
FST-1

DISC OPERATING SYSTEM - -
(DOPSY)

MANUAL

D~cember, 1970

TABLE OF CONTENTS

SECTION I INTRODUCTION

SECTION II GENERAL DESCRIPTION

2.1 Introduction ...
2.2 Information Flow .
2.3' Disc Allocation
2 .4 Memory Allocation
2.4.l Skeleton
2.5 Corrmand Records
2.5.l Introduction ...
2.5.2 C~nd Format
2.5.3 Operand Pirameter Types
2.5.4 Noise Words •
2. i . Error Recovery •

SECTION III COMMAND DESCRIPTIONS

3 .1

3.2
3.3

3.4

3.5
3.6
3.7
3.8

3.9

Introduction .
JOB
ASM . .
EXEC
CREATE .
ASSIGN
FDl.W

DELETE . . • • .
RENAME

3.10 ix.1P

3.11 NOTE .
" ..

i

Page

l

2

.

2

2

2

5

5

7

7

.

. 7
1

. 8

9

• . l 0

11

• • 11

11

12
. 13

• 19

. • 22

• • 23

• 25

26

26

. 27

TABLE OF CONTENTS {Continued)

SECTION III COMMAND DESCRIPTIONS {Continued)

3.12 SET .
3. 13 PATCH .
3. 14 MTAP •
3. 15 COMPILE .

SECTION IV MONITOR OPERATION

SECTION V REFERENCES

.

APPENDIX A DOPSY System Error.Messages

ii

• • 28

• • 28

. .29

• • 30

30

31

32

Figure 1

FIGURES

Page

FST-1 DOPSY Programming System • • • • . • . . . 1

Figure 2.2 lnfonnation Flow•.•..•......•.... 3

Figure 2.3 Disc Allocation ...•.............. 4

Figure 2.4 Main Memory Allocation••...•....... 6

iii

FST-1 DOPSY MANUAL

1.1 INTRODUCTION

The DOPSY programming system consists of a collection of programs operating
under control of the Monitor. This is illustrated in the following diagram.

MONITOR

l
FILE

SYSTEM

Figure 1

·- - - - } - - --- --
1

,- - - - '- - -- -1
I I

. _I

The broken lines indicate that this set of programs is not closed. As new
translators become available, for example, they can easily be added to the
system.

These related, but independent programs form a simple on-line, batched job
processor. This manual attempts to provide enough material for a person to
use the system commands effectively. The two major areas discussed are: 1)
the details o~ systems organization that affect or are related to the user's
program and 2) the commands by which a user communicates with the' system.
As a user becomes more familiar with the system and wants to utilize more
of its resources he may wish to consult other manuals in the library of
manuals for this computer. (See References at the end of this manual).

The minimum configuration that the system will run on is:

• BK main memory (Note: 12K memory is minimum for running TOPSY--Tester
OPerating SYstem).

• Di SC fi 1 e.
• Teletype with paper tape reader and punch.

1

GENERAL SYSTEM DESCRIPTION

2.1 INTRODUCTION

This section discusses in general terms the organization of DOPSY. This
information is included so the user may better understand how his program
interacts with the system.

2.2 INFORMATION FLOW

Figure 2.2 is a block diagram of a typical system. Input and output to the
system are directed to a very iarge degree by the user explicitly selecting
particular I/0 devices when he issues a co1TV11and to the system. For this pur
pose he may use the symbolic references TTP, TTK, CR, and LP. In many cases,
failure to select a particular device will result in the system using the
device assigned to PIO or POD, Primary Input Device and Primary Output Device,
respectively. In other cases, however, omission of the I/0 device specifi
cation indicates to the system that working storage is to be used for the
operation. This use of the PIO or POD devices as default I/0 devices is
of secondary importance, however. The primary purposes of these devices are
1) a source of system commands, and 2) a receiver of standard systems output.
These points are discussed in more detail throughout the manual.

Note that the teletype is considered to be three devices; paper tape and
keyboard input are differentiated, but not paper tape and printer output.
The disc holds the programs and data required by DOPSY and also acts as a
storage device for user programs.

2.3 DISC ALLOCATION

Figure 2.3 illustrates how space is allocated on the disc. Most of the
facilities used by DOPSY for maintaining the disc and file processing are
available to users.

Of the five areas on the disc only the first two, the core buffer (CB) and
the skeleton monitor, are fixed in size. The size of the file directory
can change only by issuing the appropriate ASSIGN command. The size of the
file area and WS, however, are continually changing as a result of the ASSIGN,
DELETE and CREATE commands and any increase in the size of one results in a
decrease in the size of the other.

The kinds of files that the system processes are called STRING, DATA, OBJECT
and COREIMAGE. The records that' comprise these files are characterized by
record length, fixed or varying, and record contents, character or word.

2

CR

Card Reader

3

TIK TIP LP

(TTR} Line Printer

TeleType Keyboard
Te1eType Paper Tape Reader
TeleType Printer

Figure 2.2

Information Flow

MTR
MTW

Magnetic Tape

Disc
Se'Ctors:

16,000 l
,...,.

,.._
,_

92

86

0

WORKING

STORAGE

FILE

AREA

---FILE "1':!'"

DIRECTORY

SKELETON
MONITOR

4K
CORE BUFFER

Figure 2o 3
DISC ALLOCATION 4

STRING files have variable length, character. records. OBJECT records are
also variable in length, but are word-oriented; the length of these records
is determined from the first word in the record. DATA records are word
oriented and fixed length; the record size, however, is declared at the
time the file is created and can never change. COREIMAGE files have a
very limited usage with regard to I/0 and are treated as type DATA for this
purpose ...

The word-oriented files do not have any record separators. The first word
of a record follows immediately after the last word of the previous record.
STRING files, however, have each record terminated with a 778 character,
or•+ 1

• Records of STRING files should not, therefore, contain the •+ 1

character or the record will appear as two or more records to the system's
input routine.

2.4 MEMORY ALLOCATION

Figure 2.4 illustrates the allocation of the main memory when the monitor
has control and when a user's program has control. User programs are not
allowed to load below 2208 and they should not use locations below 220B as
data storage. No other restrictions are placed on such programs regarding
utilization of main memory.

2·.4.1 Skeleton Monitor

Locations lOOB through 5078 are occupied by the SKELETON MONITOR. This body
of code consists of three pieces: the COMREC, Automatic Restart Routine and
the Core-Image Loader. The COMREC and ARR occupy lo cations 1 OOB through
217B and should not be altered except for the following case.

The variable MlRSTRT, location 1208, in the COMREC may be changed by the
user to cause DOPSY to accept a different set of command records. This is
discussed in more detail in 2.5.

ARR is used to automatically reload DOPSY at the completion of a user's
program execution. It first saves the lower 4K of main memory in CB and
then loads the core-image loader CIEXEC. CIEXEC, in turn, is used to load
the main monitor.

The ARR can obtain control in either of the following ways:

• Executing a BRU 1258 in any program.

• Executing a BRU 1258 from the CPU console.

The core-image loader is used by DOPSY for loading overlays and can also
be used by the user providing his program loads above 511B.

5

37777B

lOOOOB

77778

60008

57778

5108

5078

(
I

I/0 BUFFER

SPACE

MAIN MONITOR

OVERLAY REGION

MAIN MONITOR

SKELETON MONITOR

1. CI LOADER

1---- --- - -------- --~ ... -
;2o ARR

lOOB 3o COMREC

Location 0

Figure 2. 4

Available To

User Programs

220B

6

The coding required is:

LOA = 'SYMB'
LOE = 'OL'
BSM* 5108

ERROR RETURN
NORMAL RETURN

The A and E registers must be loaded with the six-character name of the core
image program to be loaded. The A register should never be zero and the low
order twelve bits of the. E register should always he zero. The error return
is taken if the file entry is not in the directory or if its type is not core
image. The normal return is taken only if the overlay executes a BRU* to its
entry point.

CIEXEC uses and doe~ not restore index registers 7 and 6 and state switch 7.
It also loads into .index register 0 the address plus one of the last location
1 oaded.

The ARR facilities are used to load object as, well as core-image programs and
the user should note that the disc I/O that resides in ARR executes a BAH 1008
if it is unable to read the disc after 80 retries. This halt is also executed
if ARR is unable to reload the MONITOR because its directory entry cannot be
located. In either case, the contents'of the program counter will be 1018
when the halt occurs.

2.5 COMMAND RECORDS

2.5.1 Introduction

The commands recognized by the monitor may be provided from the card reader,
magnetic tape, or the teletype. They are received as input via the I/O
procedures CRIO, MTIO, and TTRIO. When entering comnands from the keyboard,
one should be cognizant of the limited editing facilities provided by TTRIO.
TTRIO interprets the character produced by pressing CTRL B as a backspace of
a single character and that produced by CTRL L as a line delete. The former
is indicated by echoing a 1

+
1 for each occurence while the latter is indicated

by a carriage return, Jj_ne feed and '*'.

Non-commands read from the card reader are simply bypassed, but a non-command
record read from the teletype keyboard will produce the message '// RECORD
NEEDED'.

2.5.2 ·command Format

The format of the col111lands that the system recognizes is:

COL. 1 2 3 4 · 80 -------------------
I . I x name <operand parameters>

7

Columns one and two must contain 1
//

1
• Tfi.e x in column three is a restart

character. Not all conmand records received by the monitor are accepted
for processing. A conmand is accepted for processing only if column three
is blank or equal to the last restart class given to the system.

Every time DOPSY is reloaded by ARR a particular class code is assigned to
the restart. This class code is o5tained from MlRSTRT, location 120B iri the
COMREC, and will have the value '@', 40B, unless the user's program changes
MlRSTRT. This class code is then saved in the COMREC entry MlLRST and is
used by DOPSY in determining whkh conmand records wi 11 be processed and
which will be ignored. In generalt cards that have a blank or an '@' in
column 3 will be accepted if MlRSTKT is not changed by the user.

As an example of using the restart class consider a two phase program. The
first phase reads data and does preliminary editing on the data. The result
ing data is left in working storage for subsequent processing by phase two,
which should be executed only if phase one is successful. This success is
indicated by having phase one alter MlRSTRT to give a restart of '! 1

, or 01.
By using the following set of commands, phase two will execute only if phase
one terminates successfully.

II EXEC 'PHASEl' CLEAR
•
•

DATA USED BY PHASEl
•
•

II (eof record}
II @DUMP 6000B to 70008
II ! EXEC 'PHASE2' CLEAR

Only one of the last two commands is accepted. Failure of PHASEl to alter
MlRSTRT causes the DUMP command to be accepted· and the second, EXEC, ignored,
but the reverse will happen if PHASEl is able to alter MlRSTRT to 1 ! 1

•

The remainder of i the command record contains the cormnand name fcfl 1 owed by the
operand parameters. The command name may start anywhere after column three
and terminates with the first special character, anything other than a letter
or digit, which is ignored.

The operand parameters occur after the command name and must be separated
from each other by a special character such as space or comma.

2.5.3 Operand Parameter Types

The types of parameters that may occur in an operand are:

• string A sequence of characters, other than a single quote, enclosed in
single quotes. These are used to reference files, job numbers,
etc. Only the first six characters are retained.

8

1 name

Example: 1 FILE.l 1

1 CER* 1

I ABIGSTRING I

A sequence of letters, including $ or digits; the first character
must be a letter. Like strings, only the first six are retained.

Example: TTK
CREATE
TEST34

1 integer A sequence of digits, which if terminated by the letter B is assumed
to be octal, otherwise, decimal. Only the low order 24 bits are
retained.

1 special
charac
ters

Example: 15
40B
777777778

Note: 4095 is equivalent to 77778

These are generally ignored but must be present to separate the
parameters. Characters other than letters or digits are special
characters.

Example: , .
' +

The meaning of each parameter type is a function of the command. These are
discussed in detail in section 3.0. One point to note, however, is that unless
stated otherwise in a particular command description, the order of these param
eters is irrelevant.

2. 5 .4 Noise Words

There are certain names that are used by the command to specify certain options:
STRING, TTR, LP, CLEAR and MAP are a few examples. Words, or names, other than
those 'reserved' names recognized by the command may be inserted freely to
improve read-ability. Some examples of this are shown below. The underlined
items are the significant ones; other words, characters, etc. are considered
noise and ignored.

II DUMP ONTO LP LOCATIONS 2008 TO 1500B.

II CREATE A STRING FILE NAMED 'FILEl' FROM WS?

II RENAME FILE 'TEST3' AS 'TEST4'

II EXEC LOAD FROM CR AND 1 PRGl 1 AT 500B. CLEAR AND MAP.

II CREATE A DATA FILE NAMED 'SAMPLl '. RECORD SIZE IS 15.

II ASSIGN 100 SECTORS TO FILE 'DATALG'

9

2.6 ERROR RECOVERY

Whenever the system encounters an error that requires user intervention, it
types the message 1ERROR--text 1 on the teletype. The text following the two
dashes describes the error condition. If PIO is the TTK the system will type
an 1* 1 and expect a corrnnand to be typed. This command may be the same one
with the error corrected or a new one. If PIO is the CR, the 1* 1 is typed and
one of the words ABRT, CR, TTK or MTR must be typed as a response. If the
response is none of these, the 'ERROR--test' message is again typed and the
response must be entered again.

ABRT causes the job to be skipped while CR, MTR and TTK indicate that the
corrnnand will be re-entered from the card reader, magnetic tape, or teletype
keyboard respectively. If the user wants to ignore the conrnand, he should
type CR and not alter the card deck in the card reader. When the response is
CR, a halt occurs to allow the input deck to be altered if necessary. Pressing
START will cause processing to continue. When accepting commands from magnetic
tape, the corresponding procedure may be used.

Below is a list of the monitor and system error messages. User messages pro
duced by the command processors are described in Section 3.0 with the commands.

Error Messages:

TEXT

II RECORD NEEDED

IN COMMAND NAME

FUNCTION NOT IMPLEMENTED

SYSTEM-1
•
•

SYSTEM-12

DESCRIPTION

The record is not properly identified
as a command.

The cormiand name is not one recognized
by the monitor.

The command processing program could
not be located on the disc.

These messages indicate some malfunction
or unusual condition encountered by the
system itself. They are described in
Appendix A.

Other messages that come out are of a warning nature only and do not require
any intervention.

10

3.0 COMMAND DESCRIPTIONS

3.1 Introduction

This section describes all of the commands recognized by the system. The
general form of each command is given along with specific examples; the
following syntax notation is used:

1 Parentheses '(',')'are used to enclose items that are optional.

• Where a choice is to be made from a set, the items in the set will be
enclosed in angled brackets, 1 < 1

,
1 > 1 and separated by a slash.

Example:
<TIP/TTKICR>

• O indicates that none of the elements of the set needs t~ be chosen.

• An underlined item in a set indicates that it is assumed if none are selected.

• Constant-names are shown in upper-case. They must always be written
exactly as shown.

Example:
STRING
TTP
CLEAR

• Variable names or quantities are shown in lower-case. Their value changes
with usage and must be supplied by the user.

Example:

3. 2 JOB

string
integer
file-name

Generic form:

Examples:

Description:

II JOB string

II JOB 'CER'
II JOB 'TSTR'

JOB causes the system to initialize for processing a new job by restoring
the COMREC from the permanent copy kept on the disc. The net result of this
is 1) any information in working storage is lost, and 2) PIO and POD are
reset to the standard systems value. After boot-strapping the monitor system

11

from the card reader or magnetic tape, a JOB command with a non-blank string
in the operand must be accepted by the system before it will accept any other
commands. This is required in order to permit proper file referencing.

Warning Message:

DISC WRITE DISABLED The disc cannot be written upon. Either
the DCU or disc write-disable switch is
set.

Error Messages:

TEXT DESCRIPTION

MISSING PARAMETER No non-blank string was present.

3.3 ASM

Generic form:

I!\ ASM<TTK/TTR/CR/MTR/ 'file name' /O><TTP/LP/MTW/O>(SPASS) (LIST) (SYM) (OBJ) (INSEQ)

Example:
II ASM

The source program is read from PIO and assembled. Unless there are SYM or
OBJ directives in the source program, the only output that will be produced
is that for statements or symbols that produce errors or warning flags. This
output will be listed on POD.

II ASM 1TSTPR 1 LIST OBJ SYM INSEQ

The source program in the file TSTPR is assembled. The assembly listing and
symbol table listing are listed on POD. The object program will also be
produced in working storaqe. Columns 73-80 of the source records are checked
for ascending sequence. Sequence blanks are skipped.

Description:

The Assembler Manual gives the information necessary for producing programs
that are acceptable to the assembler.

The following points should be noted:

1 ASM treats the operand parameters OBJ and OBJECT as equivalent. (Note:
OBJECT is not recognized as a valid opcode in the source program.)

12

1 ASM always leaves the generated object program in working storage.

1 ASM will accept disc file input and has more IIO options.

1 ASM produces the listing for the LIST option on the first pass if the
assembly is a single pass (SPASS) assembly.

The operand parameters are used to specify the source of the input, the
destination of the output and what output is to be produced. PIO and POD are
assumed if no input or output file is specified. Only statements and/or
symbols that produce error or warning flags are listed if SYM or LIST are
omitted and the corresponding directives are not in the source deck. LIST/
NO LIST directives in the source file are not honored if 'LIST' is not an
operand parameter.

Error Messages:

TEXT

SYMBOL TABLE OVERLFOW

DISC OVERFLOW

Warning Messages:

IN FILE SPECIFICATION

EOF-END ASSUMED

MONITOR RECORD IGNORED

MAGTAPE WRITE ERROR

3.4 EXEC

Generic forms:

DESCRIPTION

The symbol table is not large enough
for the assembly. The program must be
segmented.

The capacity of the di s.c makes it
impossible to assemble.' The user should
delete some files to make more space
available.

Source file cannot be located or its
type is not STRING or DATA.

The source program file has been ex
hausted, but no END card has been read.

Source contained a monitor record.

Listing has a bad record. Assembly is
continued.

II EXEC MTRICR/TTRITTKIO ('file name') (integer) (CLEAR)(DEBUG)(MAP)(CTRL)(XPND)

II EXEC 'file name' (CLEAR)

13

Example:
II EXEC

The program in working storage will be loaded beginning at location 220B and
executed.

II EXEC 1TESTl I 500B MAP CLEAR TTR CR

Object programs are to be loaded from paper tape, the card reader and the disc
file TESTl. Prior to loading, core memory is set to zero from the loading
point up. The program is to be loaded beginning at location 5008 and when
loading is complete a memory map will be listed on POD. If there is an object
program in working storage, it will be loaded also.

II EXEC 1TEST2 1 CLEAR

The object file TEST2 is loaded after setting the core memory to zero from
the loading point up. The program is loaded beginning at location 2208.
Working storage will also be loaded if it contains an object program.

II EXEC 1MAINPR 1 CLEAR CTRL
NOLOAD DISCIO, CPIO, GET, PUT
LOAD 1*TEST 1

, CLOSE, TVECT
NOLOAD TTPIO, OPEN
II

The object file 'MAINPR' is loaded after setting the core memory to zero from
the loading point up. The files listed in the second and fourth (NOLOAD)
records are not to be loaded from the corresponding disc files even though
there are CALL records for them. The files listed in the third (LOAD) record
are to be loaded even though there are no CALL records for them. (See Note 2, Pg.
18~) File names in CTRL records need no'tbe put in quotes unless they contain
special characters or start with a number. Working storage will also be
loaded if it contains an object program.

Example:
II EXEC 10VRl I CLEAR

The core image file OVRl is loaded after setting core memory to zero from
5008 up. (See page 17). No other options are required. (See Note 1, page 18.)

Description:

The first form of the EXEC command is used to load and execute object programs.
The source of these programs may be any combination of the peripheral files
from the TTK, CR, TTR, MTR, or disc file. Working storage is always loaded if
it contains an object program; it will not be deleted and is unaffected by the
loading. Input from a peripheral file must always terminate with an EOF record.
(II in columns 1 and 2: rest of the •card' blank).

When there is more than one source of input, the order of loading is as
follows: TTK, CR, TTR, MTR, disc file and working storage.

14

When all of the programs at these sources have been loaded, there may be
CALL statements whose corresponding PROC statements have not been loaded.
If this is the case, EXEC will attempt to load a disc file.whose name is the
same as that of the missing PROC statement. In trying to find this file, EXEC
WilT first look in the user's directory and then the system's directory. If
no such file can b~found, the same procedure will then be done for the
remaining missing PROC statements. When this has finally been done for all
such PROC statements and some are still missing, the missing ones will be
flagged with a 1U1 in the MAP listing. Executing a CALL for an undefined
entry results in a HALT.

Note that a disc file can be loaded automatically only if there is a CALL
statement whose name matches that of the file.

The automatic search facility can be suppressed and/or supplemented by
placing the word CTRL in the operand. This option requires additional
records to specify the names of files that are not to be loaded (searched
for) even though they are CALLed. The source of these records is the same
as that of the EXEC command. The series is terminated by an EOF record.

The format of these records is:

<LOAD/NOLOAD><name/ 1 name 1>(,<name/ 1 name 1>)

Example:
LOAD '*TEST', DISCIO, LPIO, '469X'
NOLOAD GET, PUT
LOAD CLOSE' I XBQ& I ' H46T

The word LOAD or the word NOLOAD must appear first in each record, and all
names in any one record are treate<fa"s specified by the first word.

If a file name appears in both a LOAD and a NOLOAD record,' the NOLOAD option
takes precedence. The file-names need not be put in quotes unless they con
tain special characters or start with a number.

The files listed in LOAD records ~re_ loaded in the order specified after all
programs from TTK, CR, TTR, MTR, the named disc file, and WS; programs still missing
and not appearing in NOLOAD records will be searched for and loaded after the
programs specified by LOAD records. Note that a desired order of loading
can be forced by specifying·a11 the programs to be loaded- in CTRL records.

The object programs that are to be loaded load one after the other into
ascendirgmemory locations. The first location to be loaded is location 220B,
but this can be changed by placing ihe address of the first location to be
loaded in the command operand field. Due to double precision operations,
this number must be even and it will be increased by one if it is not. ABS
assemblies load independently of the relocation process and should not load
into the same area of memory that relocatable programs are occupying; under
no circumstances should any program load below 220B~

\

15

The word CLEAR in the operand field causes core memory to be set to zero
before loading the proqram. The area cleared is from the load point to the
top of memory. (See Note 3.) The word DEBUG causes the debug ·procedure DEBUG
to be loaded and given control when loading is complete; the user will then
need to use a DEBUG corrmand to transfer control to his program.

The word XPND causes EXEC's internal buffers to be shortened to allocate
more space for the symbol table. This slows down the loading process
noticeably, but should enable programs which overflow the standard symbol
table to be loaded. (See Note 8.J

The MAP option will list on POD the address plus one of the highest location
loaded followed by the names and addresses of all PROC statements. The
address of the highest location loaded is also transmitted to the user's
program in index register 0. Following the name is a code whose meaning is
described in the following table:

CHARACTER

space
N
u
D
?

0, 1' 2

DESCRIPTION

Linkage established correctly.
PROC has no corresponding CALL.
CALL has no corresponding PROC.
More than one PROC with same name.
Combination of N and D.
SYSTEMS-ERRORS (See Note 2 & Appendix A.)

For 'D', the CALLs will be linked to the first PROC entry; executing a CALL
for a 'U' entr:y will cause the machine to halt. Note that 'N' entries are·
frequently pro'duced by PROC statements that establish i.:nterrupt linkages and
by MAINPR PROC statements and are not errors. All PROC statements with codes
other than space will be listed on POD even if the MAP option was not requested.

Example:
01754
MAINPR N 00250
LPIO 01500
LPIOIN N 01535_
TTRIO 01557
TTRINT N 01600
TSUBl u
TTPIO 01643
TIPINT N 01665

When loading is complete, EXEC attempts to transfer control to DEBUG if it
was loaded; to the MAINPR PROC statement if one was loaded; or to the first
PRO~ statement that was loaded. If DEBUG or MAINPR are not present, the
name1 of the first PROC statement is listed on POD followed by 'IS ENTRY PNT'.

Example:
TESTl IS ENTRY PNT

16

If the user's program executes a BRU* to its entry point when finished, the
DOPSY system will be reloaded automatically provided the core area below
61008 has not been disturbed.

Th~ second form of the EXEC colTITiand is used for loading core-image programs.
It is the user's responsibility not to EXECute a core-image file that does
not have an entry point! If CLEAR is specified, core memory between 5008 and
the end of memory will be set to zero (see notes l and 3), the program will
then be loaded by the core-image loader, CIEXEC. The address plus one of
the highest location loaded is transmitted to the user's program in index
register 10 1

• If the user's program executes a BRU* to its entry point when
finished, the DOPSY system will be reloaded automatically (see restriction
above).
Error Messages:

TEXT

IN FILE SPEC

C.I. FILE ILLEGAL

IN CTRL RECORD

I~ REC SEQ - XXXXXX

PROGRAM TOO BIG

SYMBOL-TABLE OVERFLOW

LOADING BELOW 229B

NO ENTRY POINT

NO OBJECT PROGRAM GENERATED

INV CKSUM XXXXXX

Warning Messages:

XXXXXX IS ENTRY PNT

DESCRIPTION

An output device is specified, a disc
file cannot be opened or its file type
is not correct.

CI files cannot be loaded with object
files. (See Note 4)

The format of a CTRL record is incorrect.

The object file XXXXXX has been scrambled.
(See Note 5).

The program is too large for available
memory.

There are too many PROC records in the
object programs being loaded, i.e.~ 1000
PROC records in an BK system (very un-
1 i ke ly) • (See Note 8) •

Programs cannot load between 0 and 220 octal.

EXEC cannot determine where to transfer
control. (See Note 6).

No machine-instructions were actually loaded.

Object records have bad parity. (See Note
5).

Neither DEBUG nor MAINPR PROC s·ta tements were 1 oaded; contra 1 wi 11 be trans
ferred to the PROC statement Xx'XXXX. (See Note 7).

17

EXEC NOTES

1. The other options should.not appear. Most will be ignored (MAP, DEBUG,
loadpoint, XPND); CTRL records will be processed but no programs will be
LOADed or NOLOADed; requesting loading from a peripheral device (TTK, CR,
TTR) will result in an error condition. (See Note 4.) Note that WS will
never be loaded with a core-image program.

2. If a file named in a LOAD record has no corresponding PROC or CALL state
ments, it will be flagged with 0. This may or may not indicate that the
file was not loaded; if an object file with that name exists in the user's
directory or the system's directory, the file·was loaded.

3. For core-image files, the area cleared is from 500B to the top of memory.
The forced CLEAR caused by CREATE using EXEC clears the image of core from
O to the top of memory.

4. This error will result from an attempt to CREATE a core-image file from
an existing core-image file even if no object programs are loaded, or if
any peripherals are specified when EXEC loads a core-image file (even if
no programs are loaded from the peripherals).

5. See the ASSEMBLER MANUAL for this computer for a description of object
record format and sequence.

6. This check is purposely suppressed when creating core-image files.

7. If no PROC statements were loaded, the warning message XXXXXX IS ENTRY PNT
with XXXXXX all blanks will be generated. If EXEC was called directly a
NO ENTRY POINT error will occur, but if CREATE called EXEC to generate
a core-image file, the operation will complete successfully. It is the
user's responsibility not to attempt to EXECute a core-image file that
does not have an entry point.

8. The option XPND can be used to allow loading a set of programs which over
flow the normal symbol table. It expands the symbol table but slows down
the loading process appreciably. If an overflow occurs with the XPND
option, the number of PROC statements MUST be reduced.

18

3.5 CREATE

Generic fonns:

II CREATE ('file name')<CRITTRITTKIMTRIO><STRINGIOBJECTIOBJIDATA(integer)IO>

<OVLY/0>

II CREATE 'file name' COREIMAGE<parameters required by EXEC>

Examples:

Description:

II CREATE 'TSTB12' CR STRING

The string file TSTB12 is to be created from a card deck.

II CREATE 'MATB' DATA 18

The file MATB is to be loaded from working storage. The
file type is DATA and each record is 18 words in length.

II CREATE 'BINDEC' TTK STRING

The string file BINDEC is to be typed in from the teletype
keyboard. [NL(

II CREATE 'OVRLYl '~COREIMAGE 40008 '=OVR'

The core-image file OVRLYl is to be created from object
file '=OVR'. The entire image of the core memory will
automatically be set to zero prior to loading. The
1oading origin for the program is 40008; a loading map
will be produced.

II CREATE 'DEMONA' OBJECT OVLY

The object file DEMONA is to be created from working
storage. If there is an existing file by that name,
it will be updated.

CREATE.is used to place data in a disc file .. The first of the two forms is
used for fi 1 e types STRING, OBJECT, and DATA'~ The operand specifies the fi 1 e
type, the file name, and the source of data that is to be entered into the file.
The parameters OBJ and OBJECT are equivalent. If no file type is specified,
type STRING is assumed. If no file name is specified, the data will be loaded
into worki~g storage. If no data source is specified, the data will be obtained
from working storage. (The case of working storage to working storage is
essentially an NOP.) The size of DATA file records may be specified by plac
ing an integer value (2<n<20) in the operand; if this value is omitted 20
words (80 characters) is assumed.

19

The source data is always assumed to be of the type specified in the operand.
This condition is checked only when the data. source is working storage.

There are two levels of protection provided aqainst inadvertent overlaying
of an existing file. If the user is intentionally updating an existing file,
he may insert OVLY into the comnand telling CREATE to go ahead and overlay any
existing file. If he does not do so and the file specified currently exists
under his job number, he will be queried:

UPDATE OF EXISTING FILE?(Y/N)

Insertion of Y will cause the program to continue while insertion of any other
letter will cause a return to Monitor and cancellation of the current request.
For the purpose of these tests, a file to which space has been assigned, but
which contains no data will be considered a ·new file.

If an old file is being rewritten, it must be large enough to accommodate
the new data. If it is not, the old information may or may not have been
destroyed; it depends on whether CREATE was able to determine the size of
the new data before it was moved. (See Note 1.) When CREATE has completed
all data transfers, the new file type is set in the directory entry. WS will
be empty if it was the data source and/or if the file created had not existed
previously.

The second form is used when a core-image file is to be generated. The
operand parameters ·must·occur·;~ the order shown. Note that a file name
must be specified. After the word COREIMAGE must come the parameters required
by EXEC to load the program; see section 3.4'.

The EXEC options MAP and CLEAR are forced when generating core-image files.
The forced CLEAR option clears the entire image of core memory. A core-image
file cannot be generated from an existing core-image file.

Error Messages

TEXT

IN FILE SPECIFICATION

IN RECORD SIZE

IN FILE TYPE

DIRECtiORY FULL

FILE TOO SMALL

DESCRIPTION

The source data file specified is an
output device. (See Note 2.)

DATA records cannot be larger than 20
words, or smaller than 2 words.

WS type does not agree with the type
specified in the operand.

The file directory is full and has no
room for the new entry. (688 entry limit).

The old file is not large enough for the
new data. The old data may or may not
be destroyed. (See Note 1.)

20

INVALID FILE NAME

MISSING PARAMETER

DISC OVERFLOW

CREATE NOTES

The file name specified failed to start
with a non-blank character or was a
reserved name ($DIRCT or JARR).

The file name before the word COREIMAGE
was omitted.

There is not enough space available on
the disc for the new core-image file.

1. If the input was from working storage·or the file type is COREIMAGE, the
old data is not destroyed. ~

2. This error can also be generated by various file referencing errors in
EXEC when generating core-image files. (See Note 3.) .

3. EXEC may generate additional error-messages when generating core-image
files (see 3.4) since CREATE calls EXEC to relocate the program.

21

3.6 ASSIGN

Generic form:

II ASSIGN 'file name' integer<WORDS/SECTORSIO><STRING/DATA(integer)/0>

Examples:

Description:

II ASSIGN 'TEST4' 30 SECTORS

II ASSIGN 'DATAFl' 10000 WORDS STRING

II ASSIGN 'DATA' 8000 WORDS DATA 12

ASSIGN is used to save space for a new file or to change the amount of space
allocated to an old file. The first integer in the operand specifies the
amount of space to be assigned to the file. The units may be SECTORS or
WORDS; in the latter case, this value will be rounded up to the nearest
multiple of 48.

If the file is an old one, enough space will be added or removed from the
end of the file to get its allocated space to agree with the amount specified.
In no case, however, will space be removed if it contains useable information.
Attempting such an operation causes a warning message to be issued; the size
of the file will be decreased as much as possible (to that required to retain
all of the useable informationJ.

If the file is a new one, its type can be specified as STRING or DATA. If
the type specification is omitted, type STRING is assumed. If the type is
DATA, the record size can be specified by placing a second integer (2<n<20)
in the operand. If the record size specification is omitted, 20 words f80
characters) is assumed.

Error Messages:

TEXT

MISSING PARAMETER

DIRECTORY FULL

IN RECORD SIZE

INVALID FILE NAME

DISC OVERFLOW

. DESCRIPTION

The file name was omitted.

The file directory is full and has no
room for the new entry.

DATA records cannot be larger than 20
words or smaller than 2 words.

The file name specified failed to start
with a non-blank character or was a
reserved name ($DIRCT or $ARR).

The requested extra space is not avail
able on the disc. The operation is
suppressed.

22

Warning Messages:

DELETION OF USEABLE
INFORMATION SUPPRESSED

The requested reduction of file sfze
would destroy useable data; the file
size is reduced to the minimum size
required to retain all the data.

3.7 FDUMP

Generic form:

II FDUMP<'file name'IO><TTPILPICRIMTWIO>(integer)(LEADER)(OIRECTORY)(OCTAL)
II FDUMP WS

Example:

Description:

II FDUMP DIRECTORY

This option will provide the user with a listing of the
files in his directory, in this case on POD.

II FDUMP LP

This command provides a listing of working storage on the
line printer. The contents of working storage is destroyed.

II FDUMP 1BPRGA 1 TTP

The file BPRGA is punched onto paper tape.

II FDUMP 1TSTDAT 1 LP 10

The first 10 records of file TSTDAT are listed on the line
printer.

II FDUMP DIRECTORY 1BTEST 1

This option allows the user to dump the directory entry
of a specified file, in this case to POD.

II FDUMP '=XYZ' OCTAL MTW

This command will cause the object file '=XYZ' to be dumped
in octal format to the magnetic tape. Such a magnetic tape
could then be listed at a later time on the line printer.

The FDUMP command with the DIRECTORY option allows the user to dump the con
tents of his directory to one of the output devices listed above. If no
device is specified, the output will be to POD.

23

The output of a typical directory listing is shown below.

NAME TYPE ASSIGNED USED

OVRLYl c 001056 000987
TEST4 D 000960 000480
OBJ5 0 000480 000443
PRGA s 019200 011000

If a file name is also specified with the word DIRECTORY, only the informa
tion for the specified file will be listed. When operating under the system
job number, if the file name 1 /tt' is specified, the entire disc directory
is dumped and the job number for each file is included.

The units for the amount of space assigned and space used is words (in
decimal). If the file is core-image, the number of words is the sum of the
program load and the sectors required to retain interrupt loading information.
The type entries C, D, 0, and S stand for COREIMAGE, DATA, OBJECT and STRI.NG,
respectively. See parameter WS description (below).

The second form is used to dump a disc file to a peripheral device, If,
however, no disc file is specified working storage is dumped, while omission
of a peripheral device specification causes information to be dumped to WS.
The case of WS to WS is an NOP. Generally, an entire file will be dumped,
but an abbreviated dump can be obtained by placing an integer in the operand.
This specifies the number of records to be dumped, so output terminates on
an EOF or the record count being satisfied.

The word LEADER can be used if output to TTP is also going to be punched.
This will cause FDUMP to halt while the paper tape punch ·is turned on. When
execution resumes, a ten inch leader will be punched, then the file, and
lastly a ten inch trailer.

The parameter OCTAL allows the user to request a listing of a file,
typically DATA, OBJECT, or COREIMAGE, in octal format. Such a printout
would be directly readable without the necessity of other conversions.

The parameter ·WS {included in the second format) tells ·the user'. the extent
of the current disc working storage area. This information is; automatically
added to any directory information request. The output format is:

WORKING STORAGE HAS XXXX WORDS

XXXX is a decimal number.

Error Messages:

TEXT

IN FILE SPECIFICATION

DESCRIPTION

An input device is used where an output
device was expected or disc file cannot
be located.

24

DISC OVERFLOW

3.8 DELETE

Generic Form:

Examples:

Description:

Working storage is not large enough to
contain the file.

II DELETE<'file'{ ,'file name')IO>

II DELETE 'OBJ5A'

II DELETE 'TESTl ','TEST2','TEST3'

DELETE is used to remove a file from the disc. For each file specified in
the operand the following actions occur.

• The name of the file is removed from the directory.

• The space allocated to the file is made available for reassignment.

If no file names are specified, working storage is deleted; that i~ it is
made to look empty.

Users' Note: For maximum efficiency, the files must appear in the operand
in reverse order of their occurrence on the disc (from the bottom of a
directory-listing upward).

Error Messages:

TEXT

INVALID FILE NAME

Warning Messages:

XXXXXX MISSING

25

DES CR I PT ION

A file name specified failed to start
with a non-blank character or was a
reserved name ($DIRCT or $ARR). The
entire conmand is ignored.

A named file was not located in the
directory. The remainder of the command
is processed normally.

3.9 RENAME

Generic forms:

Examples:

Description:

II RENAME 'file name' 'file name'

II RENAME JOBNUMBER string

II RENAME 'TEST3' AS 'NUTEST'

The file TEST3 will be renamed NUTEST.

II RENAME JOBNUMBER 'JPQ#'

The files belonging to the current job number will
be assigned to the job number JPQ#.

The first form of RE.NAME is used to change the name of a file. The first
operand file name is· used to select the file whose name is tQ be changed
while the second is the new name of the selected file.

The second form is used to change the job number required to access the files
belonging to the current job; the new job number is specified by the high
order four characters of the string. The current job number will also be
changed to the new value.

Error Messages:

TEXT

MISSING PARAMETER

IN FILE SPECIFICATION

INVALID FILE NAME

DUPLICATE :FILE

3.10 DUMP

Generic form:

DESCRIPTION

One or both of the two required file
names are missing.

The old file cannot be located.

The file name specified failed to start
with a non-blank character or was a
reserved name (SDIRCT or SARR).

A file already exists with the new file
~ name.

II DUMP <integer/integer! integer> <TTPILP/MTW/0>

where ! is - or * or , .

26

Examples:

II DUMP ONTO LP LOCATION 2008-3008 AND 50008, 60008

The values in locations 200 through 300 octal and 5000 through 6000 octal
are listed on the line printer.

II DUMP 1008 TTP 4008, 4208

The values of location 1008 and 400 through 420 octal are listed on the tele
type.

Description:

DUMP is used to output the contents of core memory. The destination of the
output may be any of the devices shown. If none is specified POD is assumed.
The area(s) of core to be dumped are specified by an integer or integer pairs
separated by a non-numeric character. Any number of these may be specified
and a device specification may occur anywhere in the operand. The extent
of zero fields will be issued as a message: Zero Field NNN-PPP where NNN
and PPP are in octal format.

Note: DUMP reads the first 4K of core from the coreimage buffer. To have
the latest version, the disc must be enabled and a branch to 1258 must be
done before executing DUMP.

3.11 NOTE

Generic form:

11 NOTE 1 (any characters other than quote) 1 <TTPILPIMTWIO;:.(HALT)

Examples:

Description:

II NOTE 'PLACE PINK CARDS IN CARD READER' TTP HALT

II NOTE 'PHASE 1 ABORTED'

Note outputs the text between the quotes to the specified device. If the
device specification is omitted, the text will be outputted to POD, unless
POD is TTP in which case nothing is printed. · The word HALT will cause the
CPU to stop executing instructions until START is pressed.

The message text must occur before the other parameters.

Error Messages:

TEXT

MISSING DELIMITER

IN FILE SPECIFICATION

27

DESCRIPTION

A quote is missing.

An input device is specified instead
of an output device.

3.12 SET

Generic form:

II SET<CRITTK/TTRIMTRIO><LPITTPIMTW/O>

Examples:

Description:

(input) (output)

II SET INPUT TO TTK

This conmand will cause the system to look for future
commands at the teletype keyboard.

II SET CR TTP

The primary input device is set to CR and the primary
output device is set to TTP.

SET is used to temporarily alter the devices assigned to PIO and POD. These
assignments are effective only until the next JOB or SET command; in the
former case, PIO and POD are reset to their standard devices while in the
latter they are set to the devices specified by the user.

3.13 PATCH

Generic form:
II PATCH

Description:

PATCH may be used to modify string, object, data, or coreimage files. For
string, object, and data files, addresses given to PATCH must start relative
to the first word of the file, e.g. (0). For coreimage files, PATCH will
accept only those addresses relative to the first absolute core location of
the program being patched. PATCH will not allow alteration of interrupt
locations which are part of coreimage files. If there is not enough space at
the end of a file, ASSIGN can be used to increase the file size. Attempting
to address locations below the lowest file word or beyond the last available
word in the file will result in an error response 1??'.

To execute PATCH , type II PATCH under any job name with the DOPSY monitor
system and disc enabled. ·

PATCH is now waiting for one of the following commands which can be abbrevi
ated to first character if desired. A space must delimit the. command.

Note: Decimal values are assumed if not terminated with a ~' which symbolizes
octal.

28

1. OPEN 'File Name'

2. READ NNNB {single entry)
or .

READ.NNNB .:.·illlQ!!. (for string)

3. WRITE 'NNNB: .. QQ.Q!!. (single entry)
or

'WRITE 'NNNB:. ·QQ.Q!!.~ 'RRRB, etc. (for string)

4. CALC A + B + C = NNNB

A, B, C are any numbers in a simple add/subtract operation.
The answer is always in·octal.

5. DOPSY

The OPEN command must precede all others except CALC. Its purpose is to locate
the user's file and set up pertinent information for executing the READ and
WRITE connnands.

The READ comnand will list the current values of the addresses of the user's
file provided the addresses exist. They ar~ output in octal, eight (8) to
a line starting at the first entered adaress (value) of the command.

The WRITE command will enter the data following a colon sequentially from
the address supplied after the word WRITE . Values should be suffixed with
B for octal values.

CALC is self-explanatory.

An input error which PATCH finds will be terminated with a '??'. It is for
the user to figure these out.

3 .14 MTAP

Generic forms:

II MTAP TMARK

// MTAP SKIP n :<FILE/FILES/REC/RECS> <FWD/BACK> (WAIT)

II MTAP REW (WAIT)

Description:

MTAP is a utility tape handler for use by the user in formatting and process
ing magnetic tape.

29

Option 1 of the convnand will cause a tape mark to be written at the current
position of the magnetic tape.

Option 2 may be used to positi'on the tape for processing by SKIPping n files
or records forward or backward. If WAIT is specified, the next command (in
t~e job string) will not be executed until the SKIP is completed.

Option 3 will cause the rewinding of the tape. WAIT serves the same purpose
as for SKIP.

Error Messages:

TEXT

UNRECOGNIZABLE FIELD

3.15 COMPILE

Generic form:

DESCRIPTION

MTAP does not understand the command.
Re-enter.

II COMPILE<TTK/TTRICRl'file name'><TTPILP><LISTIOBJILISTOBJ>

Description:

The first group of enclosed options in the above cornnand indicates that the
compiler input may be speci~ied as coming from the Teletype Keyboard, from
paper tape via the teletype.paper tape reader, from cards via the card reader,
or from a file previously created.

For further details consult the FACTOR manual.·

4.0 MONITOR OPERATION

Providing ARR has not been destroyed, DOPSY is easily reloaded by transferring
control to location 125B. If ARR is not available, however, it is necessary
to execute the following program in order to load DOPSY.

DCBP
RETRY

DATA
LOA
RD
BOI
BOI
BRU

*+l,96,60B,406B
DCBP .
70B
3,*-1
4,lOOB ENTER ARR
RETRY

If·a card reader is available. this program.can be loaded via the LOAD switch
on the· CPU; otherwise, it must be ente.red manually each time ARR is destroyed.
This load program cannot be executed between 608 and 2208.

30

31

SECTION V

REFERENCES

1. FST-1 SYSTEMS MANUAL

2. FST-1 ASSEMBLER USER'S MANUAL

3. FST-1 SUBROUTINE LIBRARY MANUAL

4. FST-1 UTILITIES MANUAL

5. SENTRY-400 FACTOR MANUAL

6. SENTRY-400 TOPSY MANUAL

SYSTEM - 1

SYSTEM - 2

SYSTEM - 3

SYSTEM - 4

SYSTEM - 5

SYSTEM - 6

SYSTEM - 7

SYSTEM - 8

SYSTEM -· 9

SYSTEM - 10

SYSTEM - 11

SYSTEM - 12

SYSTEM. - 20

"DISC ERROR.

n

1
2
3
4

APPENDIX A

DOPSY System Error Messages

ZUPDAT overlay missing (called by SCREAT, SeREAT2,
ZDELET, or SASSIG}. .

"Never-happen" error-returns (e.g., PUTW E-0-F).

SDIRCT cannot be opened or closed.

Working storage cannot be opened or closed.

ZASMl overlay missing.

$CREAT or $CREA2 can't close a file just created.
(ENTRFN or DISCIO or hardware: Disc Write Inhibited).

ZCREA2 overlay missing (called by $.EXEC).

$EXEC overlay missing (called by ZCREAT).

Working storage is exhausted or INPUT START ADDRESS
>TOP OF WS+1 (see SASSIG and SDELET logic writeups).

Core-buffer area of disc cannot be written correctly
after 10 attempts (usually bad parity}.

SENTRY 400 software error: Missing TOPSY overlay
(CPMAIN, DATALOG, DLGI.OF, FCFAIL, DCFAIL, ERROR or MEASURE).

ZCOMPl overlay missing.

FCOMPl overlay missing.

PRESS START TO RE•TRY. n"

Routine

$EXEC
$UPDAT
$DELET
~ASSIG

32

