
unsupported board requires development of various board-
dependent drivers, interrupt handlers, and so on. Because this
is nontrivial, familiarity with the pSOSystem environment
before you build a custom BSP is helpful. Therefore, you
should do the examples in this chapter and, if necessary,
create a pSOSystem BSP for the target hardware.

■ The pSOSystem software also includes Boot ROMs for all
supported boards. Although normal pSOSystem operation
does not require Boot ROMs, the examples depend on them.

If the target hardware is not a supported board, you should still try to
obtain a supported board for temporary use. The supported boards are
widely available, but if you cannot obtain one, you should still read this
section and then proceed to Chapter 9, ‘‘Understanding and Developing
Board-Support Packages.”

Chapter 2. pSOSystem Tutorial for Workstation Hosts

pSOSystem Getting Started 2-3

2.2 Creating a Working Directory
Before you begin this tutorial, create your own copy of the hello sample
application code in a working directory. The easiest way to do this is with
a copy command that copies an entire directory tree, as the following
examples show. If you have already set up the PSS_ROOT environment
variable, enter the following command:

cp -r $PSS_ROOT/apps/hello workdir
cd workdir

where workdir is the name of a new working directory.

2.3 hello Sample Application
Before you run the hello sample, take a few minutes to examine its
source code. A listing of the working directory should show the following:

makefile drv_conf.c sys_conf.h
readme root.c

The root.c file contains the code for the hello sample’s ROOT task. This
code prints a message to the console, and then suspends itself. Self-
suspension causes the IDLE task to run indefinitely.

The source code in root.c illustrates some of the basic elements of
building pSOSystem application code. As you examine the contents of
root.c, note the following:

1. First, root.c includes the pSOSystem configuration file
sys_conf.h. For this tutorial, sys_conf.h defines the device
numbers of the serial driver and periodic tick timer. For a thor-
ough description of the sys_conf.h file, see Chapter 7, ‘‘Configu-
ration and Startup.”

2. Next, root.c includes a standard pSOSystem header file, psos.h.
Standard pSOSystem header files reside in the include directory
in the pSOSystem root directory. psos.h defines all pSOS+ ker-
nel-related constants such as error codes and options. All
source files that call pSOS+ services should include psos.h.
Similar header files exist for other components.

Chapter 2. pSOSystem Tutorial for Workstation Hosts

2-4 pSOSystem Getting Started

3. Next, root.c includes the probe.h file. This header file contains
the declaration for the external routine db_output(). This rou-
tine is used to print messages to the I/O screen of the source-
level debugger. Source code for db_output() comes in a standard
file shipped with the XRAY Debugger for pSOSystem.

4. The next statement defines the OUTPUT_TO_DEBUGGER con-
stant. This constant defines the device to which the hello sam-
ple directs its output. If OUTPUT_TO_DEBUGGER is 0, output
goes to the pSOSystem standard console device. Otherwise, out-
put goes to the I/O screen. The purpose of this parameter is
explained later.

5. The tick timer and default console are automatically initialized.
This auto-initialization is controlled by the SC_AUTOINIT define
statement in the sys_conf.h file. The timer device provides peri-
odic interrupts, and its interrupt service routine (ISR)
announces these ticks to the pSOS+ kernel so the kernel can
perform time-related functions.

6. The #if statement controlled by OUTPUT_TO_DEBUGGER
implements the output switch described above. If printing goes
to the console, de_write() is called to print the message. Other-
wise, db_output() is called.

7. Finally, the task calls t_suspend() to suspend itself.

2.4 Building an Executable Image
Before you build an executable image, edit the makefile to make sure the
definition of PSS_BSP reflects the target board. (Remove the comment
mark if one is present. The line defining PSS_BSP becomes the first non-
commented line in the makefile.) For example, if the name of the target
system is boardname, the makefile should contain the following:

PSS_BSP=$(PSS_ROOT)/bsps/boardname

If you have the pSOS+m multiprocessor kernel, the sys_conf.h file also
requires an edit: search sys_conf.h for the following lines:

#define SC_PSOS YES
#define SC_PSOSM NO

Chapter 2. pSOSystem Tutorial for Workstation Hosts

pSOSystem Getting Started 2-5

Change these two lines to show YES for the presence of the pSOS+m
kernel and NO to show the absence of the pSOS+ kernel.

To build an executable image, enter the following:

make ram.hex

The preceding action compiles, assembles, and links all the files required
to build an executable image. The executable image contains the hello
sample application and a version of the pSOSystem software for the
current hardware. After the build completes, verify that the two output
files, ram.map and ram.hex, were created. Chapter 1, ‘‘Introduction to
the pSOSystem Environment,” describes these files.

If any errors occurred during the build process, first verify that you
performed the copy commands correctly. If you did, then the installed
compiler tools may have a problem. If you cannot locate the problem,
contact Integrated Systems Technical Support.

2.5 Downloading the Executable Image
To run the executable image created in the previous section, you must
first download it to the target system by using the pROBE+ debugger.
This section takes you through the download sequence.

2.5.1 Starting the Boot ROMs

For installation instructions for the ROMs, see Appendix A, ‘‘Board-
Specific Information.”

The target board through an RS-232 connection must be connected to
an ASCII terminal or a terminal emulation program running on the host.
A terminal emulation program is preferable because, with an emulator,
you can use the same channel to download to the target.

If a target board has more than one RS-232 port, refer to Appendix A to
determine which port to use.

Set the terminal or emulator characteristics to:

■ 9600 baud

■ 8-bit data

■ 1 stop bit

Chapter 2. pSOSystem Tutorial for Workstation Hosts

2-6 pSOSystem Getting Started

■ no parity

When you power up or reset the board, the terminal displays a
pSOSystem startup message similar to the one in Figure 2-1.

Figure 2-1 pSOSystem Startup Message

If a message like the one in Figure 2-1 on page 2-6 does not appear,
check for the following:

■ A null modem cable between the target CPU and the terminal
may be required.

■ Make sure the ROMs are in the correct sockets and have no
bent pins.

■ Make sure the jumper and switch settings are correct.

If the ROMs still do not operate, contact Integrated Systems technical
support.

The pROBE+ startup message shows the default ROM configuration
parameters. After the startup message appears, the ROMs wait 60
seconds for keyboard input. If you do not enter a character within this
time, the ROMs operate with the configuration shown.

The preceding display shows that the startup mode for the pROBE+
debugger is stand-alone, and the startup code has a wait period of 60
seconds. Use this mode and the 60-second wait for now.

pSOSystem V2.2.0
Copyright (c) 1991 - 1996, Integrated Systems, Inc.
--
START-UP MODE:
 Boot into pROBE+ stand-alone mode
NETWORK INTERFACE PARAMETERS:
 LAN interface is disabled
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 After board is reset, start-up code will wait 60 seconds
--
To change any of this, press any key within 60 seconds

Chapter 2. pSOSystem Tutorial for Workstation Hosts

pSOSystem Getting Started 2-7

After the wait period has elapsed, a message similar to the following
should appear to indicate that the ROM pROBE+ debugger is waiting for
input:

pROBE+ V2.1.1
COPYRIGHT 1990 - 1996, INTEGRATED SYSTEMS, INC.
ALL RIGHTS RESERVED
pROBE+>

The ROM pROBE+ can now be used to download the ram.hex file that
contains the executable image.

2.5.2 Downloading the Executable Image File

To download the executable image file, ram.hex, enter the pROBE+ dl
(download) command, as follows:

pROBE+>dl

pROBE+ is now waiting for you to download ram.hex. Enter the
commands necessary to cause the terminal emulation program to
transmit ram.hex over the serial channel. For example, on a UNIX
system that uses the cu terminal emulation program, you can use the
following command:

~$cat ram.hex

If the download is successful, the pROBE+ debugger should display a
message similar to the following (the number of records may vary):

9840 records read
pROBE+>

NOTE: The download takes about five minutes.

Sometimes, the terminal emulation program misses part or all of this
message. If so, the results of the most recent download can be obtained
by entering the pROBE+ dl command again with the prev option, as
follows:

pROBE+>dl prev
9840 records read

Chapter 2. pSOSystem Tutorial for Workstation Hosts

2-8 pSOSystem Getting Started

2.5.3 Starting the Executable Image

The pROBE+ go command begins or continues execution. When you
enter go with the start address, the executable image is started by
passing control to its start address. To determine the start address for
individual boards, see Appendix A, ‘‘Board-Specific Information.” An
executable image is started by passing control to the image’s load
address + 8.

Once you have the board’s start address, enter the command with the
start address, as in the following example:

pROBE+>go 28008

A message similar to the following should appear:

pROBE+ V2.1.1
COPYRIGHT 1990 - 1996, INTEGRATED SYSTEMS, INC.
ALL RIGHTS RESERVED

pROBE+>

This is the point at which the hello sample application can run. Although
this message may look similar to the one displayed when the Boot ROMs
started, the message comes from the downloaded pROBE+ debugger
rather than the ROM pROBE+ debugger. The ROM pROBE+ debugger is
no longer functioning and can regain control only if you reset the board.

Like the ROM pROBE+ debugger, the downloaded pROBE+ debugger is
running in stand-alone mode. If the parameter SE_DEBUG_MODE is set
to STORAGE in sys_conf.h, the downloaded pROBE+ debugger operates
in the same mode as the ROM pROBE+ debugger. This is the default and
is usually the most convenient approach, although ROM and
downloaded pROBE+ debuggers do not need to operate in the same
mode. If SE_DEBUG_MODE is set to either DBG_SA, DBG_XS, or
DBG_XN, the downloaded pROBE+ debugger operates in the mode
specified by the SE_DEBUG_MODE setting regardless of the ROM
pROBE+ operating mode.

2.5.4 Executing the hello Sample Application

The pROBE+ gs (go start pSOS+) command passes control to pSOS+
startup. pSOS+ startup initializes the pSOS+ kernel and any other

Chapter 2. pSOSystem Tutorial for Workstation Hosts

pSOSystem Getting Started 2-9

operating system components, and then returns control to the pROBE+
debugger. Enter the gs command now:

pROBE+>gs

You should see output similar to that in Figure 2-2.

Figure 2-2 Output of pROBE+ gs Command

The pSOS+ kernel is now initialized, and execution of the ROOT task is
pending. Because the pSOS+ kernel has just been initialized, only two
tasks are in the system. You can verify this by entering the pROBE+ qt
(query task) command:

pROBE+>qt

The following information appears as shown in Figure 2-3.

Figure 2-3 Output of pROBE+ qt Command

You can use the pROBE+ di (disassemble memory) command to examine
the code that is ready to execute, as follows:

pROBE+>di

pROBE+> gs

pSOS Initialized. Running: 'ROOT' -#00020000

SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FEF94 ISP=000C342C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
DR=00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=00000000 00000000 00000000 00000000 00000000 00000000 00000000
PC=00029548-00029548 4E56FFE8 LINK A6,#-24

pROBE+> gt

 Name TID Prio Mode Status Susp? Parameters Ticks

 'IDLE' -#00010000 00 2000 Ready
 'ROOT' -#00020000 E6 2000 Running

Chapter 2. pSOSystem Tutorial for Workstation Hosts

2-10 pSOSystem Getting Started

Entering di (disassemble instruction) causes the disassembled memory
contents to appear as in Figure 2-4.

Figure 2-4 Output of the pROBE+ di Command

As explained previously, the hello sample’s ROOT task prints a message
on the console and then suspends itself with a t_suspend() call. Once
ROOT is suspended, control passes to the IDLE task because no other
tasks are in the system.

Because IDLE task executes indefinitely, it is best for control to return
to the pROBE+ debugger when the ROOT task blocks. The pROBE+
debugger lets you define a break condition that is triggered when any
task makes a specified pSOS+ service call. In this case, define a
breakpoint on t_suspend() by entering:

pROBE+>db se t_suspend * *

which produces the console output shown in Figure 2-5.

Figure 2-5 Output of a pSOS+ Service Break Command

pROBE+> di

 00029548-00029548 4E56FFE8 LINK A6,#-24
 0002954C-0002954C 2F02 MOVE.L D2,-(A7)
 0002954E-0002954E 486EFFFC PEA.L -4(A6)
 00029552-00029552 486EFFF8 PEA.L -8(A6)
 00029556-00029556 42A7 CLR.L -(A7)
 00029558-00029558 2F3C00020000 MOVE.L #131072,-(A7)
 0002955E-0002955E 4EB900030714 JSR.L ($00030714).L
 00029564-00029564 486EFFFC PEA.L -4(A6)

SERVICE_BREAK____SERVICE________BY_TASK____________PARAMETER_______________
 0 T_SUSPEND ****** ANY ****** Task: ANY

Chapter 2. pSOSystem Tutorial for Workstation Hosts

pSOSystem Getting Started 2-11

Now resume execution with the go command. Figure 2-6 shows the
resulting display.

Figure 2-6 Output From hello Application

Note that the message was printed, and the ROOT task is about to
suspend itself.

The hello sample application can be restarted without downloading by
entering the gs command:

pROBE+>gs

Figure 2-7 shows the resulting display.

Figure 2-7 Output of pROBE+ gs Command

You can then continue by entering the following:

pROBE+>go

Hello, world

pSOS SVC Break. Service: T_SUSPEND Task: 'ROOT' -#00020000
 Running: 'ROOT' -#00020000

SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FEF60 ISP=000C342C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
DR=00000006 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=003FEF88 00000000 00000000 00000000 00000000 00000000 003FEF60
PC=0002FFB0-0002FFB0 4E4B TRAP #11

pROBE+> gs

Kernel Event Break Running: 'ROOT' -#00020000
--
pSOS Initialized Event
--
SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FECCC ISP=0009735C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
ITT0=00FFC000 ITT1=00000000 DTT0=0000C020 DTT1=00FFC040
DR=00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=00000000 00000000 00000000 00000000 00000000 00000000 00000000 003FECCC
PC=0002A5E0-0002A5E0 4E56FFE8 LINK A6,#-24

Chapter 2. pSOSystem Tutorial for Workstation Hosts

2-12 pSOSystem Getting Started

Figure 2-8 shows the resulting display.

Figure 2-8 Output From hello Application

Note that the break condition on t_suspend() was not cleared by gs, so
you did not need to reenter it.

This concludes the demonstration of the hello sample program with the
ROM pROBE+ debugger and downloaded pROBE+ debugger operating in
stand-alone mode. Refer to the pROBE+ User's Guide for more
information on using the pROBE+ debugger.

2.6 Printing When Using XRAY Over a Serial Channel
Whether you have a single-channel or multiple-channel board, read and
follow the directions in this section.

Some of the boards supported by the pSOSystem software have only a
single serial channel. If the communication between the XRAY and the
pROBE+ debuggers takes place on this channel, then neither a pSOS+
serial driver nor an application can use the channel. To resolve this
conflict, the pSOSystem software provides the service call db_output().
When called by the application code, db_output() sends text to the XRAY
or pSOSystem I/O screen.

An example of how to use db_output() is located in the hello sample
application.

To use db_output(), you first need to change a line in the root.c file. In
root.c, look for the following:

#define OUTPUT_TO_DEBUGGER 0

Hello, world

pSOS SVC Break. Service: T_SUSPEND Task: 'ROOT' -#00020000
 Running: 'ROOT' -#00020000

SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FEF60 ISP=000C342C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
DR=00000006 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=003FEF88 00000000 00000000 00000000 00000000 00000000 003FEF60
PC=0002FFB0-0002FFB0 4E4B TRAP #11

Chapter 2. pSOSystem Tutorial for Workstation Hosts

pSOSystem Getting Started 2-13

The preceding line causes the ROOT task to use the standard
pSOSystem device driver for output.

To configure the ROOT task to use db_output(), change this line as
follows:

#define OUTPUT_TO_DEBUGGER 1

When a system has only a single serial channel,
OUTPUT_TO_DEBUGGER must be 1.

2.6.1 Dedicating the Serial Channel to XRAY

After you change OUTPUT_TO_DEBUGGER, the hello sample does not
print to the serial channel. Nevertheless, the pSOSystem build process
still detects a potential channel conflict and fails because of it. The two
lines in sys_conf.h that show the potential conflict are as follows:

#define SC_APP_CONSOLE 1
#define SC_PROBE_CONSOLE 1

These statements direct the pROBE+ debugger and application output to
the same serial channel (channel 1), which is not allowed when the
pROBE+ and XRAY debuggers communicate over a serial link. Changing
one of these settings can eliminate the conflict. Because the application
does not use serial output in the next example, change the definition of
SC_APP_CONSOLE as follows:

#define SC_APP_CONSOLE NO

To see how db_output() works in an application, see the appropriate
XRAY tutorial for your host. For UNIX hosts, see Chapter 4, ‘‘XRAY
Debugger for pSOSystem Tutorial: Multiple Windows Version. For PC
hosts, see Chapter 5, ‘‘XRAY Debugger for pSOSystem Tutorial: Viewport
Version.”

Chapter 2. pSOSystem Tutorial for Workstation Hosts

2-14 pSOSystem Getting Started

pSOSystem Getting Started 3-1

3 pSOSystem Tutorial for
PC Hosts

This chapter is for pSOSystem users who are developing applications
from PC hosts. The tutorial in this chapter helps you gain hands-on
experience with pSOSystem by building, downloading, and executing an
executable image. The executable image you build contains a sample
application called hello. The hello sample resembles the Hello World
program known to most programmers. It prints a short message and
exits.

By following the examples in this chapter, you can learn how to perform
the following tasks:

■ Configure pSOSystem for execution in a particular hardware
environment.

■ Combine operating system and application code into an
executable image.

■ Transfer the executable image to the target system and
execute it under the control of both the XRAY for pSOSystem
and pROBE+ debuggers.

Chapter 3. pSOSystem Tutorial for PC Hosts

3-2 pSOSystem Getting Started

3.1 Recommended Software and Hardware
This chapter is a tutorial with explanations and commands that you can
execute with the following hardware and software:

■ You must have installed the Microtec MCC68K tools on the
host and added it to your search path. Refer to the Microtec
installation instructions for details.

■ This tutorial assumes that you are using the pROBE+
debugger, although the pSOSystem software does not require
the use of it.

■ This chapter has many examples that use the XRAY for
pSOSystem source-level cross-debugger. (The pSOSystem
software does not require XRAY.) If you have purchased XRAY,
install it and add it to your search path before you proceed.
Refer to the installation instructions in the XRAY Debugger for
pSOSystem User’s Guide for details.

■ Many examples assume a terminal emulation program is
running on the host. Although the pSOSystem software does
not require an emulator, you will not be able to perform all the
examples in this tutorial without an emulator.

The examples demonstrate execution on target hardware. The
pSOSystem software includes fully operable board-support packages for
the supported CPU boards described in Appendix A, ‘‘Board-Specific
Information.” This chapter is based on the use of supported boards for
the following reasons:

■ Developing a pSOSystem board-support package for an
unsupported board requires the development and debugging
of various board-dependent drivers, interrupt handlers, and so
on. As this is nontrivial, familiarity with pSOSystem software
before you build a custom BSP is helpful. Therefore, you
should first do the examples in this chapter and, if necessary,
create a pSOSystem BSP for the target hardware.

■ The pSOSystem software also includes Boot ROMs for all
supported boards. Although normal pSOSystem operation
does not require Boot ROMs, the examples in this chapter are
based on their use.

Chapter 3. pSOSystem Tutorial for PC Hosts

pSOSystem Getting Started 3-3

If the target hardware is not a supported board, you should still try to
obtain a supported board for temporary use. The supported boards are
widely available, but if you cannot obtain one, you should still read this
section and then proceed to Chapter 9, ‘‘Understanding and Developing
Board-Support Packages.”

3.2 Creating a Working Directory
Before you begin this tutorial, create your own copy of the hello sample
application code in the working directory. The easiest way to do this is
with a copy command that copies an entire directory tree, as the
following example shows. If you have already set up the PSS_ROOT
environment variable, enter the following command:

xcopy \pss\apps\hello workdir /s/e

where workdir is the name of a working directory that does not already
exist. Presumably, PSS_ROOT is \pss because MS-DOS does not allow
expansion of environment variables when entering commands.

3.3 hello Sample Application
Before you run the hello sample, take a few minutes to examine its
source code. A listing of the working directory should show the following:

makefile drv_conf.c sys_conf.h
README root.c

The root.c file contains the code for the hello sample’s ROOT task. This
code prints a message to either the console or XRAY I/O screen and then
suspends itself. Self-suspension causes the IDLE task to run
indefinitely.

Chapter 3. pSOSystem Tutorial for PC Hosts

3-4 pSOSystem Getting Started

The source code in root.c illustrates some of the basic elements of
building pSOSystem application code. As you examine the contents of
root.c, note the following:

1. First, root.c includes the pSOSystem configuration file
sys_conf.h. For this tutorial, sys_conf.h defines the device
numbers of the serial driver and periodic tick timer. The
sys_conf.h file is introduced in Section 1.2.1, ‘‘Configuration
Files.”

2. Next, root.c includes a standard pSOSystem header file, psos.h.
Standard pSOSystem header files reside in the include directory
in the pSOSystem root directory. psos.h defines all pSOS+ ker-
nel-related constants such as error codes and options. All
source files that call pSOS+ services should include psos.h.
Similar header files exist for other components.

3. Next, root.c includes the probe.h file. This header file contains
the declaration for the external routine db_output(). This rou-
tine is used to print messages to the XRAY for pSOSystem I/O
screen. Source code for db_output() comes in a standard file
shipped with the debugger. For convenience, it also exists in the
xp_out.s file in the $PSS_ROOT/sys/os directory.

4. The next statement defines the OUTPUT_TO_DEBUGGER con-
stant. This constant defines the device to which the hello sam-
ple directs its output. If OUTPUT_TO_DEBUGGER is 0, output
goes to the pSOSystem standard console device. Otherwise, out-
put goes to the XRAY Debugger for pSOSystem I/O screen. The
purpose of this switch is explained later.

5. The ROOT task initializes the tick timer. Although this can be
done at any time by any task, normally the ROOT task does it.
This device provides periodic interrupts, and its interrupt service
routine (ISR) announces these ticks to the pSOS+ kernel so the
kernel can perform time-related functions.

6. The #if statement controlled by OUTPUT_TO_DEBUGGER
implements the output switch described above. If printing goes
to the console, de_write() is called to print the message. Other-
wise, db_output() is called.

7. Finally, the task calls t_suspend() to suspend itself.

Chapter 3. pSOSystem Tutorial for PC Hosts

pSOSystem Getting Started 3-5

3.4 Building an Executable Image
Before you build an executable image, edit makefile to make sure the
definition of PSS_BSP reflects the target board. (Remove the comment
mark if one is present. This line defining PSS_BSP becomes the first non-
commented line in the makefile.) For example, if the target system is a
Motorola MVME167, makefile should contain the following:

PSS_BSP=$(PSS_ROOT)/bsps/m167

If you have the pSOS+m multiprocessor kernel, the sys_conf.h file also
requires an edit. If the kernel is the pSOS+m kernel, search sys_conf.h
for the following lines:

#define SC_PSOS YES
#define SC_PSOSM NO

Change these lines to show YES for the pSOS+m kernel, SC_PSOSM, and
NO for the pSOS+ kernel, SC_PSOS.

Proceed to building an executable image. Enter the following:

make ram.hex

The preceding action compiles, assembles, and links all the files required
to build an executable image. The executable image contains the hello
sample application and the pSOSystem software for the selected
hardware.

After the build completes, verify that the two output files ram.map and
ram.hex were created. For a description of these files, see Chapter 9,
‘‘Understanding and Developing Board-Support Packages.”

If any errors occurred during the build process, first check to see if you
performed the copy commands correctly. If you did, then the installed
Microtec tools probably contain a problem. If you cannot locate the
problem, contact Integrated Systems Technical Support.

3.5 Downloading the Executable Image
To run the executable image created in the previous section, you must
first download it to the target system. This section takes you through the
download sequence.

Chapter 3. pSOSystem Tutorial for PC Hosts

3-6 pSOSystem Getting Started

The examples in this chapter are based on the use of the pSOSystem
Boot ROMs, although the pSOSystem does not require them. The Boot
ROMs rely on the pROBE+ debugger for downloading and other services.
Boot ROMs can operate the pROBE+ debugger in the following modes:

■ Stand-alone

■ With XRAY over a serial channel

■ With XRAY over a network (not available on all boards)

This chapter demonstrates all three modes. Integrated Systems
recommends that you perform all the exercises, if possible, or at least
read all the sections.

3.5.1 Starting the Boot ROMs

Appendix A, ‘‘Board-Specific Information,” contains installation
instructions for the Boot ROMs.

The target board through an RS-232 connection must be connected to
an ASCII terminal or a terminal emulation program running on the host.
A terminal emulation program is preferable because, with an emulator,
you can use the same channel to download to the target.

If a target board has more than one RS-232 port, refer to Appendix A to
determine which port to use.

Set the terminal or emulator characteristics to:

■ 9600 baud

■ 8-bit data

■ 1 stop bit

■ no parity

Chapter 3. pSOSystem Tutorial for PC Hosts

pSOSystem Getting Started 3-7

When you power up or reset the board, the terminal should display a
pSOSystem startup message similar to the one in Figure 3-1.

Figure 3-1 pSOSystem Startup Message

If a message like the one in Figure 3-1 does not appear, check for the
following:

■ The terminal baud rate, stop bits, and so on, must be correct.

■ A null modem between the target CPU and the terminal may
be required.

■ Make sure the ROMs are in the correct sockets and have no
bent pins.

■ Make sure the jumper and switch settings are correct.

■ If the ROMs still do not operate, contact technical support.

The preceding message shows the default ROM configuration
parameters. After the startup message appears, the ROMs wait 60
seconds for keyboard input. If you do not enter a character within this
time, the ROMs operate with the configuration shown.

The preceding display shows that the startup mode for the pROBE+
debugger is stand-alone, and the startup code has a wait period of 60
seconds. Use this mode and the 60-second wait for now.

After the wait period has elapsed, a message similar to the following
should appear to indicate that the ROM pROBE+ debugger is waiting for
input:

pSOSystem V2.2.0
Copyright (c) 1991 - 1996 Integrated Systems, Inc.
--
START-UP MODE:
 Boot into pROBE+ stand-alone mode
NETWORK INTERFACE PARAMETERS:
 LAN interface is disabled
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 After board is reset, start-up code will wait 60 seconds
--
To change any of this, press any key within 60 seconds

Chapter 3. pSOSystem Tutorial for PC Hosts

3-8 pSOSystem Getting Started

pROBE+ V2.1.1 (68040)
COPYRIGHT 1990 - 1996, INTEGRATED SYSTEMS, INC.
ALL RIGHTS RESERVED
pROBE+>

The ROM pROBE+ can now be used to download the S-record file that
contains the executable image (ram.hex).

3.5.2 Downloading the Executable Image

To download the S-record file that contains the executable image, enter
the pROBE+ dl command, as follows:

pROBE+>dl

pROBE+ is now waiting for you to download ram.hex. Enter the
commands necessary to cause the terminal emulation program to
transmit ram.hex over the serial channel. For a terminal emulation
program, for example, you would do the following:

1. Press [Alt-s]

2. Specify anpROBE ASCII transfer protocol

3. Send the ram.hex file

If the download is successful, the pROBE+ debugger should display a
message similar to the following (the number of records may vary):

9840 records read
pROBE+>

NOTE: The download takes about five minutes.

Often, the terminal emulation program misses part or all of this
message. If so, the results of the most recent download can be obtained
by entering the pROBE+ dl command again with the prev option, as
follows:

pROBE+>dl prev
9840 records read

3.5.3 Starting the Executable Image

The pROBE+ go command is used to begin (or continue) execution. When
you enter go with the start address, the executable image is started by

Chapter 3. pSOSystem Tutorial for PC Hosts

pSOSystem Getting Started 3-9

passing control to its start address. To determine the start address for
individual boards, see Appendix A, ‘‘Board-Specific Information.” (An
executable image is started by passing control to the image’'s load
address + 8.)

Once you have the board’s start address, enter the command with the
start address, as in the following example:

pROBE+>go 28008

A message similar to the following should appear:

pROBE+ V2.1.1 (68040)
COPYRIGHT 1990 - 1996, INTEGRATED SYSTEMS, INC.
ALL RIGHTS RESERVED

pROBE+>

This is the point at which the hello sample application can run. Although
this message may look similar to the one displayed when the Boot ROMs
started, the message comes from the downloaded pROBE+ debugger
rather than the ROM pROBE+ debugger. The ROM pROBE+ debugger is
no longer functioning and can regain control only if you reset the board.

Like the ROM pROBE+ debugger, the downloaded pROBE+ debugger is
running in stand-alone mode. If the parameter SE_DEBUG_MODE is set
to STORAGE in sys_conf.h, the downloaded pROBE+ debugger operates
in the same mode as the ROM pROBE+ debugger. This is the default and
is usually the most convenient approach, although ROM and
downloaded pROBE+ debuggers do not need to operate in the same
mode. If SE_DEBUG_MODE is set to either DBG_SA, DBG_XS, or
DBG_XN, the downloaded pROBE+ debugger operates in the mode
specified by the SE_DEBUG_MODE setting regardless of the ROM
pROBE+ operating mode.

3.5.4 Executing the hello Sample Application

The pROBE+ gs command passes control to pSOS+ startup. pSOS+
startup initializes the pSOS+ kernel and any other operating system
components and then returns control to the pROBE+ debugger. Enter
the gs command now:

pROBE+>gs

You should see output similar to that in Figure 3-2 on page 3-10.

Chapter 3. pSOSystem Tutorial for PC Hosts

3-10 pSOSystem Getting Started

Figure 3-2 Output of pROBE+ gs Command

The pSOS+ kernel is now initialized, and execution of the ROOT task is
pending. Because the pSOS+ kernel has just been initialized, only two
tasks are in the system. You can verify this by entering the pROBE+ qt
command:

pROBE+>qt

Figure 3-3 shows the subsequent display:

Figure 3-3 Output of the qt Command

You can use the pROBE+ di command to examine the code that is ready
to execute, as follows (the code actually displayed may be different):

pROBE+>di

pROBE+> gs

pSOS Initialized. Running: 'ROOT' -#00020000

SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FEF94 ISP=000C342C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
DR=00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=00000000 00000000 00000000 00000000 00000000 00000000 00000000
PC=00029548-00029548 4E56FFE8 LINK A6,#-24

pROBE+> gt

 Name TID Prio Mode Status Susp? Parameters Ticks

 'IDLE' -#00010000 00 2000 Ready
 'ROOT' -#00020000 E6 2000 Running

Chapter 3. pSOSystem Tutorial for PC Hosts

pSOSystem Getting Started 3-11

Entering di causes the disassembled memory contents to appear as in
Figure 3-4 (the actual displayed code may be different).

Figure 3-4 Output of the pROBE+ di Command

As explained previously, the hello sample’s ROOT task prints a message
on the console and then suspends itself with a t_suspend() call. Once
ROOT is suspended, control passes to the IDLE task because no other
tasks are in the system.

Because the IDLE task executes indefinitely, it is best for control to
return to the pROBE+ debugger when the ROOT task blocks. The
pROBE+ debugger lets you define a break condition that is triggered
when any task makes a specified pSOS+ service call. In this case, define
a breakpoint on t_suspend() by entering:

pROBE+>db se t_suspend * *

Figure 3-5 shows the subsequent display.

Figure 3-5 Defined Breakpoint

Now resume execution with the go command, as follows:

pROBE+>go

pROBE+> di

 00029548-00029548 4E56FFE8 LINK A6,#-24
 0002954C-0002954C 2F02 MOVE.L D2,-(A7)
 0002954E-0002954E 486EFFFC PEA.L -4(A6)
 00029552-00029552 486EFFF8 PEA.L -8(A6)
 00029556-00029556 42A7 CLR.L -(A7)
 00029558-00029558 2F3C00020000 MOVE.L #131072,-(A7)
 0002955E-0002955E 4EB900030714 JSR.L ($00030714).L
 00029564-00029564 486EFFFC PEA.L -4(A6)

SERVICE_BREAK____SERVICE________BY_TASK____________PARAMETER_______________
 0 T_SUSPEND ****** ANY ****** Task: ANY

Chapter 3. pSOSystem Tutorial for PC Hosts

3-12 pSOSystem Getting Started

Figure 3-6 shows the resulting display.

Figure 3-6 hello Output

Note that the message was printed, and ROOT is about to suspend itself.

The hello sample application can be restarted without downloading by
entering the gs command:

pROBE+>gs

Figure 3-7 shows the resulting display.

Figure 3-7 pSOS+ Status and CPU Register Contents

You can then continue by entering the following:

pROBE+>go

Hello, world

pSOS SVC Break. Service: T_SUSPEND Task: 'ROOT' -#00020000
 Running: 'ROOT' -#00020000

SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FEF60 ISP=000C342C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
DR=00000006 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=003FEF88 00000000 00000000 00000000 00000000 00000000 003FEF60
PC=0002FFB0-0002FFB0 4E4B TRAP #11

pROBE+> gs

pSOS Initialized. Running: 'ROOT' -#00020000

SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FEF94 ISP=000C342C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
DR=00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=00000000 00000000 00000000 00000000 00000000 00000000 00000000
PC=00029548-00029548 4E56FFE8 LINK A6,#-24

Chapter 3. pSOSystem Tutorial for PC Hosts

pSOSystem Getting Started 3-13

Figure 3-8 shows the resulting display.

Figure 3-8 hello Output

Note that the break condition on t_suspend() was not cleared by gs, so
you did not need to reenter it.

This concludes the demonstration of the hello sample with the ROM
pROBE+ debugger and downloaded pROBE+ debugger operating in
stand-alone mode. Refer to the pROBE+ User’s Guide for more
information on using the pROBE+ debugger.

3.6 Printing When Using XRAY Over a Serial Channel
Whether you have a single-channel or multiple-channel board, read and
follow the directions in this section.

Some of the boards supported by the pSOSystem software have only a
single serial channel. If the communication between the XRAY and the
pROBE+ debuggers takes place on this channel, then neither a pSOS+
serial driver nor an application can use the channel. To resolve this
conflict, the pSOSystem software provides the service call db_output().
When called by the application code, db_output() sends text to the XRAY
or pSOSystem I/O screen. An example of how to use db_output() is in
the hello sample application.

To use db_output(), you first need to change a line in the root.c file. In
root.c, look for the following:

#define OUTPUT_TO_DEBUGGER 0

The preceding line causes the ROOT task to use the standard
pSOSystem device driver for output.

Hello, world

pSOS SVC Break. Service: T_SUSPEND Task: 'ROOT' -#00020000
 Running: 'ROOT' -#00020000

SR=3000-tfSM.000...xnzvc USP=FFFFFFFF MSP=003FEF60 ISP=000C342C
VBR=00000000 DFC=0 SFC=0 CACR=80008000
DR=00000006 00000000 00000000 00000000 00000000 00000000 00000000 00000000
AR=003FEF88 00000000 00000000 00000000 00000000 00000000 003FEF60
PC=0002FFB0-0002FFB0 4E4B TRAP #11

Chapter 3. pSOSystem Tutorial for PC Hosts

3-14 pSOSystem Getting Started

To configure the ROOT task to use db_output(), change this line as
follows:

#define OUTPUT_TO_DEBUGGER 1

When a system has only a single serial channel,
OUTPUT_TO_DEBUGGER must be 1.

3.6.1 Dedicating the Serial Channel to the XRAY Debugger

After you change OUTPUT_TO_DEBUGGER, the hello sample does not
print to the serial channel. Nevertheless, the pSOSystem build process
still detects a potential channel conflict and fails because of it. The two
lines in sys_conf.h that show the potential conflict are as follows:

#define SC_APP_CONSOLE 1
#define SC_PROBE_CONSOLE 1

These statements direct the pROBE+ debugger and application output to
the same serial channel (channel 1), which is not allowed when the
pROBE+ debugger and XRAY debugger communicate over a serial link.
Changing one of these settings can eliminate the conflict. Because the
application does not use serial output in the next example, change the
definition of SC_APP_CONSOLE as follows:

#define SC_APP_CONSOLE NO

To see how db_output() works in an application, see the appropriate
XRAY tutorial for your host. For UNIX hosts, see Chapter 4, ‘‘XRAY
Debugger for pSOSystem Tutorial: Multiple Windows Version.” For PC
hosts, see Chapter 5, ‘‘XRAY Debugger for pSOSystem Tutorial: Viewport
Version.”

3.7 Using XRAY Debugger for pSOSystem Over Ethernet
This section describes how to run the hello sample by using the XRAY
Debugger for pSOSystem over an Ethernet connection.

The exercises in this section require the pNA+ network manager in the
system. The use of XRAY Debugger for pSOSystem over Ethernet
requires extra installation steps on some hosts. The XRAY Debugger for
pSOSystem User’s Guide describes the extra steps. You must take these
steps before you proceed.

Chapter 3. pSOSystem Tutorial for PC Hosts

pSOSystem Getting Started 3-15

3.7.1 Connecting to the Network

To use Ethernet, the target and host must connect over Ethernet. This
is usually done by adding the target system to the office network but can
also be done with a private network.

3.7.2 Adding pNA+ to the Downloaded System

The file sys_conf.h now requires editing. First, because communication
takes place over Ethernet, the operating system must include the pNA+.
network manager. To include the pNA+ network manager in the
pSOSystem environment, change the following statement:

#define SC_PNA NO

to

#define SC_PNA YES

Other changes can be made to sys_conf.h. You can change the pROBE+
operating mode to XRAY Over a Network, add an Ethernet interface, and
assign an IP address to the Ethernet interface. However, as long as
SC_SD_PARAMETERS is set to STORAGE, the downloaded system uses
the same settings as the pSOSystem ROMs, so don’t change these
parameters in sys_conf.h. For information on how to changes to the
ROM parameters, see Chapter 7, ‘‘Configuration and Startup.”

3.7.3 XRAY Debugger for pSOSystem Output Over Ethernet

Recall that when the pROBE+ debugger runs in stand-alone mode, the
hello sample output goes to the standard pSOSystem console. When you
connected the XRAY debugger to the serial channel, you had to change
the hello sample source code to use the db_output() routine and did so
by changing the definition of OUTPUT_TO_DEBUGGER in root.c.

Now that XRAY is to connect over Ethernet for this part of the tutorial,
either method of output can be used. If you want to use the pSOSystem
console driver, connect a terminal to the serial channel to see the output.

Chapter 3. pSOSystem Tutorial for PC Hosts

3-16 pSOSystem Getting Started

pSOSystem Getting Started 4-1

4 XRAY Debugger for
pSOSystem Tutorial:
Multiple Windows Version

This chapter provides a tutorial on the use of the multiple window
version of XRAY Debugger for pSOSystem, a multitasking debugger from
Integrated Systems. The tutorial shows how to control and monitor
multitasking applications from a SunOS or Solaris host. If you are using
an HP, RS6000, or PC, see Chapter 5, ‘‘XRAY Debugger for pSOSystem
Tutorial: Viewport Version.”

XRAY Debugger for pSOSystem has the following features:

■ A graphical user interface with multiple windows

■ Automatic tracking of program execution through source code

■ Traces and breaks on high-level language statements

■ Breaks on task state changes and operating system calls

■ Monitoring of language variables and system-level objects
such as tasks, queues, and semaphores

■ Profiling for performance tuning and analysis

■ Full-featured C++ language support

■ Integration with the XRAY MasterWorks Development
Environment

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-2 pSOSystem Getting Started

■ The ability to debug optimized code

■ System Debug Mode support

In addition to supporting System Debug Mode, some versions of XRAY
also support Task Debug Mode. This tutorial illustrates the use of
System Debug Mode only. For more information on Task Debug Mode,
refer to the XRAY Debugger for pSOSystem User’s Guide.

4.1 xraydemo Sample Application
The apps directory contains the subdirectory xraydemo, which contains
a sample application called xraydemo. The tutorial in this chapter uses
this sample application.

The xraydemo sample application is a C program that contains the code
for eight tasks. The ROOT task, which automatically receives control
from the pSOS+ kernel after startup, creates the seven other tasks and
then blocks. The seven other tasks function as follows:

Task Function

‘MEM1’ Requests memory segments of various sizes.

‘MEM2’ Receives memory segments from MEM1 and frees them.

‘IO1• ’ Reads a block from the RAM disk device.

‘IO2• ’ Writes a block to the RAM disk device.

‘SRCE’ Sends messages to the ‘SS•• ’ Queue.

‘SINK’ Consumes messages from the ‘SS•• ’ Queue.

‘MSG• ’ Consumes messages from Queue CNSL and sends the
contents to the XRAY terminal.

NOTE: The ‘IO1• ’ and ‘IO2• ’ tasks consist of 4-character names
where the fourth character is a required space. Similarly, the
‘SS•• ’ queue name includes two required spaces; the breve
symbol (•) indicates a required space.

A task name entered with a command sometimes requires single quotes
around the task name. The examples in this manual show when the
quotes are required.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-3

NOTE: Before invoking the XRAY debugger, either serially or over
Ethernet, you must set several environment variables. For a
detailed description of XRAY environment variables, see the
XRAY Debugger for pSOSystem User’s Guide or your Microtec
Research documentation.

4.2 Creating an Executable Image
This section guides you through the steps needed to build an executable
image that contains an operating system for the target board and the
xraydemo sample application. It is assumed you have performed the
steps in Chapter 2, ‘‘pSOSystem Tutorial for Workstation Hosts,” or
Chapter 3, ‘‘pSOSystem Tutorial for PC Hosts,” so only a brief description
appears here.

First, build a new working directory, named xd, containing xraydemo,
and then switch to that directory. For example, you can enter the
appropriate command sequence for your environment.

mkdir xd
cp -r $PSS_ROOT/apps/xraydemo/* ./xd
cd xd

NOTE: The xraydemo application prints by using db_output().
Therefore, the constant OUTPUT_TO_DEBUGGER used in the
hello application does not exist in xraydemo. Also, the value
of SC_APP_CONSOLE in sys_conf.h is not relevant.

4.2.1 Customizing The Operating System

You may need to customize the operating system to work with XRAY
Debugger for pSOSystem. Customizing the operating system requires
one or more of the following steps:

■ Set PSS_BSP in Makefile to an appropriate value. A PSS_BSP
value has the form $(PSS_ROOT)/bsps/directory_name,
where directory_name is the name of a BSP.

■ If you use XRAY Debugger for pSOSystem over a serial
channel, follow the directions in Section 4.3, ‘‘Using XRAY
Over a Serial Channel.”

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-4 pSOSystem Getting Started

■ If you use the XRAY debugger over Ethernet, set SC_PNA in
sys_conf.h to YES. For more information, see Section 4.4,
‘‘Using XRAY Debugger for pSOSystem Over Ethernet.”

■ If you use the pSOS+ kernel instead of the pSOS+m kernel, set
the sys_conf.h parameters as follows: SC_PSOS to NO and
SC_PSOSM to YES.

4.2.2 Building The Executable Image

After you make the needed changes, build the executable image with the
following command:

make ram.x

As noted above, you can download the ram.x file to the target system
using a serial channel (as described in section 4.3) or an Ethernet port
(as described in section 4.4). Follow the directions in the section
appropriate for your environment.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-5

4.3 Using XRAY Over a Serial Channel
This section describes how to run the xraydemo sample program by
using XRAY Debugger for pSOSystem connected to the target over a
serial channel as shown in Figure 4-1. In this section, both the ROM and
downloaded pROBE+ debugger operate in remote mode communicating
with XRAY Debugger for pSOSystem over a serial channel. The operating
modes of the ROM pROBE+ debugger and downloaded pROBE+
debugger do not need to be the same, but in most cases they are.

Figure 4-1 Using XRAY Debugger for pSOSystem Over a Serial Channel

4.3.1 Reconfiguring the ROMs for a Serial Channel

To reconfigure the ROMs to communicate with XRAY Debugger for
pSOSystem, reset the target CPU board and enter a character before the
specified time elapses. When you power up or reset your board, a
message similar to the following appears as part of the pSOSystem
startup display (as shown in Figure 2-1 on page 2-6):

To change any of this, press any key within 5 seconds

RS-232

Console
Drivers

pROBE+

Host

Target

XRAY Debugger

for pSOSystem

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-6 pSOSystem Getting Started

Press any key within 5 seconds, and a message similar to the one in
Figure 4-2 appears.

Figure 4-2 Reconfiguring the ROMs

To use XRAY Debugger for pSOSystem over a serial channel, enter a 2.

You do not need to change the remaining parameters, so you can bypass
each of the remaining questions by pressing [Return] until the following
question appears:

How long (in seconds) should CPU delay before starting up?
[60]

In most cases, 60 seconds is unnecessarily long. Enter a more suitable
value, such as 3. When you power up or reset the board, the terminal
displays a pSOSystem startup message similar to the one in Figure 4-3.

Figure 4-3 pSOSystem Startup Message for a Serial Channel

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

How should the board boot?
 1. pROBE+ stand-alone mode
 2. pROBE+ waiting for host debugger via serial connection
 3. pROBE+ waiting for host debugger via a network connection
 4. Run the TFTP Bootloader

Which one do you want? [1]

--
START-UP MODE:
 Boot into pROBE+ and wait for host debugger via a serial connection
NETWORK INTERFACE PARAMETERS:
 LAN interface is disabled
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 Processor Type :: MC68040 operating at 25 Mhz
 RAM configuration :: Parity DRAM 4 Mb
 :: SRAM 128 Kb
 After board is reset, start-up code will wait 3 seconds
--
(M)odify any of this or (C)ontinue? [M]

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-7

Press the letter c followed by [Return] to accept the changes. pROBE+
will indicate that it is ready to talk to the debugger over the serial port.

If a terminal emulator is running, exit it now because the next section
requires the use of XRAY Debugger for pSOSystem over a serial channel.

NOTE: Resetting a board does not cause the ROMs to revert to their
default configuration. Furthermore, because configuration data
is stored in battery-backed or nonvolatile RAM when available,
powering down a board causes a return to default values only
if the board lacks nonvolatile storage capability.

4.3.2 Invoking the XRAY Debugger for a Serial Channel

Because XRAY Debugger for pSOSystem is a source-level debugger, it
must locate the source code for the object code it is debugging. It first
searches the current directory and then searches as directed by the
environment variable XRAY. If you set XRAY to @, XRAY Debugger for
pSOSystem uses the source file pathnames embedded in the executable
image. Set the XRAY environment variable for use with csh with the
following command:

setenv XRAY @

You can now invoke XRAY Debugger for pSOSystem on the host. To
invoke XRAY for use over a serial channel connecting to a 68K target, use
the following syntax:

xp68k -e rdev ram.x &

where dev specifies the serial device. For example:

xp68k -e rttyb ram.x &

For Sun-4 hosts running the SunOS or Solaris operating system, valid
device names are ttya and ttyb (or similar serial device names).

For other ways of invoking XRAY Debugger for pSOSystem, refer to the
XRAY Debugger for pSOSystem User’s Guide.

4.3.3 Changing the Baud Rate for a Serial Channel

Unless you are using XRAY Debugger for pSOSystem with Ethernet, you
may want to increase the baud rate of the serial channel. You can
increase it to either 19200 or 38400 baud if the host and target both

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-8 pSOSystem Getting Started

support the higher rate. The baud rate must be changed in several
places:

■ The Boot ROMs should be reconfigured for the higher rate.

■ The XRAY debugger uses a default baud rate of 9600.
Therefore, when you invoke XRAY Debugger for pSOSystem,
you must explicitly specify a higher rate. You do this by
appending the baud rate to the name of the serial device,
separated by a comma. For example, the following command
changes the baud rate to 19200:

xp68k -e rttya,19200 ram.x

■ The terminal or terminal emulation program must be
reconfigured to operate at the higher rate.

This concludes the description of XRAY Debugger for pSOSystem over a
serial channel.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-9

4.4 Using XRAY Debugger for pSOSystem Over Ethernet
This section describes how to run the xraydemo sample program by
using XRAY Debugger for pSOSystem over an Ethernet connection as
shown in Figure 4-4.

The exercises in this section require the pNA+ network manager in the
system. The use of the XRAY debugger over Ethernet requires extra
installation steps on some hosts (as described in the following sections).

Figure 4-4 Using XRAY Debugger for pSOSystem Over Ethernet

4.4.1 Connecting to the Network

To use Ethernet, the target and host must connect over Ethernet. This
is usually done by adding the target system to the office network but can
also be done with a private network.

4.4.2 Adding pNA+ to the Downloaded System

Because communication takes place over Ethernet, the operating system
must include the pNA+ network manager. To include the pNA+ network

Host

pROBE+

pNA+

Network
Driver

Ethernet

Target

XRAY Debugger

for pSOSystem

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-10 pSOSystem Getting Started

manager in the pSOSystem environment, change the following statement
in your sys_conf.h file:

#define SC_PNA NO

to

#define SC_PNA YES

You can make other changes to sys_conf.h such as changing the
pROBE+ operating mode to XRAY Over a Network, adding an Ethernet
interface, and assigning an IP address to the Ethernet interface.
However, as long as the SC_SD_PARAMETERS value is set to STORAGE,
the downloaded system uses the same settings as the pSOSystem ROMs,
so you don’t need to change these parameters in sys_conf.h.

4.4.3 Reconfiguring the ROMs for Ethernet

To reconfigure the ROMs for communication with XRAY over Ethernet,
reset the target CPU board and enter a character at the pSOSystem
startup screen before the specified time elapses, as indicated in the
following prompt:

To change any of this, press any key within 5 seconds

Press any key within the time limit, and a display similar to the one
shown in Figure 4-5 appears.

Figure 4-5 Reconfiguring the ROMs for Ethernet

To use XRAY with pROBE+ over Ethernet, enter a 3.

NOTE: The steps described in this section are done through an ASCII
terminal, regardless of the subsequent operating mode of the
ROMs.

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

How should the board boot?
 1. pROBE+ stand-alone mode
 2. pROBE+ waiting for host debugger via serial connection
 3. pROBE+ waiting for host debugger via a network connection
 4. Run the TFTP Bootloader

Which one do you want? [1]

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-11

By entering a 3, you also get the following network questions:

NETWORK INTERFACE PARAMETERS:
Do you want a LAN interface? [N] y

Enter a y. (n applies to multiprocessor systems where some boards
communicate through shared memory rather than Ethernet.) The next
prompt displays your IP address as follows:

This board's LAN IP address? (0.0.0.0 = RARP)?
[199.99.99.99]

Enter a y to accept the displayed IP address or correct the displayed IP
address and then enter a y. Enter the IP address of the CPU board using
standard dot notation for internet addresses (four numeric fields, each
separated by a period). Answer n to the next two questions, because they
enable features that are useful only in multiprocessor target systems:

Use a subnet mask for the LAN interface? [N]
Do you want a shared memory network interface? [N]

The next question is as follows:

Should there be a default gateway for packet routing? [N]

The usual answer is n unless the target and host systems are on different
networks connected through a gateway. If you are not sure how to
answer this, ask your system administrator.

Accept the indicated default values for the remaining questions as shown
below:

MULTIPROCESSING PARAMETERS:

Do you want to configure a multiprocessing pSOS+m system?
[N]

HARDWARE PARAMETERS:

Baud rate for serial channels [9600]

Bus address of this board’s dual-ported memory [4000000]

How long (in seconds) should CPU delay before starting up?
[5]

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-12 pSOSystem Getting Started

When you power up or reset the board, the terminal displays a
pSOSystem startup message similar to the one in Figure 4-6.

Figure 4-6 pSOSystem Startup Message for Ethernet

Press any key within 5 seconds to change any of the settings shown in
Figure 4-6. No pROBE+ prompt appears, because pROBE+ is now
waiting for a connection from XRAY over the network.

4.4.4 Invoking the XRAY Debugger Over Ethernet

Invoking the XRAY debugger for use over Ethernet is similar to invoking
the XRAY debugger over a serial channel, as described in section 4.3.2,
except that, following the -e option, you specify a p rather than an r and
then enter the host IP address. For example, if the target system IP
address is 199.99.99.99 as in Figure 4-6, the form of the command is as
follows:

xp68k -e p199.99.99.99 &

where 68k indicates a 68K target.

4.5 Initializing XRAY Debugger for pSOSystem
A sign-on screen appears while XRAY Debugger for pSOSystem is
initializing. On some hosts you can define an alias name to represent the
IP address of the target. You can then type this name in place of the
actual IP address.

START-UP MODE:
 Boot into pROBE+ and wait for host debugger via a network connection
NETWORK INTERFACE PARAMETERS:
 IP address on LAN is 199.99.99.99
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 After board is reset, start-up code will wait 3 seconds
--
(M)odify any of this or (C)ontinue? [M]

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-13

First, the MasterWorks Control Panel appears as shown in Figure 4-7 if
XRAY is not already executing. The icons that appear in the MasterWorks
Control Panel depend on the tools you have installed.

Figure 4-7 MasterWorks Control Panel

You can invoke the XRAY debugger by double-clicking on the xp68k icon
(on the bottom right). For additional information about XRAY, see the
XRAY Debugger for pSOSystem User’s Guide.

When you invoke XRAY, the Code and Command windows appear as
shown in Figure 4-8 on page 4-14.

xhm68k xhs68k xp68k

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-14 pSOSystem Getting Started

Figure 4-8 Code and Command Windows

xp68k - Code

xp68k - Command

68040

NOTE: Connecting to port /dev/ttyb
 (for serial connections)
NOTE: Connecting to target
199.99.99.99
 (for Ethernet connections)

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-15

To download an application, follow these steps:

1. Select File in the menu bar.

2. Select Load in the File menu. This opens the Command Dialog
window, shown in Figure 4-9.

Figure 4-9 Command Dialog Window

3. Select the Folder icon in the Command Dialog window. This icon
is at the right of the Choose File To Load text box.

xp68k - Command Dialog: Debugger Files

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-16 pSOSystem Getting Started

4. Select File Chooser and the dialog shown in Figure 4-10
appears. The default in the File Chooser dialog is files with a .x
extension .

5. Select the application to download (for example, ram.x).

6. Click OK in the File Chooser.

7. Click Load in the Command Dialog window (shown in Figure 4-9
on page 4-15). The downloading process begins. It can last sev-
eral minutes. The display shows that downloading is taking
place by showing “Reading” in the Status field. The Command
window shows processing of the load command.

Figure 4-10 File Chooser

Downloading is complete when the Command window displays the
following message (see Figure 4-13 on page 4-23 for a sample Command
window):

(Use RESTART to initialize or re-initialize pSOS+.)

The Code and Command windows each can operate in one of two modes:
high-level source mode and assembly mode. After the steps you just
completed, the Code window is in high-level source mode, and the

xp68k - xp68k - File C hooser (*.x)

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-17

Command window is in assembly mode. To change the Command
window to high-level mode, enter the following:

>mode high

4.6 Starting the Downloaded Operating System
Before starting the pSOS+ kernel, consider the following:

■ The executable image has been downloaded to the target but
has not been started, as described in Section 4.2, ‘‘Creating an
Executable Image.”

■ The Code window may show the message “Not in Source
Program” because the current PC is not within the executable
image. Once you begin execution, this window normally
contains the source code for the currently executing task.

■ XRAY Debugger for pSOSystem is communicating with the
ROM pROBE+ debugger.

Now you pass control to the operating system in the executable image,
by using the XRAY osboot command. The osboot command causes
XRAY to do the following:

■ Pass control to the specified address.

■ Terminate the connection to the pROBE+ debugger in ROM.

■ Establish a new connection with the pROBE+ debugger in the
downloaded code.

If, for example, the start address for the downloaded operating system is
0x28008, enter the following:

osboot 28008

After a short delay, the following message appears:

BOOTING COMPLETE

This indicates that the downloaded operating system has successfully
started, and the downloaded pROBE+ debugger is connected to the
XRAY debugger.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-18 pSOSystem Getting Started

When you enter restart, the Code window displays the source shown in
Figure 4-11.

Figure 4-11 xraydemo Source Code

68040

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-19

4.7 XRAY Debugger for pSOSystem Product Description
This section describes the following:

■ Command Conventions

■ Online Help

For additional product information, see the XRAY Debugger for
pSOSystem User’s Guide.

4.7.1 Command Conventions

The following information applies to XRAY debugger commands:

■ Commands can be in either uppercase or lowercase.

■ Arguments such as task names, routine names, and module
names are case-sensitive and must be entered as shown.

■ The Stop button aborts the current command and resumes
command mode.

■ A # identifies a line number within the source code.

■ The default interpretation of integer constants is decimal. You
can specify hexadecimal by preceding each with a 0x or 0X.

■ All commands are terminated by pressing [Return].

■ Some commands have a corresponding menu or button. The
debugger documentation from Microtec Research lists them.

4.7.2 Online Help

XRAY Debugger for pSOSystem provides context-sensitive online help for
all debugger commands, command arguments, and keypad keys. Look
at the help system by doing the following:

1. Select the ? button in the Code window or Command window.

2. Select the “On HELP” menu.

3. Select the Search button as shown in Figure 4-12 on page 4-
20.

4. To select a command (such as BreakI):

Scroll to BreakI in the Search_popup dialog.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-20 pSOSystem Getting Started

-or-

Enter BreakI in the Selection text box of the Search_popup
dialog.

5. Click the Apply button.

6. Select the OK button.

The help utility displays the command name, its abbreviation, the
command syntax, and the command description.

Figure 4-12 Help and Search Windows

4.8 Tutorial Output
The actual program output for this tutorial may differ slightly in this
section because:

■ The board may have a different memory map, and/or the
executable image may load at a different address.

OK

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-21

■ Using a serial channel for host-to-target communication
instead of the pNA+ network manager may cause a difference.

■ Different series CPUs have different register sets.

Also, note that the memory-related command examples in this section
are based on an on-board RAM starting address of 0, and this is true of
most boards. For a few boards, on-board RAM begins at another address,
so you must adjust the addresses in the commands. For example, if the
on-board RAM begins at 0x4000000 and a tutorial command contains
the address 0x1FF00, enter 0x401FF00. For the start addresses of on-
board RAM, see Appendix A, ‘‘Board-Specific Information.”

4.9 Running the System Debug Mode Tutorial
At this point, the xraydemo executable image should be running on the
target and communicating with XRAY Debugger for pSOSystem on the
host.

4.9.1 Memory Manipulation and Windows

To examine memory, enter the following command from the Command
window:

dump/l 0..0xFF

The dump command requests a hex display of memory. The /l requests
memory to be displayed in long words. 0..0xFF specifies the first 256
bytes of target memory.

Fill an area of memory with 0x12, as follows:

 fill /b 0x1FF00..0x1FFFF=0x12

The /b directs the fill command to operate on byte (8-bit) elements (see
also the Microtec Research debugger documentation). Each byte in the
range of 0x1FF00 through 0x1FFFF is now set to 0x12.

The address range may be unique to each board. Check for a valid
address range in Appendix A, ‘‘Board-Specific Information.”

Now set one byte in this range to a different value:

 setmem 0x1FFF0=0

This sets the byte at location 0x1FFF0 to 0. Search for it by entering:

 search 0x1FF00..0x1FFFF=0

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-22 pSOSystem Getting Started

The XRAY debugger should report:

Matched: 001FFF0

4.9.2 Starting the pSOS+ Kernel

The XRAY Debugger for pSOSystem restart command sets a breakpoint
at the first instruction of the pSOS+ ROOT task and passes control to the
pSOS+ startup entry point. To initialize the pSOS+ kernel, enter:

restart

The Command window, shown in the lower portion of Figure 4-13 on
page 4-23, displays the following message:

pSOS initialized Running ROOT - #00020000

This identifies ROOT as the current running task and 0x00020000 as
the task ID.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-23

Figure 4-13 Command Window and Code Window

xp68k - Code

xp68k - Command

68040

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-24 pSOSystem Getting Started

The Code window is now displaying source code for the ROOT task. The
XRAY debugger has highlighted the opening brace of the ROOT task,
which is the current point of execution. (When control is entering a
procedure, XRAY highlights the opening brace.)

4.9.3 High-Level Mode and Assembly-Language Mode

XRAY Debugger for pSOSystem supports two modes of language
debugging: the high-level mode and the assembly-language mode. In
high-level mode, you debug code at the C/C++ language level, so the
Code window shows the C/C++ language source code. In assembly-
language mode, you debug at the assembly-language level, so the Code
window shows assembly-language code. In general, the command syntax
in the two modes are similar, but the behavior of the commands is
different.

When in high-level mode, a single step command lets you execute one or
more C/C++ language statements.

4.9.4 Stepping C/C++ Statements

Execute C/C++ statements one at a time by selecting the StepLine
button in the button panel.

Notice that the highlighted line moves down. This is because you are
single-stepping lines of executable code. The complexity of the code
determines whether the XRAY debugger requires more than one step to
complete a single line. In some cases, XRAY may appear to execute
several lines of C or C++ code with a single StepLine. This is a result of
compiler optimizations.

Change the Command window to high-level mode by entering:

mode high

Repeat the StepLine command until the line containing the subroutine
call tm_set() is highlighted (which may require only one StepLine). In
high-level mode, the StepLine command ordinarily steps into a called
subroutine. The StepLine command does not step into an assembly-
language instruction in high-level mode. Instead, it treats the assembly
subroutine as an atomic operation and highlights only the high-level call.

Single step again and repeat until you are on de_init(). This is another
assembly routine.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-25

Before you change to assembly-language mode, make the current line
the first line in the Code window. Do this with a scope command; for
example:

scope #92

Other uses of the scope command appear later in this tutorial.

To switch to assembly mode, select the Assembly button in the Mode
section of the Code window, and then enter the following in the
Command window:

mode assembly

The Code window displays intermixed source and assembly code.
Numbered lines show high-level code corresponding to the assembly
code.

The highlighted instruction is preparation for a function call. Single step
some lines by repeatedly clicking the StepInstr button (see Figure 4-14).

Figure 4-14 Command Window

To step into the routine, select StepInstr until the instruction to call a
subroutine is highlighted (for example, jsr for 68K processors). Now,

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-26 pSOSystem Getting Started

select StepInstr one more time. Notice that the StepInstr command
causes a step into the routine. Clicking the StepInstr button single steps
one microprocessor instruction at a time—even in high-level mode.
Similarly, selecting the StepLine button single steps one source line at
a time—even in assembly-language mode.

The StepO Instr command, when it encounters a subroutine call,
executes the call, and halts when the called subroutine returns.
Selecting StepO Instr single steps one microprocessor instruction at a
time—even in high-level mode. Similarly, selecting StepOver single steps
one source line at a time (even in assembly-language mode).

Now return to high-level mode by taking the following steps:

1. In the Code window, click the Source button.

2. In the Command window, enter mode high.

The go instruction resumes execution of the application and optionally
allows you to set a temporary breakpoint. The application continues
until it encounters a break condition (if specified). For example, to
resume execution with a temporary breakpoint at line #102, enter:

go #102

The XRAY debugger should report a break at line #102.

4.9.5 Queries and Breakpoints

XRAY Debugger for pSOSystem offers direct access to a subset of
pROBE+ commands. The majority of these commands are query
commands. Refer to the XRAY Debugger for pSOSystem User’s Guide for
a complete list. Query the status of all active tasks by entering:

 qt

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-27

The View window with sample output appears as shown in Figure 4-15.

Figure 4-15 Output of the View Window

Because you have just begun execution of the ROOT task, you have only
the three tasks automatically created by the pSOS+ kernel and the pNA+
network manager: IDLE, ROOT, and PNAD (pNA+ creates the PNAD
task).

If you allow ROOT to execute further, it creates many more tasks. You
could stop ROOT by setting a breakpoint at a statement further along in
the code, but XRAY Debugger for pSOSystem supports more
sophisticated types of breaks. For example, the XRAY debugger allows
you to halt execution when a task makes a particular pSOS+ service call.
Note that ROOT calls ev_receive() after creating all the other tasks and
queues. You can use the breakcomplex command (bc) to halt execution
when ROOT calls ev_receive(). The bc command accepts options and
prompts for parameters as required. Enter bc with the option se to
indicate a break on a service call:

bc se

XRAY displays all the service calls and prompts for a pSOS+ function
name. You can enter a particular pSOS+ function, or enter * to indicate
any function. Enter ev_receive when XRAY Debugger for pSOSystem
prompts for a function, as follows.

Function: ev_receive

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-28 pSOSystem Getting Started

XRAY Debugger for pSOSystem now prompts you to identify the call
origin, which is either a task or an interrupt service routine (ISR). You
can enter a particular task name or task ID, ISR, or * to indicate any
task. In this case, enter ROOT when the XRAY debugger prompts for an
origin (the single quotes around ROOT are required):

Origin: 'ROOT'

XRAY confirms the break definition by displaying a complete list of all
active breakpoints in the Breakpoints window. In this case, only the one
service break is set (which is ROOT making the ev_receive() call).

Click the Go button. Execution stops because ROOT made an
ev_receive() call. XRAY reports it encountered a service break, the type
of call made, and the address from which the call was made. Display the
Traceback window to see that the call originated in the C interface file
psos.s. To display the Traceback window, do the following:

1. Select Windows in the menu bar.

2. Select Traceback Window in the Windows menu.

At this point, ROOT has completed spawning and activating the other
tasks. You can use the query task command (qt) to view these tasks:

qt

Figure 4-16 shows the resulting qt display in the View window.

Figure 4-16 Output of the qt Command

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-29

ROOT is about to block, and all other tasks are ready to run. Halting
execution each time a new task executes is instructive. You can halt on
new task execution with the dispatch break. The dispatch break halts
execution whenever a specified task begins executing. You can also
specify a wild card, which causes a break upon any context switch.

Define a dispatch break on any task and resume by entering:

bc di *

Because the application is not using the pNA+ network manager, you
should lower the priority of PNAD. The XRAY Debugger for pSOSystem
command SYSCALL (sy) lets you make pSOS+ calls directly from the
XRAY debugger, so you can use t_setpri() to lower the priority of PNAD
to 1, for example:

sy t_setpri ‘PNAD’ 1

NOTE: The sy command is necessary if you are running the pNA+
networking component.

Resume execution by clicking go. The display shows the last running
task, the reason it stopped running, and the task that is about to run.
Click go three more times and observe which tasks execute.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-30 pSOSystem Getting Started

4.9.6 Clearing Breakpoints

The clear command is used to clear breakpoints. To see how many
breakpoints are set, do the following:

1. Select the Windows menu on the menu bar.

2. Select the Breakpoints option. The Breakpoints window
appears as shown in Figure 4-17.

Figure 4-17 Breakpoints Window

Currently, the service break and dispatch break are set. You can clear
the breakpoints by doing the following:

1. Click on a breakpoint in the Breakpoints window to select one.

2. Click the Clear button as shown in Figure 4-13 on page 4-23.

Examining the system after most tasks have been blocked is instructive.
Because the IDLE task has the lowest priority (0), it runs only when all
other tasks are blocked. Set a dispatch breakpoint to stop execution
when IDLE executes by entering:

bc di 'IDLE'

Click the Go button. Execution stops because task IDLE is about to run.
The Code window displays the following message because the code for
task IDLE is part of the pSOS+ kernel and is therefore unknown to the
XRAY debugger:

Not in Source module.

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-31

Check the state of other tasks by entering:

qt

The View window appears with the qt output as shown in Figure 4-18.

Figure 4-18 View Window Showing qt Output

The Status column (displayed in Figure 4-18) shows that IDLE is
running. All other tasks besides PNAD are either paused, suspended,
waiting for events, or waiting for messages. PNAD was blocked when the
break occurred, but use of the network communication link since that
time has changed it to the ready state.

4.9.7 Querying Queues

The query task command (qt) is used to examine tasks. Other query
commands are available to examine other pSOS+ objects. For example,
examine all queues in the system by entering:

 qq

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-32 pSOSystem Getting Started

The View window appears with the qq output as shown in Figure 4-19.

Figure 4-19 View Window Showing qq Output

The system has four queues. The first queue is ‘SS•• ’. It uses priority
queuing and currently has eight messages pending. The second and
third queues are CNSL and QMEM. They use FIFO queuing, and each
has one task waiting. The fourth queue is for each open serial port for
the DITI.

In addition to halting at a line number, you can also set a breakpoint on
a procedure name. To see an example of this, do the following:

1. Clear the dispatch break

2. Enter the following in the Command window:

go process_data

Execution stops because process_data has been called.

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-33

4.9.8 Symbols and Variables

XRAY Debugger for pSOSystem commands let you examine and modify
variables and symbols that the program uses. The printvalue command
(p) is used to print the value of a variable. The process_data routine uses
a global variable Index. To examine a local variable enter the following:

 p Index

The XRAY debugger may display the following error message:

At start of procedure, no local variables yet.

If it does, step into the procedure and try again:

 step
 p Index

The Command window displays the value of this variable. The mem1
routine has a local variable ticks, and you can examine it by entering:

 p ticks

When you try to examine ticks, the following error message appears
because you are currently within the scope of the routine process_data:

Symbol not available from this scope without a qualifier

To examine variables in another routine, specify the routine’s name:

 p mem1\ticks

Now the following error message is displayed because local variables are
allocated on the stack when the routine is entered:

Local variable not alive

Each task has its own stack, and a task other than the one currently
executing contains ticks. Thus, to examine ticks, you must be executing
the routine mem1. To do this, use the breaki command (b) to set a
breakpoint within mem1. Set the breakpoint at an instruction after
ticks has been initialized:

 b #195
 go

This causes execution to proceed until line #195 in the source code is
reached. XRAY then reports a break. Now examine the variable ticks:

 p ticks

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-34 pSOSystem Getting Started

At last, the value of ticks is displayed in the Command window. You can
also examine arrays and structures with this command. The mem1
routine contains an array called addrmsg. Examine it by entering:

 p addrmsg

The value of each array element is displayed in the Command window.

The cexpression (c) command is another command that can display a
variable. Examine ticks by using c:

 c ticks

The Command window displays the value of ticks in both decimal and
hexadecimal. This command is actually used to calculate the value of an
expression or to assign a value to a variable. When the c command is
used on an array or structure, it calculates the address of the specified
item, which is then displayed. Try this command on an array:

 c addrmsg

Notice that the address of addrmsg is displayed. Contrast this to what
was displayed when the p command was used on this variable.

The c command can also be used as a decimal-to-hexadecimal or
hexadecimal-to-decimal converter. For example, enter the following to
calculate the decimal value of this number and display it in the
Command window:

 c 0x41

Because this number is also a printable ASCII character, the decimal
equivalent of 0x41 is displayed (number 65).

You have seen symbols qualified by procedure names. In addition, XRAY
lets you qualify symbols by using task selectors. When you specify a
symbol in a command, you can prepend it with the name of the task
using the format taskname: (where ROOT is the taskname in the example
line that follows). This instructs XRAY to use a particular context when
evaluating a symbol. Use the printvalue command to examine a symbol
in the ROOT task:

 p ROOT:\DEMO\root\tid[0]

This displays the variable tid[0] in the procedure root within the module
DEMO. tid[0] exists within the context of the task ROOT.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-35

The monitor command allows variables to be monitored. Monitored
variables are updated each time the debugger stops executing the
program. The monitored data is displayed in the Data window.

The procedure mem1 has a variable size. The variable size contains a
random number that is used to request memory segments of various
sizes. Monitor this variable by entering the following:

 monitor size

This instructs XRAY to monitor the variable size in the currently
executing procedure mem1 and open the Data window. A breakpoint is
already set at line #195, which is within the task MEM1 after it has
initialized size. To resume execution, enter the following:

go

The monitored variable is displayed in the Data window. Enter go three
more times and observe how the monitored data changes.

The previously mentioned cexpression can be used to assign a value to
a variable. Change the value of size to 256 by entering:

 c size=256

The new value of size is displayed in the Command window and, because
it is still being monitored, the Data window. In the example program, size
is assigned a pseudo-random value, so keeping this value is acceptable.

The nomonitor command (nomo) is used to disable the monitoring of a
variable and remove it from the Data window. When a variable is
monitored, it is assigned a monitor line number, and the Data window
displays this number. Notice that size is assigned line number 1. Stop
monitoring the variable and remove the breakpoint by entering the
following commands:

 nomo 1
 clear 1

Another way to display the variable size is by using the expand
command. This command examines the current stack and displays all
the local variables it finds in each procedure. The Trace window is used
in high-level mode to display the procedure calling chain. To examine the
local variables, enter the following:

 expand

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-36 pSOSystem Getting Started

As the Trace window shows, only one level of calls exists at this point.
expand also allows you to specify a particular stack level to examine.

So far, the windows have displayed information for the current running
task—MEM1. To look at a non-running task, use the scope command.
scope defines a new default context other than the running task. All of
the window displays, trace-back information, local variables, and so on,
reflect information for the new default task. Examine the ROOT task
after first returning to a normal screen display with the following two
commands. (Note that a colon must follow the argument when the
argument to the scope command is a task.)

 scope ROOT:

The windows now display information for the ROOT task. As expected,
ROOT is waiting for an event and is therefore in the ev_receive() routine.
The stack trace shows psos.s, which is the C language source file that
provides the interface to the pSOS+ kernel. If you enter expand now, it
displays all the procedure calls and local variables for the ROOT task:

 expand

The scope command affects only the information displayed in the
windows. It does not modify the current execution state, and therefore
MEM1 is still the current task. To return to the display of the current
task, enter scope without parameters:

 scope

The windows now display information about MEM1.

You may need information about a symbol other than its value. The
printsymbol command (ps) displays information about a specified
symbol or group of symbols. This information includes the symbol name,
data type, storage class, and memory location. To examine all symbols
used in the procedure mreader, enter the following:

 ps mreader\

where the backslash is a symbol qualifier convention. For an explanation
of the backslash and other symbol qualifier conventions, refer to the
XRAY Debugger for pSOSystem User’s Guide.

To display information about a specific symbol, enter the following:

 ps root\tid

This displays information about the variable tid in the procedure root.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-37

4.9.9 Profiling

One unique feature of XRAY Debugger for pSOSystem is its profiling
capability. By transparently collecting statistics on the application, The
XRAY debugger can provide important insights into a design’s activities
and performance. To enable profiling, turn on the profile flag as follows:

fl profile on

The Command window displays the following flag settings:

RBUG: ON
HOST: OFF
TRFR: ON
NODOTS: ON
NOMANB: OFF
NOPAGE: ON
ECHO: OFF
PROFILE: ON

For example, to profile the application for 30 seconds, use a timed break
to halt execution after 3000 clock ticks, which is 30 seconds. (The pSOS+
configuration table specifies 100 ticks per second.) Set the breakpoint
and resume execution with the following entries:

bc ti #&3000
go

On the first line, the ampersand (&) indicates the number that follows is
decimal, and the pound sign (#) indicates that the next value is relative
to a starting point. Otherwise, an absolute time and date would have
been entered. Execution stops after the designated interval of 30
seconds. Normally, for a statistically significant profile, a much longer
interval is necessary. To view the profile data, enter the following:

lp

The values displayed are decimal. Not all of the profile data can fit in the
View window, so use the mouse to scroll through it.

The number of ticks listed for each task is statistical because it depends
on the sampling at each clock edge. The other data, such as the number
of times a task switches into a particular state and the number of system
calls made, are actual counts.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-38 pSOSystem Getting Started

To turn off profiling, enter the following:

fl profile off

4.9.10 Interactive System Calls and I/O

XRAY Debugger for pSOSystem allows you to make system calls
manually to the pSOS+ kernel so that you can conveniently modify and
control the application’s behavior. For example, the sample application
has a queue named CNSL, to which you can manually send messages.

First, check the status of queue CNSL by entering:

qq 'CNSL'

The View window in Figure 4-20 shows that one task, ‘MSG• ’, exists and
it is waiting for a message.

Figure 4-20 View Window Showing Queue Status

You can now use the sy command to send a message to CNSL. Because
‘MSG• ’ is waiting, it receives the message and becomes ready to run:

sy q_send ‘CNSL’ ‘ABCD’ ‘EFGH’ ‘IJKL’ ‘MNOP’

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-39

In this example, you enter all the command parameters on a single line.
If you are not sure what parameters the call requires, you can leave out
the parameters and let XRAY prompt for each parameter. When the
command is done, the following pSOS+ system call return code is
displayed:

Return code: 00000000

where a string of all 0s indicates that the call succeeded.

Instead of re-entering the same command, you can use the history
feature that the XRAY debugger provides. It saves up to 11 previous
commands. Select the stack icon at the bottom of the Command window.
A menu lists the previous commands. You can select the previous
command three times, as follows:

sy q_send ‘CNSL’ ‘ABCD’ ‘EFGH’ ‘IJKL’ ‘MNOP’

sy q_send ‘CNSL’ ‘ABCD’ ‘EFGH’ ‘IJKL’ ‘MNOP’

sy q_send ‘CNSL’ ‘ABCD’ ‘EFGH’ ‘IJKL’ ‘MNOP’

Now look at CNSL again:

qq 'CNSL'

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-40 pSOSystem Getting Started

The View window in Figure 4-21 shows the output of this qq command.

Figure 4-21 Output of the qq Command

Three messages are queued. (Remember that the first message was
passed to the waiting task ‘MSG• ’.) Task ‘MSG• ’ is ready to run, and
when you restart execution, ‘MSG• ’ sends all four messages to the XRAY
debugger standard I/O screen.

Task ‘MSG• ’ demonstrates another important feature of XRAY, the
ability of a pSOS+ task to write to the XRAY terminal. XRAY provides an
I/O screen through which application code can write to the XRAY
terminal. The application accesses the Standard I/O window by calling
the db_output routine in the file xp_out.s.

When execution resumes, the I/O screen appears with the messages
from task ‘MSG• ’. To resume execution, enter the following:

go

The following should be displayed:

ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP

xp960

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

pSOSystem Getting Started 4-41

At this time, the sample application is still running because no
breakpoints are set. Stop execution by clicking the Stop button. A
message similar to the following appears:

Manual Break. Running: 'IO2 ' -#00060000
Stopped due to halt from user

Because you have manually stopped execution, the running task may
not actually be ‘IO2• ’.

You have now completed the XRAY Debugger for pSOSystem tutorial. To
terminate this debugging session, enter the following:

quit

After you enter quit, XRAY prompts:

Are you sure?

Enter a y to terminate the session.

XRAY Debugger for pSOSystem Tutorial: Multiple Window Version

4-42 pSOSystem Getting Started

pSOSystem Getting Started 5-1

5 XRAY Debugger for
pSOSystem Tutorial:
Viewport Version

This chapter provides a hands-on tutorial on the use of XRAY Debugger
for pSOSystem, the multitasking debugger from Integrated Systems. The
tutorial illustrates how this source-level cross debugger can be used to
control and monitor a multitasking application on an HP, RS6000, or PC
host. If you are using a SunOS or Solaris host, see Chapter 5, ‘‘XRAY
Debugger for pSOSystem Tutorial: Viewport Version.”

The XRAY Debugger for pSOSystem has the following features:

■ A graphical user interface with multiple viewports

■ Automatic tracking of program execution through source code
files

■ Traces and breaks on high-level language statements

■ Breaks on task state changes and operating system calls

■ Monitoring of language variables and system-level objects
such as tasks, queues, and semaphores

■ Profiling for performance tuning and analysis

■ Full-featured C++ language support

■ The ability to debug optimized code

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-2 pSOSystem Getting Started

■ System Debug Mode support

In addition to supporting System Debug Mode, some versions of XRAY
Debugger for pSOSystem also support Task Debug Mode. This tutorial
illustrates the use of System Debug Mode only. For more information on
Task Debug Mode, refer to the XRAY Debugger for pSOSystem User’s
Guide.

5.1 xraydemo Sample Application
The apps directory contains the subdirectory xraydemo, which contains
a sample application also called xraydemo. The tutorial in this chapter
uses this sample application.

The xraydemo sample application is a C program that contains the code
for eight tasks. The ROOT task, which automatically receives control
from pSOS+ after startup, creates the seven other tasks and then blocks.
The seven other tasks function as follows:

Task Function

‘MEM1’ Requests memory segments of various sizes.

‘MEM2’ Receives memory segments from MEM1 and frees them.

‘IO1• ’ Reads a block from the RAM disk device.

‘IO2• ’ Writes a block to the RAM disk device.

‘SRCE’ Sends messages to the ‘SS•• ’ Queue.

‘SINK’ Consumes messages from the ‘SS•• ’ Queue.

‘MSG• ’ Consumes messages from Queue CNSL and sends the
contents to the XRAY Debugger for pSOSystem
terminal.

NOTE: The ‘IO1• ’ and ‘IO2• ’ tasks consist of 4-character names
where the fourth character is a required space. Similarly, the
‘SS•• ’ queue name includes two required spaces; the breve
symbol (•) indicates a required space.

A task name entered with a command sometimes requires single quotes
around the task name. The examples in the manual show when the
quotes are required.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-3

5.2 Creating an Executable Image
This section guides you through the steps needed to build an executable
image that contains an operating system for the target board and the
xraydemo sample application.

First, build a new working directory that contains the xraydemo sample
and then switch to that directory. Call this directory xd. For example,
you can enter the appropriate command sequence for your environment.

For an HP or RS6000 workstation:

mkdir xd
cp -r $PSS_ROOT/apps/xraydemo/* xd
cd xd

For an MS-DOS system:

xcopy \pssp\apps\xraydemo xd
cd xd

where, for both environments, xd is the name of a new working directory.

NOTE: The xraydemo application prints by using db_output().
Therefore, the constant OUTPUT_TO_DEBUGGER used in the
hello application does not exist in xraydemo. Also, the value
of SC_APP_CONSOLE in sys_conf.h is not relevant.

5.2.1 Customize Your Operating System

You may need to customize your operating system to work with the XRAY
Debugger for pSOSystem by taking one or more of the following steps:

■ Set PSS_BSP in makefile to an appropriate value. A PSS_BSP
value has the form $(PSS_ROOT)/bsps/directory_name,
where directory_name is the name of the BSP.

■ If you use XRAY Debugger for pSOSystem over a serial
channel, follow the directions in Section 5.3, ‘‘Using XRAY
Over a Serial Channel.”

■ If you use XRAY Debugger for pSOSystem over an Ethernet
port, set SC_PNA in sys_conf.h to YES. For more information
on Ethernet ports, see Section 5.4, ‘‘Using XRAY Debugger for
pSOSystem Over Ethernet.”

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-4 pSOSystem Getting Started

■ If you use the pSOS+ kernel instead of pSOS+m kernel, set the
sys_conf.h parameters as follows: SC_PSOS to NO and
SC_PSOSM to YES.

5.2.2 Building the Executable Image

After you make the needed changes, build the executable image with the
following command:

make ram.x

As noted above, you can download the ram.x file to the target system
using a serial channel (as described in section 5.3) or an Ethernet port
(as described in section 5.4). Follow the directions in the section
appropriate for your environment.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-5

5.3 Using XRAY Over a Serial Channel
This section describes how to run the xraydemo sample by using XRAY
Debugger for pSOSystem connected to the target over a serial channel as
shown in Figure 5-1. In this section both the ROM and downloaded
pROBE+ operate in remote mode talking to XRAY over a serial channel.
As explained previously, the operating modes of the ROM pROBE+ and
downloaded pROBE+ do not need to be the same, but in most cases they
are.

Figure 5-1 Using XRAY Debugger for pSOSystem Over a Serial Channel

5.3.1 Reconfiguring the ROMs for a Serial Channel

To reconfigure the ROMs for communication with XRAY Debugger for
pSOSystem over a serial channel, reset the target CPU board and enter
a character before the specified time elapses. When you power up or reset
your board, a message similar to the following appears as part of the
pSOSystem startup display (as shown in Figure 2-6 on page 2-11):

To change any of this, press any key within 5 seconds

RS-232

Console
Drivers

pROBE+

Host

Target

XRAY Debugger

for pSOSystem

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-6 pSOSystem Getting Started

Enter any key within the time limit, and a message similar to one shown
in Figure 5-2 appears.

Figure 5-2 Reconfiguring the ROMs for a Serial Channel

To use XRAY with pROBE+ over a serial channel, enter a 2.

You do not need to change the remaining parameters, so bypass the
remaining questions by pressing [Return] until the following question
appears:

How long (in seconds) should CPU delay before starting
up? [5]

Once you learn how to use the ROMs after a reset, the default of 60
seconds is unnecessarily long. Enter a value of your choice, or press
[Return] to accept the current setting of 5 seconds.

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

How should the board boot?
 1. pROBE+ stand-alone mode
 2. pROBE+ waiting for host debugger via serial connection
 3. pROBE+ waiting for host debugger via a network connection
 4. Run the TFTP Bootloader

Which one do you want? [1]

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-7

When you power up or reset the board, the terminal displays a
pSOSystem startup message similar to the one in Figure 5-3.

Figure 5-3 pSOSystem Startup Message for a Serial Channel

To change any of the settings shown in Figure 5-3, press any key within
5 seconds.

If a terminal emulator is running, close the emulator now because the
next section requires the use of XRAY over a serial channel.

NOTE: Resetting a board does not cause the ROMs to revert to their
default configuration. Furthermore, because configuration
data is stored in battery-backed or nonvolatile RAM when
available, powering down a board causes a return to default
values only if the board lacks nonvolatile storage capability.

5.3.2 Invoking XRAY over a Serial Channel

Because XRAY Debugger for pSOSystem is a source-level debugger, it
must locate the source code for the object code it is debugging. It first
searches the current directory and then searches as directed by the
environment variable XRAY. If you set XRAY to @, XRAY uses the source
file pathnames embedded in the executable image. Set the XRAY
environment variable for a particular platform as follows:

For UNIX (csh): For MS-DOS:

setenv XRAY @ set xray=@ (or SET XRAY=@)

--
START-UP MODE:
 Boot into pROBE+ and wait for host debugger via a serial connection
NETWORK INTERFACE PARAMETERS:
 LAN interface is disabled
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 Processor Type :: MC68040 operating at 25 Mhz
 RAM configuration :: Parity DRAM 4 Mb
 :: SRAM 128 Kb
 After board is reset, start-up code will wait 3 seconds
--
(M)odify any of this or (C)ontinue? [M]

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-8 pSOSystem Getting Started

You can now invoke XRAY Debugger for pSOSystem on the host. To
invoke it for use over a serial channel, use the following syntax:

For UNIX: For MS-DOS:

xp -e rdev ram.x & xp -e rdev ram.x

where dev specifies the serial device and ram.x is the executable image.
The following table shows some of the valid device names for the
indicated hosts:

Host Operating System Device

HP-9000/700 HP_UX tty01, tty02, ...

RS6000 AIX tty0, tty1, ...

PC Compatible MS-DOS COM1, COM2

For example, on an HP system you can invoke XRAY Debugger for
pSOSystem by entering:

xp -e rtty01 ram.x &

A sign-on screen appears while XRAY Debugger for pSOSystem
initializes; downloading the application can take up to ten minutes.
During this time, XRAY displays a small rotating line to indicate that
loading is in progress. If an error message appears, it is likely that XRAY
cannot find the file to load. When downloading is complete, XRAY
displays a command prompt in the Command viewport of the XRAY
screen, as shown in Figure 5-4.

Figure 5-4 XRAY Debugger for pSOSystem Command Viewport

If you plan to use the XRAY debugger over a serial channel often, see the
next section for a description of how to increase the baud rate beyond the
default of 9600 baud.

68040 2.3A

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-9

5.3.3 Changing the Baud Rate for a Serial Channel

You may want to increase the baud rate of the serial channel. You can
increase it to either 19200 or 38400 baud if the host and target both
support the higher rate. The baud rate must be changed in several
places:

■ The Boot ROMs should be reconfigured for the higher rate.

■ The XRAY debugger uses a default baud rate of 9600.
Therefore, when you invoke XRAY, give the higher rate
explicitly. You do this by appending the baud rate to the name
of the serial device, separated by a comma. For example, the
following command changes the baud rate to 19200:

xp -e rcom1,19200 ram.x

■ The terminal or terminal emulation program must be
reconfigured to operate at the higher rate.

To continue with the tutorial set up for a serial channel, see Section 5.5,
‘‘Starting the Downloaded Operating System.”

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-10 pSOSystem Getting Started

5.4 Using XRAY Debugger for pSOSystem Over Ethernet
This section describes how to run the xraydemo sample program by
using the XRAY debugger over an Ethernet connection as shown in
Figure 5-5.

The exercises in this section require the pNA+ network manager in the
system and your host and target must both be physically connected to
an Ethernet network. The use of XRAY over Ethernet requires extra
installation steps on some hosts, particularly a PC. For additional
installation information, see the XRAY Debugger for pSOSystem User’s
Guide.

Figure 5-5 Using XRAY Debugger for pSOSystem Over Ethernet

5.4.1 Connecting to the Network

To use Ethernet, the target and host must connect over Ethernet. This
is usually done by adding the target system to the office network but can
also be done with a private network.

Host

pROBE+

pNA+

Network
Driver

Ethernet

Target

XRAY Debugger

for pSOSystem

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-11

5.4.2 Reconfiguring the ROMs for Ethernet

To reconfigure the ROMs for communication with XRAY over Ethernet,
reset the target CPU board and enter a character at the pSOSystem
startup screen (shown in Figure 5-3 on page 5-7) before the specified
time elapses. A message similar to the following appears:

To change any of this, press any key within 5 seconds

Press any key within the time limit, and a display similar to the one
shown in Figure 5-6 appears.

Figure 5-6 Reconfiguring the ROMs for Ethernet

To use the XRAY Debugger for pSOSystem and pROBE+ debuggers over
Ethernet, enter a 3.

NOTE: The steps described in this section are always done through an
ASCII terminal, regardless of the subsequent operating mode
of the ROMs.

By entering a 3, you also get the following network questions:

NETWORK INTERFACE PARAMETERS:
Do you want a LAN interface? [N] y

Enter a y. (n would apply to multiprocessor systems where some boards
communicate through shared memory rather than Ethernet.) The next
prompt is as follows:

This board’s LAN IP address? (0.0.0.0 = RARP)?
[199.99.99.99]

Enter the IP address of the CPU board using standard dot notation for
internet addresses (four numeric fields, each separated by a period). You

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

How should the board boot?
 1. pROBE+ stand-alone mode
 2. pROBE+ waiting for host debugger via serial connection
 3. pROBE+ waiting for host debugger via a network connection
 4. Run the TFTP Bootloader

Which one do you want? [1]

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-12 pSOSystem Getting Started

should answer n to the next two questions because they enable features
that are useful only in multiprocessor target systems:

Use a subnet mask for the LAN interface? [N]
Do you want a shared memory network interface? [N]

The next question is as follows:

Should there be a default gateway for packet routing? [N]

The usual answer is n unless the target and host systems are on different
networks connected through a gateway. If you are not sure how to
answer this, ask your system administrator.

Accept the indicated default values for the remaining questions as shown
below:

MULTIPROCESSING PARAMETERS:

Do you want to configure a multiprocessing pSOS+m
system? [N]

HARDWARE PARAMETERS:

Baud rate for serial channels [9600]

Bus address of this board’s dual-ported memory
[4000000]

How long (in seconds) should CPU delay before starting
up? [5]

When you power up or reset the board, the terminal displays a pROBE+
startup message similar to the one in Figure 5-7.

Figure 5-7 pROBE+ Startup Message for Ethernet

START-UP MODE:
 Boot into pROBE+ and wait for host debugger via a network connection
NETWORK INTERFACE PARAMETERS:
 IP address on LAN is 199.9.999.9
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 After board is reset, start-up code will wait 3 seconds
--
(M)odify any of this or (C)ontinue? [M]

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-13

Press any key to continue. No pROBE+ prompt appears because
pROBE+ is now waiting for a connection from XRAY over the network.

5.4.3 Invoking XRAY on the Host for Ethernet

Invoking XRAY Debugger for use over Ethernet is similar to using XRAY
over a serial channel, except that, following the -e option, you specify a
p rather than an r and then enter the host IP address. For example, if the
target system IP address is 199.9.999.9 as in Figure 5-7, the format of
the command is as follows:

UNIX: MS-DOS:

xp -e p199.9.999.9 ram.x & xp -e p199.9.999.9 ram.x

A sign-on screen appears while XRAY is initializing. On some hosts you
can define an alias name to represent the IP address of the target. This
name can then be typed in place of the actual IP address.

NOTE: MS-DOS does not support alias names.

5.5 Starting the Downloaded Operating System
Before starting the pSOS+ kernel, verify or note the following:

■ The executable image has been downloaded to the target but
has not been started, as described in the preceding sections.

■ The Code viewport may show the message “Not in Source
Program” because the current PC is not within the executable
image. Once you begin execution, this viewport normally
contains the source code for the currently executing task.

You can start or boot the operating system using the osboot command
or by using the assembly-language mode, as described in the following
sections.

5.5.1 Using the osboot Command

Now you pass control to the operating system in the executable image by
using the XRAY osboot command. The osboot command causes XRAY
Debugger for pSOSystem to do the following:

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-14 pSOSystem Getting Started

■ Pass control to the specified address.

■ Terminate its connection to the pROBE+ in ROM.

■ Establish a new connection with the pROBE+ debugger in the
downloaded code.

If, for example, the start address of the downloaded operating system is
0x28008, enter the following:

osboot 28008

For more information about the start address, see Chapter 1,
‘‘Introduction to the pSOSystem Environment.”

After a short delay, the following message appears:

BOOTING COMPLETE

This indicates that the downloaded operating system has successfully
started, and the downloaded pROBE+ debugger is connected to the
XRAY debugger.

5.6 Running the System Debug Mode Tutorial
At this point, the xraydemo executable image should be running on the
target and communicating with XRAY Debugger for pSOSystem on the
host. Before you begin, note that the following rules apply to all XRAY
commands:

■ Commands can be in either uppercase or lowercase.

■ Arguments such as task names, routine names, and module
names are case-sensitive and must be entered as shown.

■ [Control-c] aborts the current command and returns to
command mode.

■ A # identifies a line number within the source code.

■ Integer constants are interpreted as decimal by default but can
be specified in hexadecimal by preceding them with a 0x or 0X.

■ All commands are terminated by pressing [Return].

■ Some commands have a corresponding function key. Refer to
the XRAY Debugger for pSOSystem User’s Guide for a list.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-15

Your actual program output may differ slightly from that shown in this
section for the following reasons:

■ The board may have a different memory map, and/or the
executable image may load at a different address.

■ Using a serial channel for host-to-target communication
instead of pNA+ can result in different output.

■ Different CPUs have different register sets.

Also, note that the memory-related command examples in this section
are based on an on-board RAM starting address of 0, and this is true of
most boards. For a few boards, on-board RAM begins at another address,
so the addresses in the commands must be adjusted. For example, if the
on-board RAM begins at 0x4000000 and a tutorial command contains
the address 0x1FF00, then you should enter 0x401FF00. For the start
address of on-board RAM on each supported board, see Appendix A,
‘‘Board-Specific Information.”

The XRAY Debugger for pSOSystem provides online help for all XRAY
commands, command arguments, and keypad keys. Access the online
help menu by entering:

>help

Use the cursor key to move the cursor down to the breaki (for break
instruction) command and press [Return]. (The breaki command is on
the second help screen.) You can also display the breaki command help
by entering the abbreviated form of breaki (the letter b):

>b

The help utility displays the command name, its abbreviation in
parentheses, the command syntax, and the command description. Press
the [Esc] key to return to command mode.

5.6.1 Memory Manipulation and Viewports

This section describes XRAY commands that let you examine and modify
memory. Begin by examining the first 64 vectors in the vector table:

>dump/l 0..0xFF

The dump command requests a hex display of memory. The /l displays
memory in long words. 0..0xFF specifies the first 256 bytes of target
memory.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-16 pSOSystem Getting Started

The XRAY screen is divided into several viewports. Each viewport has
two sizes. The larger size is called the zoomed size, and the smaller is the
unzoomed size. Notice that the Command viewport now fills the entire
screen because it needed to expand to display the results of the dump
command. The zoom command can be used to toggle the active viewport
between its zoomed and unzoomed size. Try this command now to shrink
the viewport:

>zoom

Each viewport displays information specific to its associated name (for
example, the Break viewport displays breakpoint information). The active
viewport is the one with a highlighted border. Right now this is the
Command viewport. XRAY supports function keys that allow you to
change the active viewport. On most keyboards these are the F1 and F2
keys. [F2] advances the display to the next viewport, and [F1] returns the
display to the previous viewport. To determine which keys are used on
your keyboard, refer to the XRAY Debugger for pSOSystem User’s Guide.
Cycle through the viewports by pressing [F2] (or equivalent key) five
times.

In some cases, more viewports may be available than are displayed on
the screen. For example, the Break viewport is not currently being
displayed. For a list of the predefined viewports, refer to the XRAY
Debugger for pSOSystem User’s Guide.

Each viewport has a number, appearing in the top-right corner of the
viewport. For example, the Command viewport is 1, and the Trace
viewport is 4. You can specify a nonactive viewport by entering a viewport
number in a command. For example, expand the Trace viewport by
entering:

> zoom 4

Returning now to memory-examine and memory-modify commands, fill
an area of memory with 0x12, as follows:

> fill /b 0x1FF00..0x1FFFF=0x12

The /b directs the fill command to operate on byte (8-bit) elements. Each
byte in the range 0x1FF00 to 0x1FFFF is now 0x12.

This address range can vary from board to board, even in this tutorial.
Verify that the range is valid by checking the appropriate board section
in Appendix A, ‘‘Board-Specific Information.”

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-17

Now set one byte in this range to a different value:

> setmem 0x1FFF0=0

This sets the byte at location 0x1FFF0 to 0. Search for it by entering:

> search 0x1FF00..0x1FFFF=0

XRAY Debugger for pSOSystem should report:

Matched: 001FFF0

Return to a normal screen display by entering:

> zoom

5.6.2 Starting the pSOS+ Kernel

The XRAY restart command sets a breakpoint at the first instruction of
the pSOS+ ROOT task and passes control to the pSOS+ startup entry
point. To initialize the pSOS+ kernel for the sample application, enter:

> restart

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-18 pSOSystem Getting Started

For a typical example of an XRAY Debugger for pSOSystem screen, see
Figure 5-8.

Figure 5-8 Sample XRAY Debugger for pSOSystem Screen

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-19

The Command viewport displays the following message:

pSOS initialized. Running 'ROOT' - #00020000

This identifies ROOT as the current running task and 0x00020000 as
the task ID. The Code viewport is now displaying source code for the
ROOT task. XRAY Debugger for pSOSystem has highlighted the opening
brace of the ROOT task, which is the current point of execution. (When
control is just entering a procedure, XRAY highlights the opening brace.)

The Trace viewport displays a procedure call traceback for the running
task. In this case, task ROOT is about to execute an instruction in
procedure root in module DEMO. The bottom of the traceback contains
a value of 0xDEADDEAD which is a stack underflow sentinel placed
there by the pSOS+ kernel when the task was created.

5.6.3 High-Level Mode and Assembly-Language Mode

XRAY supports two language modes of debugging: the high-level mode
and the assembly-language mode. In high-level mode, you debug code at
the C++ language level, and the Code viewport shows the C/C++
language source code. In assembly-language mode, you debug at the
assembly-language level, and the Code viewport shows assembly-
language code. In general, the command syntax in the two modes is
similar, but the behavior of the commands is somewhat different.

Initially, XRAY is in high-level debug mode, and as you have not yet
changed it, this is the current mode. When in high-level mode, a single
step command allows you to execute one or more C/C++ language
statements. Execute statements one at a time by entering the step
command:

> step

Notice that the highlighted line moves down. This is because you are
single-stepping lines of executable code. The complexity of the code
determines whether XRAY requires more than one step to complete a
single line. In some cases, XRAY may appear to execute several lines of
code with a single step. This is a result of compiler optimizations.

Repeat the step command until the line containing the subroutine call
tm_set() is highlighted (you may need to do this only once). In high-level
mode, the step command ordinarily steps into a called subroutine. The
step command does not step into an assembly-language instruction in

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-20 pSOSystem Getting Started

high-level mode, but rather it treats the assembly subroutine as an
atomic operation and highlights only the high-level call. Single step
again:

> step

Repeat until you are on de_init(). This is another assembly routine.

Before you change to assembly-language mode, make the current line
the first line in the Code viewport. You can do this with a scope
command, as follows:

> scope #92

Other uses of the scope command appear later in this tutorial.

The mode command lets you change the mode from high-level to
assembly-language. Switch to assembly mode by entering:

> mode assembly

Intermixed source and assembly language now appears in the Code
viewport. The lines that begin with angle brackets (>>) show the high-
level code that corresponds to the assembly code. The Stack viewport
replaces the Trace viewport and shows the first few long words on the top
of the stack. The Registers viewport shows the contents of critical CPU
registers.

The highlighted instruction is preparation for a function call. Single step
some lines either by entering the step command repeatedly or by
pressing [F9] repeatedly. (On most keyboards, the F9 key corresponds to
the step command. Refer to the XRAY Debugger for pSOSystem User’s
Guide to see which key is used on your keyboard.) To step into the
routine, press [F9] (or equivalent key) until the instruction to call a
subroutine is highlighted (jsr for 68K processors or callx for 960
processors).

Now press [F9] one more time. Notice that the step command causes a
step into the routine. A stepover command is also available. When
stepover encounters a subroutine call, it executes the call, and halts
when the called subroutine returns. In high-level mode, single-stepping
occurs one source line at a time. In assembly-language mode, single-
stepping occurs one microprocessor instruction at a time. Now return to
high-level mode:

> mode high

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-21

The go instruction resumes execution of the application and optionally
allows you to set a temporary breakpoint. The application continues
until it encounters a break condition (if specified). For example, to
resume execution with a temporary breakpoint at line #102, enter:

> go #102

The XRAY debugger should report a break at line #102.

5.6.4 Queries and Breakpoints

The XRAY debugger offers direct access to a subset of pROBE+
commands. The majority of these commands are query commands. Refer
to the XRAY Debugger for pSOSystem User’s Guide for a complete list.
Query the status of all active tasks by entering:

> qt

The View (QT) viewport displays the following:

Because you have just begun execution of the ROOT task, only the three
tasks automatically created by pSOS+ and pNA+ are present: IDLE,
ROOT, and PNAD (pNA+ creates the PNAD task). If pNA+ is not included
in your operating system, you will not see the PNAD entry.

If you allow ROOT to execute further, it creates many more tasks. You
could stop ROOT by setting a breakpoint at a statement further along in
the code, but XRAY Debugger for pSOSystem supports more
sophisticated types of breaks. For example, XRAY allows you to halt
execution when a task makes a particular pSOS+ service call. Note that
ROOT calls ev_receive() after creating all the other tasks and queues.
Furthermore, you can use the breakcomplex command (bc) to halt
execution when ROOT calls ev_receive(). The bc command accepts

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-22 pSOSystem Getting Started

options and prompts for parameters as required. Enter bc with the
option se to indicate a break on a service call:

> bc se

XRAY Debugger for pSOSystem zooms the Command viewport when
displaying the service calls and prompts for a pSOS+ function name. You
can enter a particular pSOS+ function, or enter * to indicate any
function. Enter ev_receive when XRAY prompts for a function, as
follows:

Function: ev_receive

XRAY Debugger for pSOSystem is now prompting you to identify the call
origin — either a task or an interrupt service routine (ISR). You can enter
a particular task name or task ID, ISP, or * to indicate any task. In this
case, enter ROOT when XRAY prompts for an origin (the single quotes
around ROOT are required):

Origin: 'ROOT'

XRAY Debugger for pSOSystem confirms the break definition by
displaying a complete list of all active breakpoints in the Break viewport.
In this case, only the one service break is set (which is ROOT making the
ev_receive() call). Return the Command viewport to normal size and
resume execution:

> zoom
> go

Execution stops because ROOT has made an ev_receive() call. XRAY
Debugger for pSOSystem reports that a service break was encountered,
the type of call made, and the address from which the call was made. The
Trace viewport shows that the call originated in the C source file psos.s.

At this point ROOT has completed spawning and activating the other
tasks. The query task command (qt) can be used to view these tasks:

> qt

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-23

The View (QT) viewport displays the following:

ROOT is about to block, and all the other tasks are ready to run. It is
useful to halt execution each time a new task executes. This can be done
with a different type of complex breakpoint called the dispatch break. A
dispatch break can be used to halt execution whenever a specified task
begins executing. A wild card can also be specified, causing a break at
all context switches. Define a dispatch break on any task, zoom the
viewport, and resume execution by entering the following:

> bc di *
> zoom
> go

Execution stops because task PNAD is about to run. This is expected
because, next to ROOT, PNAD has the highest priority. The display
shows the last running task, the reason it stopped running, and the task
about to run. Enter go three more times and observe which tasks
execute.

The clear command is used to clear breakpoints. To see how many
breakpoints are set, use the breaki command (b) without parameters:

> b

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-24 pSOSystem Getting Started

The Break viewport displays the following:

The service break and dispatch break are set. Breakpoints are cleared by
specifying the breakpoint number or a range of numbers to clear. Thus,
to clear the two breakpoints that are set, enter the following:

> clear 1..2

It is useful to examine the system after most tasks have been blocked.
Because the IDLE task has the lowest priority (0), it runs only when all
other tasks are blocked. Set a dispatch breakpoint to stop execution
when IDLE executes by entering:

> bc di 'IDLE'

To return to a normal screen display and resume execution, enter the
following commands:

> zoom
> go

Execution stops because task IDLE is about to run. The Code viewport
displays the following message because the code for task IDLE is part of
the pSOS+ kernel and is therefore unknown to the XRAY debugger:

Not in Source module.

Check the state of other tasks by entering:

> qt

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-25

The View (QT) viewport displays the following:

Notice that in the Status column, IDLE is running, and all other tasks
besides PNAD are either paused, suspended, waiting for events, or
waiting for messages. PNAD was blocked when the break occurred, but
use of the network communication link since that time has changed it to
the ready state.

The qt command is used to examine tasks. Other query commands are
available to examine other pSOS+ objects. For example, examine all
queues in the system by entering:

> qq

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-26 pSOSystem Getting Started

The View (QQ) viewport displays the following:

The system has several queues. The first queue is ‘SS•• ’. It uses priority
queuing and currently has eight messages pending. The second and
third queues are CNSL and QMEM. They use FIFO queuing, and each
has one task waiting. The system also has a queue for each open serial
port for the DITI.

In addition to line numbers, breakpoints can also be set on procedure
names. Resume execution and set a temporary breakpoint on the
procedure process_data by entering the following (after you remove the
dispatch break and shrink the viewport):

> clear 1
> zoom
> go process_data

Execution should halt because process_data has been called.

5.6.5 Symbols and Variables

XRAY commands allow you to examine and modify variables and
symbols that the program uses. The printvalue command (p) is used to
print the value of a variable. The process_data routine uses a global
variable Index. To examine it, enter the following:

> p Index

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-27

XRAY Debugger for pSOSystem may display the error message At start
of procedure, no local variables yet . If so, step into the procedure
and try again:

> step
> p Index

The Command viewport displays the value of this variable. The mem1
routine has a local variable ticks, and you can examine a local variable
by entering:

> p ticks

When you try to examine ticks, the following error message appears
because you are currently within the scope of the routine process_data:

Symbol not available from this scope without a qualifier

To examine variables in another routine, specify the routine’s name:

> p mem1\ticks

Now the following error message is displayed because local variables are
allocated on the stack when the routine is entered:

Local variable not alive

Each task has its own stack, and a task other than the one currently
executing contains ticks. Thus, to examine ticks, you must be executing
the routine mem1. To do this, use the breaki command (b) to set a
breakpoint within mem1. Set the breakpoint at an instruction after the
variable ticks has been initialized:

> b #195
> go

This causes execution to proceed until line #194 in the source code is
reached. XRAY Debugger for pSOSystem then reports a break. Now
examine the variable ticks:

> p ticks

The value of ticks is now displayed in the Command viewport. You can
also examine arrays and structures with this command. The mem1
routine contains an array called addrmsg. Examine it by entering:

> p addrmsg

The value of each array element is displayed in the Command viewport.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-28 pSOSystem Getting Started

The cexpression (c) command is another command that can display a
variable. Examine ticks by using c:

> c ticks

The Command viewport displays the value of ticks in both decimal and
hexadecimal. This command is actually used to calculate the value of an
expression or to assign a value to a variable. When the c command is
used on an array or structure, it calculates the address of the specified
item, which is then displayed. Try this command on an array:

> c addrmsg

Notice that the address of addrmsg is displayed. Contrast this to what
was displayed when the p command was used on this variable.

The c command can also be used as a decimal-to-hexadecimal or
hexadecimal-to-decimal converter. For example, enter the following to
calculate the decimal value of this number and display it in the
Command viewport:

> c 0x41

Because this number is also a printable ASCII character, it is displayed.

So far, you have seen symbols qualified by procedure names. In addition,
XRAY allows you to qualify symbols by using task selectors. When you
specify a symbol in a command, you can prepend it with the name of the
task using the format taskname: (where ROOT is the taskname in the
example line that follows) This instructs XRAY to use a particular context
when evaluating a symbol. Use the printvalue command to examine a
symbol in the ROOT task:

> p ROOT:\DEMO\root\tid[0]

This displays the variable tid[0] in the procedure root within the module
DEMO. tid[0] exists within the context of the task ROOT.

The monitor command allows variables to be monitored. Monitored
variables are updated each time the debugger stops executing the
program. The monitored data is displayed in the Data viewport, but this
viewport is not currently visible. You could zoom it, but another way to
make this viewport visible is to use the vactive command (va). This
command makes the specified viewport the active viewport:

> va 3

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-29

The procedure mem1 has a variable size. The variable size contains a
random number that is used to request memory segments of various
sizes. Monitor this variable by entering the following:

> monitor size

This instructs XRAY Debugger for pSOSystem to monitor the variable
size in the currently executing procedure mem1. You already have a
breakpoint set at line #194, which is within the task MEM1 after it has
initialized size. To resume execution, enter the following:

> go

The monitored variable is displayed in the Data viewport. Enter go three
more times and observe how the monitored data changes.

The previously mentioned cexpression command can be used to assign
a value to a variable. Change the value of size to 256 by entering:

> c size=256

The new value of size is displayed in the Command viewport and,
because it is still being monitored, the Data viewport. In the example
program, size is assigned a pseudo-random value, so keeping this value
is acceptable.

The nomonitor command (nomo) disables the monitoring of a variable
and removes it from the Data viewport. When a variable is monitored, it
is assigned a monitor line number, and the Data viewport displays this
number. These assigned line numbers refer to the expression to be
removed. Notice that size is assigned line number 1. Stop monitoring the
variable and remove the breakpoint by entering the following two
commands:

> nomo 1
> clear 1

Another way to display the variable size is by using the expand
command. This command examines the current stack and displays all
the local variables it finds in each procedure. The Trace viewport is used
in high-level mode to display the procedure calling chain. To examine the
local variables, enter the following:

> expand

As the Trace viewport shows, only one level of calls exists at this point.
expand also allows you to specify a particular stack level to examine.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-30 pSOSystem Getting Started

So far, the viewports have displayed information for the current running
task — MEM1. To look at a non-running task, use the scope command.
scope is used to define a new default context other than the running
task. All of the viewport displays, trace-back information, local variables,
and so on, reflect information for the new default task. Examine the
ROOT task after first returning to a normal screen display with the
following two commands. (Note that a colon must follow the argument
when the argument to the scope command is a task.)

> zoom
> scope ROOT:

The viewports now display information for the ROOT task. As expected,
ROOT is waiting for an event and is therefore in the ev_receive() routine.
The stack trace shows psos.s, which is the C language interface to
pSOS+. If you enter expand now, it displays all the procedure calls and
local variables for the ROOT task:

> expand

The scope command affects only the information displayed in the
viewports. It does not modify the current execution state, and therefore
MEM1 is still the current task. To return to the display of the current
task, enter scope without parameters:

> scope
> zoom

The viewports now display information about MEM1.

Sometimes information other than its value is needed about a symbol.
The printsymbol command (ps) provides this information. ps displays
information about a specified symbol or group of symbols. This
information includes the symbol name, data type, storage class, and
memory location. To examine all symbols used in the procedure
mreader, enter the following:

> ps mreader\

where the backslash is a symbol qualifier convention. For an explanation
of the backslash and other symbol qualifier conventions, refer to the
XRAY Debugger for pSOSystem User’s Guide.

To display information about a specific symbol, enter the following:

> ps root\tid

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-31

This displays information about the variable tid in the procedure root.

5.6.6 Profiling

One unique feature of XRAY Debugger for pSOSystem is its profiling
capability. By transparently collecting statistics on the application,
XRAY can provide important insights into a design’s activities and
performance. To enable profiling, turn on the profile flag as follows:

> fl profile on

The Command viewport displays the following flag settings:

RBUG: ON
HOST: OFF
TRFR: ON
NODOTS: ON
NOMANB: OFF
NOPAGE: ON
ECHO: OFF
PROFILE: ON

For example, to profile the application for 30 seconds, use a timed break
to halt execution after 3000 clock ticks, which is 30 seconds. By default,
the pSOS+ configuration table, configured through the sys_conf.h file,
specifies 100 ticks per second. Set the breakpoint and resume execution
with the following entries:

> bc ti #&3000
> go

On the first line, the ampersand (&) indicates that the next number is
decimal, and the pound sign (#) indicates that the next value is relative
to a starting point. Otherwise, an absolute time and date would have
been entered. Execution stops after the designated interval of 30
seconds. Normally, for a statistically significant profile, a much longer
interval is necessary. To view the profile data, enter the following:

> lp

The values displayed are decimal. All of the profile data cannot fit in the
View viewport, so use the up and down arrow keys to scroll through it.

The number of ticks listed for each task is statistical, because it depends
on the sampling at each clock edge. The other data, such as the number

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-32 pSOSystem Getting Started

of times a task switches into a particular state and the number of system
calls made, are actual counts.

To turn off profiling, enter the following:

> fl profile off

5.6.7 Interactive System Calls and I/O

XRAY Debugger for pSOSystem allows you to make system calls
manually to pSOS+ so that you can conveniently modify and control the
application’s behavior. For example, the sample application has a queue
named CNSL, to which you can manually send messages.

First, check the status of the queue CNSL by entering:

> qq 'CNSL'

The View (QQ) viewport displays the following:

The display shows that one task, ‘MSG• ’ is running, and it is waiting for
a message.

You can now use the sy command to send a message to CNSL. Because
‘MSG• ’ is waiting, it receives the message and becomes ready to run:

> sy q_send 'CNSL' 'ABCD' 'EFGH' 'IJKL' 'MNOP'

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-33

In this example, you enter all the command parameters on a single line.
If you are not sure what parameters the call requires, you can leave out
the parameters and let XRAY Debugger for pSOSystem prompt for each
parameter. When the command is done, the following pSOS+ system call
return code is displayed:

Return code: 00000000

where all 0s indicates that the call succeeded.

For sending more messages to a queue, XRAY supports a function key
that backs up one command at a time, up to a maximum of five
commands. On most keyboards, [F7] is this key (refer to the XRAY
Debugger for pSOSystem User’s Guide to determine which key is used on
your keyboard). Each time you press [F7], XRAY backs up one command,
but it does not execute the command until you press [Return]. For
example, you can back up three commands by pressing [F7] three times,
then execute the selected command by pressing [Return].

You can also repeat a preceding command three times by using the
function key [F7] or equivalent and [Return] sequence three times.

Now look at CNSL again:

> qq 'CNSL'

The View (QQ) viewport displays the following:

Three messages are queued. (Remember that the first message was
passed to the waiting task ‘MSG• ’.) Task ‘MSG• ’ is ready to run, and

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-34 pSOSystem Getting Started

when you restart execution, ‘MSG• ’ sends all four messages to the XRAY
standard I/O screen.

Task ‘MSG• ’ demonstrates another important feature of XRAY Debugger
for pSOSystem, and that is the ability of a pSOS+ task to write to the
XRAY terminal. XRAY provides an I/O screen through which application
code can write to the XRAY terminal. The I/O screen is not a viewport but
a separate screen. When the application does console I/O, the I/O screen
temporarily replaces the high-level screen on the terminal. The
application accesses the I/O screen by calling a routine in the file
db_output.

When execution resumes, the I/O screen appears with the messages
from task ‘MSG• ’. To resume execution, enter the following:

> go

The following should be displayed:

ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP

At this time, the sample application is continuing to run because no
breakpoints have been set. Stop execution by entering a [Control-c]. The
high-level screen now replaces the I/O screen and displays a message
similar to the following:

Manual Break. Running: 'IO2 ' -#00080000
Stopped due to halt from user

Because execution has been stopped manually, the running task may
not be ‘IO2• ’. Now that execution has stopped, the I/O screen displaying
the messages from task ‘MSG• ’ is no longer visible.

By going through this tutorial session, you have seen that XRAY has
three predefined screens. Screen 1 is the high-level screen that is
currently visible. Screen 2 is the assembly-language screen that was
seen earlier in this tutorial session with the use of the mode assembly
command. Screen 3 is the I/O screen where the messages from task
‘MSG• ’ were displayed. Remember that a screen is not the same as a
viewport.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

pSOSystem Getting Started 5-35

The vscreen command is used to display a specified screen. To look at
the output on the I/O screen, enter:

> vscreen 3

Now the I/O screen is displayed, and you again see the output that was
displayed by task ‘MSG• ’:

ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP
ABCDEFGHIJKLMNOP

To get back to the high-level screen, display screen 1. While you type
vscreen 1, the command is not echoed to the screen. This is because the
command is echoed on the high-level screen, but the I/O screen is
currently visible. When you press [Return] after typing the following, the
high-level screen appears:

> vscreen 1

You have now completed the XRAY Debugger for pSOSystem tutorial. To
terminate this debugging session, enter the following:

> quit

After you enter quit, XRAY prompts:

Are you sure?

Enter a y to terminate the session.

Chapter 5. XRAY Debugger for pSOSystem Tutorial: Viewport Version

5-36 pSOSystem Getting Started

pSOSystem Getting Started 6-1

6 Shared Memory
Multiprocessing Tutorial

This chapter takes you through the steps to build, download, and run a
multiprocessing application. The pSOSystem sample multiprocessing
application is called mpdemo, and it runs under pSOS+m.

The pSOS+m kernel allows tasks running on different processors to
communicate, exchange data, and synchronize through pSOS+m as if
they were running on a single processor. For example, a task on one
node can use the ev_send() system call to signal an event to a task on
another node.

The pSOS+m kernel is fully explained in the pSOSystem System
Concepts manual.

6.1 Introduction
The mpdemo application can run on a target system containing any
number of processors, but the tutorial presented in this chapter applies
to a system with from two to eight processors.

For the mpdemo application, the pSOS+m kernel on a node
communicates with other kernels through a software layer called the
Shared Memory Kernel Interface (SMKI). To the application, this
communication is transparent. Typically, 68K-based shared memory

Chapter 6. Shared Memory Multiprocessing Tutorial

6-2 pSOSystem Getting Started

systems use the VMEbus, although any hardware architecture that
allows different CPUs to access a common memory area can be used.
This chapter includes examples of VME-based hardware usage and
helpful VME-specific information.

NOTE: This tutorial assumes you have read Chapter 2, ‘‘pSOSystem
Tutorial for Workstation Hosts,” and performed the tutorial.
Concepts and procedures demonstrated in other tutorials are
not repeated here.

6.2 mpdemo Sample Application
Directory PSS_ROOT/apps/mpdemo contains the multiprocessing
sample application upon which this tutorial is based. The mpdemo
application illustrates the use of kernel calls across node boundaries and
the soft-fail and rejoin capabilities of pSOS+m. Directory mpdemo
contains the following files:

makefile callout.c common.h output.c tasks.c

callouta.s drv_conf.c sys_conf.h

Figure 6-1 on page 6-3 shows the logical flow of the application once it is
fully initialized. Node 1 is the master node, which must stay up and
running. In the VMEbus environment, this means the master node must
be the System Controller.

The same code can be downloaded and run on all nodes in the system
because the application can determine the node on which it is executing
by reading the node configuration table. Except for the following, the
application code is the same on all nodes:

■ Queue ‘SRVq’ and task ‘SRVt’ are created only on node 1.

■ The ROOT task on node 1 does not execute a k_fatal() call
because node 1 is the master node and is not allowed to fail.

The sequence executed by a client is shown in Figure 6-1.

Chapter 6. Shared Memory Multiprocessing Tutorial

pSOSystem Getting Started 6-3

q_vsend

q_vsend

q_send

q_vsend

Node 1

q_receive

Queue ‘OUTq’

Node 2

Task ‘C1N2’

Task ‘ROOT’Task ‘OUTt’

q_send

Roster Change
Kernel Call-out

q_vreceive

Queue ‘OUTq’

Task ‘C1N1’

Task ‘ROOT’Task ‘OUTt’

q_vsend

Roster Change
Kernel Call-out Task ‘SRVt’Queue ‘SRVq’

ev_asend

ev_asend

q_receive

Figure 6-1 mpdemo Sample Application

Chapter 6. Shared Memory Multiprocessing Tutorial

6-4 pSOSystem Getting Started

6.2.1 Client Task Execution

For mpdemo, each node in the system contains several client tasks. All
the client tasks execute the same code. The code executed by each client
task is called ClientTask(). This code is an infinite loop located in
tasks.c. The sequence executed by a client is as follows:

1. A message containing the client task’s ID is sent to queue
‘SRVq’ on node 1.

2. The task sleeps and awaits the signalling of an event.

3. When an event is signalled to a client task by an ev_asend()
call from task ‘SRVt’, the task wakes up and sends a message
to queue ‘OUTq’. The message contains the client task’s ID and
the iteration number of the loop.

4. The client task sleeps for a random amount of time.

5. The client task wakes up and repeats the loop.

The number of client tasks per node is controlled by the NUM_CLIENTS
macro in tasks.c. Each client task described in tasks.c has a name in
the form ‘CnNm’, where n is a number from 1 through NUM_CLIENTS
and m is the number of the node on which the task resides.

6.2.2 Server Task Execution

Message queue ‘SRVq’ and server task ‘SRVt’ exist only on node 1
because they must always be present (and node 1 is always present).
Messages posted to ‘SRVq’ are subsequently received by server task
‘SRVt’. Each message posted to ’SRVq’ is four bytes long and contains
the ID of the client task that sent it.

The code for task ‘SRVt’ is called ServerTask(). This code is an infinite
loop located in tasks.c. The sequence executed by ‘SRVt’ is as follows:

1. ‘SRVt’ blocks while it awaits a message from ‘SRVq’.

2. When it receives a message, ‘SRVt’ wakes up.

3. ‘SRVt’ uses the ev_asend() service call to signal an event to the
client task identified in the message.

4. ‘SRVt’ returns to waiting for a message from ‘SRVq’.

Chapter 6. Shared Memory Multiprocessing Tutorial

pSOSystem Getting Started 6-5

6.2.3 Console Output

Each node in the system has a queue/task combination called ‘OUTq’
and ‘OUTt’ for sending output to the serial channel. This code is
contained in output.c.

Messages posted to queue ‘OUTq’ are received by task ‘OUTt’, and the
message contents are sent out on the serial channel. The messages
posted to ‘OUTq’ come from one of two sources. Most of the messages
come from the client tasks. These messages announce how many times
the client tasks have completed their loops. The other messages are
posted by a roster change callout routine (contained in callout.c). The
pSOS+m kernel calls the roster change callout routine when a node has
left or joined the system. This routine posts a message about the roster
change to ‘OUTq’, so that notification of the change can go out over the
serial channel. When nodes other than just the master node are running,
mpdemo posts roster change messages to the terminal.

6.2.4 Soft-Fail and Rejoin

To simulate a node failure, the ROOT task on a node other than node 1
periodically executes a k_fatal() service call (ROOT on node 1 does not
execute a k_fatal() call). First, ROOT sleeps for a random time period
after it has completed system startup duties such as device initialization
and creation and startup of other tasks. When ROOT wakes up, it
executes a k_fatal() service call, and this causes pSOS+m to send
notification of its failure to the master node. pSOS+m then calls a fatal
error handler located in callout.c. This fatal error handler executes a
software spin loop and then restarts the system by transferring control
to the startup entry point of the pSOS+m kernel. In the meantime,
pSOS+m on the master node removes the node from the system roster.

6.3 Planning the Target System
A well-planned configuration for the target system can greatly reduce the
time required to bring up and run a multiprocessor system. This section
explains how to plan the configuration.

Chapter 6. Shared Memory Multiprocessing Tutorial

6-6 pSOSystem Getting Started

6.3.1 Assigning Node Numbers

Each node in the system must have a unique node number. Node
numbers must be in the range 1 through 8.

Node 1 must be present, and it must initialize first. This is a requirement
of both the pSOS+m kernel and the SMKI. For mpdemo, you can assign
any available node number in the range 2 through 8 to other nodes.

6.3.2 VMEbus Memory Addresses

For this tutorial, all boards in the system must have dual-ported memory
accessible by both the local CPU and other processors over the VME
system VMEbus. The address of the memory on the bus is usually
configurable either through software or by jumpers on the board. The
following rules apply to the bus addresses of the boards:

■ Each processor’s dual-ported memory must be assigned a
unique starting address.

■ No overlap of memory addresses between different boards is
allowed.

■ The dual-ported bus address selected for each board must be
accessible by all of the other boards in the system. This
usually precludes placing a board’s memory at location 0 on
the bus because most boards map their own memory
beginning at 0 and are thus unable to access VMEbus
address 0.

6.3.3 Selecting a Directory Address

The SMKI requires a directory structure. This directory structure must
reside in a memory space where all of the nodes in the system have
access to it. Each board-support package provided by Integrated
Systems reserves a memory area for the SMKI directory. To find the
offset of this area for each supported board, see Appendix A, ‘‘Board-
Specific Information.” Integrated Systems recommends that you use this
area on one of the boards in the system to locate the SMKI directory.

Chapter 6. Shared Memory Multiprocessing Tutorial

pSOSystem Getting Started 6-7

6.4 Setting Up the Hardware
The following rules apply when multiple bus masters operate in a
VMEbus system. This information should save time when you bring up
a multiprocessor VMEbus system. Consult the user manuals for the
VME boards you use to perform the necessary setup. The reference for
the terminology and rules listed here is the VMEbus specification.

■ The board designated as the System Controller should be
placed in slot 1 in the chassis (farthest to the left). A system
may work if the System Controller is in another slot, but not
all VMEbus services will be available because slot 1 is wired
differently from the other slots. Of the slots actually used, the
System Controller must be the farthest on the left whether or
not that position is physically slot 1 in the chassis. Otherwise,
the system will not work. For example, the System Controller
can occupy slot 3 as long as all other boards are to the right of
it.

■ The System Controller bus arbiter must be enabled and the
other board arbiters disabled. This must be checked carefully
because if more than one arbiter is enabled, the system might
not fail immediately. Instead, it may perform erratically.
Typically, the bus arbiter is enabled by a jumper.

■ Bus master boards must have compatible bus arbitration
modes. If you specify single-level requests, make sure all
boards are set to make bus requests at level 3. A board’s bus
arbitration mode can be set by either jumpers, control
registers, or a combination of both. The manufacturer of the
VME board determines the method of setting the arbitration
mode.

■ Only the System Controller should drive the SYSCLK signal,
and this is usually determined by a jumper setting. If more
than one board drives SYSCLK, contention may result.

■ Physical continuity must exist between boards in the system.
To ensure this, either empty slots cannot be present between
boards or the four daisy-chained bus grant lines and the
daisy-chained interrupt acknowledge line must be jumpered
across unused slots.

Chapter 6. Shared Memory Multiprocessing Tutorial

6-8 pSOSystem Getting Started

If you have not already done so, install pSOSystem Boot ROMs in each
of the target boards. You should also connect serial cables from each of
the target nodes to the host system or terminal.

6.5 Testing the Hardware
Once the target boards are installed, they should be tested to ensure that
each board can read and write the dual-ported memory of the other
boards in the system. You can do this for each board by using ROM
pROBE+ to modify a memory location in a board’s dual-ported memory
and then reading that memory location from each of the other boards.
The process requires the following steps:

1. Configure the Boot ROMs on each board to operate pROBE+ in
stand-alone mode. In the dialog questions for each board,
when you see the prompt “Bus Address of this board’s dual-
ported memory,” be sure to enter the address determined for
the board in Section 6.3.2, ‘‘VMEbus Memory Addresses.”

2. On node 1, use the pROBE+ PM.L command to store a unique
value in an unused longword of dual-ported memory. The
memory where the pSOSystem executable image will be loaded
($20000 on most boards) is a good place. For example:

pROBE+>PM.L 20000 457EE222

3. From each of the other nodes in the system, use the pROBE+
PM.L command to view the memory you modified in step 2. For
example, if node 1 is at $30000000 on the VMEbus, you would
use the following command to display the relevant portion of
node 1’s dual-ported memory:

pROBE+>PM.L 30020000

This would show a value of 457EE222 at $30020000.

4. Repeat steps 2 and 3 for each node in the system.

Chapter 6. Shared Memory Multiprocessing Tutorial

pSOSystem Getting Started 6-9

6.6 Creating a Working Directory
The first steps for using mpdemo require the creation of working
directories. To illustrate a multiprocessor system with more than one
type of target board, in this mpdemo tutorial you initially will create two
working directories for a two-node target system. In multiprocessor
systems that have only one type of board, only one working directory is
actually necessary. Even if you have only one type of board, proceed as
if you are using different types. Start by doing a recursive copy in the
directory of your choice by entering the following:

cp -r $PSS_ROOT/apps/mpdemo node1

where node1 is the working directory for the master node’s code. Next,
make another working directory:

cp -r $PSS_ROOT/apps/mpdemo node2

where node2 is the working directory for the second node in the system.

6.7 Building, Downloading, and Starting the Executable
Images
In each of the working directories, the makefile requires editing to reflect
the board used for each node, and these boards preferably are those
supported by Integrated Systems with a board-support package. Set
PSS_BSP to indicate the board used for each node, as in the following
example:

PSS_BSP=$(PSS_ROOT)/bsps/m167

Next, build the executable image, as follows:

make ram.hex

Chapter 6. Shared Memory Multiprocessing Tutorial

6-10 pSOSystem Getting Started

6.7.1 Configuring and Downloading to Node 1

The next phase requires configuration of the Boot ROMs. When the host
system is physically connected to the target and you start up the
terminal emulator (such as tip or cu), the startup dialog is displayed on
the terminal. After you enter m for ‘Modify’ at the startup dialog prompt,
select the following:

■ Enter 1 for pROBE+ stand-alone mode.

■ No LAN interface.

■ No shared memory network interface.

■ No default gateway.

■ Enter y when the prompt for starting the multiprocessing
configuration appears.

■ Specify 8 nodes (as a maximum) even though this tutorial
begins with a two-node system: this allows you to try
specifying different node numbers later.

■ Specify that the current CPU is (node) 1 because the system
must have a master node, and this is the first CPU
configuration you are performing on the target.

■ The SMKI address should already have been determined
through the use of information in Appendix A, ‘‘Board-Specific
Information.”

■ The baud rate can be whatever hardware-supported rate you
choose. You may need to change the terminal emulator rate to
reflect your changes.

■ The wait period can be whatever you want.

After you have completed the configuration, the pROBE+ prompt appears
with a number appended that reflects the node number (1). Download
the ram.hex file with the pROBE+ dl command. When the download is
complete, transfer control to the downloaded executable image with the
go command (as done in Chapter 2, ‘‘pSOSystem Tutorial for
Workstation Hosts”).

Chapter 6. Shared Memory Multiprocessing Tutorial

pSOSystem Getting Started 6-11

6.7.2 Configuring and Downloading to Other Nodes

The ROM configuration for node 2 is the same as node 1 except for the
node number, which should be 2. When you download ram.hex to node
2, be sure it is the ram.hex file from the node2 working directory.
Transfer control to the downloaded image by entering the go command.

6.8 Running the Sample Application
You must start node 1 first by entering the pROBE+ gs and go
commands. After the sample application starts on node 1, the terminal
displays messages related to the client task running on node 1. You can
do a manual break to return control to pROBE+ and examine the state
of the system. For example, enter qt to list the tasks present on the node
or qo to list the objects present. Be sure to resume the application with
the go command.

Now start node 2 with the gs and go commands. After you start the
application on node 2, the display for node 1 shows that node 2 has
joined the system. This is a message describing the roster change and
includes a sequence number, which is incremented every time a node
joins the system.

The display for node 1 continues by showing when pSOS+m on node 2
signals a failure and when the failed node rejoins the system.

You can stop the nodes with manual breaks, by pressing a board’s abort
button (if present), or by turning off the system. This concludes the
multiprocessing tutorial.

Chapter 6. Shared Memory Multiprocessing Tutorial

6-12 pSOSystem Getting Started

pSOSystem Getting Started 7-1

7 Configuration and Startup

The configuration of pSOSystem is easily changed by editing the
sys_conf.h file. Entries in sys_conf.h control many system parameters,
and these range from specifying the device drivers that are built into the
system to the maximum number of tasks that can be active
concurrently. The sys_conf.h file resides in the application directory.
This chapter documents the sys_conf.h system parameters.

As pSOSystem is a scalable operating system, a large part of its
functionality is contained in software components or building blocks.
Not all of the software components are necessarily built into a
pSOSystem configuration, and this depends on the capabilities you
require. Each software component has its own configuration and startup
requirements, and they are taken care of by the pSOSystem startup
code. These requirements are documented here to help you make
changes to the startup code, if necessary.

7.1 Overview
Software components, such as pSOS+, pROBE+, and pREPC+, are the
basic building blocks of the pSOSystem environment. Associated with
each component is a configuration table, which the corresponding
component uses to obtain its configurable parameters. Figure 7-1 on
page 7-2 shows the relationships between the various elements that the

Chapter 7. Configuration and Startup

7-2 pSOSystem Getting Started

components use to find their parameters, data areas, and other
configuration information.

Figure 7-1 Configuration Tables

The Node Anchor is the single, fixed point of reference for all the installed
software components in the system. This anchor is a critical link because
each component is code and data position-independent and thus
depends on the anchor to locate its configuration information.

In pSOSystem, the location of the node anchor is determined by the
symbol _anchor. The value of _anchor is defined in the linker command
files that are supplied with each board-support package.

The “Configuration Tables” section of the pSOSystem Programmer’s
Reference explains each of the configuration table entries. Because the

pSOS+

Configuration
Table

Multiprocessor
Configuration

Table

Node
Configuration

Table

Node Anchor

CPU_TYPE

MP_CT

PSOS_CT

PROBE_CT

PHILE_CT

PREPC_CT

PNA_CT

pNA+

Configuration
Table

Subcomponent
Tables

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-3

pSOSystem startup code itself sets up these tables, you do not initially
need to understand all the table entries. However, as you experiment
with changing the pSOSystem configuration, the information in
“Component Configuration Parameters” on page 7-10 becomes more
useful.

7.1.1 System Configuration File

During system startup, pSOSystem initializes all of the required
component configuration tables. The code that initializes configuration
tables resides in the shared, read-only file sysinit.c in the
PSS_ROOT/configs/std directory. The source code in sysinit.c
contains many lines where compilation depends on values defined in the
application’s pSOSystem configuration file, sys_conf.h. The following
are determined by parameters defined in sys_conf.h:

■ Which operating system components are built into the system.

■ Characteristics of the target’s serial channels.

■ Whether a LAN driver is included in the system and, if so, its
IP address.

■ Whether a shared memory network interface (SMNI) is
included in the system and, if so, its IP address.

■ The optional device drivers in the system: SCSI and RAM disk
drivers, the TFTP pseudo-driver, and any application-specific
drivers you may have added.

■ The values used for most of the component configuration table
entries: for example, definitions in sys_conf.h determine the
system’s maximum number of concurrently active tasks and
message queues.

Each of the sample applications supplied with pSOSystem includes a
sys_conf.h file that contains configuration values appropriate for that
application. Section 7.2, ‘‘sys_conf.h,” explains the values you must
define in sys_conf.h.

7.1.2 Parameter Storage and the Startup Dialog

Sometimes the only differences between pSOSystem configurations are
the values of the parameters defined in sys_conf.h. For this reason,

Chapter 7. Configuration and Startup

7-4 pSOSystem Getting Started

pSOSystem allows you to place some of the sys_conf.h parameter values
in a dedicated storage area in the target’s memory. An optional startup
dialog can be built into pSOSystem to allow review and possible
modification of these parameters when pSOSystem initializes itself. The
pSOSystem Boot ROMs are an example of pSOSystem and an application
using the startup dialog.

7.2 sys_conf.h
This section describes the parameters that sys_conf.h must supply.
Parameter definitions in sys_conf.h have the form of C macro
definitions, as in the following example:

#define SC_PROBE YES /* Include pROBE+ debugger */
#define KC_NTASK 20 /* Maximum of 20 active tasks */

You may find it helpful to refer to the example sys_conf.h files in the
pSOSystem sample applications while reading this section.

To improve the readability of sys_conf.h, macros are used to define the
values of some of the parameters. The code in sysinit.c (and other files
that include sys_conf.h) assumes the use of these macros. The types.h
and sysvars.h include files must be included in the sys_conf.h file to
resolve parameter definitions.

7.2.1 Storage and Dialog Parameters

The following four parameters determine the fashion in which many of
the other parameters in sys_conf.h are used:

Parameter Possible Values

SC_SD_PARAMETERS STORAGE, SYS_CONF
SC_STARTUP_DIALOG NO, YES
SC_BOOP_ROM NO, YES
SD_STARTUP_DELAY Any decimal integer
SE_DEBUG_MODE DBG_SA, DBG_XS, DBG_XN, SYS_CONF

The values of all of the parameters in sys_conf.h with names beginning
with “SD_” can be determined either by the definitions given in
sys_conf.h or by the data in the target’s parameter storage area. If
SC_SD_PARAMETERS is set to SYS_CONF, the values in sys_conf.h are
always used for the SD_ parameter values. If SC_SD_PARAMETERS is

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-5

STORAGE, then pSOSystem attempts to use the values in the target’s
parameter storage area for the SD_ variables, and the values in
sys_conf.h become default values to use if the parameter storage area
either has not been initialized or has been corrupted.

If SC_SD_PARAMETERS is defined as STORAGE, you can enable the
startup dialog by setting SC_STARTUP_DIALOG to YES. The startup
dialog runs on the target system at startup time and allows you to view
and optionally change the parameter values in the storage area. If the
dialog is enabled, SD_STARTUP_DELAY specifies the number of seconds
that the dialog waits for input before it boots the system.

SE_DEBUG_MODE determines how the system operates, as follows:

DBG_SA Boot pROBE+ in stand-alone mode.

DBG_XS Boot into pROBE+ and wait for the host debugger
(system-level debugger) through a serial
connection.

DBG_XN Boot into pROBE+ and wait for the host debugger
(system-level debugger) through a network
connection.

STORAGE Use the mode (DBG_SA, DBG_XS, or DBG_XN)
found in the parameter storage area. If a valid mode
is not found, then use DBG_SA.

7.2.2 Operating System Components

The following parameters determine which components go into the
system:

Parameter Possible Values

SC_PSOS YES, NO
SC_PSOSM YES, NO
SC_PROBE YES, NO
SC_PHILE YES, NO
SC_PREPC YES, NO
SC_PNA YES, NO
SC_PMONT YES, NO
SC_PRPC YES, NO
SC_PX YES, NO
SC_PSE YES, NO

Chapter 7. Configuration and Startup

7-6 pSOSystem Getting Started

SC_PTLI YES, NO

A component parameter set to YES causes that component to be built
into the system. Note that it is incorrect to set both SC_PSOS and
SC_PSOSM to YES.

7.2.3 Serial Channel Configuration

The target’s serial channels are referred to by their channel numbers,
which start at 1. For example, a target with four serial channels would
have channel numbers 1, 2, 3, and 4. The following parameters control
the serial channels:

Parameter Possible Values

SC_PROBE_CONSOLE 1, 2, 3, and so on
SC_PROBE_HOST 1, 2, 3, and so on
SC_APP_CONSOLE 1, 2, 3, and so on
SD_DEF_BAUD 4800, 9600, 19200, and so on

SC_PROBE_CONSOLE specifies the serial channel number that pROBE+
should use for its console channel. (The pROBE+ console displays output
and receives commands.) If pROBE+ is to communicate with the XRAY
host debugger over a serial channel, SC_PROBE_CONSOLE specifies the
channel to use.

SC_PROBE_HOST specifies the serial channel number that should be
used for the pROBE+ host channel. This is not normally required, so it
can be disabled by specifying a 0. The host channel is explained in the
pROBE+ User’s Guide.

SC_APP_CONSOLE specifies the serial channel number used for the
application’s console channel. The console channel can be changed
dynamically by making a de_cntrl() call to the serial driver.

When the pSOSystem terminal driver (drivers/diti.c) is called, the
minor device number specifies the serial channel to use. For example, if
the major device number specified by SC_DEV_SERIAL is 3, a de_write()
call to device 3.3 writes the output on serial channel 3. Minor device
number 0 is remapped to the application console channel, where the
initial value is specified by SC_APP_CONSOLE. For a description of
SC_DEV_SERIAL, see Section 7.2.7, ‘‘I/O Devices.”

SC_DEF_BAUD specifies the default baud rate for the serial channels. A
de_cntrl() call can be used to change the baud rate dynamically.

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-7

7.2.4 LAN Configuration

The following parameters control the configuration of the LAN interface:

Parameter Explanation

SD_LAN1 YES enables the LAN interface, and NO
disables it.

SD_LAN1_IP IP address to use for LAN interface.
Alternatively, SD_LAN1_IP can be set
to USE_RARP, in which case
pSOSystem uses RARP to obtain the IP
address.

SD_LAN1_SUBNET_MASK Subnet mask to use for LAN interface,
or 0 for none.

If the target board has a LAN interface, you can enable it by setting
SD_LAN1 to YES. If SD_LAN1 is NO, the values of the other SD_LAN1_*
parameters are unused.

7.2.5 Shared Memory Configuration

The following parameters control the configuration of the shared memory
network interface (SMNI):

Parameter Explanation

SD_SM_NODE Node number for this node
SD_NISM YES to enable SMNI, otherwise NO
SD_NISM_IP IP address of this node
SD_NISM_DIRADDR Bus (global) address of SMNI

directory structure
SC_NISM_BUFFS Number of buffers
SC_NISM_LEVEL 2 for downloaded system, 1 for

a system in ROM
SD_NISM_SUBNET_MASK Subnet mask to use for SMNI
SD_KISM YES to enable SMKI, otherwise NO
SD_KISM_DIRADDR Bus (global) address of SMKI

directory structure

On systems that support it, you can configure a shared memory network
interface for use with pNA+ and/or a shared memory kernel interface
(SMKI) for use with the pSOS+m kernel. In either case, you need to

Chapter 7. Configuration and Startup

7-8 pSOSystem Getting Started

assign a node number to each target board in the system. Node numbers
are integers and start at 1. The SD_SM_NODE setting must be the same
as the board’s node number.

SD_NISM must be either YES or NO, depending on whether a shared
memory network interface is included. If SD_NISM is YES, then
SD_NISM_IP, SD_NISM_SUBNET_MASK, and SC_NISM_BUFFS specify
the interface’s IP address, subnet mask, and number of buffers, just as
the corresponding parameters do for the LAN interface.

SD_NISM_DIRADDR is the bus address of a system-wide directory
structure which must be accessible to all nodes in the system.

SC_NISM_LEVEL should be set to 2, except for the pSOSystem Boot
ROMs. For the pSOSystem Boot ROMs, it should be 1 to allow a second,
downloaded shared memory system to share the same directory
structure with the one that the Boot ROMs use.

To configure a shared memory kernel interface (SMKI), set SD_KISM to
YES and SD_KISM_DIRADDR to the bus address of the system-wide
directory structure.

Directory structures are usually placed in a board’s dual-ported RAM.
Each pSOSystem board-support package reserves some space for these
structures. To find the locations for these structures, see Appendix A,
‘‘Board-Specific Information.”

7.2.6 Miscellaneous Parameters

The parameters in the following list do not depend on each other.

Parameter Explanation

SC_RAM_SIZE Amount of target memory to use (0 for
all).

SD_DEF_GTWY_IP IP address of default gateway node (0
for none).

SD_VME_BASE_ADDR VMEbus address of a board’s dual-
ported RAM.

Normally, pSOSystem uses all of the unassigned memory on a board for
dynamic allocation (Region 0). You can override this by setting
SC_RAM_SIZE to a nonzero value. If you do, pSOSystem does not touch
any memory after the first SC_RAM_SIZE bytes. This is useful when

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-9

building a Boot ROM because it allows you to make most of the board’s
RAM available for downloading code.

SD_DEF_GTWY_IP specifies the default gateway for pNA+ to use for
packet routing. The default gateway is explained in the Boot ROM section
of the pSOSystem Programmer’s Reference. Note that if SC_PNA is NO,
SD_DEF_GTWY_IP is not used.

SD_VME_BASE_ADDR specifies the base address of the target board’s
dual-ported memory on the VMEbus. This parameter is not used by non-
VME target boards.

7.2.7 I/O Devices

The following parameters control the configuration of the I/O devices:

Parameter Explanation

SC_DEV_SERIAL Major device number of serial driver
SC_DEV_TIMER Major device number of periodic tick timer
SC_DEV_RAMDISK Major device number of RAM disk (0 for no

RAM disk)
SC_DEV_SCSI Major device number of SCSI driver (0 for

none)
SC_DEV_SCSI_TAPE Major device number of SCSI tape device
SC_DEV_TFTP TFTP pseudo driver
SC_DEV_OTCP TCP/IP for OpEN
SC_DEV_SPNA pSOSystem backward compatibility
SC_IP Internet Protocol
SC_ARP Address Resolution Protocol
SC_TCP Transmission Control Protocol
SC_UDP User Datagram Protocol
SC_RAW RAW sockets
SC_LOOP Loopback
SC_DEV_SOSI OSI for OpENbus
SC_DEVMAX Maximum major device number in system

To include a device in the system, you must specify a major device
number for it. The major device number determines the device’s slot in
the pSOS+ I/O switch table. To leave a device driver out of the system,
use 0 or NO for the major number.

Chapter 7. Configuration and Startup

7-10 pSOSystem Getting Started

Note the following:

■ Major device 0 is reserved and cannot be used to specify a
device. Device number 0 means that device is not built into the
system.

■ No device number can exceed SC_DEVMAX. You can raise the
value of SC_DEVMAX, if necessary.

The following lines should be included in sys_conf.h after the SC_DEV_*
definitions:

#define DEV_SERIAL (SC_DEV_SERIAL << 16)
#define DEV_TIMER (SC_DEV_TIMER << 16)
#define DEV_RAMDISK (SC_DEV_RAMDISK << 16)
#define DEV_SCSI (SC_DEV_SCSI << 16)
#define DEV_TFTP (SC_DEV_TFTP << 16)
#define DEV_SCSI_TAPE (SC_DEV_SCSI_TAPE << 16)

7.2.8 Component Configuration Parameters

As explained in Section 7.2, ‘‘sys_conf.h,” the values of many
configuration table entries are controlled by define statements in
sys_conf.h. The following subsections describe those parameters that
can be controlled by define statements. Note that the names of the
configuration table entries shown in the reference manual are in
lowercase, and the corresponding sys_conf.h parameters are in
uppercase. For example, fc_nbuf in the pHILE+ configuration table is
controlled by FC_NBUF in sys_conf.h.

Although most of the component configuration table entries are
determined by sys_conf.h, others are not because sys_conf.h cannot
specify them. For example, kc_code in the pSOS+ configuration table
contains the starting address of the pSOS+ kernel, but this is determined
by where the linker places pSOS+; therefore, sys_conf.h cannot specify
the address.

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-11

7.2.8.1 pSOS+ and pSOS+m Configuration Table Parameters

The following parameters in sys_conf.h control the values of the
corresponding entries in the pSOS+ configuration table:

Parameter Explanation

KC_RN0USIZE Region 0 unit size
KC_NTASK Maximum number of tasks
KC_NQUEUE Maximum number of message queues
KC_NSEMA4 Maximum number of semaphores
KC_NMSGBUF Maximum number of message buffers
KC_NTIMER Maximum number of timers
KC_NLOCOBJ Maximum number of local objects
KC_TICKS2SEC Clock tick interrupt frequency
KC_TICKS2SLICE Time slice quantum, in ticks
KC_SYSSTK pSOS+ system stack size (bytes)
KC_ROOTSSTK ROOT supervisor stack size
KC_ROOTUSTK ROOT user stack size
KC_ROOTMODE ROOT initial mode
KC_STARTCO Callout at task activation
KC_DELETECO Callout at task deletion
KC_SWITCHCO Callout at task switch
KC_FATAL Fatal error handler address
KC_ROOTPRI ROOT initial priority

The following parameters in sys_conf.h control the values of the
corresponding entries in the multiprocessor configuration table:

Parameter Explanation

MC_NGLBOBJ Size of global object table in each node
MC_NAGENT Number of RPC agents in this node
MC_FLAGS Operating mode flags
MC_ROSTER Address of user roster change callout
MC_KIMAXBUF Maximum length of KI packet buffer
MC_ASYNCERR Address of error callout for asynchronous

calls

Chapter 7. Configuration and Startup

7-12 pSOSystem Getting Started

7.2.8.2 pROBE+ Configuration Table Parameters

The following parameters in sys_conf.h control the values of the
corresponding entries in the pROBE+ configuration table:

Parameter Explanation

RC_BRKOPC Instruction break opcode
RC_ILEVEL pROBE+ interrupt mask
RC_SMODE Start mode
RC_FLAGS Initial flag settings

7.2.8.3 pHILE+ Configuration Table Parameters

The following parameters in sys_conf.h control the values of the
corresponding entries in the pHILE+ configuration table:

Parameter Explanation

FC_LOGBSIZE Block size (base-2 exponent)
FC_NBUF Number of cache buffers
FC_NMOUNT Maximum number of mounted volumes
FC_NFCB Maximum number of opened files per

system
FC_NCFILE Maximum number of opened files per task
FC_MSDOS MS-DOS volume mount flag

7.2.8.4 pREPC+ Configuration Table Parameters

The following parameters in sys_conf.h control the values of the
corresponding entries in the pREPC+ configuration table:

Parameter Explanation

LC_BUFSIZ I/O buffer size
LC_NUMFILES Maximum number of open files per task
LC_WAITOPT Wait option for memory allocation
LC_TIMEOPT Timeout option for memory allocation
LC_SSIZE Size of print buffer

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-13

7.2.8.5 pNA+ Configuration Table Parameters

The following parameters in sys_conf.h control the values of the
corresponding entries in the pNA+ configuration table:

Parameter Explanation

NC_NNI Size of pNA+ network interface table
NC_NROUTE Size of pNA+ routing table
NC_NARP Size of pNA+ ARP table
NC_DEFUID Default User ID of a task
NC_DEFGID Default Group ID of a task
NC_HOSTNAME Host name of the node
NC_NHENTRY Number of host table entries
NC_NSOCKETS Number of sockets in the system
NC_NDESCS Number of socket descriptors/task
NC_MBLKS Number of message blocks in the system
NC_BUFS_n Number of n length buffers

(0, 128-byte, 1K-byte, or 2K-byte)
NC_NMCSOCS Number of sockets that can be used for

multicast IP
NC_NMCMEMB Total number of distinct multicast IP

group memberships that can be added
to pNA+. A maximum of 20 distinct
group memberships can be added per
multicast socket. Duplicate group
membership addresses on a single
interface do not count.

NC_NNODE_ID Network Node ID or Router ID. This is
assigned to be the source address for
all unnumbered point-to-point links.

NC_BUFS_0 Number of 0-length buffers
NC_BUFS_128 Number of 128-byte buffers
NC_BUFS_1024 Number of 1K-byte buffers
NC_BUFS_2048 Number of 2K-byte buffers
SE_MAX_PNA_NC_BUFS

Maximum number of NC_BUFS types

Chapter 7. Configuration and Startup

7-14 pSOSystem Getting Started

7.2.8.6 pSE+ Configuration Table Parameters

The following parameters in sys_conf.h control the values of the
corresponding entries in the pSE+ configuration table:

Parameter Explanation

NBUFS_0 Number of 0-length buffers
NBUFS_32 Number of 32-byte buffers
NBUFS_64 Number of 64-byte buffers
NBUFS_128 Number of 128-byte buffers
NBUFS_256 Number of 256-byte buffers
NBUFS_512 Number of 512-byte buffers
NBUFS_1024 Number of 1K-byte buffers
NBUFS_2048 Number of 2K-byte buffers
NBUFS_4096 Number of 4K-byte buffers

SE_MAX_PSE_STRBUFS
Maximum number of stream buffer types

SE_MAX_PSE_MODULES
Maximum number of stream modules

SE_DATA_SIZE Size of pSE+ data area (at least 3K)
SE_TASK_PRIO Priority for pSE+ task
SE_STACK_SIZE Stack size for pSE+ task
SE_DEF_UID Default user ID
SE_DEF_GID Default group ID
SE_N_FDS Maximum number of system-wide stream

descriptors
SE_N_TASKFDS Maximum number of per-task stream

descriptors
SE_N_LINKS Maximum number of multiplexing links
SE_N_TIMEOUTS Maximum number of timeout requests
SE_N_BUFCALLS Maximum number of bufcall requests
SE_N_QUEUES Number of queues
SE_N_MBLKS Reserved for future use, must be 0

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-15

7.2.8.7 Loader Configuration Table Parameters

Parameter Explanation

LD_MAX_LOAD Maximum number of active loads
LD_IEEE_MODULE Link IEEE object-load-module
LD_SREC_MODULE Link S-record object-load-module

7.2.8.8 pMONT Configuration Table Parameters

Parameter Explanation

PM_CMODE Communication mode that pMONT will
operate in 1 = networking, 2 = serial

PM_DEV Major/Minor device number for
serial channel if in serial mode

PM_BAUD Baud rate for serial channel if in
serial mode

PM_TRACE_BUFF Address of trace buffer pSOSystem will
allocate an address if PM_TRACE_BUFF is
set to zero

PM_TRACE_SIZE Size of trace buffer
PM_TIMER YES confirms the existence of a second timer

that pMONT will use for fine-tuned data
collection

7.2.8.9 General Serial Block Configuration Parameters

Parameter Explanation

GS_BUFS_0 Number of 0 length buffers (used in
gs_esballoc function)

GS_BUFS_32 Number of 32-byte buffers

GS_BUFS_64 Number of 64-byte buffers
GS_BUFS_128 Number of 128-byte buffers
GS_BUFS_256 Number of 256-byte buffers
GS_BUFS_512 Number of 512-byte buffers
GS_BUFS_1024 Number of 1024-byte buffers
GS_BUFS_2048 Number of 2048-byte buffers
GS_BUFS_4096 Number of 4096-byte buffers

SE_MAX_GS_BUFS Maximum number of buffer sizes
GS_MBLKS Number of M-block headers

Chapter 7. Configuration and Startup

7-16 pSOSystem Getting Started

NOTE: For canonical processing, the serial driver needs buffers 64
bytes larger than the receive buffer size of the driver. For
example, if the receive buffer size is 64 bytes, then the driver
will need 128-byte buffers to process the incoming data. Be
sure to take this into consideration when configuring the
general serial block buffers.

7.3 Adding Drivers to the System
To add drivers to the pSOS+ I/O driver table, edit drv_conf.c in the
working directory. This file contains a function called SetUpDrivers().
SetUpDrivers() calls InstallDriver() to install each driver in the I/O
table.

To add a driver, you should add an InstallDriver() call to
SetUpDrivers(). InstallDriver() has the following syntax:

void InstallDriver(
unsigned short major_number,
void (*dev_init) (struct ioparms *),
void (*dev_open) (struct ioparms *),
void (*dev_close) (struct ioparms *),
void (*dev_read) (struct ioparms *),
void (*dev_write) (struct ioparms *),
void (*dev_ioctl) (struct ioparms *),
unsigned long rsvd1,
unsigned short rsvd2,
unsigned short flags)

As you can see InstallDriver takes the major number of the driver given
by major_number, uses it as an index into the I/O switch table and
places the remaining arguments into their correct place in the I/O switch
table.

The flags argument has special meaning to the pSOS+ kernel. Currently
this flag field is used to set an AutoInit bit that pSOS+ will check when
it is initializing. If the bit is set pSOS+ will call the initialization function,
if any, for the driver when pSOS+ is initializing. This means you will not
have to call the driver initialization function (through the use of dev_init)
in your application for any driver that has this bit set. Two define
statements should be used to set the AutoInit bit. They are found in

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-17

include/psos.h and their names are IO_AUTOINIT to set the AutoInit
bit and IO_NOAUTOINIT to turn the setting off.

NOTE: Any driver that you plan to use with this ‘AutoInit’ feature must
not make any system calls that need a task’s context because
the driver initialization function will be called before any task
has been started.

For example, to add a driver as major device 6 (which has only init and
read calls), you would add the following to SetUpDrivers() in sysinit.c:

InstallDriver(6, DriverInit, NULLF, NULLF, DriverRead,
NULLF, NULLF, 0, 0, IO_AUTOINIT);

where NULLF is a macro in sysinit.c defined as a null function pointer
and IO_AUTOINIT would set the flags so the driver would be initialized at
the startup of the pSOS+ kernel.

Network interfaces are added in a manner similar to that of pSOS+
drivers. drv_conf.c also contains a routine called SetUpNi(), which calls
InstallNI() to install each network interface in the pNA+ initial interface
table. The parameters to InstallNI() are documented in drv_conf.c.

7.4 Using the Boot ROMs
The pSOSystem software includes two types of Boot ROMs:

■ The pROBE+ Boot ROM is designed for systems with only a
serial communications channel. This ROM uses pROBE+ or a
remote debugger to download the system image of an
application and begin execution. The code that produces this
Boot ROM can be found in the sample application directory
(apps/proberom). For more information on this application,
see Chapter 8, ‘‘Application Examples.” For more specific
information on how to build the pROBE+ ROM for the
supported boards in pSOSystem, see Appendix A, ‘‘Board-
Specific Information.”

■ The TFTP Boot ROM is designed for systems that have an
Ethernet connection as well as a serial communications
channel. The ROM can also use pROBE+ or a remote debugger
to down load the system image of an application and begin
execution. In addition, the ROM can download the system

Chapter 7. Configuration and Startup

7-18 pSOSystem Getting Started

image by using the TFTP protocol or a remote debugger over
the network. The code that produces this Boot ROM can be
found in the sample applications directory (apps/tftp). See the
“Applications Examples” chapter for more information on this
application. For more specific information on how to build the
TFTP ROM for the supported boards in pSOSystem, see
Appendix A, ‘‘Board-Specific Information.”

Both Boot ROMs store the configuration, if possible, in nonvolatile RAM.
Once RAM is configured the way you want, it does not have to be
reconfigured at each boot.

The stored configuration can also be used by the downloaded code if the
downloaded code is compiled to do so. For more information on how to
compile your application to use the stored information, see the “Storage
and Dialog Parameters” section of this chapter.

7.4.1 pROBE+ Boot ROM

The output for the pROBE+ Boot ROM is shown in Figure 7-2.

Figure 7-2 pSOSystem Startup Message

This is the pSOSystem startup screen for the Boot ROM. It displays the
current Boot configuration.

Start-up mode can be one of two modes:

■ pROBE+ stand-alone mode

■ pROBE+ waiting for host debugger via serial connection

pSOSystem V2.2.0
Copyright (c) 1991 - 1995, Integrated Systems, Inc.
--
START-UP MODE:
 Boot into pROBE+ stand-alone mode
NETWORK INTERFACE PARAMETERS:
 LAN interface is disabled
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 After board is reset, start-up code will wait 60 seconds
--
To change any of this, press any key within 60 seconds

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-19

In stand-alone mode you will get a pROBE+ prompt when the system has
completed booting. In pROBE+ waiting for host debugger via serial
connection mode, the system waits for a connection via the system
console port.

MULTIPROCESSING PARAMETERS: The system can be a single
processor running the pSOS+ kernel or multiple processors running the
multiprocessing pSOS+m kernel.

HARDWARE PARAMETERS: Shows the current baud rate the console
port. The amount of time the system will wait at this screen for user
input after the board has been reset is also displayed.

You can change the boot configuration by entering an M and a carriage
return or continue by entering a C and a carriage return.

If you choose to modify the boot configuration, you will be prompted to
enter new selections. All selections have as a default value their current
setting. This means if you enter a return at any selection it maintains its
current setting.

If you choose to modify the boot configuration, the first prompt you will
see is shown in Figure 7-3.

Figure 7-3 Reconfiguring the ROMs

After you select between pROBE+ stand-alone mode and pROBE+
waiting for host debugger via serial connection, you are prompted for
multiprocessing parameters.

Do you want to configure a multiprocessing pSOS+m system?
[Y]

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

How should the board boot?
 1. pROBE+ stand-alone mode
 2. pROBE+ waiting for host debugger via serial connection
 3. pROBE+ waiting for host debugger via a network connection
 4. Run the TFTP Bootloader

Which one do you want? [1]

Chapter 7. Configuration and Startup

7-20 pSOSystem Getting Started

You can answer this question with a Y for yes or an N for No. If you
answer with an N, you will prompted for the HARDWARE PARAMETERS.
If you answer with a Y, you will receive the following prompts:

How many pSOS+m nodes will it contain? [2]

Enter the number of nodes that are in the multiprocessing system and
then a carriage return.

The next prompt is:

Which node should this CPU be? [1]

Enter the number you want the node you are using to be.

NOTE: Node number 1 will be considered the master node.

Next you are prompted for the address of the Shared Memory Kernel
Interface (SMKI) directory:

Bus address of the SMKI directory [1000580]

This needs to be an address that can be accessed by all nodes in the
system.

This is the end of the multiprocessing parameters section. Now you will
be prompted for hardware parameters:

Baud rate for serial channels [9600]

This prompt allows you to change the baud rate of the console port of the
system. The range of baud rates will depend on the system but most
systems support a baud rate between 300 and 38400 bits per second.

NOTE: If you change the baud rate, you will also have to change the
baud rate of the terminal or terminal emulation program you
are running when the Boot ROM code resets the system
configuration. This happens after you answer the last
question.

The last prompt is:

How long (in seconds) should CPU delay before starting up?
[60]

Enter the amount of time in seconds you want the system to wait for
input from the system console before it resumes and enters the Start-up
Mode.

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-21

Once you enter a return at this final prompt, the code will set the
configuration you have selected, and display the start-up screen again.
At that time you should review the screen and modify the configuration
parameters again as needed. If the configuration is correct, enter a c to
run the configured Startup Mode.

7.4.2 TFTP Boot ROM

TFTP Boot ROM is a superset of the pROBE+ Boot ROM. The output for
the TFTP Boot ROM is shown in Figure 7-4.

Figure 7-4 pROBE+ Startup Message

Figure 7-4 shows the PROBE+ startup screen for the Boot ROM. It
displays the current Boot configuration.

At the top of the pSOSystem startup screen, as shown in Figure 7-2 on
page 7-18, is the version of pSOSystem that was used to build the ROM
along with the Integrated Systems copyright.

Start-up mode can be one of four modes:

■ pROBE+ stand-alone mode

■ pROBE+ waiting for host debugger via serial connection

■ pROBE+ waiting for host debugger via a network connection

■ Running the TFTP bootloader

--
START-UP MODE:
 Boot into pROBE+ and wait for host debugger via a serial connection
NETWORK INTERFACE PARAMETERS:
 LAN interface is disabled
 Shared memory interface is disabled
MULTIPROCESSING PARAMETERS:
 This board is currently configured as a single processor system
HARDWARE PARAMETERS:
 Serial channels will use a baud rate of 9600
 This board's memory will reside at 0x1000000 on the VME bus
 Processor Type :: MC68040 operating at 25 Mhz
 RAM configuration :: Parity DRAM 4 Mb
 :: SRAM 128 Kb
 After board is reset, start-up code will wait 3 seconds
--
(M)odify any of this or (C)ontinue? [M]

Chapter 7. Configuration and Startup

7-22 pSOSystem Getting Started

The remaining prompts vary depending on the mode you have selected.

NETWORK INTERFACE PARAMETERS:

Displays the current state of the two possible network interfaces. If these
network interfaces were enabled, additional information about how that
interface was configured would be displayed.

MULTIPROCESSING PARAMETERS:

The system can be a single processor running the pSOS+ kernel or
multiple processors running the multiprocessing pSOS+m kernel.

HARDWARE PARAMETERS:

Shows the baud rate of the console port. If the system you are using has
a VME bus interface, the address of the board (as indicated for the rest
of the boards on the bus) is displayed.

The next three lines of information, processor type and RAM
configuration, are a product of a specific board level dialog for the board
you are working with and will vary from board to board.

The amount of time the system will wait at this screen for user input after
the board has been reset is also displayed.

NOTE: Once you configure the Boot ROM, the opening screen will
change and may display additional information.

You can change the boot configuration by entering an M or continue by
entering a C.

If you choose to modify the boot configuration. You are prompted to enter
new selections. All selections have as a default value their current
setting. Therefore, if you press [Return] at any selection, the Boot ROM
maintains the current setting.

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-23

If you choose to modify the boot configuration, the first prompt you see
is shown in Figure 7-5.

Figure 7-5 Reconfiguring the ROMs

From the choices shown in Figure 7-5, select a startup mode:

■ 1 for pROBE+ stand-alone mode

■ 2 for pROBE+ waiting for host debugger via serial connection

■ 3 for connecting to a remote debugger via a network
connection

■ 4 to boot by using a TFTP bootloader

In mode 1 you will get a pROBE+ prompt when the system has completed
booting. Entering a 1 at the configuration mode prompt enables you to
use a ROM-resident, stand-alone pROBE+ to download a pSOSystem
executable image and start that image. pROBE+ downloads the image by
executing the DL command and starts the image by executing the GO
command. Upon exit from configuration mode, the following pROBE+
sign-on banner appears:

pROBE+ V2.1.1 (68040)
COPYRIGHT 1990 - 1996, INTEGRATED SYSTEMS, INC.
ALL RIGHTS RESERVED
pROBE+>

In mode 2 the system will wait for a remote debugger connection via the
system console port. The serial connection you are using for
communication to pROBE+ now needs to be used by pROBE+ to
communicate with the remote debugger, so if you are using a terminal
emulator, such as the UNIX tip utility, exit the emulator at this time so
that the remote debugger can use the connection. For a complete
description of the pROBE+ debugger, see the pROBE+ User's Guide.

For each of the following questions, you can press <Return> to select the
value shown in braces, or you can enter a new value.

How should the board boot?
 1. pROBE+ stand-alone mode
 2. pROBE+ waiting for host debugger via serial connection
 3. pROBE+ waiting for host debugger via a network connection
 4. Run the TFTP Bootloader

Which one do you want? [1]

Chapter 7. Configuration and Startup

7-24 pSOSystem Getting Started

If you have a terminal connected to the target’s console port, then this
connection must be moved from the terminal to a port that the remote
debugger can connect to on the host system. (Remember to configure the
host’s port the same way the terminal was set; that is, with baud rate and
stop bits).

In mode 3, the system waits for a remote debugger connection via the
networking port. In most cases, when the target CPU is connected to a
host system by Ethernet, the target CPU is added to an existing network.
As such, the target CPU must have an IP address that is compatible with
that network. Consult your system administrator to obtain a usable IP
address. The system administrator may need to modify one or more host
system files to make the new IP address known to the host.

The Boot ROMs can also obtain their IP addresses for Ethernet by RARP
(Reverse Address Resolution Protocol), in which case a RARP server on
the Ethernet assigns the IP address to the ROMs when they initialize. To
force the ROMs to use RARP to get their IP address, use 0.0.0.0 for the
IP address.

In mode 4, the system connects to a TFTP site and download using a
TFTP network connection. This provides a mechanism whereby the Boot
ROMs, following a power-on/reset, can automatically download and
initiate execution of a pSOSystem executable image without user
intervention. The bootloader uses the TFTP protocols and can be used
with any host system that supports TFTP.

The TFTP bootloader in the ROMs has been designed for ease of use. In
configuration mode, the user specifies the name of the S-record file that
contains the executable image and the IP address of the host system on
which it resides. When the ROMs exit configuration mode, the bootloader
begins operating and loads the image into memory. When the image has
been loaded, the bootloader looks at the first two longwords of the loaded
image to obtain the initial stack pointer and program counter. It uses this
information to transfer control to the newly-loaded code. No special steps
are necessary to make the pSOSystem executable image fit this model
because a reset vector is always placed in the first two longwords.

The startup mode determines what questions you will see in the
remaining part of the dialog. All modes present you with basic
configuration questions, so you can set your configuration in nonvolatile
RAM. Some modes have additional questions such as the filename of the
file to download when mode 4, TFTP bootloader, has been selected. The
following explanations go through all of the questions you might be

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-25

asked. Questions that are specific to a given mode are pointed out
(questions are organized by parameter groups).

NETWORK INTERFACE PARAMETERS:

Do you want an Ethernet interface? [N]

If your application will be using an Ethernet interface or you have
selected Startup Mode 3 or 4 and your network connection is a LAN then
you should answer yes to this question. If you do answer yes to this
question, then you will also see the following question:

This board's LAN IP address(0.0.0.0 = RARP)?
[000.000.000.000]

Because you have an Ethernet interface you must have an IP address.
You may enter the IP address of the target system here or leave it all
zeroes. If you leave it all zeros, then the boot ROM software uses Reverse
Address Resolution Protocol (RARP) to obtain the target’s IP address if a
RARP server on the target’s network has been set up to do so.

Again if you have an Ethernet interface you will be asked the following
question:

Subnet mask for LAN (0 for none)? [000.000.000.000]

A subnet mask is a 32-bit quantity indicating which bits in an IP address
that identify the physical network. Subnetting allows the use of some of
the host-identifier bits to be used to identify local physical networks. For
example, 255.255.255.000 allows 24 of the 32 bits to be used for a
network identifier.

Do you want a shared memory network interface? [N]

Some systems have a common bus, a VME bus is one example, that may
be used to access another systems memory or make it possible to access
memory external to all boards. pSOSystem can use this shared memory
as a vehicle for networking. It is called a shared memory interface. It
allows two or more systems to use pNA+ to communicate between them
through shared memory instead of an Ethernet. It is very useful when
there is only one Ethernet connection available for a group of boards.
One of the boards can be use the connection to the Ethernet and act as
a router to route packets to the shared memory network. In this way
boards that do not have an Ethernet connection can still be downloaded
and debugged via this gateway. A yes answer to this question will cause

Chapter 7. Configuration and Startup

7-26 pSOSystem Getting Started

additional question about the configuration of the shared memory
network starting with the following question:

IP address for shared memory? [000.000.000.000]

The shared memory network address is just like the LAN IP address
however it must be different then the LAN IP address. Enter the shared
memory IP address here.

Subnet mask for shared memory interface (0 for none)? [0]

This is the same idea as the subnet mask for the LAN explained
previously.

Which node number in the shared memory system is this? [1]

In response to this question enter the node number of this target. No two
targets can have the same node number. Node numbers for targets
should be consecutive with no gaps allowed. This node number will be
used to find information for the target in the SMNI (Shared Memory
Interface) directory. Node one is a special node. It will be the master node
used to keep track of the remaining nodes. Node one is usually the
gateway node to other networks if there are any.

Bus address of the SMNI directory? [1000400]

This is a area in shared memory that is used as a table to store
information about the SMNI network. It must be accessible to all nodes
in the SMNI network.

Should there be a default gateway for packet routing?
[N] y

If this node is not the gateway for packet routing and the node needs to
access the gateway you must enter the IP address on the shared memory
network of the gateway node (the next question) Answer Y if this is true.

NOTE: If this node is to be accessed through a gateway a routing
command needs to be issued on the system that wants to
access it.

What is its IP address? [0.0.0.0] 000.00.000.000

Enter the IP address of the gateway of your shared memory network if
you have one.

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-27

MULTIPROCESSING PARAMETERS:

These next questions deal with multiprocessing. Multiprocessing refers
to pSOS+m and the use of the kernel interface pSOS+m uses. The ROMs
themselves do not contain pSOS+m. However you may configure a
pSOS+m system here so your downloaded system can get its
configuration from nonvolatile memory.

Do you want to configure a multiprocessing pSOS+m system?
[N]

A yes answer to this question will allow you to continue and configure a
pSOS+m system.

How many pSOS+m nodes will it contain? [0]

pSOS+m needs to know how many nodes are in the system so it can set
up its internal tables.

Which node should this CPU be? [1]

pSOS+m need to know what node number you are assigning this node.
Numbers should be consecutive starting from 1 with no gaps.

Bus address of the SMKI directory [1000580]

This is a area in shared memory that is used as a table to store
information about the SMKI for pSOS+m. It must be accessible to all
nodes that are part of SMKI. If there is also a SMNI network, this
directory must be separate and distinct from it.

HARDWARE PARAMETERS:

Baud rate for serial channels [9600]

This will set up a default baud rate for all serial channels including the
console that the Boot ROMs are using to present this dialog. If a change
is made to the current baud rate, it will take effect after all questions are
answered. Your terminal or terminal emulator will need to be set at the
new rate once all the questions are answered. The ROMs are set to 9600
baud for their first use.

Bus address of this board's dual-ported memory [1000000]

This is the address that will allow other systems on the same bus to
access this boards dual-ported memory. The shared memory of any of
the boards cannot start at less then the largest memory size of any

Chapter 7. Configuration and Startup

7-28 pSOSystem Getting Started

board. Care must be taken so no board overlaps the memory of another
board. For example:

You had three boards on the shared memory bus.

Board #1 has 32 megabytes (0x02 00 00 00)

Board #2 has 16 megabytes (0x01 00 00 00)

Board #3 has 64 megabytes (0x04 00 00 00)

The shared memory of any of the boards cannot start at less than the
largest memory size of any board. In this case, board 3 has the largest
memory at 0x04 00 00 00, so no VME address can exist below 0x04 00
00 00.

To map this out, if the first board were the master connected to the
Ethernet, the map should look like this:

All boards SMNI directory 0x04 00 04 00 (memory address on master
node)

All boards SMKI directory 0x04 00 05 80 (memory address on master
node)

Board #1 shared memory starts at 0x04 00 00 00 ending 0x05 FF FF FF

Board #2 shared memory starts at 0x06 00 00 00 ending 0x06 FF FF FF

Board #3 shared memory starts at 0x07 00 00 00 ending 0x10 FF FF FF

TFTP BOOTLOADER PARAMETERS:

Do you want to use the RARP server as the TFTP Boot server?
[N]

If you have chosen TFTP mode and you entered 0 for an IP address, the
target will get its IP address using RARP. By answering this question with
a yes, you can also use the same server that provided you with the IP
address for the TFTP of your download file.

IP address of the TFTP Boot server to boot from? [0.0.0.0]

This question will be asked if you are not using the RARP server as the
TFTP server for your download file. Here you need to enter the IP address
of the TFTP server to use for the download file.

What is the name of the file to be loaded and started?

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-29

[ram.hex]

Enter the name of the file that contains the download code
on the TFTP server.

How long (in seconds) should CPU delay before starting up?
[60]

The CPU will wait before it starts the boot process so you can alter the
configuration if necessary. You can also set the amount of time it waits
for you to press the return key.

Chapter 7. Configuration and Startup

7-30 pSOSystem Getting Started

7.5 System Startup Sequence
Figure 7-6 illustrates the system vectors for 68K processors.

Figure 7-6 System Vectors

Reset PC

0x44

Trap 11

Trap 12

Trap 13

Exception N

Exception M

Exception Y

User’s
Reset Init

pSOS+

Startup

SVC

I/O

I_Return

User’s
Interrupt Service

Routines

User’s
Exception
Handlers

Configuration

Table

Node

Module

(Start_of_pSOS+

+ 0x20)

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-31

The component modules should be aligned on long word boundaries, but
they are otherwise position-independent. Each assigned interrupt vector
should be loaded with the address of the ISR that services that hardware
vector. If multiple devices share a common interrupt vector, the ISR must
resolve the identity of the interrupting device. Integrated Systems
recommends that an error exception handler process all remaining
unused and error exception vectors. If the pROBE+ monitor is present,
these exception vectors can be set to point to the corresponding
exception entry points to the pROBE+ debugger.

The following checklist shows the required items for a typical
pSOSystem-based system:

■ An optional user-supplied boot module to perform power-on
or reset initialization and self-test

■ pSOS+ and any other required components (for example,
pROBE+ and pHILE+)

■ The Node Anchor and Node configuration table

■ Configuration tables for pSOS+ and other installed modules

■ The application’s task, ISR, and device driver code and
initialized data, if any

■ Exception vectors with the correct settings

In a ROM-based system, most of these items reside in ROM. For a RAM-
based system or a system that is under test or integration, some of the
items can be loaded into RAM either by the user’s boot module or the
pROBE+ System Debug/Analyzer. Furthermore, in a memory-mapped
system especially, it is possible to load the application tasks or drivers
dynamically at run time. Figure 7-7 on page 7-32 shows the possible
system startup sequences.

Chapter 7. Configuration and Startup

7-32 pSOSystem Getting Started

Figure 7-7 System Startup Sequences

Typically, power-on or reset passes control to the user-supplied Boot
Code, which performs any necessary initialization and self-test. It should
also set up the required configuration environment for the software
components in the system. The configuration environment consists of
the Node Anchor, the Node configuration table, and the other component
configuration tables. You can completely set up this environment now or
else allow the startup sequence to proceed incrementally. During debug,
for example, you might set up the configuration environment just
enough to let pROBE+ take over and execute. If pROBE+ is present, the
Boot Code should pass control to it. pROBE+ can then be used to
download other items on the checklist and start execution of the pSOS+
application. You can start pSOS+ in one of the following ways:

■ By passing control to the pSOS+ Startup entry, as follows:

BX START_of_PSOS + 0x20;

Note that this assumes the CPU is in the supervisor state.

■ From pROBE+, enter the gs command.

■ Specify the silent startup mode in the pROBE+ configuration
table, so that pROBE+ initializes itself then passes control to
pSOS+ Startup without stopping.

Upon entry, pSOS+ Startup first uses the Node Anchor to locate the
pSOS+ configuration table. pSOS+ then takes a segment of memory from
the beginning of memory Region 0 for its data area. Within this area it
uses the bottom part for its key data structures. The next memory
segment goes to the system stack. Above the system stack, pSOS+ builds
the required number of TCBs, QCBs, SCBs, MGBs, TMCBs, and the
Object Tables.

Power
On

pROBE+

pSOS

[pHILE+
pREPC+

pNA+...]

Boot
Code + Application

Chapter 7. Configuration and Startup

pSOSystem Getting Started 7-33

Next, pSOS+ checks the Node configuration table. If other runtime
components are present, pSOS+ locates and automatically calls the
Startups of those components to allow them to set up and initialize.

The last step in pSOS+ Startup is to create and activate the IDLE system
daemon task and the user ROOT task. Startup then dispatches ROOT,
which takes over and executes.

NOTE: pSOS+ treats any error it encounters during startup as a fatal
error. For information on handling of fatal errors, see
pSOSystem System Concepts.

7.6 Component Customizations
If you are planning to change the pSOSystem startup code or write your
own startup code, you may need to change the location of the Node
Anchor.

The Node Anchor is used by each component to locate its configuration
table. The location of the Node Anchor is determined in the linker
command files supplied with each board-support package (bsps/*/*.lnk)
by defining a value for symbol _anchor. You can change this if necessary,
but exercise caution when doing so because the linker reserves no space
for the Node Anchor.

Chapter 7. Configuration and Startup

7-34 pSOSystem Getting Started

pSOSystem Getting Started 8-1

8 Application Examples

The applications directory has several example applications in the
directory $PSS_ROOT/apps. These applications demonstrate the use of
pSOSystem and its components. Each application is located in its own
directory. Each application directory contains a README file that
explains the application, how to build it, what components are needed to
use the application, and what output the application is expected to
produce. All of the applications need pSOSystem installed. Some require
additional components.

Each application contains a makefile that builds the application and
causes it to be linked with the correct libraries. Integrated Systems
recommends that you read and run the tutorials in this manual, before
you use these examples.

Table 8-1 summarizes the application examples and lists these tutorials
in a recommended order from simple to complex.

Table 8-1 Application Examples

Directory Description Page

hello Simple one task application that displays the message “Hello,
world.” This application is used in some of the tutorials. hello
is a good starting point to get an application up and running
on your target.

8-3

xraydemo This application is used for the XRAY tutorial. 8-4

Chapter 8. Application Examples

8-2 pSOSystem Getting Started

The following sections contain descriptions of the applications. The
applications are identified by directory name.

All sample applications include the sys_conf.h configuration file
supplied in the applications directory. In most cases the application will
run with the default values set in the sys_conf.h file. In some cases you
may have to adjust the configuration to suit the board-support package
you are using. Check Appendix A, ‘‘Board-Specific Information,” for
more information on changes you may need to make for a specific board-
support package.

8.1 fpsp
The fpsp sample demonstrates the use of the 68040/060 floating-point
library. This sample application demonstrates the use of ANSI C math
functions and floating-point assembly instructions. The functions that
actually generate the floating-point exceptions are located in the header
file m68881.h.

pnabench This application is an example of a target system being used
as a client to send data to a host system using TCP/IP over an
Ethernet connection. This application sends data, then reports
on the rate of the transfer.

8-3

philepna This application contains several tasks that exercise the
pHILE+ and pNA+ components.

8-7

proberom This application can be used to build ROMs for non-Ethernet
systems. It is also an example of how to use a startup dialog.

8-4

tftp This application can be used to build boot ROMs for systems
that contain an Ethernet connection. It is also an example of
how to use a startup dialog.

8-5

nfs This application shows how to use pSOSystem’s NFS client
services.

8-9

fpsp This application is an example of the use of the floating-point
library on 68040 and 68060 processors.

8-2

Table 8-1 Application Examples (Continued)

Directory Description Page

Chapter 8. Application Examples

pSOSystem Getting Started 8-3

The output for this application is as follows:

 TASK START-UP:sin(0.523599) = 0.500000
 TASK 0 ::cos(1.047198)=0.500000
 TASK 0 ::tan(0.785398)=1.00000
 TASK 1 ::area_circle(2.123457) = 14.165657
 TASK 2 ::(sin(2.651235)**2+(cos(2.651235))**2)=1.00000

8.2 hello
This hello sample is a simple program that prints a message. The
application consists of a single task (ROOT) which prints out a few short
messages to either the target’s serial port (system console) or the XRAY
Debugger for pSOSystem standard output screen and then suspends
itself.

The output for this application is:

 Hello, world

The hello program has a function named db_output. That function can
be used in any application to redirect console output to the XRAY
standard output screen. The db_output function directs output through
pROBE+ to the XRAY standard output screen.

For example, to send the string “Hello, world” to the XRAY output screen
enter the following command:

db_output(“Hello, world\n”, 0);

The syntax for db_output is:

void db_output(const char *string, ULONG port);

where string is the character string to be printed out and port is always
0. The db_output function is contained in the bsp.lib source code (in the
xp_out.s file in the devices/68k directory).

8.3 pnabench
The pnabench sample runs a benchmark program that measures TCP
throughput. To run this application, you must have pNA+ and pREPC+
installed in addition to pSOS+. This application reports the amount of

Chapter 8. Application Examples

8-4 pSOSystem Getting Started

time it takes to transfer data between the target system and the host of
your choice over a network.

The README file tells you how to build the target code.

To use this application you must first compile the server in the host
directory and start it on the host. Then start the application on the
target.

The output on the target looks like this (actual output will vary from
system to system):

 Sending data to the server.

 Time taken to transfer 0x989680 bytes of data is 0x13 seconds.

 Server's Report:
 Elapsed time = 19.519224 seconds
 Number of transfers = 3502
 Amount transferred = 10000000 bytes
 Rate = 512315.444226 bytes per second

 The output on the server (host) is as follows:

 Server at port 5000 and address 0
 Connected to target: integrated1 on port: 1024
 Receiving data from target: integrated1

 Finished receiving.
 Completed 3502 requests in 19.519224 seconds.

8.4 xraydemo
This sample is used with the XRAY tutorial described in Chapter 4,
‘‘XRAY Debugger for pSOSystem Tutorial: Multiple Windows Version.”

8.5 proberom
The proberom application is used to build pSOSystem Boot ROMs for
non-networking systems. This is the only sample application that does
not require pSOS+. The only component in this application is pROBE+.
proberom is used to make Boot ROMs for pSOSystem supported boards

Chapter 8. Application Examples

pSOSystem Getting Started 8-5

that do not have networking capability. When used to boot a system, this
code initializes the hardware and executes the debugger, pROBE+, or
allows the remote connection via the console port to a remote debugger.

The prompts that are presented by the Boot ROM code come from the
dialog.c file located in the configs/std directory. The proberom
application is a good example of how to use the functions in dialog.c.
These functions can be used for a RAM boot also. The dialog code is
included in the executable image by setting the define directive
SC_STARTUP_DIALOG to YES in the sys_conf.h file. This action allows
the dialog to run before any application runs or pSOS+ has been started.
The functions in dialog.c are called during the system initialization
process by the SysInit function located in the sysinit.c file in the
configs/std directory.

The configuration is stored, if possible, in nonvolatile RAM so once
configured the way you want, it does not have to be done over again at
each boot.

The configuration can also be used by the downloaded code if the
downloaded code is compiled to do so. For more details, see Chapter 7,
‘‘Configuration and Startup.”

The proberom application uses a different linker file then a RAM based
application would. The linker file is called rom.lnk and is located in the
board- support package directory of the board you are using. This linker
file is designed to load the code at a ROM address suitable for the board’s
hardware.

The output for this application is described in Chapter 7.

8.6 tftp
The tftp application is a superset of the proberom application. tftp is
used to build the pSOSystem Boot ROMs for networking systems. It
includes a TFTP bootloader program for loading and starting a
pSOSystem executable image and allows for a remote Debugger
connection over the network. This application is an example of how to
use the tftp driver. It also shows how to put together a startup dialog.

Some of the prompts that are presented by the Boot ROM code come from
the dialog.c file located in the configs/std directory as they do in the
proberom application. The dialog code is included in the executable

Chapter 8. Application Examples

8-6 pSOSystem Getting Started

image by setting the #define directive SC_STARTUP_DIALOG to YES in
the sys_conf.h file.

The tftp application needs additional dialog and that comes from the file
apdialog.c located in the tftp directory. This additional dialog is needed
to support the use of a network in the boot process. The tftp application
is a good example of how to incorporate a custom dialog that can be used
to configure your application before the system boots up and the
application is started. The functions in apdialog.c follow a specific
interface. The dialog code is included in the executable image by setting
the #define directive SC_APP_PARMS to the amount of memory in
characters that is needed to store the application’s parameters. This is
done in the sys_conf.h file. This interface is detailed in the “Drivers and
Interfaces” chapter of the pSOSystem Programmer’s Reference.

Like the proberom application, the configuration is stored, if possible, in
nonvolatile RAM once configured the way you want, it does not have to
be done over again at each boot.

Also, like the proberom application, the configuration can be used by the
downloaded code if the downloaded code is compiled to do so. See the
system “Configuration and Startup” chapter for more details.

The output for the tftp application is detailed in the “Configuration and
Startup” chapter.

The tftp application can be used with or without any dialog. It can be
used to remotely boot a system using tftp. This can be done by changing
the configuration in the sys_conf.h file. You would need to change the
following define directives in sys_conf.h:

■ SC_SD_PARAMETERS to SYS_CONF

■ SE_DEBUG_MODE to DBG_AP

■ SD_LAN1 to YES

■ SD_LAN1_IP to the target’s IP address or leave it at 0 if you
want to use RARP to get the IP address.

■ Comment out the define directive for SC_APP_PARMS and
SC_APP_NAME

■ SA_BOOT_FILE should be set to the name of the boot file on
the host system.

Chapter 8. Application Examples

pSOSystem Getting Started 8-7

■ SA_HOST_IP should be set to the IP address of the host
system or 0 if you are using the RARP server and want the
RARP server to be the boot server.

You can then build a Boot ROM with this configuration and install it into
your Target System. Information on how to build a Boot ROM is
contained in Appendix A, ‘‘Board-Specific Information.”

8.7 philepna
The philepna application demonstrates the use of pSOS+, pHILE+,
pNA+, and pREPC+. The application source code contains sections that
are conditionally compiled depending on the presence or absence of
particular components in the operating system. As shipped, it assumes
the presence of pSOS+, pROBE+, pREPC+, pNA+, and pHILE+. If any of
these components are not present in your system, you must edit
sys_conf.h and change the appropriate definition lines to NO. Note also
that pSOS+ (or pSOS+m) and pREPC+ are REQUIRED for this
application.

Execution starts with ROOT, as usual. It initializes all of the I/O devices
in the OS (console, real-time clock, RAM disk, and, if present, SCSI
disks). Then it prompts you for the date and time and sets the pSOS+
clock accordingly. If pHILE+ is being used, ROOT creates and starts task
FILE. If pNA+ is being used, ROOT creates and starts tasks CLNT and
SRVR. Finally, ROOT prints a message stating that it has completed, and
it suspends itself.

If task FILE was created, it starts running now. It initializes the *RAM
disk volume and enters an infinite loop. In the loop, it mounts the RAM
disk volume or SCSI disk volume if present, creates a directory and
opens a file, and writes to and reads from the file. Then it deletes the file
and the directory and unmounts the volume. Finally, it sleeps for a while,
prints a message on the console, and repeats the loop.

Tasks CLNT and SRVR also run now in infinite loops, if they were
created. They illustrate how two tasks can communicate via a TCP
connection. SRVR is the higher priority of the two. It creates a socket and
waits for a connection on it. Then CLNT runs because SRVR has blocked.
It creates a socket and establishes a connection with the socket that
CLNT created. Then CLNT repeatedly sends data through the TCP
connection to SRVR, and SRVR reads it, operates on it, and sends it back

Chapter 8. Application Examples

8-8 pSOSystem Getting Started

to SRVR. The CLNT task prints a message each time it runs through its
loop.

If neither pNA+ nor pHILE+ is present, then FILE, CLNT, and SRVR do
not get created, so after ROOT suspends itself only the IDLE task is left.

The output to the target’s console will look something like the following
depending on what components you are using (this run includes pHILE+
and pNA+):

 Standard output device initialized...

 Real-time clock initialized...

 RAM disk initialized - size is 0xC8 blocks...

 SCSI driver initialized...

 * Hard disk at SCSI ID 0x5. Vendor: TEAC Model: FC-1 HF 011

 * Hard disk at SCSI ID 0x6. Vendor: QUANTUM Model: LP52S
 950509405

 Please enter today's date (mm/dd/yyyy): 11/05/1995

 Please enter the current time (hh:mm:ss): 15:00:00

 Date & time successfully set

 Initializing the pHILE+ sample application...

 Task 'FILE' created...

 pNA initialized...

 Task 'SRVR' started...

 Task 'CLNT' started...

 'ROOT' task's initialization completed

 pNA+ demo loop completed iteration 0x1

 Disk volume 5.5 initialized...

 pNA+ demo loop completed iteration 0x2

 pNA+ demo loop completed iteration 0x3

 pNA+ demo loop completed iteration 0x4

 pNA+ demo loop completed iteration 0x5

Chapter 8. Application Examples

pSOSystem Getting Started 8-9

 pNA+ demo loop completed iteration 0x6

 pNA+ demo loop completed iteration 0x7

 pHILE+ demo loop completed iteration 0x1

Output will continue until system is halted.

8.8 nfs
The nfs application demonstrates the use of pSOSystem NFS client
services.

This application is an example of how to use the NFS client services of
pSOSystem so that it can mount the file system of a remote system, such
as a workstation.

In order to run this application, you must have the following pSOSystem
components in your system:

■ pSOS+ (or pSOS+m) real-time kernel

■ pREPC+ standard C library

■ pHILE+ file system manager

■ pNA+ networking manager

■ pRPC+ Remote Procedure Call library

In root.c, NFS_SERVER_ADDR must be set to the IP address of your NFS
server. This parameter is passed by nfsmount_vol() and is used by pNA+
to locate the server. Example:

 #define NFS_SERVER_ADDR 0xC06736BE
/* NFS server IP address */

 (Replace 0xC06736BE with the correct IP address for the host system.)

Next, NFS_FS must be set to the name of a file system that has been
exported by your NFS server. Example:

 #define NFS_FS “/usr” /* Remote File System */

Lastly, PATH_NAME must be set to the pathname of a directory on your
NFS server for which the values of UID and GID defined in sys_conf.h
have access permission. This pathname of course must be under the

Chapter 8. Application Examples

8-10 pSOSystem Getting Started

NFS_FS name (NOTE: This pathname must not be a link to another
directory in another file system.)

 #define PATH_NAME “/xxx*/

 Note the slash symbol (/) before and after the pathname.

To create a directory to use, change directories (cd) to the file system to
be mounted (NFS_FS) and enter:

 mkdir xxx

 chmod a+rwx xxx

Then you should have a directory that can be accessed by any user so
UID and GID should not matter.

The definitions for DIR_NAME and FILE_NAME can remain unchanged
as long as they don’t conflict with filenames in your chosen directory.

To ensure that the file system you want to remotely mount has been
exported, check the contents of the file /etc/xtab on your server. If it
does not contain a line with the pathname of the file system you want to
mount on it, that file system has not been exported. To export it, enter
the directory pathname on a line in the file /etc/exports on your server
(Create /etc/exports if it does not already exist.) Make the file system
available for remote mounting by using the command:

 exportfs -a

 Example:

 Add the line

 /usr

 to the /etc/exports file. Then type command:

 exportfs -a

 Now, if you enter the following command:

cat /etc/xtab

you should see this output:

 cat /etc/xtab

 /usr

Chapter 8. Application Examples

pSOSystem Getting Started 8-11

Unless you are sure that it is already running, you can start the RPC
mount demon with the by entering the rpc.mount command. The demon
that processes NFS client requests is started with the command nfsd.

The root task initializes serial I/O, the pSOS+ clock, pNA+, and creates
the nfs_sample task. The nfs_sample task runs though various pHILE+
calls to mount a remote file system, create a file, and create a directory.
Network File System support through pHILE+, pRPC+, and pNA+ is
exercised by opening and closing the file, reading from and writing to the
file, moving the file, changing directories and performing lseek
operations.

Typical output on the target console is as follows:

 Mounting volume “15.5”

 Creating file “15.5/xxx/tmp_file”

 Opening “tmp_file”

 Writing 0x80 bytes to “tmp_file”

 lseek to offset 0x0 from beginning of file

 Reading from “tmp_file”

 Closing “tmp_file”

 Making Directory “15.5/xxx/tmp_dir”

 Changing to “tmp_dir”

 Moving file “tmp_file” to directory “tmp_dir”

 Opening file “tmp_file”

 Lseek to offset 0x0 from end-of-file

 Old Position in File : 0x0

 Writing 0x80 bytes to “tmp_file”

 Lseek to offset 0 from beginning of file

 Reading from “tmp_file”

 Closing “tmp_file”

 Removing “tmp_file”

 Removing directory “tmp_dir”

Chapter 8. Application Examples

8-12 pSOSystem Getting Started

 Amounting volume “15.5”

 TEST ENDED

pSOSystem Getting Started 9-1

9 Understanding and
Developing Board-Support
Packages

This chapter explains what a pSOSystem board-support package (BSP)
is and gives a detailed explanation of all functions needed and used by a
BSP. This chapter also describes the process of developing a custom
BSP.

The software support for a target system is called a board-support
package or BSP. The BSP is a collection of functions that are hardware
specific. These functions include:

■ Target system hardware initialization during a system boot.

■ Interface to the devices present on the Target System. These
devices include timer chips, Ethernet controller chips, and
serial and SCSI controller chips. The functions that control
these chips are called device drivers.

pSOSystem contains several BSPs for off-the-shelf target boards. These
are detailed in Appendix A, ‘‘Board-Specific Information.”

■ The bsps/template directory contains skeletons of all the
functions that are needed in a BSP. You may find this useful if
you are not using one of the pSOSystem supported BSPs and
you have to create your own BSP. These skeleton functions are

Chapter 9. Understanding and Developing Board-Support Packages

9-2 pSOSystem Getting Started

commented to guide you in coding each function so it will
interface with the rest of the elements of pSOSystem.

■ To make the job of creating a custom BSP easier, pSOSystem
has common functions that you can call from your custom
BSP code. The use of these functions will depend on what the
custom BSP needs to support. These common functions are
described later in this chapter.

■ pSOSystem also contains several low-level device drivers that
are written in a way that makes them independent of the
target system they are being used with. Through the use of
macro define directives and small changes to the BSP’s
Makefile, these drivers can be used in a custom BSP. These
drivers are also described later in this chapter.

9.1 template Directory
The bsps/template directory contains files that need additional coding
to create a board-support package. The files in the bsps/template
directory and the bsps/template/src directory contain skeletons of the
functions that are used to initialize and drive the board level functions of
pSOSystem. The next section, ‘‘Template File List,” gives you a list of files
that are in the template and a short description. The ‘‘Detailed Function
Description” section provides additional details about the files in the
template directory. All of the BSPs in pSOSystem follow this template.
By knowing how the template is structured, you will also know how the
supported BSPs are structured.

9.1.1 Template File List

Below is a list of files in the bsps/template directory.

File Description

app.lnk Linker file for application only (no OS).

bsp.h Contains board-specific define statements.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-3

In the bsp/template directory, the directory for source files is called src.
Below is a table of files in the src directory.

bsp.mk Make include file used to make bsp.libs and appli-
cations.

os.lnk Linker file for OS only (no application).

ram.lnk Linker file that links OS and application together.

ramrc.lnk Linker file for application that uses OS in ROM.

rom.lnk Linker file used to link ROM based code.

File Function Description

board.c InitBoard Initializes the board.

ClrAbortInt Clears interrupt caused by front panel abort switch.

RamSize Gets the size of RAM on the board.

SysInitFail Reports a system initialization failure.

board.h Hardware-specific defines for portable drivers.

bddialog.c BspGetdefaults Gets a copy of the structure containing the default
hardware dialog parameters specific to the BSP.

BspModify Conducts a hardware-specific dialog to modify a
board’s parameters.

BspPrint Prints out the current values of the hardware-spe-
cific dialog parameters.

BspUse Takes the BSP parameters that have been decided
on and use them to set the BSP.

bspcfg.c BspSetup BSP specific setup operations.

init.s Hdwinit Assembly code initialization of hardware.

makefile Makefile for the board-support library.

File Description

Chapter 9. Understanding and Developing Board-Support Packages

9-4 pSOSystem Getting Started

9.1.2 Detailed Function Description

This section goes into more detail about the functions and files that are
in the template directory.

9.1.2.1 app.lnk

The app.lnk linker command file for linking a pSOSystem application
only. app.lnk creates a separate downloadable file which does not
contain an OS. See the README file in the bsps/template directory for
more information about the options included in this file.

smem.c SetVmeAddress Establishes the board’s VMEbus address.

SmemBus2Local Converts a VME address to a local address.

SmemLocal2Bus Converts a local address to a VME address.

SmemIntInit Initializes this node for interprocessor interrupts
and writes interrupt method data to the shared
memory directory.

SmemIntNode Performs a software interrupt on a CPU node.

SmemIntClear Called as part of the shared memory ISR to clear
shared memory interrupt.

timer.c RtcInit Starts the real-time clock for use as the pSOS+ tick
clock.

RtcIsr Handles a clock tick interrupt.

Delay100ms Spins for 100 milliseconds.

tmFreq Returns frequency of second timer used in
pMONT.

tmReset Resets second timer used in pMONT.

tmRead Reads counter value of second timer used by
pMONT.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-5

9.1.2.2 bsp.h

This file contains two sets of definitions:

■ The characteristics and capabilities of the board and its BSP,
such as processor type peripheral devices available.

■ The vector numbers for the various interrupts and exceptions
which can occur on the board.

The following are the define statements in the bsp.h file.

■ BSP_VERSION specifies revision level of pSOSystem which
this BSP was written to support. If this number does not
match the pSOSystem version defined in include/version.h,
you get a warning at compile time that says:

 BSPVERSION and pSOSystem VERSION do not match.

Note: This check is done in the configs/std/sysinit.c file.

■ BSP_CPUFAMILY is the CPU processor family for this board.
For example, 68000 for the Motorola 68K processor family.
This define is used in the file include/bspfuncs.h for various
CPU type specific definitions.

■ BSP_CPU defines the specific processor within the board’s
family such as 68040 or 68060. This define statement is used
in include/bspfuncs.h and mmulib.h to distinguish the
characteristics of processors within a CPU family.

■ BSP_FPU defines the existence of a floating-point unit. This is
used in configs/std/sysinit.c to set the FPU bit of the
cputype element in the node configuration table. Components
will use this to see if they should include floating-point
instructions in their execution.

■ BSP_MMU defines the existence of a memory management
unit (MMU). This define statement is used in configs/std/
sysinit.c to set the MMU bit of the ‘cputype’ element in the
node configuration table.

■ BSP_RAM_BASE defines the starting address of RAM as seen
by CPU. This is used in configs/std/sysinit.c, configs/std/
pSOScfg.c, and configs/std/pnacfg.c to calculate the setting
of pSOS+ region-zero and the check for memory overflow

Chapter 9. Understanding and Developing Board-Support Packages

9-6 pSOSystem Getting Started

conditions at run time when allocating memory during system
installation.

■ BSP_VME indicates whether the board has a VME bus or not.
This can be set to YES or NO. This define is used in configs/
std/dialog.c to determine whether VME questions should be
asked. It is also used in configs/std/sysinit.c to see if the
VME address should be set.

■ BSP_LITTLE_ENDIAN indicates whether the board is in little
endian or big endian layout. This define is used by several
device drivers to make them portable across different
platforms. It can be set to YES or NO. (For 68K boards this
should be set to NO.)

■ BSP_PARMS is the size in bytes of board-specific parameters
which will be stored in nonvolatile RAM and modified with the
optional startup dialog. This should be set to 0 if there is no
board-specific dialog. This define statement is used by
configs/std/sysinit.c and configs/std/dialog.c to determine
whether the call to board dialog functions and declarations
should be compiled into the code and executed at startup
time. The value of BSP_PARMS should be a multiple of four to
ensure long-word alignment.

■ BSP_ABORTSW determine whether a manual abort switch
exists. This can be set to YES or NO. This define statement is
used in the configs/std/probecfg.c file to compile in code
that will set the interrupt vector for the manual abort
interrupt.

■ BSP_SERIAL indicates the number of serial channels
supported by the hardware (0 for none). It is used in configs/
std/probecfg.c to compile in the settings of pROBE+ hooks to
the serial driver. It is also used in configs/std/sysinit.c for
some compile-time verification.

■ BSP_SERIAL_MINBAUD and define BSP_SERIAL_MAXBAUD
should be set to the baud-rate range of the serial channels.
These define statements are used in configs/std/dialog.c to
check the range of answers given by the dialog user at run
time.

■ BSP_LAN1 indicates whether the BSP supports a LAN driver. It
can be set to YES or NO. This define statement is used in

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-7

configs/std/dialog to compile conditionally in code to support
LAN driver questioning. It is also used in configs/std/
sysinit.c for run-time verification. In an application’s
directory, it is used in drv_conf.c to compile conditionally to
set up the LAN driver. If more than one LAN is attached to the
target, you can add additional define statements for them. For
example, the second LAN would have a define for BSP_LAN2.
The drv_conf.c file would have to be expanded to set up the
additional LANs.

■ BSP_LAN1_ENTRY should be set to the name of the entry
function to the LAN driver. This is used in drv_conf.c to set up
the LAN driver. If more than one LAN is attached to the target,
you can add additional define statement for them. For
example, the second LAN would have a define for
BSP_LAN2_ENTRY. The drv_conf.c file would have to be
expanded to set up the additional LANs.

■ BSP_LAN1_MTU should be set to the Maximum Transmission
Unit for the LAN1 driver. This is used in the application’s
drv_conf.c file to set up the LAN1 driver. Similar to BSP_LAN1
you can also add define statements for more than one LAN
driver.

■ BSP_LAN1_HWALEN is set to the hardware address length for
your hardware, for example, Ethernet is six. It is used in an
application’s drv_conf.c file to configure the LAN driver.

■ BSP_LAN1_FLAGS is used to tell pNA+ what kind of interface
the LAN has on the system. The following can be ORed
together:

Define Hex Value Description

IFF_POLL 8000 Interface is a polling type.

IFF_BROADCAST 0001 NI supports broadcasts.

IFF_RAWMEM 2000 Driver uses the pNA+-
dependent packet interface.

IFF_MULTICAST 0800 Driver supports multicast.

Chapter 9. Understanding and Developing Board-Support Packages

9-8 pSOSystem Getting Started

■ BSP_LAN1_PKB is set to the number of packet buffers for
RAM code. This is used when creating a RAM-based system in
the bsps/xxx/src/bspcfg.c file (where xxx is the name of the
BSP directory) to configure the LAN packet buffers array. This
is used when there is an i82596 LAN chip for the LAN
hardware interface.

■ BSP_LAN1_PKB_ROM is set to the number of packet buffers
for ROM code. This is used when creating a ROM-based
system in the sps/xxx/src/bspcfg.c file (where xxx is the
name of the BSP directory) to configure the LAN packet
buffers. As ROM requirements are usually less than the RAM
requirements for LAN buffers, this number can be
considerably less then BSP_LAN1_PKB. This is used with an
i82596 LAN chip for the LAN hardware interface.

■ BSP_LAN1_TCB is used for an i82596 driver to set the
transmission control blocks in a RAM-based system. These are
set in the bsps/xxx/src/bspcfg.c file (where xxx is the name
of the BSP directory).

■ BSP_LAN1_TCB_ROM is used for an i82596 driver to set the
Transmission Control Blocks for a ROM-based system. These
are set in the file bsps/xxx/src/bspcfg.c (where xxx is the
name of the BSP directory).

■ BSP_LAN1_TBD is used for an i82596 driver to set the
transmission block descriptors in a RAM-based system. These
are set in the bsps/xxx/src/bspcfg.c file (where xxx is the
name of the BSP directory).

■ BSP_LAN1_TBD_ROM is used for an i82596 driver to set the
transmission block descriptors for a ROM based system. These
are set in the bsps/xxx/src/bspcfg.c file (where xxx is the
name of the BSP directory).

■ BSP_SMEM indicates whether the hardware is supports a
shared memory interface. This define statement is used in the
application’s drv_conf.c file to compile conditionally in code to
install a shared memory network interface. It is also used in
configs/std/dialog.c to compile code that asks questions
about a shared memory interface. The configs/std/sysinit.c
file also uses this define to set up the multiprocessor
configuration table.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-9

■ BSP_MP_TAS sets the queue lock implementation for shared
memory drivers. A ‘1’ means the Test and Set instruction (TAS)
is used. Because not every board supports TAS, use a ‘0’
unless you are sure that all nodes can do TAS correctly. This is
used in the files drivers/ki_smem.c and drivers/ni_smem.c.
The actual function that does the TAS is located in the
drivers/ki_call.s file.

■ BSP_INT_MODE is used to determine the method used to
signal the arrival of packets to a destination node in a shared
memory system. A setting of ‘0’ uses a polling method. A
setting of ‘1’ uses an interrupt method. If set to ‘1’, the files
drivers/ki_smem.c and ni_smem.c will compile in code to set
up the interrupt procedure SmemIsr.

■ BSP_SCSI is set to YES if there is a SCSI driver and hardware
for a SCSI bus. If no SCSI support is available or none is
needed, this should be set to NO. Once set to yes, the SCSI
driver in drivers/scsi.c will be compiled into the system.

■ BSP_SCSIINC is used if BSP_SCSI is set to YES. It must be set
to the name of the correct include file for the actual NCR SCSI
chip used. This is used in the drivers/scsi.c file. This can be
set to scsi/ncr53cxx.h or scsi/wd33c93.h.

■ BSP_SCSI_TAPE can be set to YES if your application needs a
SCSI tape driver. If set to YES, the code for the SCSI tape
driver located in drivers/scsi.c will be compiled into the
system.

■ BSP_TIMER2 can be set to YES or NO. Setting it to YES
indicates the board has a second timer and driver functions
that can be used by pMONT. The configs/std/pmontcfg.c file
will conditionally compile in code that calls the functions
tmFreq, tmReset, and tmRead. These functions must be
provided by the BSP.

■ V_BUSERR is set to the vector number of the bus error vector.
This number is used in a call to SysSetVector in the configs/
std/probecfg.c file.

■ V_ADDRERR is set to the vector number of the address error
vector. This number is used in a call to SysSetVector in the
configs/std/probecfg.c file.

Chapter 9. Understanding and Developing Board-Support Packages

9-10 pSOSystem Getting Started

■ V_TRAP0 is set to the vector number of the pROBE+
breakpoint vector. This number is used in a call to
SysSetVector in the configs/std/probecfg.c file.

■ V_HDWBKPT is set to the vector number of the pROBE+
hardware break point vector. This number is used in a call to
SysSetVector in the configs/std/probecfg.c file. This is only
needed if the hardware supports hardware breakpoints.

■ V_ABORT is set to the vector number of the hardware abort
switch. This number is used in a call to SysSetVector in the
configs/std/probecfg.c file. This vector is used to enter
pROBE+ when the abort switch is pressed. Note the
BSP_ABORTSW must also be set to YES.

■ V_TRAP11 is set to the vector used for the pSOS+ service call.
This number is used in a call to SysSetVector in the configs/
std/psoscfg.c file.

■ V_TRAP12 is set to the vector used for the pSOS+ I/O call.
This number is used in a call to SysSetVector in the configs/
std/psoscfg.c file.

■ V_TRAP13 is set to the vector used for the pSOS+ return from
interrupt vector number. This number is used in a call to
SysSetVector in the configs/std/pSOScfg.c file.

■ V_TIMER is set to the vector used for the periodic tick timer
interrupt. This is available for use by the bsps/xxx/src/
timer.c file (where xxx is the name of a BSP directory).

■ V_FLINE is set, for boards that have processors that support
floating-point, to the vector used for an F-line exception
(invalid floating-point instruction used to indicate need for
emulation). This is used in the configs/std/sysinit.c file in a
SysSetVector call to set the vector to the pSOS+ F-line
interrupt handler.

■ V_BSUN is set, for boards that have processors that support
floating-point, to the vector used for a Branch/Set On
Unordered. This is used in the configs/std/sysinit.c file in a
SysSetVector call to set the vector to the pSOS+ bsun
interrupt handler.

■ V_INEX is set for boards that have processors that support
floating-point to the vector used for an Inexact. This is used in

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-11

the configs/std/sysinit.c file in a SysSetVector call to set the
vector to the pSOS+ inex interrupt handler.

■ V_DZ is set for boards that have processors that support
floating-point to the vector used for a divide-by-zero. This is
used in the configs/std/sysinit.c file in a SysSetVector call
to set the vector to the pSOS+ dz interrupt handler.

■ V_UNFL is set for boards that have processors that support
floating-point to the vector used for an underflow. This is used
in the configs/std/sysinit.c file in a SysSetVector call to set
the vector to the pSOS+ unfl interrupt handler.

■ V_OPERR is set for boards that have processors that support
floating-point to the vector used for an operand error. This is
used in the configs/std/sysinit.c file in a SysSetVector call
to set the vector to the pSOS+ operr interrupt handler.

■ V_OVFL is set for boards that have processors that support
floating-point to the vector used for an overflow. This is used
in the configs/std/sysinit.c file in a SysSetVector call to set
the vector to the pSOS+ ovfl interrupt handler.

■ V_SNAN is set for boards that have processors that support
floating-point to the vector used for a Signaling Not-A-Number
error. This is used in the configs/std/sysinit.c file in a
SysSetVector call to set the vector to the pSOS+ snan interrupt
handler.

■ V_UNSUPP is set for boards that have processors that support
floating-point to the vector used for an unsupported data type.
This is used in the configs/std/sysinit.c file in a
SysSetVector call to set the vector to the pSOS+ unsupp
interrupt handler.

■ V_EFFADD is set for boards that have processors that support
floating-point to the vector used for an Unimplemented
Effective Address (68060 only). This is used in the configs/
std/sysinit.c file in a SysSetVector call to set the vector to
the pSOS+ effadd interrupt handler.

■ EXCLUDED_VECTORS can optionally set a list of vectors to be
left alone by pSOSystem. Vectors in the “excluded” list will not
be initialized. The list should contain the vectors, separated by
commas. The most common use of this is to allow debugging of

Chapter 9. Understanding and Developing Board-Support Packages

9-12 pSOSystem Getting Started

the pSOSystem with a ROM monitor. For example, if your ROM
monitor uses TRAP #1 to implement instruction breakpoints,
you could let the monitor maintain control by defining
EXCLUDED_VECTORS as follows:

EXCLUDED_VECTORS V_BUSERR, V_ADDRERR,
V_TRACE, V_TRAP1, 17

In this case, the downloaded pSOSystem would not modify
any of these vectors, so bus and address errors would be
fielded by the ROM monitor. Software monitors usually
make use of the trace exception as well. The 17 is the
anchor slot in the vector table. For example, if the anchor
is set in rom.lnk to 0x44, divide 0x44 by 4 = 17 decimal.
This keeps the ROM anchor from getting overwritten The
anchor address must be different for the RAM code used. A
good address would be 0x48 (change made in ram.lnk).

The remaining entries in the bsp.h file are board specific. If
you are making a custom BSP, you can add additional
entries as needed.

9.1.2.3 bsp.mk

The bsp.mk file is included in the BSP Makefile and the application
Makefile. bsp.mk sets the CPU variable for these files. The CPU variable
is set to the processor type as defined by the compiler. For example,
CPU=68040.

9.1.2.4 os.lnk

The os.lnk linker command file is for linking the pSOSystem software
only (BSP kernel, and other components). os.lnk creates a separate
downloadable file which does not contain an application. The application
should be built with the app.lnk file to ensure consistency with this file.
See the bsps/template/README file for more information about the
options included in this file.

9.1.2.5 ram.lnk

The ram.lnk linker command file is for linking a pSOSystem application
and OS (BSP kernel, and components together). This creates a
downloadable file which contains the application and the OS. See the

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-13

bsps/template/README file for more information about the options
included in this file.

9.1.2.6 ramrc.lnk

The ramrc.lnk is a linker command file that allows your downloaded
system to use the OS components (pSOS+, pROBE+, etc.) which are
located in ROM. This is primarily useful in the following situations:

■ You are downloading your system to your target board via a
serial connection. By using the components contained in your
ROM, you can save considerable download time.

■ Your target system does not have much RAM. By using the
component code contained in ROM, you can save RAM space.

Integrated Systems recommends placing each of the components in its
own linker section, which is named for the component. For example, the
pSOS+ code is located in the “pSOS” section, the pROBE+ code is in the
“pROBE” section, etc. The component code is linked with the rest of the
system as usual, but we use the SECT command to assign hard
addresses to the sections containing the components. The addresses
used in the SECT command are the ROM addresses of the components.
Finally, by using the ABSOLUTE command, you can leave sections
containing components out of the output file.

The end result is an output file that does not contain the components,
but does have references to the components resolved to the ROM
addresses of the components. See the bsps/template/README file for
more information about the options included in this file.

9.1.2.7 src/board.c

The board.c file is used to initialize the board specific hardware and
functions that provide hardware specific information. This file contains
the following functions:

■ InitBoard initializes the board-specific hardware. This
function is called from the assembly language file bsps/xxx/
src/init.s (where xxx is the name of the BSP directory). The
function that calls it is HdwInit. Hdwinit will do whatever
board initialization needs to be done in assembly language.
InitBoard should continue the board initialization that can be
done in C. This function must call the SysInitVars function to

Chapter 9. Understanding and Developing Board-Support Packages

9-14 pSOSystem Getting Started

clear the zerovars section of RAM. The SysInitVars function
needs to be called once the hardware for the RAM has been set
up. Another function that must be called is SysInit. The
SysInit function continues with the non-hardware
configuration of the system which includes running any dialog
at boot time, the setting up of the component’s configuration
tables and any driver set-up. SysInit must be called last in the
InitBoard function because it does not return. The syntax is:

void InitBoard(void)

■ ClrAbortInt clears interrupt caused by ‘abort’ switch or
button. This is an interrupt function for the abort button if
there is one. All this function needs to do is clear the hardware
of the interrupt (if needed). (There is a wrapper that controls
the interface with pROBE+ if it is installed in the system. The
wrapper calls the pROBE+ manual break entry point.) The
syntax is:

void ClrAbortInt(void)

■ RamSize returns the size of the onboard DRAM. This function
is used by any function that needs to know how much DRAM
the system contains. It is used to configure the system in the
files sysinit.c, pSOScfg.c, and pnacfg.c in the configs/std
directory. The syntax is:

ULONG RamSize(void)

■ SysInitFail reports a system initialization failure. This
function is called during system start up from files in the
configs/std directory when an unrecoverable error occurs. It
should continually print an error string to the system console.
The syntax is:

void SysInitFail (const char *string)

9.1.2.8 src/board.h

The board.h file contains defines that are specific to the target hardware.
These defines differ depending on the device drivers that are used on the
board. Drivers that are supported by pSOSystem use the define
statements that are located in this file. Each of these drivers contains a
comment section at the top of the file that details the define statements
needed by the driver. If you are writing a custom BSP, these comments

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-15

should be copied out of the driver file and placed into the board.h file of
the custom BSP. Then code should be added for the define statement.

For example, if the driver for the i82596 driver is located in the bsps/
devices/lan/i82596.c file, the comment section at the top of the file has
the following comments for the define statement that need to go into the
board.h file:

/* BD_GET_ETHER_ADDR: Macro to get Ethernet address. A mandatory
macro */
/* NOTE: This address is usually read from nonvolatile RAM. */
/* Then it will store it in the Ether_Addr array. */

You will need to copy the above comment (and the other macro
comments) into the board.h file and add the appropriate define
statement. For example, with the m167 BSP, use the following define
statement:

#define BD_GET_ETHER_ADDR \
 {\
 int i; \
 for (i = 0; i < 6; i++) \
 Ether_Addr[i] = BRDI_CNFG->ethernet_addr[i]; \
 }

9.1.2.9 src/bpdialog.c

The bpdialog.c file is used in the boot up code to execute any hardware-
specific dialog during the Boot ROM dialog. It can be omitted and the
define statement BSP_PARMS in bsp.h can be set to NO if your hardware
has no specific parameters.

An example of a hardware-specific parameter is the hardware Ethernet
address. Some boards need to have the hardware Ethernet address
stored in hardware while others have some or none of the hardware
Ethernet address stored in the hardware. In either case, the bpdialog.c
file can provide a way during ROM boot or application startup to have a
user enter or change the hardware Ethernet address.

If you are going to use this feature, you will need to provide a structure,
called ParmStruct in the examples, to hold the data you want to save in
NVRAM. BSP_PARMS in the bsp.h file must be set to the size of that
structure. Then you need to provide the following functions:

■ BspGetdefaults places a copy of the structure containing the
default values for the hardware-specific dialog parameters in

Chapter 9. Understanding and Developing Board-Support Packages

9-16 pSOSystem Getting Started

the area pointed to by ParmStruct. This function is called by
configs/std/sysinit.c at boot time. The syntax is:

void BspGetdefaults (void *ParmStruct)

■ BspPrint prints out the current values of the hardware
specific dialog parameters using a pointer to the ParmStruct
which contains the data in NVRAM and a pointer to a print
function to be used to do the printing. This function is called
from configs/std/dialog.c at boot time. The syntax is:

void BspPrint (void *ParmStruct, void (*PrintRoutine)
(char *format,...))

■ BspModify conducts a hardware-specific dialog to modify the
parameters pointed to by *ParmStruct. BspModify uses a
pointer to a print function to be used for printing and a pointer
to a prompt function to pREPC+ for input. This function is
called from configs/std/dialog.c at boot time. The syntax is:

void BspModify (void *ParmStruct,
 void(*PrintRoutine) (char *format,...),
 void(*PromptRoutine)(char *prompt, PARM_TYPE ptype,
 void *paRAMptr))

■ BspUse takes the BSP parameters that have been decided on
and use them to set the BSP. In other words, this function
should apply the values selected (if needed). It takes as an
argument the pointer to the ParmStruct. It is called from
configs/std/sysinit.c at boot time. The syntax is:

void BspUse (void *ParmStruct)

The bpdialog.c file has an example of the use of these functions. The
PrintRoutine and the PromptRoutine are provided by pSOSystem in
the configs/std/pollio.c file, which is explained with the configuration
files. These functions are used for printing and prompting.

9.1.2.10 src/bspcfg.c

The bspcfg.c file is used to provide a way to configure the BSP at
application compile time. Because the bsp.lib is independent of the
application, a means is needed to provide the application some control
over the configuration of the BSP. For example, the LAN driver needs to
know if multicast addressing will be required and, if so, how many
multicast addresses will be needed. The LAN driver will then allocate

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-17

buffers for multicast based on the number needed. Rather than this
value being hard-coded into the driver to be included in bsp.lib, the user
can set a define statement in the application file sys_conf.h. The
BspSetup function in this file uses that define statement to allocate
space for the multicast buffers, and set a global pointer to allow the LAN
driver access to the buffers.

The only function needed in this file is BspSetup. It has two arguments,
the pointer to free memory FreeMemPtr and the pointer to the node
configuration table, NodeCfg. The FreeMemPtr can be used to allocate
needed memory for the BSP. The FreeMemPtr must be incremented by
the number of bytes used and returned to the caller. The syntax is:

UCHAR *BspSetup (UCHAR *FreeMemPtr, NODE_CT *NodeCfg)

This function must be present in the BSP. However, all it needs is one
line of code to return the FreeMemPtr. This function is called at boot
time from the configs/std/sysinit.c file.

9.1.2.11 src/init.s

The src/init.s file should contain the HdwInit function. HdwInit is called
by the _START function located in the configs/std/begin.s file. It is
called when the system is powered on or reset. It should perform all
necessary hardware initialization needed by the board. It calls a
C function to complete the initialization of those things that can be done
in C. The C function is called InitBoard.

Initialization of the hardware should set the system to a known state with
the hardware configured as it should be when the system is first powered
on.

Some of the functionality that might be needed in this file includes:

■ RAM set up may include setting of base registers, chip select
registers, RAM speed, RAM parity enable, RAM enable, and
initialization of parity memory.

■ CPU caches are set to a default state. You may need to write
the data in the data cache out to memory and turn instruction
and data cache off and invalidate both caches. (Functions are
provided to do this. These functions are in the bsps/devices/
68k/cpuxxx.s files. See the “Devices” section for more
information on them.)

Chapter 9. Understanding and Developing Board-Support Packages

9-18 pSOSystem Getting Started

■ CPU control registers are all set to a default state.

HdwInit must call the function InitBoard which must be the last thing
it does because InitBoard does not return.

9.1.2.12 src/makefile

The makefile brings together the different parts of a BSP and creates a
library called bsp.lib that is linked into the final system image file. To do
this, the makefile draws files from several areas of pSOSystem. The
makefile includes all of the files in the bsps directory, selected files in
the drivers directory, and selected files in the bsps/devices directory.
Each directory has its own make rules. The bsps directories define make
rules in the makefile. The rules for the files in the drivers directory are
defined in the rules.mk file. The rules for the files in the bsps/devices
directory are defined in bsps/devices/rules.mk.

If you are developing a custom BSP, you will want to include some of the
common code from pSOSystem in the building of your BSP. To include a
file in the make from the drivers or devices directories, you need to enter
two lines into the makefile in the bsps directory.

■ In the SRC_OBJ define, a line for the object filename must be
added. For example, if the file scsi.c was to be added to your
makefile, you would need to add the line:

obj/scsi.o \

This command executes the rule in the drivers/rules.mk
file for scsi.o and compiles the scsi.c file.

■ You need to add the scsi.o object file to the bsp.lib library.
You do this by adding a line into the library section of the
makefile. For example:

@echo addmod obj/scsi.o >> tmp.cmd

The bsps/template/makefile contains examples of how this is done.

9.1.2.13 src/smem.c

The smem.c file contains shared memory functions for a VME bus. The
following functions are needed:

■ SetVmeAddress establishes the board’s VMEbus address.
This function sets the VME_base_addr global variable to the
address supplied in the BaseAddress argument. The address

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-19

supplied should be the starting address of the board’s VME
bus address. (VME_base_addr is used to convert a VME
address to a local RAM address on the board and to convert a
local address to a VME address.) This function also initializes
any hardware registers that need the VME base address. This
function is called by the SysInit function during system
startup if the define BSP_VME is set. BSP_VME is set in the
bsp.h file. The syntax is:

void SetVmeAddress (ULONG BaseAddress)

■ SmemBus2Local converts a VME address to a local address.
This function is used in drivers/ki_smem.c and drivers/
ni_smem.c. It takes as an argument a VME based address
and converts it to a local bus address. The syntax is:

void *SmemBus2Local(void *vme_addr)

■ SmemLocal2Bus converts a local address to a VME address.
This function takes a local bus address as an argument and
converts it to a VME address. The syntax is:

void *SmemLocal2Bus(void *loc_addr)

■ SmemIntInit initializes this node for interprocessor interrupts
and writes interrupt method data to the shared memory
directory. This function is called by drivers/ki_smem.c and
drivers/ni_smem.c. SmemIntInit sets up the interrupt
vector and any control registers so other nodes on the VME
bus can interrupt this node. Nodes may require different
methods to interrupt them. To accommodate different
methods there are changes via a union to the Interrupt Method
Data Structure. See the INTR_METHOD in the include/
bspfuncs.h file for more information on the Interrupt Method
Data Structure. The syntax is:

void SmemIntInit (INTR_METHOD *int_method, ULONG
node, ULONG (*isr) (void))

■ SmemIntNode performs a software interrupt on a VME node.
This function is called by drivers/ki_smem.c and drivers/
ni_smem.c to cause an interrupt to happen on a particular
node. How your hardware handles sending an interrupt to
another node is specific to your hardware and the node that is
being interrupted. The syntax is:

Chapter 9. Understanding and Developing Board-Support Packages

9-20 pSOSystem Getting Started

int SmemIntNode (INTR_METHOD *int_method, ULONG
target)

■ SmemIntClear is called as part of the shared memory ISR to
clear shared memory interrupt. This function is board
dependent. It must clear the VME interrupt. SmemIntClear is
called from drivers/smem_isr.c. This syntax is:

void SmemIntClear(void)

9.1.2.14 src/timer.c

The timer.c file contains timer functions that are used by pSOS+ and
pMONT to control the tick timer and profiling. This is a driver that is
installed by a call to InstallDriver in the drv_conf.c file in the
application directory. The following functions are needed:

■ RtcInit starts the real-time clock for use as the pSOS+ clock.
This is called through the de_init system call. The function
needs to set up a timer to interrupt at an interval that matches
the kc_ticks2sec entry in the pSOS+ configuration table. The
syntax is:

void RtcInit (struct ioparms *p)

This function can access the pSOS+ configuration table
through the system’s anchor. The anchor is a global
variable that points to the node configuration table. The
kc_ticks2sec element can be obtained as follows:

extern NODE_CT *anchor;
anchor->pSOSct->kc_ticks2sec

■ RtcIsr is an interrupt handler for clock tick interrupt. This
function is the tick timer ISR. It needs to do whatever is
required to acknowledge the interrupt and start the timer
counting down again. Then it must call tm_tick to announce
to pSOS+ a tick interrupt has occurred:

tm_tick();

The syntax is:

static void RtcIsr(void)

■ Delay100ms does nothing for 100 milliseconds and returns. It
is used only before pSOS+ is initialized. It is used in the

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-21

SysInitFail function located in board.c and RarpEth function
in drivers/rarp.c. The syntax is:

void Delay100ms(void)

■ tmFreq returns the clock frequency of second timer used by
pMONT. The syntax is:

unsigned long tmFreq(void)

■ tmReset resets second timer used by pMONT. This function
initializes the second timer to zero and then starts the timer
running. The syntax is:

void tmReset(void)

■ tmRead returns the counter value of second timer used by
pMONT. The syntax is:

unsigned long tmRead(void)

9.2 devices Directory
The devices directory contains low-level device drivers and low-level
system functions that may be needed by a board-support package. The
code in the files in this group is specific to hardware devices but not
specific to the board these devices are on. The low-level code in the
devices directory is intended to be used unaltered. This is done through
the use of macros that are placed in the code where board-specific
functionality is needed. To use a low-level driver in this group you will
need to define the macros that are specific to the driver in a file called
board.h located in the directory that contains your board-support
package.

The low-level drivers are grouped in directories by type. For example, all
low-level serial drivers are located in the bsps/devices/serial directory.
(Each low-level driver also has a corresponding include file in the same
directory.) The rules.mk file, located in the bsps/devices directory,
contains the rules for making all of the low-level drivers in bsps/devices.
If you are using one of the chips supported by a low-level driver located
in the devices directory then you can include the rules.mk file in your
BSP makefile and add the low-level driver the object list and library
modules and it will be included in your BSP.

Chapter 9. Understanding and Developing Board-Support Packages

9-22 pSOSystem Getting Started

The hardware-specific code located in the devices directory is divided
into the following directories:

■ 68k contains 68K-specific assembly language code for setup
and control of Motorola 68000 processors.

■ common contains common functions that can be used by any
processor type.

■ LAN contains chip-dependent code for several Ethernet LAN
drivers along with common code for SNMP control of the LAN
drivers.

■ scsi contains chip-dependent code for SCSI drivers.

■ serial contains chip-dependent code for serial drivers.

9.2.1 devices Directory File List

The following table contains a list of files in the devices/68k directory.

File Function Description

bhand000.s

bhand030.s

bhand032.s

bhand040.s

bhand060.s

SysBusError System bus error handlers for the 68000, 68030,
CPU32, 68040 and 68060, respectively.

cpu000.s

cpu030.s

cpu040.s

cpu060.s

cpu0x0.s

These files contain cpu specific start-up initializa-
tion code in assembly for the MC68000 through
MC68060. (cpu0x0.s covers both MC68010 and
MC68020.) They contain the following functions:

Sys_CPU_Init CPU initialization to default values.

Sys_Cache_Init Cache initialization.

Sys_Dcache_Inhibit Data Cache Inhibit.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-23

Sys_Dcache_Restore Data Cache Restore to previously inhibited.

vect000.s

vect0x0.s

SysSetVector Install a vector in the processors vector table.

NormalWrapper General-purpose interrupt handler wrapper.

NiWrapper NETWORK INTERFACE interrupt handler wrap-
per.

MbrkWrapper This wrapper calls the appropriate handler for the
interrupt and then transfers control to the “Manual
Break” entry of pROBE+.

GET_VBR Moves the value of the current VBR into A0.

misc.s SafeLongRead Returns a long value at address if address is acces-
sible, returns 0 if not.

splx Change the processor’s interrupt level.

buserr.c SysHandlerInit Initialize the bus error handler array.

SysAddHandler Add a bus error exception handler to the end of the
handler table.

SysRemoveHandler Remove a bus error exception handler from the
handler table.

ki_call.s Assembly level code for the kernel interface.

nvram.c StorageRead Simple Read from nonvolatile memory.

StorageWrite Simple Write to nonvolatile memory.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

9-24 pSOSystem Getting Started

The following table is a listing of the files in the bsps/devices/lan
directory.

The following table is a list of the files found in the bsps/devices/serial
directory.

File Function Description

lan.c LAN driver template file.

NiLan LAN driver entry point to perform all LAN func-
tions.

LanStop Disable the LAN chip.

AM7990.c LAN driver for AMD Local Area Network Con-
troller for Ethernet IC-LANCE)

AM7990.h Chip-specific #defines and structures for the
AM7990.

i82596.c LAN driver for Intel’s 32-bit LAN coprocessor.

i82596.h Chip-specific #defines and structures for the
82596.

lan360.c LAN driver for Motorola 68360 Ethernet control-
ler.

lan360.h Chip-specific #defines and structures for the 68360
Ethernet.

lan_mib.c ni_ioctl IO-control calls that set or report LAN functional-
ity.

File Function Description

disi.c Serial driver template file.

SerialInit Initialize information for all configured channels.

SerialOpen Open a serial channel.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-25

SerialClose Close a serial channel.

SerialIoct Perform a control command.

SerialSend Send a message block.

ser360.c Chip-specific serial portion of the serial driver for
the Motorola 68360 Serial Communication con-
troller.

ser360.h Chip-specific #defines and structures for the 68360
SCC.

cd2400.c Chip-specific serial portion of the serial driver for
the Cirrus Logic CD2400 Four-Channel, Multi-
Protocol Communications controller.

cd2400.h Chip-specific #defines and structures for the
CD2400.

m68681.c Chip-specific serial portion of the serial driver for
the Motorola MC68681 Dual Universal Asynchro-
nous Receiver/Transmitter (DUART).

m68681.h Chip-specific #defines and structures for the
MC68681.

z85230.c Chip-specific serial portion of the serial driver for
the Zilog Z85230 ESCC Enhanced Serial Commu-
nication controller.

z85230.h Chip-specific #defines and structures for the
Z85230.

scc302.c Chip-specific serial portion of the serial driver for
the Motorola MC68302.

scc302.h Chip-specific #defines and structures for the
Motorola MC68302.

ser332.c Chip-specific serial portion of the serial driver for
the Motorola MC68332.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

9-26 pSOSystem Getting Started

The following table lists the files in the bsps/devices/scsi directory

ser332.h Chip-specific #defines and structures for the
Motorola MC68332.

ser340.c Chip-specific serial portion of the serial driver for
the Motorola MC68340.

ser340.h Chip-specific #defines and structures for the
Motorola MC68340.

File Function Description

scsichip.c SCSI driver template file.

chipexec Perform a SCSI command.

chipinit Initialize the SCSI host adapter.

dma_init Initialize the dma for the SCSI device.

scsi_stop_commands Stop commands from going out on the SCSI bus.

scsi_start_commands Restart commands going out on the SCSI bus.

WD33C93.c Chip-specific portion of the SCSI driver for the
Western Digital WD33C93 SCSI-bus interface
controller.

WD33C93.h Chip-specific #defines and structures for the
WD33C93.

iscrp710.c Script file needed for the NCR 53C710 SCSI I/O
processor.

iscrp720.c Script file needed for the NCR 53C720 SCSI I/O
processor.

iscrp8xx.c Script file needed for the NCR 53C810 and
53C820 SCSI I/O processors.

ncr53cxx.c Chip-specific portion of the SCSI driver for the
NCR 53C family of SCSI I/O controllers.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-27

9.2.2 Detailed Function Description

This section describes the functions and files that are in the bsps/
devices directory.

NOTE: It is very important to set the BSP_LITTLE_ENDIAN define
statement located in the bsps/xxx/bsp.h file (where xxx is the name of
your BSP directory). This define statement should be set to YES if the
hardware you are using is in Little-Endian byte order (some Intel
Processors) or to NO if the RAM processor is a Big-Endian processor
(Motorola processor). This define statement is used in many of the
drivers and control files explained in the following paragraphs.

9.2.2.1 rules.mk

The rules.mk file contains the Make rules for low-level BSP drivers and
common functions. It should be included in the makefile for a BSP.

9.2.2.2 68k/bhand000.s bhand030 bhand032 bhand040 bhand060

A file for each member of the 68K family handles a bus error interrupt.
These files are used in conjunction with pSOS+m and the kernel
interface to shared memory. The function called SysBusError saves the
registers and information exception frame address on the stack. Then it
loops through the SysHandlers array of function pointers and does a
JSR to each one it finds. After it has gone through all the pointers in
SysHandlers, it sets the pROBE+ BAERR entry to the return address
and does an RTS.

ncr53cxx.h Chip-specific #defines and structures common to
the NCR 53C family.

ncr_710.h Chip-specific #defines and structures for the NCR
53C710.

ncr_720.h Chip-specific #defines and structures for the NCR
53C720.

ncr_8xx.h Chip-specific #defines and structures for the NCR
53C810 and 53C820.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

9-28 pSOSystem Getting Started

This mechanism is used to recover from a node failure when using
pSOS+m. See also the sections that describe the bsps/devices/
common/buserr.c file, the drivers/ki_smem.c file, and the drivers/
ki_calls.s file.

9.2.2.3 ki_call.s

The ki_call.s file contains assembly language functions that are used to
support the kernel interface of pSOS+m. The following functions are
used in the interface:

■ ki_call is the entry point for the KI driver from pSOS+m. A
pointer to this function is stored in the pSOS+m
multiprocessor configuration table in the mc_kicode entry of
that table. (The mc_kicode entry is set in the configs/std/
psoscfg.c configuration file). The ki_call and the KI interface
are described in the “Interfaces and Drivers” section of the
pSOSystem Programmer’s Reference. The ki_call function is
really only a wrapper that saves the register state of the
system so the ‘C’ function, ‘ki’ located in ki_smem.c, can be
called.

■ KI_BerrorHndlr is the kernel interface’s bus error handler
installed the bus handler array by the function ki_init in the
file drivers/ki_smem.c. This function ensures that buffers of
data are not lost on a bus error.

■ hw_tas is used if the CPU supports the hardware test and set
instruction, TAS, If that is the case, the functions in
ki_smem.c use this function to lock accesses on a give
memory location.

9.2.2.4 68k/cpu000.s cpu0x0.s cpu030.s cpu040.s cpu060.s

A designated file for each member of the 68K family has on-chip cache.
These files have the following functions:

■ Sys_Cache_Init initializes the CPU’s caches for all of memory.
With the exception of the 68060, the caches are set to operate
in copy-back mode. The 68060 is set to operate in write-
through mode. The Data Cache will operate in inhibited
Serialized mode for all non-RAM address. This allows memory
mapped I/O to function properly. The syntax is:

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-29

void Sys_Cache_Init(void);

■ Sys_Dcache_Inhibit sets the Data Cache to, non-cached serial
access mode, writes back all dirty cache lines, marks the
entire Data Cache invalid, and then returns to the caller with
the previous state of the Data Cache. When this call is used,
the caller should save the return value (previous state) to be
used in the Sys_Dcache_Restore call that will restore the
state of the Data Cache. The syntax is:

unsigned long Sys_Dcache_Inhibit (void);

■ Sys_Dcache_Restore restores the Data Cache to the value in
the D0 register. This value is usually the result of a previous
call to Sys_Dcache_Inhibit. The syntax is:

void Sys_Dcache_Restore (unsigned long);

■ GET_VBR places the value of the Vector Base Register (VBR) in
address register A0 and returns. This function is used by
bsps/devices/68k/misc.s to make it CPU independent.

9.2.2.5 68k/vect000.s and 68k/vect0x0.s

The vect000.s and vect0x0.s files contain the vector setting and interrupt
wrapper code, respectively. The vect000.s file should be compiled into
those BSPs that have the 68000 processor member of the 68K family
(such is the case for the e302 BSP). The vect0x0.s file should be
compiled into those BSPs that have processors other than the 68000
member of the 68K family. The following is an explanation of the
functions in these files.

■ SysSetVector sets a interrupt vector to an interrupt service
function using a interrupt wrapper. The interrupt wrapper will
make it possible to write the interrupt function in C. The
syntax for SysSetVector is:

void SysSetVector (int vector, void (*handler)(),
WRAPPER_TYPE wt);

vector is the vector number to be set.

(*handler)() is the address of the interrupt function to be
called when the interrupt is received.

wt is the wrapper type to be used. Wrapper type can be one

Chapter 9. Understanding and Developing Board-Support Packages

9-30 pSOSystem Getting Started

of the following:

NO_WRAPPER means no C interface will be used. This
can be used to set assembly language interrupt
functions.

NORMAL_WRAPPER means normal C compatible
wrapper to be used for interrupt functions written in C.

NI_WRAPPER is a special wrapper that should be used
for interrupt functions in C that are used with the pNA+
network interface.

MBRK_WRAPPER is used to support the manual break
interrupt function. (Manual break is caused by a push of
the abort button.)

■ NormalWrapper saves scratch registers and accesses the
actual interrupt through the indirect handler table. Once the
function returns the scratch registers are restored and control
is passed to pSOS+ through the use of a TRAP instruction to
the pSOS+ I_RETURN code. This allows pSOS+ to check for
dispatches because of run status that may have changed due
to the interrupt.

■ NiWrapper is an interrupt wrapper that works the same way
as the NormalWrapper with one exception it checks a return
value from the interrupt. This return value should indicate if
pSOS+ is up and running. The scratch registers are restored. If
the return code was nonzero, control is passed to pSOS+
through the use of a TRAP instruction to the pSOS+ I_RETURN
code just like the NormalWrapper. If the return code was 0, an
RTE instruction is done to return from the interrupt. This
wrapper is needed for pNA+ because pNA+ will sometimes be
running before pSOS+ has started (for example, at boot time).

■ MbrkWrapper is an interrupt wrapper that saves the scratch
registers and then calls the interrupt function for manual
break. Once that function returns, the pROBE+ manual break
entry point is put on the stack and the scratch registers are
restored. Then when the RTS instruction is executed, control
passes to the pROBE+ manual break function.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-31

9.2.2.6 68k/misc.s

The misc.s file contains several functions that are useful in board
initialization and device drivers.

■ MemAccessible takes as an argument a memory location. It
returns a 1 if 8 bits at that location are accessible and a 0 if
not. It does this by setting up a new bus error interrupt
function. Then it tries to read the memory location. If the bus
error function gets called, the return value is set to zero. If not,
it is set to a 1. The syntax is:

unsigned long MemAccessible (volatile void *address);

■ SafeLongRead is the same as MemAccessible; however,
instead of testing the memory location for a byte access, it
tests the location for a long word (4-byte) access. If the address
can be read the value stored at the address is returned. If the
address cannot be read, a zero is returned. The syntax is:

unsigned long SafeLongRead (volatile void *address);

■ MemMirrorTest tests to see if one memory location is a mirror
of another. The syntax is:

unsigned long MemMirrorTest (volatile void *Lower,
 volatile void *Upper);

The return value is one of the following:

1 = Addresses point to different physical RAM locations.
0 = Upper address is just a mirror of the lower address.
-1 = Lower address is not accessible.
-2 = Upper address is not accessible.

■ splx changes the current interrupt mask of the processor. This
function takes one argument, the new interrupt mask level,
which should be a value from 0 to 7. The function returns the
old interrupt make level for use by the caller to restore the
mask when necessary. The syntax is:

unsigned long splx (unsigned long newmask);

NOTE: Raising the interrupt mask to anything other than
seven or the task’s interrupt mask level is strongly
discouraged, because it can cause the pSOS+ scheduler to
function improperly. The task’s interrupt level is set by the
t_start and t_mode pSOS+ calls. These calls may set a

Chapter 9. Understanding and Developing Board-Support Packages

9-32 pSOSystem Getting Started

task’s interrupt level to a value other than zero so changing
the interrupt level to a level below the task’s interrupt level
can cause the task to be interrupted when it should not be
interrupted.

9.2.2.7 68k/rules.mk

The rules.mk file contains all the make rules needed to create object files
of the assembly files in the 68k directory. The rules.mk file is included
in the bsps/devices/68k directory.

9.2.2.8 common/buserr.c

The buserr.c file contains functions that manage the way bus errors are
handled. These functions allow additional bus error handlers to be called
when a bus error happens. These functions are needed for the soft fail
feature. This allows the detection of a node failure in a multinode system
that uses pSOS+m. The following functions manage the bus error
interrupt:

■ SysHandlerInit initializes the SysHandlers array of bus
handlers. SysHandlers is an array of functions that will be
used when an interrupt happens to call the interrupt functions
using the function address stored in the array.
SysHandlerInit causes all function pointers to be initialized to
a dummy function that just does a return. This function must
be called during system initialization (normally in the
InitBoard function located in bsps/template/board.c). The
syntax is:

void SysHandlerInit(void);

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-33

■ SysAddHandler adds a bus error exception handler to the first
free slot it finds in the table. SysAddHandler takes two
arguments one is the handler type which must be
HNDLR_TYPE_BUS_ERROR and the second is the address of
the bus error function to be installed. SysAddHandler
returns:

-1 if handler type was invalid
-2 if there was no space left in the handler table

The syntax is:

int SysAddHandler (unsigned long HandlerType,
void (*HandlerAddress)())

■ SysRemoveHandler removes a bus error handler from the
SysHandlers array and replaces it with the dummy handler.
SysRemoveHandler takes two arguments one is the handler
type which must be HNDLR_TYPE_BUS_ERROR and the
second is the address of the bus error function to be removed.
SysRemoveHandler returns:

1 upon success
0 if handler index was invalid

The syntax is:

int SysRemoveHandler (unsigned long HandlerType,
unsigned long HandlerIndex)

9.2.2.9 common/nvram.c

The nvram.c file contains simple functions that can be used to read
nonvolatile memory locations on many target systems. (All of the target
systems supported by pSOSystem use this.)

The macros that can be set in the board.h file of the BSP to control these
functions are as follows:

■ BD_NVBASE which must be set to the starting address of the
nonvolatile RAM area.

Chapter 9. Understanding and Developing Board-Support Packages

9-34 pSOSystem Getting Started

■ BD_NVSTEP_SIZE the StorageRead and StorageWrite
functions usually work on devices which have the bytes in
adjacent positions in the address space. If working with a
device which does not decode the lower address lines, then
BD_NVSTEP_SIZE can be defined to override the default. For
example, if A0 and A1 are not decoded, the BD_NVSTEP_SIZE
would be 4. BD_NVSTEP_SIZE is defined in board.h if used.

■ BD_NV_VERIFY is used in the StorageWrite function. If
BD_NV_VERIFY is defined then the value just written must be
verified before continuing. The verify is done by trying to read
the written location until it is the same as what was written.
This is done in a loop that will repeat ten times with a delay of
100 milliseconds between tries. If you use this feature,
StorageWrite should only be done at boot time when pSOS+ is
not yet up because BD_NV_VERIFY will cause the call to block
and hold the CPU.

■ BD_NV_FILTER is used in conjunction with BD_NV_VERIFY.
BD_NV_FILTER is used to test only selected bits of the value
read back with the one written.

The following functions are in the nvram.c file:

■ StorageRead reads from a nonvolatile memory location. The
syntax is:

void StorageRead (unsigned int nbytes, void *Start, void
*buff)

nbytes is the number of bytes to read
Start is the address to read from
buff is the address to write to

■ StorageWrite writes to a nonvolatile memory location. The
syntax is:

void StorageWrite (unsigned int nbytes, void *Start, void
*buff)

nbytes is the number of bytes to write
Start is the starting address to read from
buff is the address to write to

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-35

9.2.2.10 lan/lan.c

The lan.c file is a template file for a LAN driver that can interface with
pNA+. This file can be used as a starting point for developing a LAN
driver. It contains skeletons of the functions needed for the Network
Interface. See the pSOSystem Programmer’s Reference for more
information on the network interface. The following functions are
required:

■ NiLan is the entry point to the LAN driver. See the pSOSystem
Programmer’s Reference “Interfaces and Drivers” section for
more information on the network interface and the calling
syntax to this function.

■ LanStop must disable the LAN chip. This is called when
pSOSystem is in the processes of switching from ROM-based
to RAM-based code and needs to be off-line from the network.
The syntax is:

void LanStop (void);

■ get_LAN_indiscards is called from ni_ioctl function in
devices/lan/lan_mib.c. It returns the number of input
packets that were discarded because of lack of resources. This
function can also be coded as a macro instead of a C function.
The syntax is:

long get_LAN_indiscards(void)

■ get_LAN_outdiscards is called from ni_ioctl function in
devices/lan/lan_mib.c. It returns the number of output
packets that were discarded because of lack of resources. This
function can also be coded as a macro instead of a C function.
The syntax is:

long get_LAN_outdiscards(void)

■ get_LAN_inerrors is called from ni_ioctl function in devices/
lan/lan_mib.c. It returns the number of input packets that
were discarded because of errors. This function can also be
coded as a macro instead of a C function. The syntax is:

long get_LAN_inerrors(void)

Chapter 9. Understanding and Developing Board-Support Packages

9-36 pSOSystem Getting Started

■ get_LAN_outerrors is called from ni_ioctl function in
devices/lan/lan_mib.c. It returns the number of output
packets that were discarded because of errors. This function
can also be coded as a macro instead of a C function. The
syntax is:

long get_LAN_outerrors(void)

9.2.2.11 lan/am7990.c

The am7990.c file contains the driver for the Advanced Micro Devices
Local Area Network Controller of Ethernet (LANCE). This driver supports
polling and interrupt driver operation and the pNA+ dependent packet
interface. To use this driver you need to supply the following board
dependent macros in the board.h file of the BSP:

■ BD_ETHER_BASE is a physical address where the first three
bytes of the Ethernet hardware address are stored. This is
assumed to be set by the manufacture of the board. The
bottom three bytes are set according to BD_ET_ADDR_0,
BD_ET_ADDR_1 and BD_ET_ADDR_2.

■ BD_ET_ADDR_0 is the low-order byte of the Ethernet
hardware address.

■ BD_ET_ADDR_1 is the middle byte of the Ethernet hardware
address.

■ BD_ET_ADDR_2 is the high byte of the Ethernet hardware
address.

■ BD_LANCE_CSR is the address of the lance control and status
register.

■ BD_LANCE_RAP is the address of the lance address port.

■ BD_LANCE_MEM is the address to the lance data area. NOTE:
This must be on a quadword boundary.

■ BD_LANCE_RBUF is the beginning address of the lance
receive buffers. It must point to a valid memory address in a
DMA range.

■ BD_LANCE_TBUF is the beginning address of the lance
transmit buffers. It must point to a valid memory address in a
DMA range.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-37

■ BD_CACHE_OFF is the method to turn off the CPU cache. It
can be a null macro if there is no CPU cache.

■ BD_CACHE_ON is the method to turn on the CPU cache. It
can be a null macro if there is no CPU cache.

■ BD_SET_ETHER_VEC is used to set the Ethernet interrupt
vector. It can be a null macro if the driver is not being used in
interrupt mode.

■ BD_DISABLE_ETHER_INTR is used to disable Ethernet
interrupts on board. It can be a null macro if the driver is not
being used in interrupt mode.

■ BD_ENABLE_ETHER_INTR is used to enable Ethernet
interrupts on board. It can be a null macro if the driver is not
being used in interrupt mode.

9.2.2.12 lan/am7990.h

The am7990.h file contains define statements specific to the AM7990
(LANCE) chip.

9.2.2.13 lan/i82596.c

The i82596.c file contains the LAN driver for the Intel 82596 Product
Family of high-performance, 32-bit LAN coprocessors. This driver
supports poll and interrupt mode, network interface broadcasts, the
pNA+ dependent packet interface, and multicast addresses. To use this
driver you need to supply the following board-dependent macros in the
board.h file of the BSP:

■ BD_ENABLE_LAN_SNOOP turns on snooping by the LAN chip.
This macro may be empty if snooping is not supported or the
board hardware does not require enabling the CPU to snoop
accesses by the i82596.

■ BD_GET_ETHER_ADDR fills in the Ethernet addressing the
Ether_Addr array. (This address is usually read from
nonvolatile RAM or a board configuration register.)

■ BD_SET_LAN_VECTOR sets the Ethernet ISR vector. For
example, the macro might be defined as:

BD_SET_LAN_VECTOR\SysSetVector(V_LAN,((void(*)())L
AN_isr), NI_WRAPPER)

Chapter 9. Understanding and Developing Board-Support Packages

9-38 pSOSystem Getting Started

you may need to replace V_LAN with some other method of
getting the vector number to set but the rest of the macro
should remain the same.

■ BD_ENABLE_LAN_INT enables the Ethernet interrupts. Most
boards have some controller chip that you are required to set
for the CPU to receive interrupts from the 82596. This macro
must contain the code to do that setting.

■ BD_LAN_INT_PENDING checks for a pending interrupt from
the 82596 using what ever method is suitable to the boards
hardware. This is usually a bit in an interrupt pending or
control register on the board or interrupt controller chip.

■ BD_CLR_LAN_INT clears an Ethernet interrupt for the 82596
using what ever method is suitable to the board’s hardware.
This is usually a bit in an interrupt pending or control register
on the board or interrupt controller chip.

■ BD_ENABLE_LAN enables the Ethernet on the board. Most
boards do not require any special enable for the 82596 and
this macro can be empty. Some boards may have chip select
registers that need programming before the 82596 can be
used. This macro must be coded for that initialization.

■ BD_CHANNEL_ATTN issues a channel attention to the SCP.
This is usually done by writing a 1 to a channel attention
register.

■ BD_WRITE_TO_82596 writes values to the 82596 command
port. It has as it only argument the value to be written. This is
done by writing a value to the 82596 command register. In
some cases this must be done one word (two bytes) at a time
with a delay between the writes. This depends on how the
82596 was interfaced to your hardware.

■ BD_SET_SCP sets up the 82596 System Configuration Pointer
for the hardware being used.

■ BD_RESET_82596 resets the i82596 chip. This is usually
done by writing to the command register. For example:

BD_RESET_82596 BD_WRITE_TO_82596((unsigned
long) 0xFFFFFFF0)

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-39

9.2.2.14 lan/i82596.h

The i82596.h file contains the chip-specific structures and defines for
the 82596 chip.

9.2.2.15 lan/lan360.c

The lan360.c file is the device driver for the Motorola MC68360 Ethernet
ports. It has no special board-specific definitions needed. This driver
supports polled and interrupt modes, broadcast, multicast, and the use
of the pNA+ dependent packet interface.

9.2.2.16 lan/lan360.h

The lan360.h file contains chip-specific structures and defines for the
Motorola MC68360 Ethernet ports.

9.2.2.17 lan/lan_mib.c

The lan_mib.c file contains the common I/O control function for all
Ethernet drivers. The I/O control commands allow the driver to interface
with SNMP, and add or change multicast address. The ni_ioctl function
in this file is called when a LAN driver gets a NI_IOCTL command. The
calling syntax is:

unsigned long ni_ioctl (unsigned long if_num, long net_type,

 unsigned long cmd, long *arg);

if_num is the interface number of the caller. The interface number is
passed to the driver in the NI_INIT command.

net_type is the type of network interface being used. This can be set to
E_NET for an Ethernet interface or SMEM_NET for a shared memory
network interface.

cmd is the command passed in the nientry structure in the NiLan call
(see the pSOSystem Programmer’s Reference “Interfaces and Drivers”
section for more information on the network interface).

arg is the command argument (if any) also passed in the nientry
structure.

Chapter 9. Understanding and Developing Board-Support Packages

9-40 pSOSystem Getting Started

9.2.2.18 serial/disi.c

The disi.c file contains a skeleton for a serial driver that conforms to the
Device Independent Serial Interface. This interface is fully described in
the pSOSystem Programmer’s Reference in the “Interfaces and Drivers”
section.

9.2.2.19 serial/ser360.c

The ser360.c file contain the low-level Device Dependent Serial Driver
code for the Motorola MC68360 processor. This code has been designed
to support two MC68360 processors: one as a Master and one as a slave.
The driver supports the SCC ports of the processor. The driver conforms
to the DISIplus specification that can support HDLC (used for example
with the X.25 Networking Component).

This driver can be extended to support additional MC68360 processors
by expanding the PinMap array in the bsps/xxx/src/board.h file (where
xxx is the BSP directory). The PinMap is an array in the file that
configures the SCC ports on the MC68360 processor. For each port, the
following pins can be configured:

■ Receive Data

■ Transmit Data

■ Transmit Clock

■ Receive Clock

■ Data Terminal Ready

■ Data Set Ready

■ Request to Send

■ Clear to Send

■ Carrier Detect

The PinMap allows the driver to be used independent of how these pins
are physically wired from the MC68360 to the serial connector. It also
determines if the pin is treated as an input or an output pin.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-41

The PinMap structure, defined in ser360.h, is as follows:

struct PinMap {

}

This structure defines one of the pins mentioned earlier. For example,
currently the third SCC on the Master MC68360 for the e360 BSP is
defined in the PinMap as follows:

The first entry, the element that defines the Receive data pin, is prefaced

ULONG available /* TRUE or FALSE */

ULONG direc-
tion

/* IN or OUT */

ULONG port; /* PORTA, PORTB, or PORTC */

ULONG bit; /* 1 to 15 bits that define the pin */

ULONG type; /* GENERAL I/O or INTERNAL to chip */

ULONG inttype; /* IANY or IHL */

/* SCC3 avail dir port bit type interrupt */

/*RXD3*/ TRUE, IN, PORTA, BIT4, INTERNAL, 0,

/*TXD3*/ TRUE, IN, PORTA, BIT5, INTERNAL, 0,

/*TCLK3*/ TRUE, OUT, PORTA, BIT12, NTERNAL, 0,

/*RCLK3/* TRUE, IN, PORTA, BIT13, INTERNAL, 0,

/*DTR3*/ TRUE, OUT, PORTB, BIT8, GENERAL, 0,

/*DSR3*/ TRUE, IN, PORTB, BIT9, GENERAL, 0,

/*RTS3*/ TRUE, IN, PORTC, BIT2, INTERNAL, 0,

/*CTS3*/ TRUE, IN, PORTC, BIT8, GENERAL, IANY,

/*CD3 */ TRUE, IN, PORTC, BIT9, GENERAL, IANY,

Chapter 9. Understanding and Developing Board-Support Packages

9-42 pSOSystem Getting Started

by the comment RXD3. The available field is set to TRUE meaning this
SCC port is available to be used for a serial channel.

The direction is set to IN which determines if the bit in the Port A Data
Direction Register (PADIR) of the MC68360 will get set or cleared. In this
case, IN it will be cleared. NOTE This can be somewhat misleading
because what this bit has to do with direction is anybody’s guess. You
really need to check the Port A Pin Assignment table in the MC68360
Motorola manual to fix the setting of this pin. For example, as you can
see in the next array entry for the Transmit data pin, the direction is also
IN which may not seem logical; however, it is correct according to the
table provided in the MC68360 manual.

The port is set to Port A so this pin is connected to one of the pins in
Port A. This determines the address of the control registers that need to
be set.

BIT4 is the bit to be set in the control registers. (In this case it will be
Port A control register.) This is dependent on what physical pin on the
MC68360 chip is wired to the function on the serial connector. Which in
this case is the Receive data pin on the serial connector wired to pin 4 of
Port A.

INTERNAL defines the type of pin. Internal configures the pin as a
dedicated on-chip peripheral. If this were set to GENERAL, the pin would
be configured as a general-purpose I/O pin.

The interrupt element is only used for pin on Port C to enable interrupts
for changes in the pin’s status. If this was a Port C pin (as are the CTS
and CD pins) setting, this to IANY would cause interrupts to be generated
for any change in the pin. Setting the interrupt element to 0 causes an
interrupt only on a high to low change. For this driver, the CTS and CD
pins should have this set to IANY.

9.2.2.20 serial/ser360.h

The ser360.h file contains the MC68360 device-specific structures and
defines needed for the ser360 driver.

9.2.2.21 serial/cd2400.c

This file contains the low-level driver code for the Cirrus Logic CL-
CD2400 Communication Controller. This low-level driver is compliant
with the DISI specification. (See the “Drivers and Interfaces” chapter of

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-43

the pSOSystem Programmer’s Reference for more information on the DISI
specification.) To use this driver you need to supply the following board-
dependent macros in the board.h file of the BSP:

■ BD_MAX_SCC must be set to the total number of serial
devices in the system.

■ BD_ALLOW_INTERRUPTS must enable interrupts to the
CD2400.

■ BD_DISALLOW_INTERRUPTS must disable interrupts to the
CD2400.

■ BD_HAS_TX_INTR produces a TRUE if a transmit interrupt is
pending.

■ BD_HAS_RX_INTR produces a TRUE if a receive interrupt is
pending.

■ BD_FORCE_TX_ACK must force a transmit interrupt
acknowledge cycle to the SCC.

■ BD_FORCE_RX_ACK must force a receive interrupt
acknowledge cycle to the SCC.

9.2.2.22 serial/cd2400.h

The cd2400.h file contains the CDS2400/2401 device-specific
structures and define statements needed for the cd2400 driver.

9.2.2.23 serial/scc302.c

The scc302.c file contains the low-level driver code for the Motorola
MC68302 Integrated Multiprotocol Processor. This low-level driver is
compliant with the DISI specification. (See the “Drivers and Interfaces”
chapter of the pSOSystem Programmer's Reference for more information
on the DISI specification.) To use the driver, you need to supply the
following board-dependent macros in the board.h file of the BSP:

■ m68302_regs provides the base address of the m68302
register structure.

■ BD_68302_HZ provides the CPU clock speed in Hertz. Used to
calculate the baud rate divider.

■ BD_M68302_MAX_SCC provides the maximum number of
SCCs to use for this BSP.

Chapter 9. Understanding and Developing Board-Support Packages

9-44 pSOSystem Getting Started

NOTE: For the MC68LC302 and MC68PM302, this should be two,
because only two SCCs are on these MCUs. If only one SCC
were required, this could be set to 1 and both ports A and B
could be used as general purpose I/O ports.

9.2.2.23.1 BD_SCC302_PIN_MAP

BD_SCC302_PIN_MAP is the pin map structure used to determine which
pins should be used for the modem control lines. Each pin map entry
consists of 5 entries: Available, Direction, Port, Bit, and Type. Available
must be TRUE if the pin for that function exists, or FALSE if that
function does not exist. Direction must be OUT if the pin is an output or
IN if it is an input. Port indicates the port that the pin is on and must be
either PORTA or PORTB. Bit is the bit number in the port that is used for
the function; it can be 1 through 15 inclusive. Type must be INTERNAL
if the pin is to be used for the function or GENERAL if the pin should be
used as a general purpose I/O pin instead. The values of Direction, Port,
Bit, and Type can also be all 0. This is used for a pin that is dedicated
to the function. For example, the SCC 1 transmitter pin would be as
follows:

 /*TXD1*/ TRUE, 0, 0, 0, 0, /*TXD1*/ \

As a further example, suppose SCC 3 were to be used on a BSP instead
of using its pins for general purpose I/O. The SCC 3 receiver pin is
shared with the port A bit 8. Its entry would be as follows:

 /*RXD3*/ TRUE, IN, PORTA, BIT8, INTERNAL, /*RXD3*/ \
BD_DPRAM_BASE

This is the base address of the m68302 dual ported RAM, which is
determined by the Base Address Register in the m68302.

9.2.2.24 serial/scc302.h

The scc302.h file contains the MC68302 device-specific structures and
defines needed for the serial driver.

9.2.2.25 serial/ser332.c

The ser332.c file contains the low-level driver code for the Motorola
MC68332 microcontroller unit (MCU). This low-level driver is compliant
with the DISI specification. (See the “Drivers and Interfaces” chapter of
the pSOSystem Programmer's Reference for more information on the DISI

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-45

specification.) To use the driver, you need to supply the following board-
dependent macros in the board.h file of the BSP:

■ BD_REGS_BASE is the base of the m68332 register structure
to use for the driver. For example:

 #define BD_REGS_BASE 0xF00000

■ BD_M68332_HZ is the CPU clock speed in Hertz. This value is
used to calculate the baud rate of a generator constant.

■ BD_SER_IRQ_LEVEL is the interrupt level for the QSM. This
is shared by the SPI and SCI.

The following macros may rely on a chan_control structure pointer
named chan that points to the channel to be affected. These macros are
optional and automatically default to null if they are not defined in the
board.h file:

■ BD_SER332_ENABLE_HWFC enables the hardware flow
control for the channel.

■ BD_SER332_DISABLE_HWFC disables the hardware flow
control for the channel.

■ BD_SER332_HWFC_RX_ON sets the channel's hardware flow
control to allow receives.

■ BD_SER332_HWFC_RX_OFF sets the channel's hardware
flow control to prevent receives.

■ BD_SER332_HWFC_TX_ON sets the channel’s hardware flow
control to ask for permission to transmit.

■ BD_SER332_HWFC_TX_OFF sets the channel’s hardware
flow control to indicate that no transmissions are pending.

■ BD_SER332_MQRY queries the modem control lines
supported by this driver. This macro must set the value for
the control lines supported in an unsigned long called temp.

■ BD_SER332_MGET returns the current state of the supported
modem control lines for the channel. This macro must set the
value in an unsigned long called temp.

■ BD_SER332_MPUT sets the state of the supported modem
control lines for the channel. This macro gets the states to set
from an unsigned long called temp.

Chapter 9. Understanding and Developing Board-Support Packages

9-46 pSOSystem Getting Started

9.2.2.26 serial/ser332.h

The ser332.h file contains the 68332 device-specific structures and
defines needed for the 68332 driver.

9.2.2.27 serial/68681.c

This file contains the low-level driver code for the Motorola MC68681
Dual Asychronous Receiver/Transmitter (DUART). This low-level driver
is compliant with the DISI specification. (See the “Drivers and Interfaces”
chapter of the pSOSystem Programmer's Reference for more information
on the DISI specification.) To use the driver you need to supply the
following board-dependent macros in the board.h file of the BSP:

■ BD_M68681_BASE is the base of the M68681 structure to use
for the driver. For example:

 #define BD_M68681_BASE ((volatile M68681 * const)0x620001)

■ BD_M68681_PAD_SIZE is the number of bytes between the
m68681 registers (it must be 1 or 3). Typically, an m68681 will
be connected to the low order byte of the CPU’s data bus and
the bottom address line or lines are not used to access the
registers of the m68681. For a CPU with a 16-bit bus, this put
the registers every other byte. For a CPU with a 32-bit data
bus, the registers are every fourth byte. So a 1 is used for a 16-
bit bus, a 3 for a 32-bit bus.

■ BD_M68681_BRG_SET is the baud rate set to use for the
m68681; it must be either BRG_SET1 or BRG_SET2. This
chooses the set of baud rates that are used by both ports of
the m68681.

■ BD_ALLOW_M68681_INTERRUPTS is used to set up any
board specific registers to allow the m68681 to interrupt the
CPU. For example, on an m68302 with the m68681 interrupt
line connected to pin 11 of port B. For example:

#define BD_ALLOW_M68681_INTERRUPTS m68302_regs->imr |=
IMR_PB11

■ BD_CLEAR_M68681_INTERRUPT is used to let a board-
specific interrupt controller know that the interrupt has been
serviced. For example, on an m68302 with the m68681
interrupt line connected to pin 11 of port B.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-47

#define BD_CLEAR_M68681_INTERRUPT m68302_regs->isr =
ISR_PB11

The following macros use a chan_control structure pointer named chan,
which points to a selected channel.

■ BD_M68681_ENABLE_HWFC enables the hardware flow
control for the channel.

■ BD_M68681_DISABLE_HWFC disables the hardware flow
control for the channel.

■ BD_M68681_HWFC_RX_ON sets the channel’s hardware flow
control to allow receives.

■ BD_M68681_HWFC_RX_OFF sets the channel’s hardware
flow control to prevent receives.

■ BD_M68681_HWFC_TX_ON sets the channel’s hardware flow
control to ask for permission to transmit.

■ BD_M68681_HWFC_TX_OFF sets the channel’s hardware
flow control to indicate that no transmissions are pending.

■ BD_M68681_MQRY queries the modem control lines
supported by this driver. This macro must set the value for the
control lines supported in an unsigned long called temp.

■ BD_M68681_MGET returns the current state of the supported
modem control lines for the channel. This macro must set the
value in an unsigned long called temp.

■ BD_M68681_MPUT sets the state of the supported modem
control lines for the channel. This macro gets the states to set
from and unsigned long called temp.

9.2.2.28 serial/68681.h

The 68681.h file contains the 68681 device-specific structures and
define statements needed for the 68681 driver. This file contains the
68681 device-specific structures and defines needed for the 68681
driver.

9.2.2.29 serial/ser340.c

The ser340.c file contains the low-level driver code for the Motorola
MC68340 Integrated Processor Unit. This low-level driver is compliant

Chapter 9. Understanding and Developing Board-Support Packages

9-48 pSOSystem Getting Started

with the DISI specification. (See the “Drivers and Interfaces” chapter of
the pSOSystem Programmer's Reference for more information on the DISI
specification.) To use the driver you need to supply the following board
dependent macros in the board.h file of the BSP:

■ BD_SER340_BASE is the base of the SER340 structure to use
for the driver. For example:

#define BD_SER340_BASE \ ((volatile SER340 *
const)(BD_M68340_REG_BASE + 0x700))

■ BD_SER340_MCR is the value to set in the module
configuration register. Must have the stop bit clear to activate
the serial module.

■ BD_SER340_IL is the level at which serial interrupts are to be
generated.

■ BD_SER340_BRG_SET is the baud rate set to use for the
m68340. It must be either BRG_SET1 or BRG_SET2. This
chooses the set of baud rates that are used by both ports of
the m68340.

■ BD_ALLOW_SER340_INTERRUPTS is used to set up any
board specific registers to allow the serial ports to interrupt
the CPU.

■ BD_CLEAR_SER340_INTERRUPT is used to let a board
specific interrupt controller know that the interrupt has been
serviced.

The following macros use a chan_control structure pointer named chan,
which points to selected channel:

■ BD_SER340_ENABLE_HWFC enables the hardware flow
control for the channel.

■ BD_SER340_DISABLE_HWFC disables the hardware flow
control for the channel.

■ BD_SER340_HWFC_RX_ON sets the channel’s hardware flow
control to allow receives.

■ BD_SER340_HWFC_RX_OFF sets the channel’s hardware
flow control to prevent receives.

■ BD_SER340_HWFC_TX_ON sets the channel’s hardware flow
control to ask for permission to transmit.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-49

■ BD_SER340_HWFC_TX_OFF sets the channel’s hardware
flow control to indicate that no transmissions are pending.

■ BD_SER340_MQRY queries the modem control lines
supported by this driver. This macro must set the value for the
control lines supported unsigned long called temp.

■ BD_SER340_MGET returns the current state of the supported
modem control lines for the channel. This macro must set the
value in an unsigned long called temp.

■ BD_SER340_MPUT sets the state of the supported modem
control lines for the channel. This macro gets the states to set
from an unsigned long called temp.

9.2.2.30 serial/ser340.h

The ser340.h file contains the 68340 device-specific structures and
define statements needed for the 68681 driver.

9.2.2.31 src/scsichip.c

The scsichip.c file contains a skeleton for a low-level SCSI driver. This
interface is fully described in the pSOSystem Programmer’s Reference in
the “Interfaces and Drivers” section.

9.2.2.32 scsi/wd33c93.c

The wd33c93.c file contains the low-level SCSI driver code for the
Western Digital WD33C93 SCSI Bus Interface Controller. This driver is
compliant with the SCSI device driver specification in the pSOSystem
Programmer’s Reference, “Drivers and Interfaces” section. To use this
driver, you need to supply the following board-dependent macros in the
board.h file of the BSP:

■ BD_Scsi_Address is the base address of WD33C93 SCSI chip.

■ BD_Scsi_Indirect_Reg must be set to the address of the
WD33C93 Indirect Register.

■ BD_Scsi_Aux_Status must be set to the address of the
WD33C93 Auxiliary Status Register.

■ BYTE0, BYTE1, BYTE2, and BYTE3 are byte manipulation
macros that need to be defined for a particular processor. For

Chapter 9. Understanding and Developing Board-Support Packages

9-50 pSOSystem Getting Started

example, for Motorola Big-Endian processors, they are defined
as follows:

#define BYTE0(x) (x & 0xFF)
#define BYTE1(x) ((x >> 8) & 0xFF)
#define BYTE2(x) ((x >> 16) & 0xFF)
#define BYTE3(x) ((x >> 24) & 0xFF)

For Little-Endian processors (for example, Intel’s 960
Little-Endian processors), they are defined as follows:

#define BYTE0(x) ((x >> 24) & 0xFF)
#define BYTE1(x) ((x >> 16) & 0xFF)
#define BYTE2(x) ((x >> 8) & 0xFF)
#define BYTE3(x) (x & 0xFF)

■ BD_DISABLE_SCSI_INTR must disable interrupts from the
WD33C93.

■ BD_ENABLE_SCSI_INTR must enable interrupts from the
WD33C93.

■ BD_SET_SCSI_VEC must set the SCSI interrupt vector.

■ BD_DISABLE_SCSI_DMA_CONTROL must disable the DMA
controller for the WD33C93.

■ BD_ENABLE_SCSI_DMA_INTR must enable the DMA
controller for the WD33C93.

■ BD_RESET_SCSI_INTR must reset and disable interrupts for
the WD33C93.

■ BD_CLEAR_SCSI_DMA_INTR must clear any interrupt
pending for SCSI dma. NOTE: this macro should only clear
pending interrupts not reset or disable interrupts.

■ BD_SCSI_DMA_SETUP must set up and enable a DMA
transfer. It takes the following arguments:

ADDR is the address of the data.
COUNT is the number of bytes to transfer.
DIRECTION is the direction of the transfer which can be
BD_TO_SCSI or BD_FROM_SCSI where BD_TO_SCSI and
BD_FROM_SCSI are defined as follows:

#define BD_TO_SCSI 1
#define BD_FROM_SCSI 2

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-51

■ BD_GET_SCSI_DMA_STATUS needs to put DMA status into
message. The message array must be set up as follows:

message[0] must contain the starting address of the DMA
message[1] must contain the numbers of bytes transferred
message[2] must contain the DMA control status byte
message[3] must contain the DMA status byte

where message is defined in the wd33c93.c file (unsigned
long message[4];)

■ BD_SCSI_DMA_STATUS must AND into the third element of
the message array to the DMA status.

message[2] & DMA Status

■ BD_WD_CHIP sets a chip structure to the SCSI chip address.
For example:

volatile struct wd_dev *wd_chip = (struct wd_dev *)
0x2400000

where 0x2400000 is the base address of the WD33C93 chip.

9.2.2.33 scsi/wd33C93.h

The wd33c93.h file contains the WD33C93 device specific structures
and define statements needed for the WD33C93 driver.

9.2.2.34 scsi/iscrp710.c, scsi/iscrp720.c, and scsi/iscrp8xx.c

The scrp710.c, scsi/iscrp720.c, and scsi/iscrp8xx.c files are compiled
script files for the NCR53C710, NCR53C720, and the NCR53C810/
825 SCSI controller chips. This code has been compiled using the NCR
NASM assembler into arrays of data that will be compiled by your C
compiler and loaded into the image file. This code contains instructions
used by the NCR chip.

9.2.2.35 scsi/ncr53cxx.c

The ncr53cxx.c file contains the low-level SCSI driver code for the
NCR53C series of SCSI controllers. This file has been tested for the
53C710, 53C720, 53C810, and 53C825 SCSI controller chips. This
driver is compliant with the SCSI device Driver Specification in the
pSOSystem Programmer’s Reference “Drivers and Interfaces” section. To

Chapter 9. Understanding and Developing Board-Support Packages

9-52 pSOSystem Getting Started

use this driver you need to supply the following board-dependent macros
in the board.h file of the BSP:

■ BD_SCSI_SET_INTR is a hook to set up the interrupt
controller for use by the NCR chip.

■ BD_SCSI_POLLED disables interrupts from the NCR chip to
the CPU so the driver can be used in a polled mode.

■ BD_SCSI_ILEV_ENABLE is a hook to set the interrupt and
enable interrupts for the NRC chip in the interrupt controller.

■ BD_SCSI_SNOOP_CONTROL is used to set the snoop control
bits in the CTEST7 register of the NCR chip. A value of 1 sets
SC0. A value of 2 sets SC1. A value of 3 sets both SC0 and
SC1. See the NCR data manual for more information on the
snoop control bits.

■ BD_SCSI_CLOCK is set to the speed of the clock connected to
the NCR chip.

■ BD_SIOP_ID is set to the Host ID of the system. This ID
depends on if the NCR chip is a 710 or an other version of the
chip. In the 710 uses the HOST_ID is represented as a bit
position where the other versions of the chip it as represented
as a byte or a short number of the actual ID number.

■ BD_SCSI_DMA_MODE is the value the DMODE register in the
NCR chip will be set to. This setting will be dependent on how
your hardware is wired to work with the NCR chip.

■ BD_SCSI_SET_NCR_BASE is set to the base address of the
NCR chip.

■ BD_SCSI_SET_VECTOR must install the interrupt vector for
the NCR chip. For example:

#define BD_SCSI_SET_VECTOR
 SysSetVector (V_SCSI, scsi_isr,
NORMAL_WRAPPER);

■ BD_SCSI_CPU_ACK_MODE is used in for the NCR53C800
series only. It is the setting of the EA bits of DCNL register.
This bit controls the behavior of the pin STERM related to the
CPU bus activities.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-53

■ BD_SCSI_BUS_TRANS_TYPE determines how the TT1 pin will
be set for synchronous SCSI transfers. The value of this bit is
inverted on the TT1 pin. Some boards use this pin to
determine what address view the NCR chip has. This is
referred to a Transfer Type. BD_SCSI_BUS_TRANS_TYPE can
be set to TT1_B or a zero. For example:

#define BD_SCSI_BUS_TRANS_TYPE TT1_B

9.2.2.36 scsi/ncr53cxx.h

The ncr53cxx.h file contains the general structures and define
statements that are common to all versions of the NCR 531 family of
controller chip.

9.2.2.37 scsi/ncr_710.h, scsi/ncr_720.h and scsi/ncr_8xx.h

These files contain the NCR chip-specific structures and define
statements for the driver. You would use the file that is appropriate for
the chip you are using.

9.3 Configuration Files
Configuration files for BSPs are located in the configs/std directory.
These files are used to configure the system for the different components.

9.3.1 Configuration File List

The following table is a list of the files and their functions in the configs/
std directory.

File Function Description

begin.s START Sets initial stack pointer and status word. This is
the entry point for pSOSystem.

SysInitVars Zeros out memory used for static variables.

begina.s This file is used when the OS and application are
built separately.

Chapter 9. Understanding and Developing Board-Support Packages

9-54 pSOSystem Getting Started

beginapi.s Entry point for position-independent applications
when linked separately.

config.mk This file is included by an application’s Makefile.
It contains the rules to build the system’s configu-
ration files.

configpi.mk This file is included by an application’s Makefile.
It contains the rules to build the system’s configu-
ration files. It is used to generate an application
containing position-independent code (app.x or
app.hex).

configre.mk This file is included by an application’s Makefile.
It contains the rules to build the system’s configu-
ration files. It is used to generate an application
containing relocatable code (only for app.x).

configxx.mk This file is included by an application’s Makefile.
It contains the rules to build the system’s configu-
ration files. This fill uses the C++ compiler.

dialog.c System start-up dialog.

SysVarsPrint Print out the current values of SysVars.

SysVarsChange Interactively lead the user through the system vari-
ables, allowing the option of changing each that is
relevant.

Dialog Conduct the startup configuration dialog.

end.s This file contains assembly code that must be the
last code point in the image file. It is used to mark
the end of the code section.

gsblkcfg.c General serial mblk configuration.

GSblkSetup Set up Mblk buffer pools.

ldcfg.c Loader configuration file.

philecfg.c pHILE+ configuration file.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-55

PhileSetup Set up the pHILE+ component.

pmontcfg.c pMONT configuration file.

PmontSetup Set up the pMONT component.

BspPmontCallout pMONT entry and exit callout.

pnacfg.c pNA+ configuration file.

PnaSetup Setup pNA+ component.

InstallNi Installs an NI driver.

pollio.c Routines for serial I/O before pREPC+ can be run.

Print Format output and send it to the console (subset of
printf).

Prompt Display the current value of a parameter, and allow
user to change it. This function is used by the
Boot-up dialog.

prepccfg.c pREPC+ configuration file.

MakeDeviceString Format a device number into ASCII device name
string.

PrepcSetup Set up the pREPC+ component.

probecfg.c pROBE+ configuration file.

ProbeSetup Set up the pROBE+ component.

ProbeEntryCallout pROBE+ entry callout.

ProbeExitCallout pROBE+ exit callout.

prpccfg.c pRPC+ configuration file.

PrpcSetup Set up the pRPC+ component.

psecfg.c pSE+ configuration file.

PseSetup Set up the pSE+ component.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

9-56 pSOSystem Getting Started

9.3.2 Detailed Function Description

9.3.2.1 begin.s

The begin.s file contains the start-up code that sets the status register
in the 68K CPU and initializes the Stack Pointer (SP register) in the CPU.

This file also contains a function called SysInitVars. This function will
set to zero all memory used by static variables or zerovars. This function
is usually the first function called by the InitBoard function in the BSP.
It should be called as early as possible because if the stack is located in
zero vars it will be cleared. This means that among other things you will
lose the return address to whatever function you came from after you
execute this function.

9.3.2.2 begina.s

The begina.s file contains startup code that will do a simple jump to the
root function. It is used when the rule app.x or app.hex is given as a
make object for the making of an application. This causes the application
only to be included in the image file. This allows the application to be
loaded separate from the OS.

9.3.2.3 config.mk

The config.mk file is included by the application’s Makefile. It contains
the rules to make different kinds of executable images that can be
downloaded to a target system. config.mk also contains the rules to
make the configuration files for the different components of pSOSystem.

psoscfg.c pSOS+ and pSOS+m configuration file.

PsosSetup Set up the pSOS+ or pSOS+m component.

InstallDriver Adds a device driver to PsosIO table.

sysinit.c Main system configuration code file.

SysInit Initialize system variables, conduct startup dialog
if configured, and set up component configuration
tables.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-57

The following targets can be made by including config.mk:

■ ram.x produces a complete pSOSystem image file called
ram.x. This file is an IEEE format file that can be downloaded
via XRAY.

■ ram.hex produces a complete pSOSystem image file called
ram.hex. This file is an S-record format file that can be
downloaded to a Target System via TFTP or the pROBE+ DL
command.

■ ramrc.x produces a pSOSystem that uses operating system
components that are contained in ROM. The image file is
called ramrc.x and is a IEEE format file that can be
downloaded via XRAY.

■ ramrc.hex produces a pSOSystem that uses operating system
components that are contained in ROM. The image file is
called ramrc.hex and is an S-record format file that can be
downloaded to a target system via TFTP or the pROBE+ DL
command.

■ rom.hex produces a pSOSystem that will be linked at ROM
address for the target system. The file produced is an S-record
image file that can be downloaded to a ROM programmer and
then programmed into a ROM.

■ os.x produces an image file called os.x. This image file will
contain the OS only and not the application code. This file can
be downloaded separately from the application image. This
image file is called os.x and is a IEEE format file that can be
downloaded via XRAY.

■ os.hex produces an image file called os.hex. This image file
will contain the OS only and not the application code. This file
can be downloaded separately from the application image. This
os.hex and is an S-record image file that can be downloaded to
a target system via TFTP or the pROBE+ DL command.

■ app.x produces an image file called app.x. This image file will
contain the application code only and no OS code. This file can
be down-loaded separately from the OS image. The app.x file is
an IEEE format file that can be downloaded via XRAY.

■ app.hex produces an image file called app.hex. This image file
will contain the application code only and no OS code. This file

Chapter 9. Understanding and Developing Board-Support Packages

9-58 pSOSystem Getting Started

can be downloaded separately from the OS image. The
app.hex file is an S-record image file format that can be
downloaded to a target system via TFTP or the pROBE+ DL
command.

9.3.2.4 configxx.mk

The configxx.mk file contains the same features as config.mk except it
is used with C++ instead of standard C.

9.3.2.5 dialog.c

The dialog.c code file contains functions that control a startup dialog.
This file is intended to be used as is when making Boot ROMs. It can also
be used as an example to produce your own custom start-up dialog. See
the “Configuration and Startup” chapter for the complete Boot-up dialog.

The SysInit function in sysinit.c calls the function Dialog in the
dialog.c file. Dialog will conduct the startup configuration dialog. This
file contains conditionally compiled code. This code depends on the
presence of the components you choose to configure into the System
Image. The choice of components is made using the sys_conf.h file in
your applications directory. The sys_conf.h file is explained in the
Chapter 7, ‘‘Configuration and Startup.”

The functions in the dialog.c file use values in the SysVars structure.
The SysVars structure is a global structure of SD_parms. It is filled in by
the Sysinit function in the sysinit.c file from a nonvolatile RAM area.
The updating of this area is also handled by the SysInit function.

9.3.2.6 end.s

The end.s file contains one variable called FreeMemStart. This variable
is used by the SysInit function in sysinit.c to allocate data areas for
components and system services. end.s is located in its own code
Section. This section is always the last section of code loaded into the
image file and will be the last address in the downloaded system that
contains code.

9.3.2.7 gsblkcfg.c

The gsblk.c file contains the function GSblkSetup. This function will
allocate space for the General Serial message blocks that are used by the

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-59

serial drivers. The number and size of the message blocks allocated is
determined by conditional defines in the sys_conf.h file. This is covered
in the “Configuration and Startup” chapter.

9.3.2.8 philecfg.c

philecfg.c is the configuration file for pHILE+. It contains the function
PhileSetup which is called from the function BuildConfigTables in the
sysinit.c file. The configuration parameters are determined by
conditional defines in the sys_conf.h file. This is covered in Chapter 7,
‘‘Configuration and Startup.”

9.3.2.9 pmontcfg.c

pmontcfg.c is the configuration file for pMONT. It contains the function
PmontSetup which is called from the function BuildConfigTables in the
sysinit.c file. The configuration parameters are determined by
conditional defines in the sys_conf.h file. This is covered in the
Chapter 7, ‘‘Configuration and Startup.”

9.3.2.10 pnacfg.c

pnacfg.c is the configuration file for pNA+. It contains the function
PnaSetup which is called from the function BuildConfigTables in the
sysinit.c file. The configuration parameters are determined by
conditional defines in the sys_conf.h file. This is covered in the
‘‘Configuration and Startup” chapter.

The pnacfg.c file uses function InstallNi to install or configure a
network interface driver into pSOSystem. The syntax is:

void InstallNi (int (*entry)(),
int ipadd,
int mtu,
int hwalen,
int flags,
int subnetaddr,
int dstipaddr)

■ int (*entry) () is the address of the driver’s network interface
function.

Chapter 9. Understanding and Developing Board-Support Packages

9-60 pSOSystem Getting Started

■ int ipadd is the IP address of the interface.

■ int mtu is the maximum transmission length of a packet sent
or received using the interface.

■ int hwalen is the length of the hardware address.

■ int flags are the interface flags.

■ int subnetaddr is the subnet address.

■ int dstipaddr is the destination IP address used in point-to-
point connections only.

The InstallNi function fills the values in the network interface table. A
pointer to the network interface table is placed into the pNA+
configuration table in the PnaSetup function (also in the pnacfg.c file).
See the “Configuration Tables” chapter in the pSOSystem Programmer’s
Reference for more information on the network interface table.

9.3.2.11 pollio.c

The pollio.c file contains two functions that are used by pSOSystem
during the booting of the system to print output and prompt for input.
These are needed because the usual functions to do printing and
prompting that are contained in pREPC+ are not initialized at this point
in the Boot process. These functions are as follows:

■ Prompt displays the current value of a parameter, and allows
it to be changed. This is used in the startup dialog. The syntax
is:

void Prompt (char *string, PARM_TYPE ptype, void
*parm_ptr)

string is the string to be printed before the prompt.

ptype is the prompt type. This is used to format the prompt.
The prompt type can be one of the following:

DECIMAL formats a decimal long

HEX formats a hex number proceeded by 0x.

FLAG prints a [Y] or a [N] depending on the value of
*parm_ptr. If *parm_ptr is 0 ‘[N]’ will be pointed. If
*parm_ptr is not 0 then ‘[Y]’ will be printed.

CHAR prints the value of *parm_ptr as a character.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-61

STRING prints the value of *parm_ptr as a string of
characters

IP prints the value of *parm_ptr as an IP address with
the form of xxx.xxx.xxx.xxx where xxx indicates a
decimal number corresponding to the class of IP
address.

These values DECIMAL, HEX, FLAG, CHAR, STRING and IP
are defined in include/apdialog.h.

parm_ptr is a pointer to the input data which is dependent
on the ptype.

■ Print is used in place of printf during system startup. The
syntax is:

unsigned long Print (char *format,...)

NOTE: The Print function should not be used in place of
printf for your application. The Print function blocks code
execution.

9.3.2.12 prepccfg.c

The prepccfg.c file is the configuration file for pREPC+. It contains the
function PrepcSetup which is called from the function
BuildConfigTables in the file sysinit.c. The configuration parameters
are determined by conditional defines in the file sys_conf.h. This is
covered in the “Configuration and Startup” chapter.

The file also contains the function MakeDeviceString. This function
formats a device number into an ASCII device name string. For example,
it takes the number 0x10000 and converts it to the characters 1.0. The
syntax is:

void MakeDeviceString (ULONG DeviceNr, UCHAR *DeviceStringPtr)

Where DeviceNr is the number to be converted and DeviceStringPtr is
the starting address to place the converted string.

9.3.2.13 probecfg.c

The probecfg.c file is the configuration file for pROBE+. It contains the
function ProbeSetup which is called from the function
BuildConfigTables in the sysinit.c file. The configuration parameters
are determined by conditional defines in the sys_conf.h file. This is

Chapter 9. Understanding and Developing Board-Support Packages

9-62 pSOSystem Getting Started

covered in the ‘‘Configuration and Startup” chapter. The Probesetup
function uses the pointer FreeMemPtr (see end.s) to allocate memory for
pROBE+’s data and stack areas.

However, you can set the define statement RC_DATASTART in
sys_conf.h to the value of an address where you want pROBE+’s data
and stack to be located instead of using the FreeMemPtr. A good reason
to do this is when you are short of memory. pROBE+ uses 0x1700 bytes
of memory for its data and stack area. By using the FreeMemPtr, it
effectively takes away memory that could have been used for pSOS+’s
region zero. If you are using the ROM supplied by Integrated Systems as
Boot ROMs or you have made Boot ROMs using the sample applications
proberom or tftp, an area of memory is set aside for the Boot ROM that
once the application has been downloaded and started will no longer be
used. You can reuse this area for pROBE+’s data and stack areas. The
area lies between the start of RAM plus 0x800 and the start of the code
section of the downloaded code. For example, if your RAM starts at
location 0 and your code starts at 0x3000, then you can set
RC_DATASTART to 0x800. pROBE+’s data and stack areas will then
occupy from 0x800 to 0x1F00 which is safely under 0x3000 where your
code starts. RC_DATASTART must always be aligned to a four-byte
boundary.

In addition to the ProbeSetup function, two other functions are of
interest in this file: the pROBE+ entry and exit call-out functions. These
functions contain calls to other functions based on what things are
present in the system determined by conditional defines in the sysconf.h
file. For example, these functions call the DIPI drivers ProbeEntry and
ProbeExit to set up the serial driver for pROBE+ input and output. If
present, the memory management functions of the MMU library will also
be called.

9.3.2.14 prpccfg.c

The prpccfg.c file is the configuration file for pRPC+. It contains the
function PrpcSetup which is called from the function
BuildConfigTables in the sysinit.c file. The configuration parameters
are determined by conditional defines in the sys_conf.h file. This is
covered in the “Configuration and Startup” chapter. The PrpcSetup
function uses the pointer FreeMemPtr (see end.s) to allocate memory for
pRPC+’s data and stack areas.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-63

However, like pROBE+ you can select your own address, one that will not
be used by pSOSystem for a starting point for pRPC+’s data area by
setting the the NR_DATA define statement in the sys_conf.h file. See
probecfg.c above for an explanation of a safe place to set this data area.
The size of the data area is also set in sys_conf.h by a define statement
called NR_DATASIZE.

9.3.2.15 psecfg.c

The psecfg.c file is the configuration file for pSE+. It contains the
function PseSetup which is called from the function BuildConfigTables
in the file sysinit.c. The configuration parameters are determined by
conditional defines in the sys_conf.h file. This is covered in the
“Configuration and Startup” chapter. The PseSetup function uses the
pointer FreeMemPtr (see end.s) to allocate memory for pSE+’s data
areas.

9.3.2.16 psoscfg.c

The psoscfg.c file is the configuration file for pSOS+. It contains the
function PsosSetup which is called from the function
BuildConfigTables in the sysinit.c file. The configuration parameters
are determined by conditional defines in the sys_conf.h file. This is
covered in the “Configuration and Startup” chapter. The PsosSetup
function uses the pointer FreeMemPtr (see end.s) to allocate memory for
pSOS+’s data areas. The function PsosSetup MUST be the last function
called that uses the FreeMemPtr because PsosSetup will allocate all
remaining memory to pSOS+’s region 0.

The psoscfg.c file also contains the function InstallDriver.
InstallDriver is called from the drv_conf.c file in your applications
directory. InstallDriver places a driver entry into the pSOS+ I/O switch
table. InstallDriver has the following syntax:

void InstallDriver(
unsigned short major_number,
void (*dev_init) (struct ioparms *),
void (*dev_open) (struct ioparms *),
void (*dev_close) (struct ioparms *),
void (*dev_read) (struct ioparms *),
void (*dev_write) (struct ioparms *),
void (*dev_ioctl) (struct ioparms *),
unsigned long rsvd1,

Chapter 9. Understanding and Developing Board-Support Packages

9-64 pSOSystem Getting Started

unsigned short rsvd2,
unsigned short flags)

As you can see, InstallDriver takes the major number of the driver given
by major_number, uses it as an index into the I/O switch table and
places the remaining arguments into their correct place in the I/O switch
table.

The flags argument has special meaning to pSOS+. Currently this flag
field is used to set an AutoInit bit that pSOS+ checks when it is
initializing. If the bit is set, pSOS+ calls the initialization function, if any,
for the driver when pSOS+ is initializing. This means you will not have to
call the driver initialization function (through the use of de_init) in your
application for any driver that has this bit set.

NOTE: Any driver that you plan to use this AutoInit feature for must not
make any system calls that need a task’s context because the
driver initialization function will be called before any task has
been started.

For example, to add a driver as major device 6 (which has only init and
read calls, for example), you add the following to SetUpDrivers() in
sysinit.c:

InstallDriver(6, DriverInit, NULLF, NULLF, DriverRead, NULLF,
NULLF, 0, 0, IO_AUTOINIT);

Where NULLF is a macro in sysinit.c defined as a null function pointer
and IO_AUTOINIT sets the flags so the driver is be initialized at startup
of pSOS+.

9.3.2.17 sysinit.c

Where HdwInit.c configures the target system’s hardware, the sysinit.c
file configures the target system’s components, drivers, and some
miscellaneous software functions.

The sysinit.c file is filled with conditional compile options. It draws
values for these conditional code options from several sources such as
sys_conf.h and bsp.h. This conditional compiled code ensures that the
system image file only contains code for things you have configured into
the system and nothing more. You should never need to alter this file. All
configuration is done through the values you set for the define
statements in the included files.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-65

The last function that is called in the initialization process before pSOS+
is started is SysInit. This is the function that configures the system
software. SysInit performs the following actions:

■ A structure of default system values will be used if there are no
previous values: the values for these variables initially will
come from the sys_conf.h file. All of the values that are
prefaced with SD_ in the sys_conf.h file are used to set this
structure.

■ If this is a boot of a ROM-based system (executing out of ROM)
all initialized variables are copied to their correct place in RAM
from where they have been stored in ROM.

■ All system values stored in nonvolatile RAM are read into the
SysVars structure. If the define statement
SC_SD_PARAMETERS is set to STORAGE in the application’s
sys_conf.h file, these values replace the default values used in
step 1. If SC_SD_PARAMETERS is set to SYS_CONF, the
values set in step 1 will not be overwritten.

■ If any BSP or application values are stored in nonvolatile RAM,
they are read and stored.

■ The FreeMemPtr pointer is set from the FreeMemStart
address in end.s.

■ The serial driver is initialized.

■ If configured, the startup dialog is run and variables are set
with the results of the dialog.

■ Configuration tables for configured components are set up.

■ If a floating-point processor is present, the floating-point
exception vectors are set.

■ The serial driver is initialized again because values may have
changed during the running of the dialog.

■ If pROBE+ was configured into the system, the probe_init
function is called and pROBE+ takes over from here.

■ If pROBE+ was not configured into the system and pSOS+ or
pSOS+m was, the pSOS+ initialization function is called and
pSOS+ takes over from here.

Chapter 9. Understanding and Developing Board-Support Packages

9-66 pSOSystem Getting Started

■ If neither pSOS+ nor pROBE+ was configured into the system,
control passes directly to the application.

9.4 drivers Directory
The drivers directory contains the common parts of the device drivers in
pSOSystem. In some cases the entire driver is in the file in the drivers
directory. Such is the case for the RAM disk driver. In other cases these
common parts are designed to mate to device specific parts located in the
bsp/devices directory. This is the case for the serial driver located in the
file diti.c and the SCSI driver located in the scsi.c file.

9.4.1 drivers Directory File List

Below is a table of files and functions located in the drivers directory.

File Function Description

dipi.c pROBE+’s interface to the low-level DISI serial
driver.

diti.c Device Independent Terminal Interface (DITI) that
interfaces a terminal to the low-level DISI serial
driver.

drv_cutl.c Utilities used by various drivers.

ScratchPadTest Determines if a bit is set in a task’s register.

ScratchPadSet Sets a bit in a task’s register.

ScratchPadUnSet Clears a bit in a task’s register.

gsblk.c General serial message block functions.

gsblk_initbuffers Initializes the message block buffers configured by
the user. Called by GSblkSetup in configs/std/
gsblkcfg.c.

gs_allocb Allocates a message block.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-67

gs_esballoc Attaches a message buffer to user buffer.

gs_freemsg Frees a message block and associated data blocks.

ki_smem.c Kernel interface to shared memory used with
pSOS+m.

ki Entry point for the driver that follows the kernel
interface specification.

ni_smem.c Network interface that enables the use of pNA+
using a shared memory interface.

NiSmem Entry point for the driver that follows the network
interface specification.

ramdisk.c RAM disk driver.

RdskInit Initialization function for de_init calls for the
RAM disk driver.

RdskWrite Write function for de_write calls for the RAM disk
driver.

RdskRead Read function for de_read calls for the RAM disk
driver.

rarp.c Contains routines that implement the RARP proto-
col.

RarpEth Get IP address with RARP for specified Ethernet
interface.

GetRarpServerIP Return the IP of the last server that answered a
RARP request.

rules.mk Contains the Make rules for the files in this direc-
tory.

scsi.c This is the upper-level common part of the SCSI
driver. This is an initiator-only driver that supports
SCSI disks and SCSI tape devices.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

9-68 pSOSystem Getting Started

SdrvInit Driver initialization function for de_init calls for
the SCSI driver.

SdrvCntrl Driver I/O control function for de_ioctl calls of a
disk or tape device for the SCSI driver.

SdskRead Disk read function for de_read calls of a disk
device for the SCSI driver.

SdskWrite Disk write function for de_write calls of a disk
device for the SCSI driver.

StapeRead Tape read function for de_read calls of a tape
device for the SCSI driver.

StapeWrite Tape write function for de_write calls of a tape
device for the SCSI driver.

StapeOpen Tape open function for de_open calls of a tape
device for the SCSI driver.

StapeClose Tape close function for de_close calls of a tape
device for the SCSI driver.

smem_isr.c SmemIsr Shared-memory interrupt service routine passed to
SmemIntInit function used in both the KI and NI
functions.

tftp_drv.c Driver for TFTP.

TftpInit TFTP driver initialization function for de_init
calls.

TftpOpen TFTP driver open function for de_open calls.

TftpClose TFTP driver close function for de_close calls.

TftpRead TFTP driver read function for de_read calls.

TftpCntl TFTP I/O control function for de_ioctl calls.

File Function Description

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-69

9.4.2 Detailed File Description

9.4.2.1 dipi.c

The device independent pROBE+ interfaces file, dipi.c, is the connection
between pROBE+ and the DISI serial driver. The dipi.c file defines seven
functions that correspond to pROBE+’s configured I/O procedures:

In addition to the interface functions, the interface module will also
contain the functions that will change the mode of the serial driver to
polled mode and save the current state of the channel. The pointers to
the entry and exit functions will be entered into the pROBE+
configuration table as follows:

pROBE+
Config Table
Entry Name dipi.c Function Name Description

rc_ioinit ProbeIOInit Initializes the console and host channels.

rc_consts ProbeConsts Returns console status.

rc_conin ProbeConin Gets a character from the console.

rc_conout ProbeConout Sends a character to the console.

rc_hstst ProbeHstst Returns host channel status.

rc_hstin ProbeHstin Gets a character from the host channel.

rc_hstout ProbeHstout Sends a character to the host channel.

pROBE+
Config Table
Entry Name dipi.c Function Name Description

rc_entry ProbeEntry pROBE+ entry function

rc_exit ProbeExit pROBE+ exit function

Chapter 9. Understanding and Developing Board-Support Packages

9-70 pSOSystem Getting Started

ProbeIOInit sets up and opens the pROBE+ console and pROBE+ host
channels. The pROBE+ console and host channels defined in sys_conf.h
as SC_PROBE_CONSOLE and SC_PROBE_HOST. During the
initialization of pSOSystem, a call is made to ProbeSetup. In the
ProbeSetup function, the external variable ProbeCon is set to
SC_PROBE_CONSOLE and the external variable ProbeHst is set to
SC_PROBE_HOST. The ProbeIOInit function uses the values of
ProbeCon and ProbeHst to open the pROBE+ channels and set up any
necessary buffers for the I/O from those channels.

ProbeConsts/ProbeHststs functions return an unsigned long that
contains the input status of the port. ProbeConsts/ProbeHststs is in
effect, a way for pROBE+ to poll for input. Internally, characters are
polled for by using the DISI call SerialIoctl with the SIOCPOLL
command. The SIOCPOLL command acts as an interrupt and checks the
channel’s status. If characters are received for the channel, then the
ProbeDataInd function is called. If there has been an exception, then the
ProbeExpInd function is called. The DIPI must be able to receive blocks
of characters at a time. Once a block of characters has been received by
the DIPI, the ProbeConsts function should check the characters in the
blocks to determine the status to return instead of using the SIOCPOLL
command every time. The SIOCPOLL command may still need to be used
if the character being looked for is not in any current receive block. For
example, if the typecode is ‘2’, then pROBE+ is looking for a Break
character. If there is no Break character in any block received, then the
SIOCPOL command will be used to see if there are any more characters
that have been received by the Lower Level Device Dependent Code.

ProbeConin/ProbeHstin returns a character that has been received
from the channel. ProbeConin/ProbeHstin should be called only after
ProbeConsts/ProbeHststs has indicated that a character is present in
receive buffers for the channel. Internally, a character is removed from a
block of characters received and returned to pROBE+.

ProbeConout/ProbeHstout sends the character to the port and return.
Internally, a character will be put into a data block where the size is one.
This data block will be part of a message block that will be used in a call
to the DISI SerialSend function. Then the DISI call SerialIoctl with the
command SIOCPOLL will be called in a loop until pROBE+’s UDataCnf
function is called. A call to UDataCnf will indicate that the character has
been sent. UDataCnf sets a flag that the function will test when the
SIOCPOLL command returns. ProbeConout/ProbeHstout then returns.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-71

ProbeEntry tells the DISI serial driver that pROBE+ is being entered by
sending the I/O control command SIOCPROBEENTRY to the serial
driver. The serial driver sets itself up for pROBE+ I/O.

ProbeExit tells the DISI serial driver that pROBE+ is being exited by
sending the I/O control command SIOCPROBEEXIT to the serial driver.
The serial driver resets itself for normal operation.

9.4.2.2 diti.c

The diti.c file contains the terminal device driver that follows the Device
Independent Terminal Interface (DITI) specification. A full description of
the DITI can be found in the “Drivers and Interfaces” section of the
pSOSystem Programmer’s Reference.

9.4.2.3 drv_cutl.c

The drv_cutl.c file contains common C utilities that can be used by
device drivers. Currently, this file has the following utility functions:

■ ScratchPadTest determines if a particular bit is set in a task’s
note-pad register. The syntax is:

unsigned long ScratchPadTest (unsigned long tid,

unsigned long register_number,
unsigned long bit_number);

tid is the Task ID of the task with the register you want to
test.
register_number in the note-pad register number to be
tested.
bit_number is the bit in the note-pad register to be tested.

■ ScratchPadSet sets a bit in a task’s note-pad register. The
syntax is:

unsigned long ScratchPadSet (unsigned long tid,

unsigned long register_number,
unsigned long bit_number)

tid is the Task ID of the task with the register you want to
set.
register_number in the note-pad register number to be set.
bit_number is the bit in the note-pad register to be set.

Chapter 9. Understanding and Developing Board-Support Packages

9-72 pSOSystem Getting Started

■ ScratchPadUnSet clears a bit in a task’s note-pad register.
The syntax is:

unsigned long ScratchPadUnSet (unsigned long tid,
unsigned long register_number,
unsigned long bit_number)

tid is the Task ID of the task with the register you want to
clear.
register_number in the note-pad register number to be
cleared.
bit_number is the bit in the note-pad register to be cleared.

9.4.2.4 gsblk.c

The gsblk.c file contains the message block management functions that
are used by the serial drivers. These message blocks are similar to
streams message blocks. The structures used in these utilities are
defined in pna.h. (for example, mblk_t which is the message block
structure). The gsblk.c file contains the following functions:

■ gs_allocb allocates a message block of type M_DATA and
buffer of a size greater or equal to the specified size. On
success, this utility returns a pointer to the allocated message
block or a NULL if it fails to get a message block. The syntax is:

mblk_t *gs_allocb (int size, int pri)

size is the size in bytes of the data buffer required.
pri is the priority of the allocation request which can be
BPRI_LO, BPRI_MED or BPRI_HI. However, this feature is
not used by gs_allocb.

■ gs_esballoc attaches a message buffer to data buffer. It does
this by allocating a data block of size 0, and a message block
and copying the address of the supplied data buffer to the
correct element of the mblk_t structure. The function has the
following syntax:

mblk_t *gs_esballoc (unsigned char *base, int size, int
pri, frtn_t *frtn)

base is a pointer the caller supplied address to a data buffer
that should be attach to an mblock.
size is the size of the caller’s data buffer.
pri is not used.
frtn is a pointer to a caller supplied frtn_t structure. This

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-73

structure looks like this:

struct free_rtn
{
void (*free_func)();
void *free_arg;
}
typedef struct free_rtn frtn_t;

This structure is defined in the pna.h file in the include
directory.

free_func is a caller supplied address to a function that is
called as part of the gs_freemsg call (explained next).
gs_freemsg calls free_func so the user knows the data
buffer is free to use again.
free_arg is a pointer to a user-supplied argument that is
passed on to the user-supplied free function.

■ gs_freemsg frees a message and associated data blocks. The
syntax is:

void gs_freemsg (register mblk_t *mp)

mp is the pointer to the message block to be freed.

9.4.2.5 ki_smem.c

The ki_smem.c file contains C source code that implements the kernel
interface described in the “Interfaces and Drivers” section of the
pSOSystem Programmer’s Reference. The main entry point is the ki
function. See the “Interfaces and Drivers” section of the pSOSystem
Programmer’s Reference for more information.

9.4.2.6 ni_smem.c

The ni_smem.c file contains the C source code that implements the
Shared Memory Network Interface. pNA+ uses this interface as it would
for an Ethernet to communicate with other processor boards through the
use of shared memory. The main entry point is the function NiSmem.
See the “Interfaces and Drivers” section of the pSOSystem Programmer’s
Reference for more information on the network interface.

Chapter 9. Understanding and Developing Board-Support Packages

9-74 pSOSystem Getting Started

9.4.2.7 ramdisk.c

The ramdisk.c file, contains a pHILE+ compatible “RAM disk” driver. The
size of the RAM disk is determined by a parameter passed during the
initialization call, indicating the size of the disk in blocks. (The size of
each block is determined by the logical block size specified in the pHILE+
configuration table.) The memory for the RAM disk is then obtained from
pSOS+ region 0. The driver contains the following functions:

■ RdskInit is the de_init entry point of this driver. It initializes
the RAM disk by getting memory from pSOS+ region 0.

■ RdskWrite is the de_write entry point for the driver. This is
not normally called directly by the user but instead used
through pHILE+. pHILE+ uses this entry point to perform
function such as create a pHILE+ volume and write files.

■ RdskRead is the de_read entry point for the driver. This is not
normally called directly by the user but instead used through
pHILE+. pHILE+ will used this entry point to perform
functions such as read a file.

9.4.2.8 rarp.c

The rarp.c file contains a utility to conduct a RARP over the network.
This includes the following functions:

■ RarpEth can be used to get an IP address with RARP for
specified Ethernet interface. This function can be executed
before pSOS+ is running but does need pNA+ to be initialized.
The syntax is:

unsigned long RarpEth(long (*NiLanPtr) (ULONG fn_code,
union nientry *p))

The one argument is the address of the entry point to the
Ethernet driver. For example: IPaddr = RarpEth ((long
(*)())NiLan); Where NiLan is the name of the Ethernet driver
entry point.

RarpEth function is used in the file drv_conf.c located in the
application directory. It is used by the function SetUpNI to
install an Ethernet driver into the Network Interface Table
before pSOS+ is initialized.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-75

■ GetRarpServerIP will get the IP of the last server that
answered a RARP request. The syntax is:

unsigned long GetRarpServerIP(void)

This function returns the IP address of the system that
answered the last RARP request. This is useful if the RARP
server is also the boot server. GetRarpServerIP can then be
used to TFTP the system image into memory and then boot
the image. An example of this is in the tftp sample application.
The tftp application is used to create Boot ROMs that can boot
a system via TFTP on the Ethernet. Unlike RarpEth,
GetRarpServerIP must be used after the pSOS+ kernel has
been initialized.

9.4.2.9 rules.mk

The rules.mk file contains the make rules for the files in the drivers
directory. It should be included in the makefile for a BSP.

9.4.2.10 scsi.c

The scsi.c file contains the common code of all the SCSI device drivers.
This driver follows the SCSI driver interface found in the “Interfaces and
Drivers” section of the pSOSystem Programmer’s Reference.

This driver is an initiator-mode-only SCSI driver.

NOTE: pSOSystem does not support a Target Mode SCSI driver.

This driver supports the following devices:

■ Hard disk drives - Depending on the lower-level hardware and
code, both 8-bit and 16-bit (wide) SCSI bus formats are
supported.

■ CD-ROM drives

■ Optical drives - Tested with Fujitsu M2511A

■ Floppy drives - Tested with Tech FC-1-11

■ Tape drives - Tested with Archive 2150s and Exabyte EXB-
8205

Chapter 9. Understanding and Developing Board-Support Packages

9-76 pSOSystem Getting Started

9.4.2.11 smem_isr.c

The smem_isr.c file contains the function SmemIsr. This is a common
interrupt function for shared memory interrupts. It is used by both
ki_smem.c and ni_smem.c. The ISR uses two call-outs to notify the KI
and NI that an interrupt has happened. These call-outs are the ki_check
and ni_check functions.

For the Shared Memory KI, when an interrupt comes in, the SmemIsr
function calls the ki_check function (located in ki_smem.c). ki_check
in turn calls the pSOS+m notification procedure. The pSOSystem
notification procedure calls the KI entry point, ki_call (in ki_call.s)
which in turn calls the ki function (in ki_smem.c) to do the work of
getting the message from the shared memory.

For the Shared Memory NI when an interrupt comes in, the SmemIsr
function calls the ni_check function (located in ni_smem.c). ni_check
in turn calls the pNA+ announce packet entry point. The pNA+ announce
packet procedure calls the NI entry point NiSmem, (located in
ni_smem.c) to do the work of getting the packet from the shared memory
interface.

9.4.2.12 tftp_drv.c

The TFTP driver tftp_drv.c provides the capability to handle up to eight
simultaneous open channels transferring data over a network from a
remote host using the TFTP protocol. (The channel numbers are coded in
the minor part of the device number.) A complete example application is
located in apps/tftp. This example serves as the Boot ROM application
for pSOSystem for target systems that have networking capabilities. The
TFTP driver is also used by the Network Utilities product.

This driver contains the following functions:

■ TftpInit is the de_init entry point for the driver. TftpInit
function initializes the TFTP interface. This call should be
used through the de_init system call. For example:

rc = de_init (DEV_TFTP, &TftpIopb, &ioretval, (void **)
&data);

DEV_TFTP is the major number of the TFTP driver shifted 16
bits to the left.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-77

TftpIopb is a pointer to a TFTP_IOPB structure defined in
include/drv_intf.h. This structure is not used in the de_init
call.

ioretval stores the return value from the call (same as rc).

data is not used.

■ TftpOpen is the de_open entry point for the driver. TftpOpen
call allocates a free channel, starts a server task, and waits for
an ACK_MSG from the server before returning. This call
should be used through the de_open system call. For example:

rc = de_open (DEV_TFTP, &TftpIopb, &ioretval);

DEV_TFTP is the MAJOR/MINOR number of the channel to be
opened.

TftpIopb is a TFTP_IOPB structure (defined in include/
drv_intf.h). It contains two elements, the IP address of the
server and the name of the file to request from the server.

ioretval stores any error code from the driver.

■ TftpRead is the de_read entry point for the driver. This
function reads from a remote file located on the server selected
in the de_open. This call should be used through the de_read
system call. For example:

rc = de_read (DEV_TFTP, &TftpReadIopb, &ioretval);

DEV_TFTP is the MAJOR/MINOR number of the channel to be
read.

TftpReadIopb is a TFTP_READ_IOPB structure (defined in
include/drv_intf.h) that contains two elements, count which
is the number of bytes to read from the file and address which
is a pointer to the data area to store the data read from the file.

ioretval stores any error code from the driver.

Chapter 9. Understanding and Developing Board-Support Packages

9-78 pSOSystem Getting Started

■ TftpClose is the de_close entry point for the driver. This
function closes the connection to the TFTP server. This call
should be used through the de_close system call. For
example:

de_close (DEV_TFTP, &TftpIopb, &ioretval);

DEV_TFTP is the MAJOR/MINOR number of the channel to be
opened.

TftpIopb is a TFTP_IOPB structure (defined in include/
drv_intf.h). This is not currently used in the de_close call.

ioretval stores any error code from the driver.

9.5 include Directory Files
The include files for BSPs are located in the include directory. This
directory contains include files that serve as the interface to many parts
of pSOSystem such as device drivers and components. The details are
provided in the following table.

File Description

apdialog.h Prototypes of functions used in an applications dia-
log.

bspfuncs.h Prototypes of driver functions and defines for
board related functions.

configs.h Definitions for the node configuration table struc-
ture.

ctype.h Standard C character-manipulation macros. For
example, ‘isalpha’.

disi.h Structures and defines for the DISI interface.

diti.h Structures and defines for the DITI interface.

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-79

drv_intf.h Driver interface structures and driver specific
defines.

errno.h Defines for pREPC+ error numbers.

gsblk.h Defines and prototypes for the General Serial
Block interface.

lan_mib.h Definition of the mib_stat used in the NI drivers.

m68881.h Floating-point functions.

math.h C language math defines.

mmulib.h Structures and defines used with the MMU library.

phile.h Structures and defines used with pHILE+.

philecfg.h pHILE+ configuration table structure.

pmontcfg.h pMONT configuration table structure.

pna.h Structures and defines used with pNA+.

pnacfg.h pNA+ configuration table structure.

prepc.h Structures and defines used with pREPC+.

prepccfg.h pREPC+ configuration table structure.

probe.h Defines used with the pROBE+ debugger.

probecfg.h pROBE+ configuration table structure.

prpccfg.h pRPC+ configuration table structure.

psecfg.h pSE+ configuration table structure.

psos.h Structures and defines used with pSOS+ and
pSOS+m kernels.

psoscfg.h pSOS+ and pSOS+m configuration table structure,
structure for I/O jump table prototype for the
InstallDriver function.

File Description

Chapter 9. Understanding and Developing Board-Support Packages

9-80 pSOSystem Getting Started

9.6 System Files
The sys directory contains the components and system libraries for
BSPs. The components are compiled and made into a library call sys.lib
and syscxx.lib for C and C++ systems. The libraries and systems
services can be linked into any application.

The sys directory has two subdirectories: os and libc.

■ The os directory contains the component files that you
purchased, the bindings files that come with pSOSystem and
the files to build a library of components.

■ The libc directory contains products that are delivered in
library form. Some of these products, such as the MMU library
come with pSOSystem while others must be purchased
separately, such as Network Utilities.

9.6.1 os Directory

The os directory contains:

■ Binding files - These files are loaded into the system image
and are the entry points to the system calls referred to the
pSOSystem System Calls manual. The functions in these files
place a specific function number in the D0 register and then

scsi.h Contains defines and command structures for the
SCSI drivers.

stdarg.h Macro definitions for variable argument lists.

stdio.h I/O definitions for pREPC+.

sysvars.h Definition for the SD_parms structure for the
stored system variables.

types.h Various common definitions used throughout
pSOSystem.

version.h Contains defines for version and copyright strings.

File Description

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-81

execute a trap instruction using the SVCTRAP (service trap)
number. pSOS+ will then do what is needed to call the actual
system call code using the function number.

The following is a table of bindings and corresponding
filenames:

NOTE: pSOSystem supplies all the bindings files for the
components. This allows your application to compile and link
without having the component installed. However, at run time
a call to a system call where the component is missing results
in the following ERR_SSFN error message:

Illegal system service function number.

■ Component files contain encoded data that represents a
component image. These files are assembled into the system
library. The system library is then linked into the system
image if you choose to link in the OS. The presence of any of
these files depends on the components you have installed.

The following is a table of components and corresponding
filenames:

File Description

psos.s Run-time bindings for pSOS+

pna.s Run-time bindings for pNA+

phile.s Run-time bindings for pHILE+

prpc.s Run-time bindings for pRPC+

pse.s Run-time bindings for pSE+

ptli.s Run-time bindings for pTLI+

pskt.s Run-time bindings for pSKT+

pmont.s Run-time bindings for pMONT

Chapter 9. Understanding and Developing Board-Support Packages

9-82 pSOSystem Getting Started

■ Build files are used to build sys.lib and sysxx.lib, makefile
and filelist. executing make with no arguments builds both
sys.lib and sysxx.lib. you can also execute it with an
argument of sys.lib or sysxx.lib to build one or the other.

The makefile uses the mklibmk (utility name) to create a
version of itself that contains lists of the correct objects for the

File Component

ks680.s pSOS+ kernel (68000)

ks681.s pSOS+ kernel (68010)

ks682.s pSOS+ kernel (68020)

ks683.s pSOS+ kernel (68360)

ks686.s pSOS+ kernel (68060)

km680.s pSOS+m kernel (68000)

km681.s pSOS+m kernel (68010)

km682.s pSOS+m kernel (68020)

km683.s pSOS+m kernel (68360)

km686.s pSOS+m kernel (68060)

rs68k.s pROBE+ debugger

fs68k.s pHILE+ file system manager

lc68k.s pREPC+ run-time C library

ns68k.s pNA+ networking manager

nr68k.s pRPC+ RPC component

pn68k.s pSE+, pTLI+ and pSKT+ OpEN
components

pm68k.s pMONT component

Chapter 9. Understanding and Developing Board-Support Packages

 pSOSystem Getting Started 9-83

components you have in your system. The mklibmk utility
takes two arguments, a directory to search and a file list of
valid files; mklibmk creates a list of object files that will be
built. A object file is named in the list if there is an entry in the
file filelist and there is a source file in the directory for it.

After all components have been installed and when new components are
added or updated you must make the sys.lib and sysxx.lib to include
the new components in those libraries.

9.6.2 libc Directory

The sys/libc directory contains libraries that can be included in your
application. The libraries in this directory will depend on what products
you have purchased. The following libraries are included in the base
release of pSOSystem:

Other products such as OpEN and Network Utilities add libraries to the
libcs directory. The manuals that accompany them describe the names
and functions in their libraries.

Library Description

fpu040.lib Floating-point functions for the MC68040

fpu060.lib Floating-point functions for the MC68060

loader.lib Loader functions (see pSOSystem Programmer’s Reference)

mmu68030.lib Memory Management functions for the MC68030 processor (see
pSOSystem Programmer’s Reference)

mmu68040.lib Memory Management functions for the MC68040 and MC68060
processors (see pSOSystem Programmer’s Reference)

Chapter 9. Understanding and Developing Board-Support Packages

9-84 pSOSystem Getting Started

pSOSystem Getting Started A-1

A Board-Specific
Information

This appendix contains information on individual hardware products,
such as PROM locations and switch settings. The sections are organized
by manufacturer and product. Table A-1 provides a summary of the
specific boards described in this appendix.

Table A-1 Summary of Board-Specific Information

Board Path Section Page

Motorola FADS68302 $PSS_ROOT/bsps/e302 A.1 A-2

Motorola EVS-68332 $PSS_ROOT/bsps/e332 A.2 A-7

Motorola EVS-68340 $PSS_ROOT/bsps/e340 A.3 A-11

Motorola MVME162 $PSS_ROOT/bsps/m162 A.4 A-14

Motorola MVME162LX
(2xx)

$PSS_ROOT/bsps/m162_2xx A.5 A-18

Motorola MVME162FX
(5xx)

$PSS_ROOT/bsps/m162_5xx A.6 A-22

Motorola MVME167 $PSS_ROOT/bsps/m167 A.7 A-25

Motorola MVME177 $PSS_ROOT/bsps/m177 A.8 A-29

Appendix A. Board-Specific Information

A-2 pSOSystem Getting Started

A.1 Motorola FADS68302
Directory $PSS_ROOT/bsps/e302 contains a pSOSystem Board
Support-Package (BSP) for the Motorola FADS68302 evaluation board.
This BSP supports the MC68302, MC68LC302, and MC68PM302
processors.

A.1.1 ROM Installation and Hardware Setup

All switches and jumpers should be set to the default values listed in the
FADS68302 Manual. The flashmem.hex file must be loaded into the
flash using the Motorola debugger. See the Section A.1.5, ‘‘Making
pSOSystem Flash Code” for information on how to load the
flashmem.hex file into the flash.

A terminal should be connected to the DB-9 connector marked P2
TERMINAL.

A.1.2 Flash Memory Programming

Rather than a pSOSystem Boot ROM set, the e302 BSP contains an
S-record file ($PSS_ROOT/bsps/e302/flashmem.hex), which is
intended to be programmed into the flash memory of the FADS board.
You can do this by using the Motorola IMPbug monitor (installed in ROM
socket U48) to download flashmem.hex over the serial line and program
it into flash memory. The following QUICCbug command should be used
for downloading the file:

lo 40000

Next, use the appropriate command for your terminal emulation
program to download flashmem.hex.

Motorola QUADS-
68360

$PSS_ROOT/bsps/e360 A.9 A-33

EST SBC360 $PSS_ROOT/bsps/sbc360 A.10 A-38

Table A-1 Summary of Board-Specific Information

Board Path Section Page

Appendix A. Board-Specific Information

pSOSystem Getting Started A-3

Example of downloading and programming the flash using the UNIX tip
utility.

If downloading using tip, the flashmem.hex file will need to be
downloaded in pieces. This can be done by entering the command:

split flashmem.hex

To program the flashmem.hex file into the FADS board’s flash memory,
take the following steps:

1. Issue the following command to the Motorola IMPbug:

lo 40000

2. Download the flashmem.hex file using your terminal soft-
ware.

If you are using tip, you will probably need to use this modi-
fied download procedure:

a) Download the split pieces of the file from tip.

b) Type ~>

tip prompts as follows:

Local file name?

Enter xaa preceded by a pathname (for example, ~/apps/bootrom/xaa)
After the file is transferred the IMPbug will send a series of dots followed
by a newline. After the newline send xab the same way. Repeat this until
all the files created by spilt have been sent.

After the complete flashmem.hex has been downloaded (or split pieces
have been downloaded), the Motorola IMPbug prompt should appear.
Issue the following command to the IMPbug:

lof 40000 57FFF 240000

IMPbug will ask for confirmation. Retype:

lof 40000 57FFF 240000

The flash memory will be programmed with the pROBE+ ROM code.

Appendix A. Board-Specific Information

A-4 pSOSystem Getting Started

To enter the pROBE+ now stored in the flash memory, issue the following
command to the Motorola IMPbug:

go 240008

The pROBE+ boot dialog should appear.

A.1.3 Serial Channel Usage

The pSOSystem BSP for the FADS68302 includes serial drivers for all
five of its serial channels. pSOSystem serial channels 1 and 2 are ports
A and B of the M68681 DUART. pSOSystem serial channels 3, 4, and 5
are the M68302’s on-chip serial channels. (SCC 1, 2, and 3, respectively)

A TTL-to-RS232 voltage level converter must be connected to the board
for the M68302’s on-chip serial channels. An example converter
schematic is available through Integrated Systems Technical Support.

Note that serial channels 1 and 2 are wired differently. If both are
connected to similar equipment, such as a host system, one of them
requires a null modem and the other does not. Serial channel 2 may have
the DCD and Tx pins reversed from their standard pinouts, if you have
an early version of the board.

NOTE: This BSP will work on the old ADS68302 board by
changing the define BD_M68681_BASE to 0x400001
instead of 0x620001. This define statement is in the
$PSS_ROOT/bsps/e302/src/board.h file. After making
the change you will need to compile the BSP.

A.1.4 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The ROMs for the FADS68302 use RAM addresses
0 - 0x3FFF, so do not download code to this area. The entry point for
downloaded systems is 0x4008 if the operating system and application
are linked together. If the operating system and application are linked
separately, the entry point for the downloaded operating system is
0x30008.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-5

A.1.5 Making pSOSystem Flash Code

The pSOSystem Boot ROMs for the FADS68302 are built using the code
in sample application apps/proberom. You can build a custom Boot
ROM set by taking the following steps and then changing the code as
needed (the example commands are for a UNIX host system):

1. Copy the proberom file from the PSS_ROOT/apps directory to
a working directory:

cp -r $PSS_ROOT/apps/proberom rombuild

2. Make the working directory the current directory:

cd rombuild

ROM 0025’7FFF
0024’8000

pROBE+ code in ROM

0024’7FFF
0024’0000

Boot ROM startup and driver code

DRAM 0007’FFFF
0000’4000

For downloaded operating system and
application linked together. (When linked
separately, the application occupies
0000’4000 - 0002’FFFF and operating
system occupies 0003’0000 - 0007’FFFF.)

0000’3FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Parameter Storage Area

0000’06FF
0000’0400

Not used by pSOSystem software

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

A-6 pSOSystem Getting Started

3. Edit makefile and set PSS_BSP to $(PSS_ROOT)/bsps/e302
and PSS_COMLIB to -l mcc68kab.lib (see your MRI compiler
documentation for information about setting environment
variables to help the linker locate the library). If the line has a
comment mark, remove it.

NOTE:When making a Boot ROM for the ADS68302
board, you must change the code address from
240000 to 200000 in the $PSS_ROOT/bsps/
e302/rom.lnk file before completing step 4.

4. Enter the following command:

make rom.hex

5. Use the splitrom utility to relocate the rom.hex file to 0 by
entering the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b 240000
128 flashmem.hex

NOTE: Integrated Systems has found that running the Motorola
Diagnostic Self Test clears flash memory of everything
but the Motorola Debug Monitor Code. If you run this
test, you will have to reload the Boot ROM code into flash
memory.

For the ADS68302 boards you will need to make a PROM. In that case
the rom.hex file is linked to be located at 0x200000, so set the PROM
programmer to expect load addresses in the range 0x200000 -
0x23FFFF. Optionally, you can use a program called splitrom to split
rom.hex into files that correspond to the ROMs and load at zero. To use
splitrom, use the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b 200000 256 rom.u46
rom.u47

where HOST is the name of the host system (for example,
sunos, msdos, hpux, and aix).

NOTE: When downloading from a lost system, the serial channel
baud rate cannot be more than 9600 baud.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-7

Special Note on Processor Clock Speed

The driver for the Serial Communications Controller and timer are
designed to work at different system clock rates. These drivers use the
#define BD_68302_HZ to determine the system clock rate.
BD_68302_HZ must be set to the CPU clock rate (This CPU clock rate is
half the actual crystal rate). For example, if the CPU rate was 16.67 Mhz,
then BD_68302_HZ would be set as follows:

#define BD_68302_HZ = 16666667

By default, pSOSystem used a CPU clock rate of 16.67 Mhz when the
bsp.lib was compiled for the release. If this clock needs to be changed,
then the BSP must be recompiled.

A.2 Motorola EVS-68332
Directory $PSS_ROOT/bsps/e332 contains a pSOSystem BSP for the
Motorola EVS-68332 evaluation board.

A.2.1 ROM Installation and Hardware Setup

The socket and jumper numbering in this section refer to revision C of
the platform board (M68332PFB). See the Motorola documentation for
earlier revisions. The development interface board (M68332BCCDI) is not
needed, so installing it is optional.

Install the ROMs labeled U2 and U4 in the appropriate sockets on the
platform board. The pSOSystem ROMs for the M68332EVS are 27512
EPROMs. To configure the board for these ROMs, jumpers J2 and J3
must be set to CSBOOT; jumpers J4 and J7 must be set to EPROM; and
jumpers J5 and J6 must be set to 27C512.

The M68332BCC comes as either revision A or revision B, and the
pSOSystem ROMs work with either revision. If you use a revision A
M68332BCC, jumpers J8-J13 on the platform board must be set to A.
The platform board comes without jumper pins installed for J8-J13 and
instead has traces that connect the revision B selections. So, to use a
revision A M68332BCC, you may first have to cut these traces and install
jumper pins for J8-J13.

If a revision B M68332BCC is installed but no jumper pins are installed
on the platform board for J8-J13, it nevertheless works because the

Appendix A. Board-Specific Information

A-8 pSOSystem Getting Started

default configuration of the platform board is for revision B
M68332BCCs. If pins already exist at these locations, make sure the
jumpers are in the B position.

On the M68332BCC, pins 2 and 3 on jumper J6 must be connected. This
configuration disables the M68332BBC EPROM that contains Motorola's
332Bug and allows the pSOSystem ROMs to boot instead. Some
M68332BCCs may have a trace that connects pins 1 and 2 on J6. If this
connection exists, the trace must be cut. The other jumpers on the
M68332BCC should have the default settings.

A terminal should be connected to the platform board DB-9 connector
marked TERMINAL. The serial protocol is 9600 baud, 8-bit data, 1 stop
bit, and no parity.

A.2.2 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The ROMs for the EVS-68332 use RAM addresses 0
- 0x3FFF, so do not download code to this area. The entry point for
downloaded systems is 0x4008 if the operating system and application
are linked together. Linking the operating system and application
separately is not possible without adding memory to this board.

Unless additional memory has been installed on the board, you must use
the ramrc memory configuration instead of the ram configuration.
ramrc uses the pROBE+ and pSOS+ code in the Boot ROMs and thus
saves RAM space.

ROM 0009’FFFF
0009’0000

pROBE+ code in ROM

0008’FFFF
0008’C000

pSOS+ code in ROM

0008’BFFF
0008’0000

Boot ROM startup and driver code

Appendix A. Board-Specific Information

pSOSystem Getting Started A-9

A.2.3 Making a pSOSystem Boot ROM

The pSOSystem Boot ROMs for the EVS-68332 are built using the code
in sample application apps/proberom and a modified version of the
e332 BSP. You can build a custom Boot ROM set by taking the following
steps and then changing the code as needed (the example command lines
are for a UNIX host system):

1. Copy PSS_ROOT/apps/proberom to a working directory:

cp -r $PSS_ROOT/apps/proberom rombuild

2. Copy the contents of PSS_ROOT/bsps/e332 to the same
working directory. Use a recursive copy so that the src subdi-
rectory is copied as well:

cp -r $PSS_ROOT/bsps/e332/* rombuild

3. Make the working directory the current directory:

cd rombuild

4. Edit src/board.h and set BD_BCC_VERSION to
BD_BCC_TEST.

5. Switch to subdirectory src, enter the make command, and
return to the working directory when the build is finished:

SRAM 0001’FFFF
0001’0000

Expansion SRAM

0000’FFFF
0000’4000

Downloaded operating system and
application

0000’3FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Parameter Storage Area

0000’06FF
0000’0400

Not used by pSOSystem software

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

A-10 pSOSystem Getting Started

cd src
make
cd ..

6. Is the makefile, set PSS_BSP to “.” (which means the current
directory).

7. In the dummy.c file, and add the following lines to the end of
the file:

extern void psos1(void);
static void a(void){psos1();}

8. Enter the following command:

make rom.hex

The resulting file is rom.hex. It is an S-record hex file you can load into
a PROM programmer. This file is linked to be located at 0x80000, so set
the PROM programmer to expect load addresses in the range 0x80000 -
0x81FFFF. Optionally, you can use a program called splitrom to split
rom.hex into files that correspond to the ROMs and load at 0. To use
splitrom, use the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b 80000 128 rom.u4 rom.u2

where HOST is the name of the host system (for example, sunos, msdos,
hpux, and aix.

A.2.4 Additional Information

The M68332EVS is very limited in memory. The system comes with only
the 64 Kbytes of SRAM on the M68332BCC. An additional 64 Kbytes can
be added by inserting a 32-Kbyte SRAM in sockets U1 and U3 on the
platform board. The pSOSystem software maps the 64 Kbytes of the
M68332BCC RAM to 0x0000-0xFFFF. If RAM is installed in U1/U3, it is
mapped to 0x10000-0x1FFFF. The chip-select logic for U1/U3 is set for
0 wait states, so it requires SRAMs of 100 ns or faster.

If you use a revision A M68332BCC, you must edit the board.h file in the
$PSS_ROOT/bsps/e332/src directory and change the
BD_BCC_VERSION definition to REVA. By default, the pSOSystem
software is set to build applications for revision B M68332BCCs. The
pSOSystem ROMs work on either revision.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-11

If Your Code is Not Working:

Two revisions of the 68332 BBCC exist: revision A and revision B (this
BSP supports both). You can determine which revision is present two
ways. You can determine the revision at compile-time by setting the
BD_BCC_VERSION definition in PSS_ROOT/bsps/e332/src/board.h
to either BD_BCC_REVA or BD_BCC_REVB. You can determine the
revision at run time by setting the definition of BD_BCC_VERSION to
BD_BCC_TEST. However, the test to determine the board revision may
corrupt the RAM and therefore should be used only in code that runs
from (EP)ROM. If you set BD_BCC_VERSION to BD_BCC_TEST and run
the resulting code from RAM, it may not work. If you incorrectly define
BD_BCC_VERSION to BD_BCC_REVA or BD_BCC_REVB, the resulting
code does not work. pSOSystem ROMs should be made with
BD_BCC_VERSION set to BD_BCC_TEST so they can work with either
board revision.

The Delay100ms call for the e332 BSP calculates a constant based on
the CPU clock rate. It divides the CPU Hz by a constant. This constant
was determined at 16.78 MHz running the code out of ROMs with six
wait states programmed. If the number of wait states for the ROM
changes or the code is run in the faster SRAM, you must adjust this
constant.

A.3 Motorola EVS-68340
Directory $PSS_ROOT/bsps/e340 contains a pSOSystem BSP for the
Motorola EVS-68340 evaluation board.

A.3.1 ROM Installation and Hardware Setup

The socket and jumper numbering that follows applies to revision C of
the platform board (M68340PFB). Consult the Motorola documentation
for earlier revisions. The development interface board (M68340BCCDI) is
not needed, so installing it is optional.

Install the ROMs labeled U2 and U4 in the appropriate sockets on the
platform board. The pSOSystem ROMs for the M68340EVS are 27512
EPROMs. To configure the board for these ROMs, jumpers J2 and J3
must be set to CSBOOT; jumpers J4 and J7 must be set to EPROM; and
jumpers J5 and J6 must be set to 27C512.

Appendix A. Board-Specific Information

A-12 pSOSystem Getting Started

On the M68340BCC, pin 2 must connect to pin 3 on jumper J2. This
disables the M68340BBC EPROM containing Motorola’s 340Bug and
allows the pSOSystem ROMs to boot instead. The other jumpers on the
M68340BCC should have the default settings.

A terminal should be connected to the platform board DB-9 connector
marked TERMINAL. The serial protocol is 9600 baud, 8-bit data, 1 stop
bit, and no parity.

A.3.2 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The ROMs for the EVS-68340 use RAM addresses 0
through 0x3FFF, so do not download code to this area. The entry point
for downloaded systems is 0x4008 if the operating system and
application are linked together. Linking the operating system and
application separately is not possible without adding memory to this
board.

Unless additional memory has been installed on the board, you must use
the ramrc memory configuration instead of the ram configuration. The
ramrc configuration uses the pROBE+ and pSOS+ code in the Boot
ROMs and thus saves RAM space.

ROM 0007’8FFF
0006’9000

pROBE+ code in ROM

0006’8FFF
0006’5000

pSOS+ code in ROM

0006’4FFF
0006’0000

Boot ROM startup and driver code

Appendix A. Board-Specific Information

pSOSystem Getting Started A-13

A.3.3 Making a pSOSystem Boot ROM

The pSOSystem Boot ROMs for the EVS-68340 are built using the code
in sample application apps/proberom. You can build a custom Boot
ROM set by taking the following steps and then changing the code as
needed (the example command lines are for a UNIX host system):

1. Copy PSS_ROOT/apps/proberom to a working directory:

cp -r $PSS_ROOT/apps/proberom rombuild

2. Make this working directory your current directory:

cd rombuild

3. Edit makefile and set PSS_BSP to $(PSS_ROOT)/bsps/e340.
If the line has a comment mark, remove it.

4. Edit dummy.c and add the following lines to the end of the
file:

extern void psos1(void);
static void a(void){psos1();}

SRAM 0001’FFFF
0001’0000

Expansion SRAM

0000’FFFF
0000’4000

Downloaded operating system and
application

0000’3FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Parameter Storage Area

0000’06FF
0000’0400

Not used by pSOSystem software

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

A-14 pSOSystem Getting Started

5. Enter the following:

make rom.hex

The resulting file is rom.hex. It is an S-record hex file you can load into
a PROM programmer. This file is linked to be located at 0x60000, so you
must set the PROM programmer to accept load addresses in the range
0x60000 - 0x7FFFFF. Optionally, you can use a program called splitrom
to split rom.hex into files that correspond to the ROMs and load at 0.
Execute splitrom by entering the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b 60000 128 rom.u4
rom.u2

where HOST is the name of the host system (for example, sunos, msdos,
hpux, and aix).

A.3.4 Additional Information

The M68340EVS is very limited in memory. The system comes with only
64 Kbytes of SRAM on the M68340BCC. You can add an additional 64
Kbytes by inserting 32 Kbytes SRAMs in sockets U1 and U3 on the
platform board. The pSOSystem environment maps the 64 Kbytes of the
M68340BCC RAM to 0x0000-0xFFFF. If RAM is installed in U1/U3, it is
mapped to 0x10000-0x1FFFF. The chip-select logic for U1/U3 is set for
zero wait states, so SRAMs 100 ns or faster are required.

A.4 Motorola MVME162
Directory $PSS_ROOT/bsps/m162 contains a pSOSystem BSP for the
Motorola MVME162 board.

A.4.1 ROM Installation and Hardware Setup

Install the ROM in socket U38. The pSOSystem ROMs for the MVME162
are 27C040 OTPROMs. To configure the board for these ROMs, connect
pins 2-3 on jumper J21. The MVME162 has the ability to power up either
from the ROM in socket U38 or from the MBUG monitor that comes
programmed into flash memory. To enable the pSOSystem ROM, the
jumper connecting pins 9 and 10 of jumper block J22 must be removed
prior to powerup.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-15

A terminal can be connected either to the front panel connector marked
SERIAL PORT 1/CONSOLE or, if a transition module is used
(MVME712M, MVME712A, MVME712AM, or MVME712B), to the
transition module connector marked SERIAL PORT 2/TTY01. Using a
transition module may require a null modem adapter, and this depends
on the module’s jumper settings. The serial protocol is 9600 baud, 8-bit
data, 1 stop bit, and no parity. For an Ethernet interface, a cable from
the connector marked ETHERNET on the transition module must be
connected to the Ethernet transceiver.

Be sure the system controller jumper is set correctly, with pins 1 and 2
of jumper J1 connected if the board is the system controller and
disconnected if the board is not.

A.4.2 Serial Channel Usage

The MVME162 has two serial channels. They are pSOSystem serial
channels 1 and 2.

A.4.3 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The Boot ROMs use RAM from 0x800 through
0x1FFFF, so do not attempt to use them to download code to this area.
The entry point for downloaded systems is 0x28008 if the operating
system and application are linked together. If the operating system and
application are linked separately, the entry point for the downloaded
operating system is 0x60008.

These boards are available with varying DRAM sizes. The sizes include
4 Mb, 8 Mb, 16 Mb, and 32 Mb. In the memory map below, xx should be
replaced by 03, 07, 0F, or 1F as appropriate.

NVRAM FFFC’00FF
FFFC’0000

Parameter Storage Area

Appendix A. Board-Specific Information

A-16 pSOSystem Getting Started

A.4.4 Making a pSOSystem Boot ROM

The pSOSystem Boot ROM for the MVME162 are built using the code in
sample application apps/tftp and a slightly modified version of the
m162 BSP. You can build a custom Boot ROM by taking the following
steps and then changing the code as needed (the example commands are
for a UNIX host system):

1. Copy PSS_ROOT/apps/tftp to a working directory:

ROM FF83’9FFF
FF82’2000

pNA+ code in ROM

FF82’1FFF
FF81’2000

pROBE+ code in ROM

FF81’1FFF
FF80’E000

pSOS+ code in ROM

FF80’DFFF
FF80’0000

Boot ROM startup and driver code

RAM 0xxF’FFFF
0002’8000

Downloaded operating system and
application, when linked together. When
linked separately, application occupies
0002’8000 - 0005’FFFF and operating
system occupies 0006’0000 - 0xxF’FFFF

0002’7FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Not used by pSOSystem software

0000’06FF
0000’0580

Reserved for Shared Memory Kernel
Interface (SMKI) Directory

0000’057F
0000’0400

Reserved for Shared Memory Network
Interface (SMNI) Directory

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

pSOSystem Getting Started A-17

cp -r $PSS_ROOT/apps/tftp rombuild

2. Make the working directory the current directory:

cd rombuild

3. If you are using the pSOS+m kernel instead of the pSOS+ ker-
nel, edit sys_conf.h and set SC_PSOS to NO and SC_PSOSM
to YES.

4. Enter the following command:

make rom.hex

The resulting file is rom.hex. It is an S-record hex file you can load into
a PROM programmer. This file is linked to be located at 0xFF800000, so
set the PROM programmer to expect load addresses in the range
0xFF800000 - 0xFF83FFFF. Optionally, you can use a program called
splitrom to relocate rom.hex to 0.

To use splitrom, enter the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b FF800000 256 rom.u38

where HOST is the name of the host system (for example, sunos, msdos,
hpux, and rs6000).

A.4.5 VMEbus Configuration Information

The following list contains configuration information for VMEbus. The
item gives a pSOSystem default, when applicable.

■ The System Controller is jumper-enabled.

■ The programmable bus arbitration mode is either round-robin or
priority. The pSOSystem default is round-robin.

■ The default for the programmable bus request level is 3.

■ The programmable bus release mode can be either release on
request or release when done. The pSOSystem default is release
on request.

■ The pSOSystem default for the register-enabled FAIR bus
request mode is enabled.

■ The programmable master data bus width is either 32 or 16 bits.
The pSOSystem default is 32 bits.

Appendix A. Board-Specific Information

A-18 pSOSystem Getting Started

■ Register-enabled re-arbitration is possible after a 256-
microsecond arbiter timeout. The pSOSystem default is for re-
arbitration to be enabled.

■ The programmable VMEbus global timeout is 8, 64, or 256
microseconds, or else disabled. The pSOSystem default is the
256-microsecond VMEbus global timeout.

■ The programmable bus request timeout can be 1, 32, or 64
microseconds, or else disabled. The pSOSystem default is the
32-millisecond bus request timeout.

A.5 Motorola MVME162LX
Directory $PSS_ROOT/bsps/m162_2xx contains a pSOSystem BSP for
the Motorola MVME162LX board. NOTE the LX boards all labeled as
MVME 162-2xx. Where xx is the specific board. MVME162LX boards are
in the 200 series.

A.5.1 ROM Installation and Hardware Setup

Install the ROM in socket U24. The pSOSystem ROMs for the MVME162
are 27C040 OTPROMs. To configure the board for these ROMs, connect
pins 2-3 on jumper J21. The MVME162 has the ability to power up either
from the ROM in socket U26 or from the MBUG monitor that comes
programmed into flash memory. To enable the pSOSystem ROM, the
jumper connecting pins 9 and 10 of jumper block J22 must be removed
prior to powerup.

A terminal is connected to the front panel connector marked
CONSOLE 1. This requires a null modem adapter. The serial protocol is
9600 baud, 8-bit data, 1 stop bit, and no parity. For an Ethernet
interface, a cable from the connector marked ETHERNET PORT on the
front panel must be connected to the Ethernet transceiver.

Be sure the system controller jumper is set correctly, with pins 1 and 2
of jumper J1 connected if the board is the system controller and
disconnected if the board is not.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-19

A.5.2 Serial Channel Usage

The MVME162 has four serial channels. They are pSOSystem serial
channels 1, 2, 3, and 4.

A.5.3 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The Boot ROMs use RAM from 0x800 through
0x1FFFF, so do not attempt to use them to download code to this area.
The entry point for downloaded systems is 0x28008 if the operating
system and application are linked together. If the operating system and
application are linked separately, the entry point for the downloaded
operating system is 0x60008.

These boards are available with varying DRAM sizes. The sizes include
4 MB, 8 MB, 16 MB, and 32 MB. In the memory map below, xx should
be replaced by 03, 07, 0F, or 1F as appropriate.

NVRAM FFFC’00FF
FFFC’0000

Parameter Storage Area

ROM FF83’4FFF
FF82’2000

pNA+ code in ROM

FF82’1FFF
FF81’2000

pROBE+ code in ROM

FF81’1FFF
FF80’E000

pSOS+ code in ROM

FF80’DFFF
FF80’0000

Boot ROM startup and driver code

Appendix A. Board-Specific Information

A-20 pSOSystem Getting Started

A.5.4 Making a pSOSystem Boot ROM

The pSOSystem Boot ROM for the MVME162 are built using the code in
sample application apps/tftp and a slightly modified version of the
m162 BSP. You can build a custom Boot ROM by taking the following
steps and then changing the code as needed (the example commands are
for a UNIX host system):

1. Copy PSS_ROOT/apps/tftp to a working directory:

cp -r $PSS_ROOT/apps/tftp rombuild

2. Make the working directory the current directory:

cd rombuild

3. If you are using the pSOS+m kernel instead of the pSOS+ ker-
nel, edit sys_conf.h and set SC_PSOS to NO and SC_PSOSM
to YES.

4. Enter the following make command:

make rom.hex

RAM 0xxF’FFFF
0002’8000

Downloaded operating system and
application, when linked together. When
linked separately, application occupies
0002’8000 - 0005’FFFF and operating
system occupies 0006’0000 - 0xxF’FFFF

0002’7FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Not used by pSOSystem software

0000’06FF
0000’0580

Reserved for Shared Memory Kernel
Interface (SMKI) Directory

0000’057F
0000’0400

Reserved for Shared Memory Network
Interface (SMNI) Directory

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

pSOSystem Getting Started A-21

The resulting file is rom.hex. It is an S-record hex file you can load into
a PROM programmer. This file is linked to be located at 0xFF800000, so
set the PROM programmer to expect load addresses in the range
0xFF800000 - 0xFF83FFFF. Optionally, you can use a program called
splitrom to relocate rom.hex to 0.

To use splitrom, enter the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b ff800000 256 rom.u38

where HOST is the name of the host system (for example, sunos, msdos,
hpux, and aix).

A.5.5 VMEbus Configuration Information

The following list contains configuration information for VMEbus. The
item gives a pSOSystem default, when applicable.

■ The System Controller is jumper-enabled.

■ The programmable bus arbitration mode is either round-robin or
priority. The pSOSystem default is round-robin.

■ The default for the programmable bus request level is 3.

■ The programmable bus release mode can be either release on
request or release when done. The pSOSystem default is release
on request.

■ The pSOSystem default for the register-enabled FAIR bus
request mode is enabled.

■ The programmable master data bus width is either 32 or 16 bits.
The pSOSystem default is 32 bits.

■ Register-enabled re-arbitration is possible after a
256-microsecond arbiter timeout. The pSOSystem default is for
re-arbitration to be enabled.

■ The programmable VMEbus global timeout is 8, 64, or 256
microseconds, or else disabled. The pSOSystem default is the
256-microsecond VMEbus global timeout.

■ The programmable bus request timeout can be 1, 32, or 64
microseconds, or else disabled. The pSOSystem default is the
32-millisecond bus request timeout.

Appendix A. Board-Specific Information

A-22 pSOSystem Getting Started

A.6 Motorola MVME162FX
Directory $PSS_ROOT/bsps/m162_5xx contains a pSOSystem BSP for
the Motorola MVME162FX board. NOTE the FX boards all labeled as
MVME 162-5xx. Where xx is the specific board. MVME162LX boards are
in the 500 series.

A.6.1 ROM Installation and Hardware Setup

Install the ROM in socket U47. The pSOSystem ROMs for the MVME162
are 27C040 EPROMs. To configure the board for these ROMs, connect
pins 2-3 on jumper J21. The MVME162 has the ability to power up either
from the ROM in socket U47 or from the MBUG monitor that comes
programmed into flash memory. To enable the pSOSystem ROM, the
jumper connecting pins 9 and 10 of jumper block J22 must be removed
prior to powerup.

A terminal can be connected either to the front panel connector marked
SERIAL PORT 1/CONSOLE or, if a transition module is used
(MVME712M, MVME712A, MVME712AM, or MVME712B), to the
transition module connector marked SERIAL PORT 2/TTY01. Using a
transition module may require a null modem adapter, and this depends
on the module’s jumper settings. The serial protocol is 9600 baud, 8-bit
data, 1 stop bit, and no parity. For an Ethernet interface, a cable from
the connector marked ETHERNET on the transition module must be
connected to the Ethernet transceiver.

Be sure the system controller jumper is set correctly, with pins 1 and 2
of jumper J1 connected if the board is the system controller and
disconnected if the board is not.

A.6.2 Serial Channel Usage

The MVME162 has two serial channels. They are pSOSystem serial
channels 1 and 2.

A.6.3 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The Boot ROMs use RAM from 0x800 through
0x1FFFF, so do not attempt to use them to download code to this area.
The entry point for downloaded systems is 0x28008 if the operating

Appendix A. Board-Specific Information

pSOSystem Getting Started A-23

system and application are linked together. If the operating system and
application are linked separately, the entry point for the downloaded
operating system is 0x60008.

These boards are available with varying DRAM sizes. The sizes include
4 MB, 8 MB, 16 MB, and 32 MB. In the memory map below, xx should
be replaced by 03, 07, 0F, or 1F as appropriate.

NVRAM FFFC’00FF
FFFC’0000

Parameter Storage Area

ROM FF83’4FFF
FF82’2000

pNA+ code in ROM

FF82’7FFF
FF81’2000

pROBE+ code in ROM

FF81’7FFF
FF80’E000

pSOS+ code in ROM

FF80’DFFF
FF80’0000

Boot ROM startup and driver code

RAM 0xxF’FFFF
0002’8000

Downloaded operating system and
application, when linked together. When
linked separately, application occupies
0002’8000 - 0005’FFFF and operating
system occupies 0006’0000 - 0xxF’FFFF

0002’7FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Not used by pSOSystem software

0000’06FF
0000’0580

Reserved for Shared Memory Kernel
Interface (SMKI) Directory

0000’057F
0000’0400

Reserved for Shared Memory Network
Interface (SMNI) Directory

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

A-24 pSOSystem Getting Started

A.6.4 Making a pSOSystem Boot ROM

The pSOSystem Boot ROM for the MVME162 are built using the code in
sample application tftp and a slightly modified version of the m162 BSP.
You can build a custom Boot ROM by taking the following steps and then
changing the code as needed (the example commands are for a UNIX host
system):

1. Copy PSS_ROOT/apps/tftp to a working directory:

cp -r $PSS_ROOT/apps/tftp rombuild

2. Make the working directory the current directory:

cd rombuild

3. If you are using the pSOS+m kernel instead of the pSOS+ ker-
nel, edit the sys_conf.h file and set SC_PSOS to NO and
SC_PSOSM to YES.

4. Enter the following make command:

make rom.hex

The resulting file is rom.hex. It is an S-record hex file you can load into
a PROM programmer. This file is linked to be located at 0xFF800000, so
set the PROM programmer to expect load addresses in the range
0xFF800000 - 0xFF83FFFF. Optionally, you can use a program called
splitrom to relocate rom.hex to 0.

To use splitrom, enter the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b FF800000 256 rom.u38

where HOST is the name of the host system (for example, sunos, msdos,
hpux, and aix).

A.6.5 VMEbus Configuration Information

The following list contains configuration information for VMEbus. The
item gives a pSOSystem default, when applicable.

■ The System Controller is jumper-enabled.

■ The programmable bus arbitration mode is either round-robin or
priority. The pSOSystem default is round-robin.

■ The default for the programmable bus request level is 3.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-25

■ The programmable bus release mode can be either release on
request or release when done. The pSOSystem default is release
on request.

■ The pSOSystem default for the register-enabled FAIR bus
request mode is enabled.

■ The programmable master data bus width is either 32 or 16 bits.
The pSOSystem default is 32 bits.

■ Register-enabled re-arbitration is possible after a 256-
microsecond arbiter timeout. The pSOSystem default is for re-
arbitration to be enabled.

■ The programmable VMEbus global timeout is 8, 64, or 256
microseconds, or else disabled. The pSOSystem default is the
256-microsecond VMEbus global timeout.

■ The programmable bus request timeout can be 1, 32, or 64
microseconds, or else disabled. The pSOSystem default is the
32-millisecond bus request timeout.

A.7 Motorola MVME167
Directory $PSS_ROOT/bsps/m167 contains a pSOSystem BSP for the
Motorola MVME167 board.

A.7.1 ROM Installation and Hardware Setup

Install the ROMs labeled XU1 and XU2 in the appropriate sockets. The
MVME167 ROM size configuration is done by software, so no jumper size
selection is necessary.

A transition module (MVME712M) must be connected to the MVME167
and a terminal should be connected to the transition module connector
marked SERIAL PORT 1/CONSOLE. The serial protocol is 9600 baud, 8-
bit data, 2 stop bits, and no parity. Using a transition module may
require a null modem adapter, and this depends on the MVME712M’s
jumper settings. For an Ethernet interface, a cable from the connector
marked ETHERNET on the transition module must be connected to the
Ethernet transceiver.

Appendix A. Board-Specific Information

A-26 pSOSystem Getting Started

Be sure the system controller jumper is set correctly, with pins 1 and 2
of jumper J1 connected if the board is the system controller and
disconnected if the board is not.

A.7.2 Serial Channel Usage

The m167 BSP supports all four serial channels on the target board. The
pSOSystem serial channel numbers correspond to the labels on the
MVME712M module. For example, output to pSOSystem serial
channel 3 is sent to serial port 3 on the transition module.

A.7.3 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The Boot ROMs use RAM from 0x800 through
0x27FFF, so do not attempt to use them to download code to this area.
The entry point for downloaded systems is 0x28008 if the operating
system and application are linked together. If the operating system and
application are linked separately, the entry point for the downloaded
operating system is 0x60008.

The MVME167 is available with varying DRAM sizes. The sizes include
4 MB, 8 MB, 16 MB, 32 MB, and 64 MB. In the memory map diagram,
xx should be replaced by 03, 07, 0F, 1F, or 3F as appropriate.

NVRAM FFFC’00FF
FFFC’0000

ROM FF83’DFFF
FF82’B000

pNA+ code in ROM

FF82’AFFF
FF81’B000

pROBE+ code in ROM

FF81’AFFF
FF81’7000

pSOS+ code in ROM

FF81’6FFF
FF80’0000

Boot ROM startup and driver code

Appendix A. Board-Specific Information

pSOSystem Getting Started A-27

A.7.4 Making a pSOSystem Boot ROM

The pSOSystem Boot ROMs for the MVME167 are built using the code in
sample application tftp and a slightly modified version of the m167 BSP.
You can build a custom Boot ROM set by taking the following steps and
then changing the code as needed (the example commands are for a
UNIX host system):

1. Copy PSS_ROOT/apps/tftp to a working directory:

cp -r $PSS_ROOT/apps/tftp rombuild

2. Make the working directory the current directory:

cd rombuild

3. If you are using the pSOS+m kernel instead of the pSOS+ ker-
nel, edit the sys_conf.h file, and set SC_PSOS to NO and
SC_PSOSM to YES.

RAM 0xxF’FFFF
0002’8000

Downloaded operating system and
application, when linked together. When
linked separately, application occupies
0002’8000 - 0005’FFFF and operating
system occupies 0006’0000 - 0xxF’FFFF

0002’7FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Not used by pSOSystem software

0000’06FF
0000’0580

Reserved for Shared Memory Kernel
Interface (SMKI) Directory

0000’057F
0000’0400

Reserved for Shared Memory Network
Interface (SMNI) Directory

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

A-28 pSOSystem Getting Started

4. Enter the following command:

make rom.hex

The resulting file is rom.hex. It is an S-record hex file you can load into
a PROM programmer. This file is linked to be located at 0xFF800000, so
set the PROM programmer to expect load addresses in the range
0xFF800000 - 0xFF87FFFF. Optionally, you can use a program called
splitrom to divide rom.hex into files corresponding to the two ROMs.

To use splitrom, enter the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex ws ff800000 128 rom.u1
rom.u2

where HOST is the name of the host system (for example, sunos, msdos,
hpux, and aix).

A.7.5 VMEbus Configuration Information

The following list contains configuration information for VMEbus. The
item gives a pSOSystem default, when applicable.

■ The System Controller is jumper-enabled.

■ The programmable bus arbitration mode is either round-robin or
priority. The pSOSystem default is round-robin.

■ The pSOSystem default for the programmable bus request level
is 3.

■ The programmable bus release mode is either release on request
or release when done. The pSOSystem default is release when
done.

■ FAIR bus request mode is enabled.

■ The programmable master data bus width is either 32 or 16 bits.
The pSOSystem default is restricted to 32 bits.

■ Register enabled re-arbitration can occur after a 256-
microsecond arbiter timeout. The pSOSystem default is to have
re-arbitration enabled.

■ The programmable VMEbus global timeout can be 8, 64, or 256
microseconds, or else it is disabled. The pSOSystem default is
the 256-microsecond VMEbus global timeout.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-29

■ The programmable bus request timeout can be 1, 32, or 64
microseconds, or else disabled. The pSOSystem default is the
32-millisecond timeout.

A.8 Motorola MVME177
Directory $PSS_ROOT/bsps/m177 contains a pSOSystem BSP for the
Motorola MVME177 board.

A.8.1 ROM Installation and Hardware Setup

Install the ROMs labeled XU1 and XU2 in the appropriate sockets. The
MVME177 ROM size configuration is done by software, so no jumper size
selection is necessary.

A transition module (MVME712M) must be connected to the MVME177
and a terminal should be connected to the transition module connector
marked SERIAL PORT 1/CONSOLE. The serial protocol is 9600 baud, 8-
bit data, 2 stop bits, and no parity. Using a transition module may
require a null modem adapter, and this depends on the MVME712M’s
jumper settings. For an Ethernet interface, a cable from the connector
marked ETHERNET on the transition module must be connected to the
Ethernet transceiver.

If pins 1 and 2 are jumpered, the board is the system controller. If no
pins are jumpered, the board is not the system controller. If pins 2 and
3 are jumpered, the auto-system controller is enabled and the board
automatically becomes the system controller if it is in slot 1.

A.8.2 Serial Channel Usage

The m177 BSP supports all four serial channels on the target board. The
pSOSystem serial channel numbers correspond to the labels on the
MVME712M module. For example, output to pSOSystem serial channel
3 goes to Serial Port 3 on the transition module.

A.8.3 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0. The Boot ROMs use RAM from 0x800 through

Appendix A. Board-Specific Information

A-30 pSOSystem Getting Started

0x27FFF, so do not attempt to use them to download code to this area.
The entry point for downloaded systems is 0x28008 if the operating
system and application are linked together. If the operating system and
application are linked separately, the entry point for the downloaded
operating system is 0x60008.

The MVME177 is available with varying DRAM sizes. The sizes include
4 MB, 8 MB, 16 MB, 32 MB, and 64 MB. In the memory map diagram,
xx should be replaced by 03, 07, 0F, 1F, or 3F as appropriate.

NVRAM FFFC’00FF
FFFC’0000

ROM FF84’1FFF
FF82’F000

pNA+ code in ROM

FF82’EFFF
FF81’F000

pROBE+ code in ROM

FF81’EFFF
FF81’B000

pSOS+ code in ROM

FF81’AFFF
FF80’0000

Boot ROM startup and driver code

Appendix A. Board-Specific Information

pSOSystem Getting Started A-31

A.8.4 Making a pSOSystem Boot ROM

The pSOSystem Boot ROMs for the MVME177 are built using the code in
sample application apps/tftp and a slightly modified version of the
m177 BSP. You can build a custom Boot ROM set by taking the following
steps and then changing the code as needed (the example commands are
for a UNIX host system):

1. Copy PSS_ROOT/apps/tftp to a working directory:

cp -r $PSS_ROOT/apps/tftp rombuild

2. Make the working directory the current directory:

cd rombuild

3. If you are using the pSOS+m kernel instead of the pSOS+ ker-
nel, edit sys_conf.h and set SC_PSOS to NO and SC_PSOSM
to YES.

RAM 0xxF’FFFF
0002’8000

Downloaded operating system and
application, when linked together. When
linked separately, application occupies
0002’8000 - 0005’FFFF and operating
system occupies 0006’0000 - 0xxF’FFFF

0002’7FFF
0000’0800

Reserved for use by Boot ROMs

0000’07FF
0000’0700

Not used by pSOSystem software

0000’06FF
0000’0580

Reserved for Shared Memory Kernel
Interface (SMKI) Directory

0000’057F
0000’0400

Reserved for Shared Memory Network
Interface (SMNI) Directory

0000’03FF
0000’0000

Vector Page and Node Anchor (Node
Anchor is at $44)

Appendix A. Board-Specific Information

A-32 pSOSystem Getting Started

4. Enter the following command:

make rom.hex

The resulting file is rom.hex. It is an S-record hex file you can load into
a PROM programmer. This file is linked to be located at 0xFF800000, so
set the PROM programmer to expect load addresses in the range
0xFF800000 - 0xFF87FFFF. Optionally, you can use a program called
splitrom to divide rom.hex into files corresponding to the two ROMs.

To use splitrom, enter the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex ws ff800000 256 rom.u1
rom.u2

where HOST is the name of the host system (for example, sunos, msdos,
hpux, and aix).

A.8.5 VMEbus Configuration Information

The following list contains configuration information for VMEbus. The
item gives a pSOSystem default, when applicable.

■ The System Controller is jumper-enabled.

■ The programmable bus arbitration mode is either round-robin or
priority. The pSOSystem default is round-robin.

■ The pSOSystem default for the programmable bus request level
is 3.

■ The programmable bus release mode is either release on request
or release when done. The pSOSystem default is release when
done.

■ FAIR bus request mode is enabled.

■ The programmable master data bus width is either 32 or 16 bits.
The pSOSystem default is restricted to 32 bits.

■ Register enabled re-arbitration can occur after a 256
microsecond arbiter timeout. The pSOSystem default is to have
re-arbitration enabled.

■ The programmable VMEbus global timeout can be 8, 64, or 256
microseconds, or else it is disabled. The pSOSystem default is
the 256-microsecond VMEbus global timeout.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-33

■ The programmable bus request timeout can be 1, 32, or 64
microseconds, or else disabled. The pSOSystem default is the
32-millisecond timeout.

A.9 Motorola QUADS-68360
Directory $PSS_ROOT/bsps/e360 contains a pSOSystem BSP for the
Motorola QUADS-68360 evaluation board.

A.9.1 Hardware Setup

Connect a terminal to the QUADS DB-9 connector marked “RS-232
PORT P5.” The protocol is 9600 baud, 8 data bits, 1 stop bit, and no
parity.

If you will be using Ethernet, a transceiver should be connected to the
connector marked “AUI P7.”

A.9.2 Flash Memory Programming

Rather than a pSOSystem Boot ROM set, the e360 BSP contains an
S-record file ($PSS_ROOT/bsps/e360/flashmem.hex), which is
intended to be programmed into the flash memory of the QUADS board.
You can do this by using the Motorola QUICCbug monitor (installed in
ROM socket U48) to download flashmem.hex over the serial line and
program it into flash memory. The following QUICCbug command should
be used for downloading the file:

lo 400000

Next, use the appropriate command for your terminal emulation
program to download the flashmem.hex file as described in the following
section.

A.9.2.1 Downloading and Programming Flash Memory

To download and program flash memory using the UNIX tip utility, you
will need to download the flashmem.hex file in segments. You can do
this by entering the following command:

split flashmem.hex

Appendix A. Board-Specific Information

A-34 pSOSystem Getting Started

To program the flashmem.hex file into the QUADS board’s flash
memory, take the following steps:

1. Issue the following command at the Motorola QUICCbug
prompt:

lo 400000

2. Download the flashmem.hex file using your terminal software.

If you are using tip, you will probably need to use the following
modified procedure:

a) Download the split pieces of the file from tip.

b) Enter the following characters:

~>

tip prompts as follows:

Local file name?

c) Enter xaa preceded by the pathname. For example:

~/apps/bootrom/xaa

After the file is transferred, the IMPbug sends a series of
dots followed by a newline character.

d) After the newline, send the xab file the same way.

e) Repeat this process until you have sent all files created by
the split command.

3. After you have downloaded the complete flashmem.hex file (or
you have downloaded split segments), enter the following com-
mand at the QUICCbug prompt:

lof 480000 4FFFFF 80000

The above procedure programs flash memory with the pROBE+ ROM
code.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-35

A.9.2.2 Starting the Boot Monitor Code

Once the above procedure has been completed, you can start the
pSOSystem Boot monitor code with the QUICCbug go command, as
follows:

go 80008

In the future, Motorola will give QUICCbug the ability to recognize a
program in flash memory and automatically start it, thus eliminating the
need to enter the go 80008 command every time the board is reset.

A.9.3 Serial Channel Usage

The pSOSystem BSP for the QUADS-68360 supports only one serial
channel, SCC channel 3, which is wired to the connector labelled
“RS-232 PORT P5.” The RTC requires that the TICKS2SEC value in the
sys_conf.h file be set to 95, 19, 5, or 1. SC_APP_CONSOLE and
SC_PROBE_CONSOLE must be set to 7 for all applications in the
sys_conf.h file.

A.9.4 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0x400000. The Flash boot code uses RAM from
0x400000 through 0x427FFF, so do not download code to this area. The
entry point for downloaded systems is 0x428008, if the operating system
and application are linked together. If the operating system and
application are linked separately, the entry point for the downloaded
operating system is 0x460008.

The following table shows pSOSystem memory usage. The QUADS board
can be equipped with 1, 2, 4, or 8 megabytes of DRAM.

Appendix A. Board-Specific Information

A-36 pSOSystem Getting Started

A.9.5 Making the pSOSystem Flash Boot Code

The file flashmem.hex was built using the code in sample application
apps/tftp. You can customize it by taking the following steps and then
changing the code as needed (the example commands are for a UNIX host
system):

DRAM 00BC’FFFF
007E’7FFF
005F’3FFF
004F’A000
0042’8000

8 MB of DRAM
4 MB of DRAM
2 MB of DRAM
1 MB of DRAM
For downloaded operating system and
application linked together.
(When linked separately, application
occupies 0042’8000 - 0045’FFFF and
operating system occupies 0046’0000 -
00xF’FFFF.)

0042’7FFF
0040’0600

Reserved for use by Flash Boot Code

0040’05FF
0040’0400

Unused by pSOSystem software

0040’03FF
0040’0000

Vector Page and Node Anchor
(Node Anchor is at $40’0044)

Flash
Memory

000F’FFFF
0008’6000

Not used by pSOSystem software

0008’5FFF
000A’3000

pNA+ code in flash memory

000A’2FFF
0009’3000

pROBE+ code in flash memory

0009’2FFF
0008’F000

pSOS+ code in flash memory

0008’8FFF
0008’0000

pSOSystem boot code

Appendix A. Board-Specific Information

pSOSystem Getting Started A-37

1. Copy PSS_ROOT/apps/tftp to a working directory:

cp -r $PSS_ROOT/apps/tftp bootcode

2. Make the working directory the current directory:

cd bootcode

3. Edit Makefile in order to set PSS_BSP to
$(PSS_ROOT)/bsps/e360. If this line is commented out,
remove the comment mark.

4. Change the following define statements in your sys_conf.h file:

Change SC_APP_CONSOLE from 1 to 7.
Change SC_PROBE_CONSOLE from 1 to 7.
Change KC_TICKS2SEC from 100 to 95.

5. Enter the following command:

make rom.hex

6. Rename the output file to flashmem.hex as follows:

mv rom.hex flashmem.hex

A.9.6 Special Notes

A.9.6.1 Tick Timers

When building an application to run on the QUADS board, you must set
KC_TICKS2SEC in sys_conf.h to one of the following values:

1, 5, 19, or 95

You also need to make the following changes in your sys_conf.h file:

Change SC_APP_CONSOLE from 1 to 7.
Change SC_PROBE_CONSOLE from 1 to 7.
Change KC_TICKS2SEC from 100 to 95.

The BSP for the QUADS board includes a special tick timer initialization
routine called Rtc360Init, which is called automatically by the pSOS+

kernel during startup. Thus, it is not necessary to initialize the tick timer
via a de_init() call, as it is on most other boards. However, because all of
the pSOSystem sample applications make a de_init() call to initialize the

Appendix A. Board-Specific Information

A-38 pSOSystem Getting Started

tick timer, the e360 BSP includes a routine to handle this call as well.
The de_init() routine for the tick timer does not initialize the tick timer if
Rtc360Init has already done so.

A.9.6.2

The QUADS board has specific power supply requirements. If these
requirements are not satisfied, the Ethernet connection will not work.
Here are some hints that may help if your Ethernet does not work:

■ The QUADS board has 2 positive voltage requirements: +5 and
+12. If you are using two supplies for these voltages, make sure
the grounds of both supplies are connected together. Relying on
the board to provide a “nonfloating ground” is not sufficient.

■ Test the +5 voltage output of your power supply; it must be at
least 5 volts with a load. A lower voltage causes the Ethernet
connection to fail or work sporadically.

A.10 EST SBC360 Evaluation Board
Directory $PSS_ROOT/bsps/sbc360 contains a pSOSystem BSP for the
Embedded Support Tools Corporation SBC360 evaluation and
prototyping board.

A.10.1 Hardware Setup

Install the ROMs labeled U5, U4, U7, and U2 in the appropriate sockets.
Set the rotary switch to E. Install the NV RAM Module from the kit into
socket U6.

Connect a terminal to the SBC360 connector marked “Phone Jack RS-
232” on the Daughter Card. The protocol is 9600 baud, 8 data bits,
1 stop bit, and no parity.

If you will be using Ethernet, a transceiver should be connected to the
connector marked “P5” on the Daughter Card.

Appendix A. Board-Specific Information

pSOSystem Getting Started A-39

A.10.2 SCC Channel Usage

The four SCC channels are used as follows for the SBC360:

■ Channel 1 is used for the Ethernet controller at the p5
connection on the Daughter Card.

■ Channel 2 can be use for a serial connection if the connection is
bought out through the expansion connectors.

■ Channel 3 is used for the system console at the RS-232
connector on the Daughter Card.

■ Channel 4 can be used for a serial connection if the connection
is bought out through the expansion connectors.

A.10.3 SMC Channel Usage

The SMC channels are not supported.

The RTC requires that the TICKS2SEC value in the sys_conf.h file be set
to 95. SC_APP_CONSOLE and SC_PROBE_CONSOLE must be set to 3
for all applications in the sys_conf.h file.

A.10.4 Memory Layout

For the purpose of using the tutorials in this manual, on-board RAM
begins at address 0x400000. The Flash boot code uses RAM from
0x400000 through 0x427FFF, so do not download code to this area. The
entry point for downloaded systems is 0x428008, if the operating system
and application are linked together. If the operating system and
application are linked separately, the entry point for the downloaded
operating system is 0x460008.

The following table shows pSOSystem memory usage. The SBC360 board
can be equipped with 2, 4, 8 or 16 Mbytes of DRAM.

Appendix A. Board-Specific Information

A-40 pSOSystem Getting Started

DRAM 0197’BFFF
00BC’FFFF
007E’7FFF
005F’3FFF
0042’8000

16 Mbytes of DRAM
8 Mbytes of DRAM
4 Mbytes of DRAM
2 Mbytes of DRAM
For downloaded operating system and
application linked together.
(When linked separately, application
occupies 0042’8000 - 0045’FFFF and
operating system occupies 0046’0000 -
00xF’FFFF.)

0042’7FFF
0040’0600

Reserved for use by Boot ROMs

0040’05FF
0040’0400

Not used by pSOSystem software

0040’03FF
0040’0000

Vector Page and Node Anchor
(Node Anchor is at $40’0044)

NVRAM 100000

ROM
Memory

000F’FFFF
000A’E000

Not used by pSOSystem software

0003’FFFF
0002’3000

pNA+ code in ROM memory

0002’2FFF
0001’3000

pROBE+ code in ROM memory

0001’2FFF
0000’F000

pSOS+ code in ROM memory

0000’EFFF
0000’0000

pSOSystem boot code

Appendix A. Board-Specific Information

pSOSystem Getting Started A-41

A.10.5 Making the pSOSystem ROM Boot Code

The file rom.hex is built using the code in sample application tftp. You
can customize it by taking the following steps and then changing the
code as needed (the example commands are for a UNIX host system):

1. Copy PSS_ROOT/apps/tftp to a working directory:

cp -r $PSS_ROOT/apps/tftp bootcode

2. Make the working directory the current directory:

cd bootcode

3. Edit Makefile in order to set PSS_BSP to
$(PSS_ROOT)/bsps/sbc360. If this line is commented out,
remove the comment mark.

4. Enter the following command:

make rom.hex

5. Use the utility splitrom to divide the rom.hex file into four
parts for the four ROMs by entering the following command:

$PSS_ROOT/bin/$HOST/splitrom rom.hex b 0 128
rom.u23 rom.u22 rom.u25 rom.u20

A.10.6 Pinout Diagram

The pinout architecture for the Motorola QUADS-68360 evaluation
board is shown in Figure A-1 on page A-42 and in Figure A-2 on page A-
43.

NOTE: The pinout diagram is a functional example. It is not a
final definition of a correct design.

Appendix A. Board-Specific Information

A-42 pSOSystem Getting Started

Figure A-1 Pinout for Motorola QUADS-68360 Evaluation Board (Sheet 1)

J1-2P2-A6 (PA5) 5 2
TD3

J1-3P2-A5 (PA4) 76
RD3

J1-4P2-B22 (PC2) 8 1
RTS3

J1-5P2-B28 (PC8) 34
CTS3

J1-2419 24
XCLK3

J1-17P2-A14 (PA13) 2322
RC3

J1-15P2-A13 (PA12) 21 20
TC3

J1-8P2-B29 (PC9) 1617
CD3

4
5
6
7
.
.
.
12
13
14
15

RxD3
TxD3
RxD4
TxD4

BRG03 (TC3)
CLK6 (RC3)
BRG04 (TC4)
CLK8 (RC4)

PORT A

2
3
.
.
.
8
9
10
11

RTS3
RTS4

CTS3
CD3
CTS4
CD4

PORT C

8
9
10
11

(DTR3)
(DSR3)
(DTR4)
(DSR4)

PORT B

U1-U3 = MAX 238
C1-C15 = IMF Electrolytic
C16-C17 = .01mf Ceramic
J1-J2 = RS252 DTE
P2 = 96-Pin Male VME

P2-A17

P2-C5
P2-C25

C16 C17

P2-A32
P2-C14
P2-C31

P2-B32

+5

1mf
C4

C1+

C1-

1mf
C5

C2+

C2-

+

+

MAX 238
V-

V+

Vcc
C1

+ 1mf C2
+ 1mf

C3
+1mf

9

11

15

 U1

+5

U1

Appendix A. Board-Specific Information

pSOSystem Getting Started A-43

Figure A-2 Pinout for Motorola QUADS-68360 Evaluation Board (Sheet 2)

J2-2P2-A8 (PA7) 5 2 TD4

J2-3P2-A7 (PA6) 76 RD4

J2-4P2-B23 (PC3) 8 1 RTS4

J2-5P2-B30 (PC10) 34
CTS4

J2-2419 24
XCLK4

J2-17P2-A16 (PA15) 2322
RC4

J2-15P2-A15 (PA14) 21 20
TC4

J2-8P2-B31 (PC11) 1617 CD4

J1-20P2-B9 (PB8) 8 1
DTR3

J1-6P2-B10 (PB9) 34
DSR3

J2-2019 24
DTR4

J2-6P2-B12 (PB11) 2322
DSR4

P2-B11 (PB10)

U2

U3

1mf
C9

C1+

C1-

1mf
C10

C2+

C2-

+

+

MAX 238
V-

V+

Vcc

+5

C6
+ 1mf C7

+ 1mf

C8
+

9

11

15

 U2

1mf
C14

C1+

C1-

1mf
C15

C2+

C2-

+

+

MAX 238
V-

V+

Vcc

+5

+ 1mf C12
+ 1mf

C13
+

9

11

15U3

 C11

 1mf

 1mf

Appendix A. Board-Specific Information

A-44 pSOSystem Getting Started

pSOSystem Getting Started Gloss-1

Glossary

apps apps is the directory that contains a number of
sample applications, such as the hello program.

anchor See Node Anchor.

BOOTP Client Code With the BOOTP client code you can send a BOOTP
request packet and get necessary information for
booting your target.

bootloader A program that runs automatically at startup. In
pSOSystem, this program runs some hardware
tests and then passes control to the pROBE+ or the
pSOSystem startup program. The bootloader re-
sides in read-only memory (ROM).

Boot ROM A hardware device that contains the startup code
for the target system. This hardware is usually ac-
cessed automatically when the system is powered
up or reset. It usually contains at least one method
to download an executable image to the system.

BSP Board-Support Package. See pSOSystem Board-
Support Package.

Glossary

Gloss-2 pSOSystem Getting Started

build The process that produces an executable image.
This usually involves a makefile that contains
rules to compile, assemble, link, and load files from
source code. See also makefile.

client A computer that accesses shared network re-
sources provided by another computer called a
server.

Configuration files Source files that control the configuration of the
pSOSystem environment are called configuration
files. Configuration files exist for all systems built
with the pSOSystem software, and these files are
compiled and linked into the executable image. A
set of the common configuration files resides in the
PSS_ROOT/configs/std directory.

Configuration table A collection of configuration settings for a pSOSys-
tem component stored in parameters in the
sys_conf.h file.

drv_conf.c drv_conf.c is the driver configuration file. It con-
tains two routines that are called during system
startup to install pSOSystem drivers in the appro-
priate tables.

Ethernet A local area network (LAN) developed by Xerox in
1976. Ethernet uses a bus topology and relies on
the form of access known as CSMA/CD to regulate
traffic on the main communication line. Network
nodes are connected by coaxial cable or by twisted-
pair wiring.

Executable image The pSOSystem software and the application code
are linked together on the host system. This combi-
nation is then downloaded to the target. The down-
loaded software is called the executable image.

hello hello is the sample application program that prints
a short message and exits. This program resembles
the Hello World program familiar to most program-
mers.

Glossary

pSOSystem Getting Started Gloss-3

Kernel Interface (KI) A software layer that provides a set of standard ser-
vices for the pSOS+m kernel. The kernel uses these
services to transmit and receive packets when com-
municating with other kernels on other nodes to
form a multiprocessor independent system. This
layer makes pSOS+m independent of the actual
transfer medium.

sys.lib pSOSystem system library of operating system
components and run-time bindings the application
uses to make system calls to the components. It
can be found in the PSS_ROOT/sys/os/ directory.

makefile A data file used by the make utility within pSOSys-
tem to produce a library or executable image that
can be downloaded to a target. The makefile con-
tains rules that control the execution of program-
ming tools such as compilers, assemblers, linkers,
and loaders.

mpdemo mpdemo is the pSOS+m sample multiprocessing
application.

msgarray The msgarray structure is an array of messages.
The program code sets up the array as a circular
linked list.

multithreading The running of several processes in rapid sequence
(multitasking) within a single program.

Network Interface (NI) A software layer that provides a set of standard ser-
vices to pNA+. The NI services are independent of
the transmission medium.

Node Anchor The Node Anchor is the single fixed point of refer-
ence for all the installed software components in
the pSOSystem software. The anchor is a critical
link because each component in the pSOSystem
environment is code and data position-independent
and depends on the anchor to locate its configura-
tion information.

Glossary

Gloss-4 pSOSystem Getting Started

pHILE+ File System Manager pHILE+ is the file management component of the
pSOSystem software. It offers a superset of the
UNIX file system capabilities. The pHILE+ internal
organization and operation have been carefully
crafted to provide an unsurpassed level of perfor-
mance, integrity, and flexibility.

pNA+ pNA+ is the networking component of the pSOSys-
tem software that provides TCP/IP capabilities.

pREPC+ pREPC+ is a component of the pSOSystem. It con-
tains more than 85 run-time functions that comply
with the ANSI C standard library, including charac-
ter and string handling functions, general utilities,
and I/O functions such as printf and scanf .

pROBE+ The pROBE+ debugger is a comprehensive system
debugger and analyzer for the pSOSystem environ-
ment. Co-resident with the kernel on the target sys-
tem, the pROBE+ debugger uses detailed structural
information about the pSOS+ kernel to let you ob-
serve and control system execution.

pRPC+ pRPC+ is the remote procedure call subcomponent
of the pNA+ component of the pSOSystem software.
It is a block of code that extends the pNA+ feature
set, and relies on the pNA+ and other components
for resources and services.

pSOS+m pSOS+m is the pSOSystem multitasking kernel
which allows tasks running on different processors
to communicate, exchange data, and synchronize
as if they were running on a single processor.

pSOSystem pSOSystem is an operating system used on embed-
ded controllers. Its code consists of read-only object
libraries, include files, and source files.

pSOSystem board-support package (BSP) BSP is the hardware specific code in the
pSOSystem software and is contained in the
PSS_ROOT/bsps/ directory.

Glossary

pSOSystem Getting Started Gloss-5

pSOSystem Boot ROMs Boot ROMs are the ROM monitors that come with
the pSOSystem software. The Boot ROM set is ac-
tually a pSOSystem executable image downloaded
to ROM.

pSOSystem directory tree The pSOSystem directory tree is the central loca-
tion on the host system. It contains the shared
pSOSystem code so that multiple users can have
access to it.

pSOSystem environment The pSOSystem environment provides a standard
set of services for the application code. It usually
contains the pSOS+ kernel, along with the following
companion software elements: pROBE+, pNA+,
pHILE+, device drivers, interrupt handlers, and
configuration tables to customize the pSOSystem
environment for a particular target system.

PSS_BSP An environment variable used by pSOSystem dur-
ing the build process to point to the directory con-
taining the Board-Support Package needed by the
application.

PSS_ROOT An environment variable used by pSOSystem dur-
ing the build process to point to the directory con-
taining the pSOSystem root directory.

ram.hex An executable image in S-record format for Motor-
ola processors or Intel Extended Hexadecimal for-
mat for Intel processors, suitable to download to
the target board’s RAM.

ram.map ram.map is the map file.

ram.x An executable image in IEEE-695 format, suitable
to load to the target board’s RAM with XRAY for
pSOSystem.

readme file This file contains the instructions for using the
sample applications in the apps directory.

SDM See System Debug Mode.

Service breakpoints Service breakpoints stop execution whena pSOS+
service call is made.

Glossary

Gloss-6 pSOSystem Getting Started

Shared Memory Kernel Interface (SMKI) A kernel interface that uses shared memory as a
communication medium. See also KI.

Shared Memory Network Interface (SMNI) A software layer used by the pSOS+m kernel when
communicating with other kernels. The SMKI direc-
tory structure must reside in a memory space
where all of the nodes in the system have access to
it.

single threading Within a program running a single process at a
time.

SMKI See Shared Memory Kernel Interface.

start address Start address is the address used by the host to
pass control to the target for starting the executable
image. By default, the start address is the image
load address plus 4.

System Debug Mode A mode of debugging where the entire system exe-
cutes and halts together. Both tasks and interrupt
service routines (ISRs) can be debugged in System
Debug Mode.

sys_conf.h sys_conf.h is the pSOSystem configuration file. It
is a C include file that must reside in the working
directory.

target system The embedded computer is called the target sys-
tem. Two major software elements run on the target
hardware: the pSOSystem software and the appli-
cation code. The application code is what makes
one target system different from another.

Working Directory Working directory is a directory where you build a
pSOSystem executable image. You can locate your
working directory under PSS_ROOT.

XRAY Debugger for pSOSystem XRAY is a multitasking debugger that can be used
to control and monitor a multitasking application
in the high-level mode and the assembly-language
mode. In addition to supporting System Debug
Mode, some versions of XRAY also support Task
Debug Mode.

Glossary

pSOSystem Getting Started Gloss-7

xraydemo The xraydemo is a sample application. It is a C
program that contains the code for the ROOT task
which in turn creates seven other tasks: MEM1,
MEM2, ‘IO1• ’, ‘IO2• ’, SRCE, SINK, and ‘MSG• ’.

XRAYLIB XRAYLIB is an environment variable used to spec-
ify the directories the XRAY debugger should
search when looking for the startup.xry file.

Glossary

Gloss-8 pSOSystem Getting Started

pSOSystem Getting Started Index-1

Index

Numerics
68000 9-82
68010 9-82
68020 9-82
68360 9-82
68881.c 9-46
68881.h 9-47
68k 9-22

A
abort button 6-11
addmod 9-18
address

execution 1-11
image, start 1-11
of memory on VMEbus 6-6
SMKI 6-10

ADS68302 A-2
alias name 4-12, 5-13
AM7990.c 9-24, 9-36
AM7990.h 9-24, 9-37
anchor 7-2, 9-20
apdialog.c 8-6

apdialog.h 9-78
app.hex 9-57
app.hex file 1-8
app.x 9-57
app.x file 1-8
application

driver 7-3
TFTP bootloader 1-13

application code 1-2
apps 8-1
apps directory 1-9, 4-2, 5-2
apps/tftp 9-75
ASCII terminal 4-10, 5-11
assembly-level mode 5-20
AutoInit 7-16

B
BAERR 9-27
baud rate 5-8, 6-10

default 7-6
baud-rate 9-6
bc (breakcomplex) command 4-27,

5-21
BD_ALLOW_INTERRUPTS 9-43
BD_CACHE_OFF 9-37
BD_CACHE_ON 9-37
BD_CHANNEL_ATTN 9-38
BD_CLEAR_SCSI_DMA_INTR 9-50
BD_CLR_LAN_INT 9-38
BD_DISABLE_ETHER_INTR 9-37
BD_DISABLE_SCSI_DMA_CONTR

OL 9-50
BD_DISABLE_SCSI_INTR 9-50
BD_DISALLOW_INTERRUPTS 9-43
BD_ENABLE_ETHER_INTR 9-37

Index

Index-2 pSOSystem Getting Started

BD_ENABLE_LAN 9-38
BD_ENABLE_LAN_INT 9-38
BD_ENABLE_LAN_SNOOP 9-37
BD_ENABLE_SCSI_DMA_INTR 9-50
BD_ENABLE_SCSI_INTR 9-50
BD_ET_ADDR_0 9-36
BD_ET_ADDR_1 9-36
BD_ET_ADDR_2 9-36
BD_ETHER_BASE 9-36
BD_FORCE_RX_ACK 9-43
BD_FORCE_TX_ACK 9-43
BD_FROM_SCSI 9-50
BD_GET_ETHER_ADDR 9-37
BD_HAS_RX_INTR 9-43
BD_HAS_TX_INTR 9-43
BD_LAN_INT_PENDING 9-38
BD_LANCE_CSR 9-36
BD_LANCE_MEM 9-36
BD_LANCE_RAP 9-36
BD_LANCE_RBUF 9-36
BD_LANCE_TBUF 9-36
BD_MAX_SCC 9-43
BD_NV_FILTER 9-34
BD_NV_VERIFY 9-34
BD_NVBASE 9-33
BD_NVSTEP_SIZE 9-34
BD_RESET_82596 9-38
BD_RESET_SCSI_INTR 9-50
BD_Scsi_Address 9-49
BD_Scsi_Aux_Status 9-49
BD_SCSI_BUS_TRANS_TYPE 9-53
BD_SCSI_CLOCK 9-52
BD_SCSI_CPU_ACK_MODE 9-52
BD_SCSI_DMA_MODE 9-52
BD_SCSI_DMA_SETUP 9-50

BD_SCSI_DMA_STATUS 9-51
BD_SCSI_ILEV_ENABLE 9-52
BD_Scsi_Indirect_Reg 9-49
BD_SCSI_POLLED 9-52
BD_SCSI_SET_INTR 9-52
BD_SCSI_SET_NCR_BASE 9-52
BD_SCSI_SET_VECTOR 9-52
BD_SCSI_SNOOP_CONTROL 9-52
BD_SET_ETHER_VEC 9-37
BD_SET_LAN_VECTOR 9-37
BD_SET_SCP 9-38
BD_SET_SCSI_VEC 9-50
BD_SIOP_ID 9-52
BD_TO_SCSI 9-50
BD_WD_CHIP 9-51
BD_WRITE_TO_82596 9-38
begin.s 9-53, 9-56
begina.s 9-53, 9-56
beginapi.s 9-54
bhand000.s 9-22
bhand030.s 9-22
bhand032.s 9-22
bhand040.s 9-22
bhand060.s 9-22
Binding files 9-80
board.c 9-13
board.h 9-14
board-support package 1-3, 6-6, 6-9,

7-33
for unsupported boards 2-2, 3-2

Boot ROMs 6-8, 6-10, 7-17, 8-4, 8-5
dependencies 1-13
networking systems 1-10
non-networking systems 1-10
pROBE+ 1-13
pROBE, pNA+, pSOS+, and TFTP

Index

pSOSystem Getting Started Index-3

bootloader 1-13
reconfiguring baud rate 4-8, 5-9
two types of 1-13

bpdialog.c 9-15
break

on context switch 4-29, 5-23
on high-level language state-

ments 4-1, 5-1
on operating system calls 4-1, 5-1
on task state changes 4-1, 5-1

Break viewport 5-16, 5-22, 5-24
Break window 4-30
breakcomplex command 4-27, 5-21
breaki (break instruction) command

4-33, 5-15, 5-23, 5-27
breakpoint 1-12, 2-10, 3-11

remove 4-35, 5-29
Breakpoints window 4-28
bsp.h 9-5, 9-64
bsp.mk 9-12
BSP_ABORTSW 9-6, 9-10
BSP_CPU 9-5
BSP_CPUFAMILY 9-5
BSP_FPU 9-5
BSP_INT_MODE 9-9
BSP_LAN1 9-6
BSP_LAN1_ENTRY 9-7
BSP_LAN1_FLAGS 9-7
BSP_LAN1_HWALEN 9-7
BSP_LAN1_MTU 9-7
BSP_LAN1_PKB 9-8
BSP_LAN1_TCB_ROM 9-8
BSP_LITTLE_ENDIAN 9-6
BSP_MMU 9-5
BSP_MP_TAS 9-9
BSP_PARMS 9-6

BSP_SCSI 9-9
BSP_SCSI_TAPE 9-9
BSP_SCSIINC 9-9
BSP_SERIAL 9-6
BSP_SERIAL_MAXBAUD 9-6
BSP_SERIAL_MINBAUD 9-6
BSP_SMEM 9-8
BSP_TIMER2 9-9
BSP_VERSION 9-5
BSP_VME 9-6, 9-19
bspcfg.c 9-8, 9-16
bspfuncs.h 9-78
BspGetdefaults 9-15
BspModify 9-16
BspPmontCallout 9-55
BspPrint 9-16
bsps directory 1-5
bsps/devices 9-27
BspSetup 9-17
BspUse 9-16
Build files 9-82
bus arbiter 6-7
bus masters, multiple 6-7
buserr.c 9-23, 9-32
BYTE0 9-49
BYTE1 9-49
BYTE2 9-49
BYTE3 9-49

C
C library 9-82
C macro definitions 7-4
C++ language support 4-1, 5-1
callout.c file 6-2, 6-5
callouta.s file 6-2

Index

Index-4 pSOSystem Getting Started

cd2400 9-25
cd2400.c 9-42
cd2400.h 9-25, 9-43
channel

console 7-6
host 7-6
serial 7-3
serial configuration 7-6

channel number 7-6
chipexec 9-26
chipinit 9-26
clear command 4-30, 5-23
client task 6-4, 6-11
ClientTask() 6-4
ClrAbortInt 9-14
code

application 1-2, 1-3
environment, hardware-specific

1-3
system configuration 1-3

Code viewport 5-19, 5-20, 5-24
Code window 4-24, 4-25, 4-30
command

breaki 4-33, 5-15, 5-23, 5-27
clear 4-30, 5-23
di 2-9, 3-10
dl (download) 2-7, 3-8
expand 4-35, 5-29
go 2-8, 2-11, 3-8, 3-11, 6-11
gs (go system) 2-8, 2-11, 3-9,

3-12, 6-11
help utility display 4-20, 5-15
memory-examine, memory-modi-

fy 5-16
mode assembly 5-34
monitor 4-35, 5-28
nomonitor 4-35, 5-29
osboot 4-17, 5-13

printsymbol 4-36, 5-30
qo (query object) 6-11
qt (query task) 2-9, 3-10, 4-28,

5-22, 6-11
scope 4-25, 4-36, 5-20, 5-30
StepO Instr 4-26
stepover 5-20
vactive 5-28
vscreen 5-35
XRAY+ for MasterWorks, rules

4-19
XRAY+, rules 5-14

command mode 5-15
Command viewport 5-16, 5-19, 5-22,

5-27, 5-29, 5-31
Command window 4-22, 4-33, 4-34,

4-35, 4-37
common 9-22
common.h file 6-2
Component files 9-81
config.mk 9-54, 9-56
configpi.mk 9-54
configre.mk 9-54
configs.h 9-78
Configuration Table

pSOS+, pROBE+ 7-32
configuration table 7-1
configxx.mk 9-54, 9-58
console channel 7-6
console driver 3-15
console I/O 5-34
constant

OUTPUT_TO_XRAY 2-4, 3-4
CPU 9-12
CPU caches 9-17
CPU control registers 9-18
cpu000.s 9-22

Index

pSOSystem Getting Started Index-5

cpu030.s 9-22
cpu040.s 9-22
cpu060.s 9-22
cpu0x0.s 9-22
ctype.h 9-78
cu (terminal emulator) 2-2, 6-10

D
Data viewport 5-28, 5-29
Data window 4-35
debugger commands 4-19, 5-14
debugging modes

high level, assembly language
4-24, 5-19

Delay100ms 9-20
device number 2-3, 3-4
di command 2-9, 3-10
Dialog 9-54, 9-58
dialog.c 8-5, 9-6, 9-8, 9-54, 9-58
dialog.c file 1-5
dipi.c 9-66, 9-69
directory

apps 4-2, 5-2
mpdemo 6-2
xraydemo 4-2, 5-2

directory structure 7-8
directory, working 1-4
DISI 9-70
disi.c 9-24, 9-40
disi.h 9-78
dispatch break 4-29, 5-23
diti.c 9-66, 9-71
diti.h 9-78
dl command 2-7, 3-8
dma_init 9-26

downloaded pROBE+ debugger 1-14
downloading 1-11
driver

application 7-3
console 3-15
how to add 7-16
LAN 7-3
RAM disk 7-3

drv_conf.c 9-20, 9-74
drv_conf.c file 6-2
drv_cutl.c 9-66, 9-71
drv_intf.h 9-79
dual-ported bus address 6-6
dual-ported memory 6-6, 6-8
dual-ported RAM

VMEbus address 7-8

E
emulator, in-circuit 1-11
end.s 9-54, 9-58
environment variable 4-7, 5-7
ERR_SSFN 9-81
errno.h 9-79
error exception handler 7-31
Ethernet

interface 3-15, 4-10
ev_send() 6-1
EVS-68332 A-7
EVS-68340 A-11
executable image 1-2, 1-4, 1-13, 2-1,

2-4, 2-5, 2-7, 2-8, 3-1, 3-5,
3-8, 4-7, 5-7, 6-8

execution address 1-11
expand command 4-35, 5-29

Index

Index-6 pSOSystem Getting Started

F
fatal error handler 6-5
FIFO queuing 4-32, 5-26
file

.map 1-9
app.hex 1-8
app.x 1-8
callout.c 6-2, 6-5
callouta.s 6-2
common.h 6-2
dialog.c 1-5
drv_conf.c 6-2
include 1-3
linker command 7-2, 7-33
Makefile 6-2
os.hex 1-8
os.x 1-8
output, ram.map & ram.hex 2-5,

3-5
output.c 6-2, 6-5
psos.h 2-3, 3-4
ram.hex 1-8
ram.map 2-5, 3-5
ram.x 1-8
rom.hex 1-8
rom.x 1-8
root.c 2-4, 3-4
source 1-3
sys.lib 1-5
sys_conf.h 1-4, 1-6, 1-12, 2-3,

2-8, 2-13, 3-4, 3-9, 3-14,
3-15, 4-10, 6-2, 7-1, 7-3,
7-4, 7-10

sysinit.c 7-3
tasks.c 6-2, 6-4
xp_out.s 2-4, 3-4

filelist 9-82
floating point 8-2, 9-10
format

IEEE-695 1-8, Gloss-v
Intel Extended Hexadecimal 1-8
Motorola S-record 1-8

fpu040.lib 9-83
fpu060.lib 9-83
free_arg 9-73
free_func 9-73
FreeMemPtr 9-62, 9-65
FreeMemStart 9-58, 9-65
fs68k.s 9-82
ftp_drv.c 9-76
function key

for debugger commands 5-14

G
gateway 4-11, 5-12

default for pNA+ 7-9
default, address of 7-8

get_lan_indiscards 9-35
get_lan_inerrors 9-35
get_lan_outdiscards 9-35
get_lan_outerrors 9-36
GET_VBR 9-23, 9-29
GetRarpServerIP 9-67, 9-75
global variable Index 4-33, 5-26
go command 2-8, 2-11, 3-8, 3-11,

6-11
gs command 2-8, 2-11, 3-9, 3-12,

6-11
gs_allocb 9-66, 9-72
gs_esballoc 9-67, 9-72
gs_freemsg 9-67, 9-73
gsblk.c 9-66, 9-72
gsblk.h 9-79
gsblk_initbuffers 9-66
gsblkcfg.c 9-54, 9-58

Index

pSOSystem Getting Started Index-7

GSblkSetup 9-54, 9-58

H
hardware-specific environment code

1-3
hello 8-3
HELLO sample 3-1
hello, sample application directory

1-9
high-level mode 5-20
host

channel 7-6
IP address 4-12, 5-13

hw_tas 9-28

I
I/O device configuration parameters

7-9
i82596 9-8
i82596.c 9-24, 9-37
i82596.h 9-24, 9-39
IDLE task 2-10, 3-11, 7-33
IEEE format file 9-57
IEEE-695 format 1-8, Gloss-v
IFF_BROADCAST 9-7
IFF_MULTICAST 9-7
IFF_POLL 9-7, 9-8
IFF_RAWMEM 9-7
include 9-78
include files 1-3
init.s 9-13, 9-17
InitBoard 9-13, 9-18, 9-56
InstallDriver 7-16, 9-20, 9-56
InstallDriver() 7-16
InstallNI 7-17

InstallNi 9-55, 9-59, 9-60
Intel

Extended Hexadecimal format
1-8, Gloss-v

interface
Ethernet 3-15, 4-10
SMNI IP addr., subnet mask, no.

of buffers 7-8
interrupt

service procedure 4-28, 5-22
shared vector 7-31

INTR_METHOD 9-19
IO_AUTOINIT 7-17
IO_NOAUTOINIT 7-17
IP addres 9-75
IP address 1-4, 1-6, 3-15, 4-10, 4-11,

4-12, 5-11, 5-13, 7-3, 7-8
target board 1-6

iscrp710.c 9-26, 9-51
iscrp720.c 9-26, 9-51
iscrp8xx.c 9-26, 9-51

K
k_fatal() 6-2, 6-5
kc_ticks2sec 9-20
ki 9-28, 9-67, 9-73, 9-76
KI interface 9-28
KI_BerrorHndlr 9-28
ki_call 9-28, 9-76
ki_call.s 9-9, 9-23, 9-28
ki_check 9-76
ki_smem.c 9-9, 9-67, 9-73, 9-76
km680.s 9-82
km681.s 9-82
km682.s 9-82
km683.s 9-82

Index

Index-8 pSOSystem Getting Started

km686.s 9-82
ks680.s 9-82
ks681.s 9-82
ks682.s 9-82
ks683.s 9-82
ks686.s 9-82

L
LAN

driver 7-3
interface configuration 7-7
interface, subnet mask 7-7

lan 9-22
lan.c 9-35
lan_mib.c 9-24, 9-39
lan_mib.h 9-79
lan360.h 9-24, 9-39
LanStop 9-35
lanstop 9-24
lc68k.s 9-82
ldcfg.c 9-54
libc 9-80
linker command file 7-2, 7-33
loader.lib 9-83
local variable ticks 4-33, 5-27

M
M_DATA 9-72
m68681.c 9-25
m68681.h 9-25
m68881.h 9-79
major device number 7-10

maximum in system 7-9
RAM disk 7-9
SCSI driver 7-9

serial driver 7-9
tick timer 7-9

MakeDeviceString 9-55, 9-61
Makefile 1-6, 2-4, 3-5, 6-2, 9-12,

9-18, 9-75, 9-82
manual break 9-30
master node 6-2, 6-5
math.h 9-79
mblk_t 9-72
MBRK_WRAPPER 9-30
MbrkWrapper 9-23, 9-30
MemAccessible 9-31
MemMirrorTest 9-31
memory

address overlap 6-6
dual-ported 6-6
examine command 5-16
modify command 5-16

menu or button commands, for de-
bugger 4-19

message queues, maximum 7-3
Microtec

installation errors 3-5
tool chain 3-2

minor device number 7-6
misc.s 9-23, 9-29
mmu68030.lib 9-83
mmu68040.lib 9-83
mmulib.h 9-79
mode assembly command 5-34
mode command 5-20
monitor command 4-35, 5-28
Motorola

ADS68302 A-2
EVS-68332 A-7
EVS-68340 A-11
MVME-147 3-5

Index

pSOSystem Getting Started Index-9

MVME162 A-14, A-18, A-22
MVME167 A-25
MVME177 A-29
QUADS-68360 A-33, A-38
S-record format 1-8, Gloss-v

mpdemo application 6-1, 6-5, 6-9
mpdemo directory 6-2, 6-9
multi-processing application 6-1
multi-processor 9-8
multi-processor systems 4-11, 5-11
multi-tasking application 4-1, 5-1
MVME162 A-14, A-18, A-22
MVME167 A-25
MVME177 A-29

N
ncr_710.h 9-27, 9-53
ncr_720.h 9-27, 9-53
ncr_8xx.h 9-27, 9-53
NCR53C710 9-51
NCR53C720 9-51
NCR53C810/825 9-51
ncr53cxx.c 9-26, 9-51
ncr53cxx.h 9-9, 9-27, 9-53
nfs 8-9
nfs, sample application directory

1-10
ni_check 9-76
ni_ioctl 9-24, 9-35, 9-36, 9-39
ni_smem.c 9-9, 9-67, 9-73, 9-76
NI_WRAPPER 9-30
NiLan 9-24, 9-35
NiSmem 9-67, 9-73, 9-76
NiWrapper 9-23, 9-30
Node Anchor 7-2, 7-32

node failure 6-5
node number 6-6
nomonitor command 4-35, 5-29
NORMAL_WRAPPER 9-30
NormalWrapper 9-23, 9-30
notation conventions xvi
NR_DATA 9-63
NR_DATASIZE 9-63
nr68k.s 9-82
ns68k.s 9-82
NUM_CLIENTS 6-4
nvram.c 9-23

O
object libraries 1-3
OpEN 9-82
optimized code 4-2, 5-1
os 9-80
os.hex 9-57
os.lnk 9-12
os.x 9-57
osboot command 4-17, 5-13
output.c file 6-2, 6-5
OUTPUT_TO_XRAY constant 2-4, 3-4

P
parameters

configuration 4-7
I/O device configuration 7-9
storage area 7-5

Pereline (terminal emulator) 3-2
periodic tick timer 2-3, 3-4
pHILE+ 9-81, 9-82
phile.h 9-79

Index

Index-10 pSOSystem Getting Started

phile.s 9-81
philecfg.c 9-54, 9-59
philecfg.h 9-79
philepna 8-7
philepna, sample application directo-

ry 1-10
PhileSetup 9-55, 9-59
pm68k.s 9-82
pMONT 9-9, 9-21, 9-81, 9-82
pmont.s 9-81
pmontcfg.c 9-9, 9-55, 9-59
pmontcfg.h 9-79
PmontSetup 9-55, 9-59
pn68k.s 9-82
pNA+ 9-7, 9-81, 9-82

adding to system 3-15, 4-9
in ROM 1-13
XRAY+ requirement 3-14, 4-9,

5-10
pna.h 9-79
pna.s 9-81
pnabench 8-3
pnabench, sample application direc-

tory 1-10
pnacfg.c 9-55, 9-59
pnacfg.h 9-79
PnaSetup 9-55, 9-59
pollio.c 9-55, 9-60
pREPC+ 9-82
prepc.h 9-79
prepccfg.c 9-55, 9-61
prepccfg.h 9-79
PrepcSetup 9-55, 9-61
prev option 2-7, 3-8
Print 9-55
PrintRoutine 9-16

printsymbol command 4-36, 5-30
pROBE+ 9-69, 9-82

Configuration Table 7-32
downloaded pROBE+ 2-8, 3-9
operation modes 3-6
PM.L command 6-8
remote mode 1-11
ROM pROBE+ 2-8, 3-9
SE_DEBUG_MODE 2-8, 3-9
standalone mode 1-11

pROBE+ Boot ROM 7-17
pROBE+ DL command 9-57
probe.h 9-79
probe_init 9-65
probecfg.c 9-9, 9-10, 9-55, 9-61
probecfg.c. 9-10
probecfg.h 9-79
ProbeCon 9-70
ProbeConin 9-69, 9-70
ProbeConout 9-69, 9-70
ProbeConsts 9-69, 9-70
ProbeDataInd 9-70
ProbeEntry 9-62, 9-69, 9-71
ProbeEntryCallout 9-55
ProbeExit 9-62, 9-69, 9-71
ProbeExitCallout 9-55
ProbeExpInd 9-70
ProbeHst 9-70
ProbeHstin 9-69, 9-70
ProbeHstout 9-69, 9-70
ProbeHstst 9-69
ProbeHststs 9-70
ProbeIOInit 9-69, 9-70
proberom 8-4
proberom, sample application direc-

tory 1-10

Index

pSOSystem Getting Started Index-11

ProbeSetup 9-55, 9-61, 9-70
profiling 4-1, 4-37, 4-38, 5-1, 5-31,

5-32
program

cu 2-2
execution tracking 4-1, 5-1
Pereline 3-2
terminal emulation 2-2, 2-5, 3-2,

3-6, 4-7, 4-8, 5-7, 5-9
tip 6-10

Prompt 9-55, 9-60
PromptRoutine 9-16
pRPC+ 9-81, 9-82
prpc.s 9-81
prpccfg.c 9-55, 9-62
prpccfg.h 9-79
PrpcSetup 9-55, 9-62
ps.hex file 1-8
ps.x file 1-8
pSE+ 9-81, 9-82
pse.s 9-81
psecfg.c 9-55, 9-63
psecfg.h 9-79
PseSetup 9-55, 9-63
pSKT+ 9-81, 9-82
pskt.s 9-81
pSOS+ 9-81, 9-82

Configuration Table 7-32
Startup entry 7-32

pSOS+m 6-1
soft-fail and rejoin capabilities

6-2, 6-5
startup entry point 6-5

psos.h 9-79
psos.h file 2-3, 3-4
psos.s 9-81
psoscfg.c 9-10, 9-56, 9-63

psoscfg.h 9-79
PsosSetup 9-56, 9-63
pSOSystem

Boot ROMs 1-11
root directory 1-3

PSS_APPOBJS 1-7
PSS_BSP 1-6, 2-4, 3-5, 4-3, 5-3, 6-9
PSS_DRVOBJS 1-6
PSS_ROOT

directory 1-5, 1-6, 1-9
environment variable 1-4, 2-3,

3-3
PSS_ROOT/bsps 1-6

pTLI+ 9-81, 9-82
ptli.s 9-81

Q
qo (query object) command 6-11
qt (query task) command 2-9, 3-10,

4-28, 5-22, 6-11
QUADS-68360 A-33, A-38
query commands 4-26, 5-21
queue name 4-2, 5-2

R
RAM

disk driver 7-3
RAM disk 8-7, 9-74
Ram set up 9-17
ram.hex 9-57
ram.hex file 1-8, 2-5, 2-7, 3-5, 3-8,

6-9, 6-10
ram.map file 2-5, 3-5
ram.x 1-8, 9-57
ramdisk.c 9-67

Index

Index-12 pSOSystem Getting Started

ramrc.hex 9-57
RamSize 9-14
RARP 8-7, 9-67, 9-74
rarp.c 9-67, 9-74
RarpEth 9-21, 9-67, 9-74
rc_conin 9-69
rc_conout 9-69
rc_consts 9-69
RC_DATASTART 9-62
rc_entry 9-69
rc_exit 9-69
rc_hstin 9-69
rc_hstout 9-69
rc_hstst 9-69
rc_ioinit 9-69
RdskInit 9-67, 9-74
RdskRead 9-67, 9-74
RdskWrite 9-67, 9-74
region 0 9-63
region-zero 9-5
Registers viewport 5-20
remote mode, pROBE+ 1-11
ROM 9-8, 9-65

configuration parameters 2-6,
3-7

monitor 1-11
ROM pROBE+ 1-14, 6-8
rom.hex 9-57
rom.hex file 1-8
rom.x file 1-8
ROMs

Boot ROMs 1-11
ROOT task 2-10, 3-11, 4-2, 5-2
root.c file 2-4, 2-12, 3-4, 3-13
roster change callout routine 6-5
roster change message 6-11

rs68k.s 9-82
RtcInit 9-20
RtcIsr 9-20
rules.mk 9-75

S
SA_BOOT_FILE 8-6
SA_HOST_IP 8-7
SafeLongRead 9-23, 9-31
sample application 1-9

hello 1-9
nfs 1-10
philepna 1-10
pnabench 1-10
proberom 1-10
tftp 1-10
XRAYDEMO 1-10, 4-2, 5-2

SC_APP_CONSOLE 2-13, 3-14, 7-6
SC_APP_NAME 8-6
SC_APP_PARMS 8-6
SC_DEF_BAUD 7-6
SC_DEV_RAMDISK 7-9
SC_DEV_SCSI 7-9
SC_DEV_SERIAL 7-6, 7-9
SC_DEV_TIMER 7-9
SC_DEVMAX 7-9
SC_NISM_BUFFS 7-7
SC_NISM_LEVEL 7-7
SC_PROBE_CONSOLE 7-6, 9-70
SC_PROBE_HOST 7-6, 9-70
SC_RAM_SIZE 7-8
SC_SD_PARAMETERS 7-4, 8-6, 9-65
SC_STARTUP_DIALOG 7-5, 8-5, 8-6
scc302.c 9-25
scc302.h 9-25
scope command 4-25, 4-36, 5-20,

Index

pSOSystem Getting Started Index-13

5-30
ScratchPadSet 9-66, 9-71
ScratchPadTest 9-66, 9-71
ScratchPadUnSet 9-66, 9-72
SCSI 9-67, 9-75

driver 7-3
scsi 9-22
SCSI disk 8-7
scsi.c 9-9, 9-67, 9-75
scsi.h 9-80
scsi_start_commands 9-26
scsi_stop_commands 9-26
scsichip.c 9-26, 9-49
SD_DEF_BAUD 7-6
SD_DEF_GTWY_IP 7-8
SD_KISM 7-7
SD_KISM_DIRADDR 7-7
SD_LAN1 7-7, 8-6
SD_LAN1_IP 8-6
SD_NISM 7-7
SD_NISM_DIRADDR 7-7
SD_NISM_IP 7-7
SD_NISM_SUBNET_MASK 7-7
SD_SM_NODE 7-7
SD_STARTUP_DELAY 7-5
SD_VME_BASE_ADDR 7-8
SdrvCntrl 9-68
SdrvInit 9-68
SdskRead 9-68
SdskWrite 9-68
SE_DEBUG_MODE 2-8, 3-9, 7-5, 8-6
sequence number 6-11
ser302.c 9-43
ser302.h 9-44
ser332.c 9-25, 9-44, 9-47

ser332.h 9-26, 9-46, 9-49
ser340.c 9-26
ser340.h 9-26
ser360.c 9-25, 9-40
ser360.h 9-25
ser3660.h 9-42
serial 9-22
serial channel 4-5, 5-5, 7-3

configuration 7-6
serial device 4-7, 5-8
serial driver 2-3, 3-4
SerialClose 9-25
SerialInit 9-24
SerialIoct 9-25
SerialIoctl 9-70
SerialOpen 9-24
SerialSend 9-25, 9-70
server task 6-4
ServerTask() 6-4
SetUpDrivers() 7-16
SetUpNI 9-74
SetUpNi 7-17
SetVmeAddress 9-18
shared memory 4-11, 5-11, 6-10

systems 6-1
silent startup mode 7-32
SIOCPOLL 9-70
SIOCPROBEENTRY 9-71
SIOCPROBEEXIT 9-71
smem_isr.c 9-68, 9-76
SmemBus2Local 9-19
SmemIntClear 9-20
SmemIntInit 9-19, 9-68
SmemIntNode 9-19
SmemIsr 9-68

Index

Index-14 pSOSystem Getting Started

SmemLocal2Bus 9-19
SMKI (Shared Memory Kernel Inter-

face) 6-1, 7-7
address 6-10
directory memory area 6-6
directory structure 6-6

SMNI (Shared Memory Network In-
terface) 7-7

soft-fail and rejoin capability 6-11
source file pathname 4-7, 5-7
source files 1-3
splx 9-23, 9-31
stack underflow 5-19
Stack viewport 5-20
standalone pROBE+ 1-11
StapeClose 9-68
StapeOpen 9-68
StapeRead 9-68
StapeWrite 9-68
START 9-17, 9-53
start address 1-11, 2-8, 3-9, 5-14
startup

dialog 7-4
dialog.c file 1-5
dialogue 1-4, 6-10

stdarg.h 9-80
stdio.h 9-80
StepO Instr command 4-26
stepover command 5-20
STORAGE 9-65
StorageRead 9-23, 9-34
StorageWrite 9-23, 9-34
suggestions xv
support xv
SVCTRAP 9-81
symbol

name, data type, storage class,
location 4-36, 5-30

sys 9-80
sys.lib 9-80, 9-82
Sys_Cache_Init 9-22, 9-28
SYS_CONF 9-65
sys_conf.h 9-64
sys_conf.h file 1-4, 1-6, 1-12, 2-3,

2-8, 2-13, 3-4, 3-9, 3-14, 3-15,
4-10, 6-2, 7-1, 7-3, 7-4, 7-10,
7-12, 7-14

Sys_CPU_Init 9-22
Sys_Dcache_Inhibit 9-22, 9-29
Sys_Dcache_Restore 9-23
Sys_dcache_Restore 9-29
SysAddHandler 9-23, 9-33
SysBusError 9-22, 9-27
SYSCLK signal 6-7
syscxx.lib 9-80
SysHandlerInit 9-23, 9-32
SysHandlers 9-32
SysInit 9-19, 9-56, 9-58, 9-65
sysinit.c 9-6, 9-8, 9-56, 9-64
sysinit.c file 7-3, 7-4
SysInitFail 9-14, 9-21
SysInitVars 9-53, 9-56
SysRemoveHandler 9-23, 9-33
SysSetVector 9-23, 9-29
system configuration code 1-3
System Controller 6-2, 6-7
System Debug Mode 4-2, 5-2
system initialization 9-6
system library 1-5
SysVars 9-58
sysvars.h 9-80
SysVarsChange 9-54

Index

pSOSystem Getting Started Index-15

SysVarsPrint 9-54
sysxx.lib 9-82

T
target

board 1-6, 6-8
IP address 4-12, 5-13
system 1-2, 6-1, 6-5, 6-9, 6-10

TAS 9-28
task

client 6-2, 6-4, 6-5, 6-11
IDLE 2-10, 3-11, 7-33
ROOT 2-10, 3-11
server 6-4
user ROOT 7-33

Task Debug Mode 4-2, 5-2
tasks, maximum active 7-3
tasks.c file 6-2, 6-4
TCP throughput benchmark 1-10
technical support xv
terminal emulation program 2-2, 2-5,

3-2, 3-6, 4-7, 4-8, 5-7, 5-9
baud rate 6-10

terminal emulator 4-7, 5-7, 6-10
tip and cu 6-10

TFTP 1-13, 9-57, 9-75, 9-76
bootloader 1-10, 1-13
pseudo-driver 7-3

tftp 8-5
TFTP Boot ROM 7-17
tftp, sample application directory

1-10
tftp_drv.c 9-68
TFTP_READ_IOPB 9-77
TftpClose 9-68, 9-78
TftpCntl 9-68

TftpInit 9-68, 9-76
TftpOpen 9-68, 9-77
TftpRead 9-68, 9-77
tic 9-20
timer.c 9-10, 9-20
tip 2-2
tip (terminal emulator) 6-10
tm_tick 9-20
tmFreq 9-9, 9-21
tmRead 9-9, 9-21
tmReset 9-9, 9-21
Trace viewport 5-16, 5-19, 5-20, 5-22,

5-29
Trace window 4-35
Traceback window 4-28
tracking of program execution 4-1,

5-1
types.h 9-80

U
UDataCnf 9-70
user ROOT task 7-33

V
V_ABORT 9-10
V_ADDRERR 9-9
V_BSUN 9-10
V_BUSERR 9-9
V_DZ 9-11
V_EFFADD 9-11
V_FLINE 9-10
V_HDWBKPT 9-10
V_INEX 9-10
V_LAN 9-37

Index

Index-16 pSOSystem Getting Started

V_OPERR 9-11
V_OVFL 9-11
V_TIMER 9-10
V_TRAP0 9-10
V_TRAP11 9-10
V_TRAP12 9-10
V_TRAP13 9-10
V_UNFL 9-11
V_UNSUPP 9-11
vactive command 5-28
VBR 9-29
vect000.s 9-29
vect0x0.s 9-23, 9-29
vector

unused 7-31
Vector Base Register 9-29
vector.s 9-23
VERSION 9-5
version.h 9-80
View viewport 5-21, 5-23, 5-25, 5-26,

5-32, 5-33
View window 4-27, 4-31, 4-32, 4-38
viewport 5-16

Break 4-28, 5-16, 5-22, 5-24
Code 5-19, 5-20, 5-24
Command 5-16, 5-19, 5-22, 5-27,

5-31
Data 5-28, 5-29
Registers 5-20
Stack 5-20
Trace 5-16, 5-19, 5-20, 5-22
View 5-21, 5-23, 5-31, 5-33
zoomed and unzoomed size 5-16

VME 9-6
VME_base_addr 9-19
VMEbus 6-2

configuration information A-28,

A-32
dual-ported memory 6-6
multiprocessor system 6-7

vscreen command 5-35

W
WD33C93.c 9-26, 9-49
WD33C93.h 9-9, 9-26, 9-51
window

Break 4-30
Breakpoints 4-28
Code 4-24, 4-25, 4-30
Command 4-22, 4-33, 4-34, 4-37
Data 4-35
Traceback 4-28
View 4-27, 4-37

working directory 1-4, 1-5, 6-9, 6-11
mpdemo 6-9

X
xp_out.s 8-3
xp_out.s file 2-4, 3-4
xp_strout() 2-4, 3-4
XRAY+ 1-8, 3-1, Gloss-v

commands 5-14
debugging modes 5-19
environment variable 5-7
over Ethernet 3-14, 5-10

XRAY+ for MasterWorks
commands 4-19
debugging modes 4-24
environment variable 4-7
over Ethernet 4-9

xray_cxx 1-10
xraydemo 8-4
xraydemo, sample application direc-

Index

pSOSystem Getting Started Index-17

tory 1-10

Z
z85230.c 9-25
z85230.h 9-25

Index

Index-18 pSOSystem Getting Started

Document Title: pSOSystem Getting Started:

68K Processors MRI Release

Part Number: 000-5001-004

Revision Date: March 1996

	Contents
	About This Manual
	Purpose
	Audience
	Organization
	Related Documentation
	Support
	Notation Conventions

	1 Introduction to the pSOSystem Environment
	1.1 Target Architecture
	1.2 Host Development System Layout
	1.3 Standard Download/Debug Sequence
	1.4 pSOSystem Boot ROMs

	2 pSOSystem Tutorial for Workstation Hosts
	2.1 Recommended Software and Hardware
	2.2 Creating a Working Directory
	2.3 hello Sample Application
	2.4 Building an Executable Image
	2.5 Downloading the Executable Image
	2.6 Printing When Using XRAY Over a Serial Channel

	3 pSOSystem Tutorial for PC Hosts
	3.1 Recommended Software and Hardware
	3.2 Creating a Working Directory
	3.3 hello Sample Application
	3.4 Building an Executable Image
	3.5 Downloading the Executable Image
	3.6 Printing When Using XRAY Over a Serial Channel
	3.7 Using XRAY Debugger for pSOSystem Over Ethernet

	4 XRAY Debugger for pSOSystem Tutorial: Multiple Windows Version
	4.1 xraydemo Sample Application
	4.2 Creating an Executable Image
	4.3 Using XRAY Over a Serial Channel
	4.4 Using XRAY Debugger for pSOSystem Over Ethernet
	4.5 Initializing XRAY Debugger for pSOSystem
	4.6 Starting the Downloaded Operating System
	4.7 XRAY Debugger for pSOSystem Product Description
	4.8 Tutorial Output
	4.9 Running the System Debug Mode Tutorial

	5 XRAY Debugger for pSOSystem Tutorial: Viewport Version
	5.1 xraydemo Sample Application
	5.2 Creating an Executable Image
	5.3 Using XRAY Over a Serial Channel
	5.4 Using XRAY Debugger for pSOSystem Over Ethernet
	5.5 Starting the Downloaded Operating System
	5.6 Running the System Debug Mode Tutorial

	6 Shared Memory Multiprocessing Tutorial
	6.1 Introduction
	6.2 mpdemo Sample Application
	6.3 Planning the Target System
	6.4 Setting Up the Hardware
	6.5 Testing the Hardware
	6.6 Creating a Working Directory
	6.7 Building, Downloading, and Starting the Executable Images
	6.8 Running the Sample Application

	7 Configuration and Startup
	7.1 Overview
	7.2 sys_conf.h
	7.3 Adding Drivers to the System
	7.4 Using the Boot ROMs
	7.5 System Startup Sequence
	7.6 Component Customizations

	8 Application Examples
	8.1 fpsp
	8.2 hello
	8.3 pnabench
	8.4 xraydemo
	8.5 proberom
	8.6 tftp
	8.7 philepna
	8.8 nfs

	9 Understanding and Developing Board-Support Packages
	9.1 template Directory
	9.2 devices Directory
	9.3 Configuration Files
	9.4 drivers Directory
	9.5 include Directory Files
	9.6 System Files

	A Board-Specific Information
	A.1 Motorola FADS68302
	A.2 Motorola EVS-68332
	A.3 Motorola EVS-68340
	A.4 Motorola MVME162
	A.5 Motorola MVME162LX
	A.6 Motorola MVME162FX
	A.7 Motorola MVME167
	A.8 Motorola MVME177
	A.9 Motorola QUADS-68360
	A.10 EST SBC360 Evaluation Board

	Glossary
	Index

