
Eight-Bit 80C51 Embedded Processors
1990 Data Book

Advanced
Micro

Devices

Eight-Bit 80C51
Embedded Processors

© 1989 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in
order to improve design or performance characteristics. The performance characteristics

listed in this document are guaranteed by specific tests, correlated testing, guard banding,
design and other practices common to the industry.

For specific testing details, contact your local AMO sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000
(408)732-2400 TWX: 910-339-9280 TELEX: 34-6306

Advanced
Micro

Devices

Flashrite is a trademark of Advanced Micro Devices, Inc.

PC-DOS, IBM-PC, IBM PC-PS/2, IBM-XT and IBM PC-AT are registered trademarks of IBM Corporation.

Macintosh is a trademark licensed to Apple Computer Corporation.

Sun 3 Workstation is a registered trademark of Sun Microsystems Inc.

CP/M is a trademark of Digital Research.

EZ-PRO is a registered trademark of American Automation.

MetalCE and MicrolCE are trademarks of Metalink Corporation.

MCS-51 is a registered trademark of Intel Corporation.

MicroVAX and VAX are registered trademarks and Ultrix is a trademark of Digital Equipment Corporation.

UNIX is a registered trademark of AT&T Technologies Inc.

MS-DOS and CodeView are registered trademarks of Microsoft Corporation.

Unisite, LogicPak, UniPak and PROMlink are trademarks of Data 1/0.

All 8051 instruction mnemonics are copyrighted by Intel Corporation 1980.

Note: Chapters 1 through 7 contain information reprinted with
permission from Intel Corporation.

Eight-Bit 80C51 Embedded Processors

Today Advanced Micro Devices offers you three families of compatible and upgradable CMOS products based on
the industry standard 8051 architecture. Our compatible growth path insures that the continuity of your software
investment is preserved, not obsoleted.

AMD's microcontrollers increase the levels of performance and reliability of your systems. Our valued-added
features are helping set new standards in a variety of telecommunication and computation applications.

The breadth of AM D's portfolio provides maximum flexibility for design and production needs. A variety of program
memory densities and fully compatible memory types (EPROM, ROM and ROM-less) are offered in each CMOS
family. For example, our EPROM versions greatly simplify prototyping, immediate production starts and rapid
code changes.

AM D's extensive worldwide network of sales offices, representatives and distributors is available to provide addi­
tional technical support. Please call for assistance today.

Subodh Toprani
Director of Marketing
Embedded Processor Division

iii

Eight-Bit 80C51 Embedded Processors

Preface
This databook provides complete information on the wide variety of 8-bit 8051 Family microcontrollers from
Advanced Micro Devices. AMO offers not only the best product, but also the necessary documentation and
support tools you require.

AMO offers more options on the industry-standard 8051 architecture. Two CMOS product families are now avail­
able: the 80C51 and the 80C521. Each family offers a variety of ROM densities and ROM types (on-chip mask
ROM, user programmable EPROM, or off-chip ROM). A long list of enhanced features is also available, including
Watchdog Timers, Dual Data Pointers, Software Reset, and Port Expansion.

A key to the success of the 8051 Family is the availability of efficient and highly flexible support tools. Excellent
emulators, compilers, and programmers are available from multiple sources to meet your requirements. A few of
these products are briefly described in Section II. AMO also offers compatible EPROM versions of the 8051
Family to simplify prototyping, initial production, or to provide a tool for immediate program changes.

SECTION I

This section contains general information on the 8051 Family of devices and serves as a core that is useful to
designing with all of AMD's microcontrollers. The terms "8051" or "8051 Family" refer to the entire line of 8051-
based microcontrollers, each executing an identical instruction set.

SECTION II

This section focuses on specific products, and includes data sheets, device-specific application information and
software routines. The data sheets emphasize features unique to the device and do not generally repeat informa­
tion common to the entire 8051 Family.

iv

Table of Contents
SECTION I 8051 Family Architectural Description

CHAPTER 1 8051 Family Overview

Members of the Family 1-1
80C51BH/80C31 BH/87C51 1·2
80C52T2/80C32T2/87C52T2 1·2
80C521/80C321/87C521 1·2
80C541 /87C541 1·3
80C324 1·3

Memory Organization in 8051 Family Devices 1·3
Logical Separation of Program and Data Memory 1·3
Program Memory 1·3
Data Memory 1·5

CHAPTER 2 8051 Family Architecture

Introduction 2·1

Memory Organization 2·2
Oscillator and Clock Circuit 2·3
CPU Timing 2-4
Port Structures and Operation 2·5

Accessing External Memory 2·8
Timer/Counters 2·10
Serial Interface 2·13
Interrupts 2·23
Single-Step Operation 2·26

Reset 2·26
Power-Saving Modes of Operation 2·27
More About the On-Chip Oscillator 2·28
Internal Timing 2·31
80C51BH Pin Descriptions 2·31

CHAPTER 3 Programmer's Gulde

Memory Organization 3·1
Program Memory 3·1
Data Memory 3·2
Direct and Indirect Address Area 3.4

Special Function Registers 3·6
Contents of SFRs After Power-On 3·7
SFR Memory Map 3·8
Program Status Word (PSW) 3·9
Power Control Register (PCON) 3·9

Interrupts 3·10
Interrupt Enable Register (IE) 3·10
Assigning Higher Priority Levels 3·11
Interrupt Priority Register (IP) 3·11
Timer/Counter Control Register (TCON) 3-12
Timer/Counter Mode Control Register (TMOD) 3·12

v

TABLE OF CONTENTS
(continued)

Timer Set-Up
Timer/Counter 0
Timer/Counter 1

Timer/Counter 2 Control Register (T2CON)
Timer/Counter 2 Set-Up

Serial Port Control Register (SCON)
Serial Port Set-Up

Generating Baud Rates

CHAPTER 4 Instruction Set

Program Status Word
Addressing Modes
Arithmetic Instructions
Logical Instructions

Data Transfers
Boolean Instructions
Jump Instructions
Instruction Set Summary
Instruction Definitions

CHAPTER 5 Software Routines

8051 Programming Techniques
Radix Conversion Routines
Multiple Precision Arithmetic
Table Look-Up Sequences

Saving CPU Status During Interrupts
Passing Parameters on the Stack
N-Way Branching
Computing Branch Destinations at Run Time
In-Line-Code Parameter-Passing

Peripheral Interfacing Techniques
1/0 Port Reconfiguration (First Approach)
10 Port Reconfiguration (Second Approach)
Simulating a Third Priority Level in Software
Software Delay Timing

Serial Port and Timer Mode Configuration
Simple Serial 1/0 Drivers
Transmitting Serial Port Character Strings
Recognizing and Processing Special Cases

Buffering Serial Port Output Characters
Synchronizing Timer Overflows
Reading a Timer/Counter "On-the-Fly"

CHAPTER 6 8051 Family Boolean Processing Capabilities

Boolean Processor Operation
Boolean Processor Applications

Bit Permutation
Software Serial 1/0
Combinatorial Logic Equations
Automotive Dashboard Functions

vi

3-13
3-13
3·13
3-15
3·16

3·17
3-17
3-18

4·1
4-1
4·2
4-3

4.4
4-6
4·8
4·10
4·14

5-1
5-1
5-2
5·2

5-4
5·4
5·6
5-7
5-8

5-9
5-9
5-10
5-11
5-11

5-12
5-12
5-13
5·13

5-14
5•15
5-16

6-1
6-11
6·12
6-15
6·18
6-21

SECTION II. 8051 Famlly Device Description

CHAPTER 7 80C51 Famlly

80C51 BH/80C31 BH/80C52T2/80C32T2 Data Sheet
87C51/87C52T2 Data Sheet
Designing with the 80C51 BH Applications Note

CHAPTER 8 80C521 Famlly

80C521/80C321/80C541 Data Sheet
87C521/87C541 Data Sheet
Software Routines

Dual Data Pointer Routines
Block Move in External RAM
Higher Performance Interrupt Routines
Full Duplex Transmit/Receive Buffering
Tree Structure Manipulation
ROM Table Access
Creating an External Stack

Watchdog Timer Routines
WOT Enable, Clear, and Reset Cause
Power-Down Operation
Testing the Watchdog Timer
Using the Watchdog Timer as a Standard Timer

Software Reset Routines
Using Software Reset
Improving Reliability with Software Reset

CHAPTER 9 80C324 CMOS Single-Chip Mlcrocontroller

80C324 Data Sheet

CHAPTER 10 Third-Party Support Products

Vendor/Product Listings
Hewlett-Packard Development System
Metalink Development System
American Automation Development System
Huntsville Microsystems Development System
Micro Computer Control 8051 C Compiler
Archimedes C-8051 Compiler
Data 1/0 Programmers

CHAPTER 11 Package Outlines

Plastic Dual-in-Line Package
Ceramic Hermetic Dual-in-Line Packages
Plastic Leaded Chip Carriers
Ceramic Leadless Chip Carriers

TABLE OF CONTENTS
(continued)

7-1
7-13
7-27

8-1
8-22
8-37
8-37
8-37
8-39
8-40
8-40
8-41
8-41
8·42
8-42
8-43
8-45
8·45
8-47
8-47
8-48

9·1

10-1
10·3
10-8
10-13
10·14
10-15
10·20
10-24

11·1
11·2
11·3
11·4

vii

Numerical Device Listing

viii

SOC31BH
SOC32T2

SOC321
SOC324

SOC51BH
SOC52T2

SOC521

SOC541

S7C51

S7C521

S7C52T2

S7C541

NUMERICAL DEVICE LISTING

CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller

CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller
CMOS Single-Chip Microcontroller

CMOS Single-Chip Microcontroller

CMOS Single-Chip S-Bit Microcontroller with
4K Bytes of EPROM

CMOS Single-Chip S-Bit Microcontroller with
SK Bytes of EPROM

CMOS Single-Chip S-Bit Microcontroller
with SK Bytes of EPROM

CMOS Single-Chip s-Bit Microcontroller with
16K Bytes of EPROM

7-1
7-1
S-1
9-1

7-1
7-1
S-1

S-1

7-13

S-22

7-13

S-22

SECTION I

8051 Architectural Description
Section 1 presents "core" information applicable to all
members of the 8051 Microcontroller Family. In Chapter
1, each member is discussed briefly; an in-depth de­
scription of the family's memory organization follows.
The information flows naturally into chapters on archi-

lecture, programming, the instruction set, software rou­
tines, and Boolean processing capabilities.

As AMO adds more devices to the 8051 Family, this
section will continue to serve as a one-stop reference for
both hardware and software designers.

Overview

Boolean Processing Architecture

C'P'bUitl" ~

/
Software
Routines

~
Programmer's
Guide

Instruction Set

CHAPTER 1

8051 Family Overview

Members of the Family

80C51 BH/80C31 BH/87C51
80C52T2/80C32T2/87C52T2
80C521/80C321/87C521
80C541 /87C541
80C324

Memory Organization in 8051 Family Devices

Logical Separation of Program and Data Memory
Program Memory
Data Memory

1-1

1·2
1·2
1·2
1·3
1·3

1·3

1·3
1·3
1·5

CHAPTER 1

8051 Family Overview

MEMBERS OF THE FAMILY

The 8051 microcontroller family is based upon the architectural structure shown in Figure 1-1. The AMO 80C51
products are shown in Table 1-1 .

FREQUENCY
REFERENCE COUNTERS

,--- ---- --- ---- ---,
1
I
I
I
I
I
I
I

OSCILLATOR
&

TIMING

CPU

INTERRUPTS

INTERRUPTS

ROM/EPROM RAM

64K BYTE BUS
EXPANSION PROGRAMMABLE VO
CONTROL

CONTROL PARALLEL PORTS
AOORESS DATA BUS

AND l/OPINS

Figure 1-1. Architectural Structure of the 8051 Family

TW016·BIT
TIMER/EVENT

COUNTERS

PROGRAMMABLE
SERIAL PORT
• FULL DUPLEX

UART
• SYNCHRONOUS

SHIFTER

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ___ J

SERIAL SERIAL
IN OUT

1-1

CHAPTER 1
8051 Family Overview

Table 1-1. AMD's 80C51 Family Products

Internal Memory

ROM EPROM
Device (bytes) (bytes)

SOC31BH
SOC51BH 4K
S7C51 4K
SOC32T2
SOC52T2 SK
S7C52T2 SK
SOC321
SOC521 SK
S7C521 SK
SOC541 16K
S7C541 16K
SOC324
SOC325
SOC525 SK
NMOS products are also available.

80C51 BH/80C31 BH/87C51

The BOC51 BH is a CMOS version of the original NMOS
B051 AH offering approximately BO% less power con­
sumption and faster operating speeds. It is fully software
compatible with the NMOS device and offers identical
features including:

• B-bit CPU optimized for control applications

• 4K bytes of on-chip Program Memory

• 12B bytes of on-chip Data Memory

• Two 16-bit Timer/Counters

• Full duplex UART

• 5-source interrupt structure with two priority levels

• On-chip oscillator

• Boolean processor

• Bit-addressable RAM

• 64K Program Memory Space

• 64K Data Memory Space

The CMOS product will not always be fully pin-compat­
ible with the NMOS device. Further distinctions between
the CMOS and NMOS 8051 Family members may be
found in Chapter 7 (Designing with the 80C51BH).

In addition to power savings during normal operation, the
BOC51BH offers idle and power-down modes. In idle
mode, the CPU is turned off while the RAM and otheron­
chip peripherals continue to operate. Current draw is
typically 15% of the current draw when the device is fully
active. In the power-down mode, all on-chip activities are
suspended while the RAM holds its data. In this mode,
the device typically draws less than 1 o µA.

1-2

RAM
(bytes)

12S
12S
12S
256
256
256
256
256
256
256
256
256
256
256

Timers
(16-bit)

2
2
2
2
2
2
2
2
2
2
2
2
2
2

Other
Enhanced
Features

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

The 80C31 BH is identical to the BOC51 BH except that it
contains no on-chip ROM. The 87C51 is the EPROM
version of the 80C51 BH. The EPROM products are
especially useful for prototyping and immediate produc­
tion starts.

80C52T2/80C32T2/87C52T2

The 80C52T2 is identical to the BOC51 BH except for the
amount of on-chip memory. The ROM was increased to
BK bytes and the RAM was increased to 256 bytes. The
BOC52T2 has two 16-bit timers similar to the BOC51 BH.

The "B052" architecture referred to in this manual is an
B051 with BK bytes of ROM, 256 bytes of RAM, and a third
timer. AMO does not produce an B052 in either CMOS or
NMOS technologies. If the extra timer is not required the
BOC52T2 can be used in B052 applications.

The 80C32T2 is an identical ROM-less version of the
80C52T2. The B7C52T2 is an EPROM version pin­
compatible with the BOC52T2.

80C521 /80C321 /87C521

The 80C521 is an enhanced version of the BOC51. Its
additional features include the following:

• BK bytes of on-chip ROM

• 256 bytes of on-chip RAM

• Programmable Watchdog Timer

• Dual Data Pointers

• Software Reset

The 80C521 is pin-compatible and functional-compatible
with the 80C51. The Programmable Watchdog Timer is
specially designed to be both flexible and dependable. It
provides needed protection from the effects of electro­
static discharge (ESD), external noise, unexpected ex­
ternal events or program anomalies. The dual data
pointers facilitate external memory operations such as
block moves, saving both time and code space. The
80C321 is the ROM-less version of the 80C521. The
87C521 is the EPROM version of the 80C521 .

80C541 /87C541

The 80C541 is identical to the 80C521 exceptthe on-chip
Program Memory has been increased to 16K bytes. The
87C541 is the EPROM version of the 80C541.

80C324

The 80C324 is a superset of the 80C321 and includes
one additional feature-Port Expansion Mode. The
80C324 provides a port expansion capability for adding
up to 14 additional full-speed and performance 8-bit 1/0
ports. The new ports are constructed externally by multi­
plexing through Port 1 and using ENPXS for strobe
timing. Port 3 operates as normal; however, other ports,
including Port 0 and Port 2, which normally are sacrificed
for a multiplexed data/address bus, are reconstructed.

The new ports are accessed by software exactly as if they
existed on-chip. The entire 8051 family instruction set is
available for these additional ports. Traditional memory­
mapped 1/0 ports allow only four instructions to be used,
vastly reducing their effectiveness.

MEMORY ORGANIZATION IN 8051
FAMILY DEVICES

Logical Separation of Program and Data
Memory

All 8051 Family devices have separate address spaces
for Program and Data Memory, as shown in Figure 1-2.

CHAPTER 1
8051 Family Overview

The logical separation of Program and Data Memory
allows the Data Memory to be accessed by 8-bit ad­
dresses, which can be more quickly stored and manipu­
lated by an8-bit CPU. Nevertheless, 16-bit Data Memory
addresses can also be generated through the DPTR
register.

Program Memory can only be read, not written to. There
can be up to 64K bytes of Program Memory. In the
80C51BH and the 87C51, the lowest 4K bytes of Pro­
gram Memory are on-chip. The read strobe for external
Program Memory is the signal PSEN (Program Store
Enable).

Data Memory occupies a separate address space from
Program Memory. Up to 64K bytes of external RAM can
be addressed in the external Data Memory space. The
CPU generates read and write signals, RD and WR as
needed during external Data Memory accesses.

External Program Memory and external Data Memory
may be combined if desired by applying the RD and PSEN
signals to the inputs of an AND gate and using the output
of the gate as a read strobe to the external Program/Data
Memory.

Program Memory

Figure 1-3 shows a map of the lower part of Program
Memory. After reset, the CPU begins execution from
location OOOOH.

As shown in Figure 1-3, each interrupt is assigned a fixed
location in Program Memory. The interrupt causes the
CPU to jump to that location, where it commences
execution of the service routine. External Interrupt 0, for
example, is assigned to location 0003H. If External
Interrupt O is going to be used, its service routine must
begin at location 0003H. If the interrupt is not going to be
used, its service location is available as general purpose
Program Memory.

Interrupt service locations are spaced at8-byte intervals:
0003H for External Interrupt 0, OOOBH for Timer 0, 0013H
for External Interrupt 1, 001 BH for Timer 1, etc. If an
interrupt service routine is short enough (as is often the

1-3

CHAPTER 1
8051 Family Overview

PROGRAt.1 MEMORY
(READ ONLY) ··-····--·-··············

F'F'F'rH:---..

EA•D
EXTERNAL

EXTERNAL

EA•1
INTERNAL

___ _.._oooo _,. ___ ..

•··•·•·········•·····•••·•

DATA MEMORY
{READ/WRITE) •·········•·•·········•••···

: rrf'F'H:----.
I
I

EXTERNAL

INTERNAL
F'F'H::•••••·----.

I
I
I
I

oo ___ _.

•····················

Figure 1-2. 80C51 Memory Structure

case in control applications), it can reside entirely within
that 8-byte interval. Longer service routines can use a
jump instruction to skip over subsequent interrupt loca­
tions, if other interrupt locations are in use.

The lowest 4K (or SK in the 80C52T2/80C521) bytes of
Program Memory can be either in the on-chip ROM or in
an external ROM. This selection is made by strapping the
EA (External Access) pin to either Vee or V85.

In the 80C51, if the EA pin is strapped to V cc• then
program fetches to.addresses OOOOH through OFFFH
are directed to the internal ROM. Program fetches to
addresses 1 OOOH through FFFFH are directed to exter­
nal ROM.

In the 80C52T2/80C521, EA "' V cc selects addresses
OOOOH through 1 FFFH to be internal, and addresses
2000H through FFFFH to be external.

If the EA pin is strapped to V85, then all program fetches
are directed to external ROM. The ROMless parts must
have this pin externally strapped to V ss to enable them to
execute from external Program Memory.

The read strobe to external ROM, PSEN, is used for all
external program fetches. PSEN is not activated for in­
ternal program fetches.

1-4

The hardware configuration for external program execu­
tion is shown in Figure 1-4. Note that 16 1/0 lines (Ports
0 and 2) are dedicated to bus functions during external
Program Memory fetches. Port O (PO in Figure 1-4)
serves as a multiplexed address/data bus. It emits the
low byte of the Program Counter (PCL) as an address,
and then goes into a float state awaiting the arrival of the

INTERRUPT
LOCATIONS

(0033H)

002BH

0023H

001.BH]
8 BYTES

0013H

OOOBH

0003H
OOOOH

Figure 1-3. 80C51 Program Memory

code byte from the Program Memory. During the time
that the low byte of the Program Counter is valid on
PO, the signal ALE (Address Latch Enable) clocks this
byte into an address latch. Meanwhile, Port 2 (P2 in
Figure 1-4) emits the high byte of the Program Counter
(PCH). Then PSEN strobes the EPROM and the code
byte is read into the microcontroller.

Program Memory addresses are always 16 bits wide,
even though the actual amount of Program Memory used
may be less than 64K bytes. External Program execution
sacrifices two of the 8-bit ports, PO and P2, to the function
of addressing the Program Memory.

Data Memory

The right half of Figure 1-2 shows the internal and
external Data Memory spaces available to the 8051
Family user.

Figure 1-5 shows a hardware configuration for accessing
up to 2K bytes of external RAM. The CPU in this case is
executing from internal ROM. Port 0 serves as a multi­
plexed address/data bus to the RAM, and 3 lines of Port
2 are being used to page the RAM. The CPU generates
RD and WR signals as needed during external RAM
accesses.

There can be up to 64K bytes of external Data memory.
External Data Memory addresses can be either 1 or 2
bytes wide. One-byte addresses are often used in con­
junction with one or more other 110 lines to page the RAM,
as shown in Figure 1-5. Two-byte addresses can also be
used, in which case the high address byte is emitted at
Port 2.

Internal Data Memory is mapped in Figure 1-6. The
memory space is shown divided into three blocks, which

8051 EPROM

INSTR.

fA

LATCH

P2

PSEN OE

Figure 1-4. Executing from External Program Memory

CHAPTER 1
8051 Family Overview

are generally referred to as the Lower 128, the Upper
128, and SFR space.

Internal Data Memory addresses are always 1 byte wide,
which implies an address space of only 256 bytes.
However, the addressing modes for internal RAM can in
fact accommodate 384 bytes, using a simple trick. Direct
addresses higher than 7FH access one memory space,
and indirect addresses higher than 7FH access a differ­
ent memory space. Thus Figure 1-6 shows the Upper
128 and SFR space occupying the same block of ad­
dresses, 80H through FFH, although they are physically
separate entities.

The Lower 128 bytes of RAM are present in all 8051
Family devices as mapped in Figure 1-7. The lowest 32
bytes are grouped into 4 banks of 8 registers. Program
instructions call out these registers as RO through R7.
Two bits in the Program Status Word (PSW) select which
register bank is in use. This allows more efficient use of
code space, since register instructions are shorter than
instructions that use direct addressing.

The next 16 bytes above the register banks form a block
of bit-addressable memory space. The 8051 Family
instruction set includes a wide selection of single-bit
instructions, and the 128 bits in this area can be directly
addressed by these instructions. The bit addresses in
this area are OOH through 7FH.

All of the bytes in the Lower 128 can be accessed by
either direct or indirect addressing. The Upper 128 (Fig­
ure 1-8) can only be accessed by indirect addressing.
The Upper 128 bytes of RAM are not implemented in the
80C51.

Figure 1-9 gives a brief look at the Special Function
Register (SFR) space. SFRs include the Port latches,

P1 DATA

8051 fA
WITH INTERNAL

ROM ALE

:]P3 P2[
WE OE

Figure 1-5. Accessing External Data Memory.
If the Program Memory Is Internal, the Other

Bits of P2 are Available as 1/0

1-5

CHAPTER 1
8051 Family Overview

rrH•········----- rrH
: ACCESSIBLE

UPPER 1 BY INDIRECT
128 I ADDRESSING

ACCESSIBLE
BY DIRECT

ADDRESSING
: ONLY 80H

80H11------f-.~---_.
7FH ' ACCESSIBLE '--SPECIAL } PORTS

LOWER BY DIRECT FUNCTION STATUS AND
128 A:~~~~~I~~ REGISTERS CONTROL BITS o ____ _

TIMER
REGISTERS

. STACK POINTER
ACCUMULATOR
(ETC.)

Figure 1-6. Internal Data Memory

timers, peripheral controls, etc. These registers can only
be accessed by direct addressing. In general, all 8051
Family microcontrollers have the same SFRs as the
80C51, and at the same addresses in SFR space. How­
ever, enhancements to the 80C51 have additional SFRs
that are not present in the 80C51 , nor perhaps in other
proliferations of the family.

1-6

FFH

80H

NO BIT•ADDRESSABLE
SPACES

AVAILABLE AS STACK
SPACE IN 8052

NOT IMPLEMENTED IN 8051

Figure 1-8. The Upper 128 Bytes of Internal RAM

BANK
SELECT
BITS IN
PSW--i

11(
10(

01(

00 (

20H

1BH

!OH

08H

0

7FH

2FH

ffH

17H

OFH

07H

IT•ADDRESSABLE SPACE
IT ADDRESSES o-7r) } ~B

" 8
BANKS or
REGISTERS

RO•R7

~ RESET VALUE or
STACK POINTER

Figure 1-7. The Lower 128 Bytes of Internal RAM

Sixteen addresses in SFR space are both byte- and bit­
addressable. The bit-addressable SFRs are those
whose address ends in 0008. The bit addresses in this
area are BOH through FFH.

rrH

EOH

BOH

AOH

90H

80H

' '
ACC

' '
PORT 3

' I
'

PORT 2

PORT 1

' I

PORT 0

REGISTER-MAPPED PORTS

ADDRESSES THAT END IN
OH OR 8H ARE ALSO
BIT•ADDRESSABLE

·PORT PINS
•ACCUMULATOR
·PSW

(ETC.)

Figure 1-9. SFR Space

CHAPTER2

8051 Family Architecture

Introduction
Memory Organization
Oscillator and Clock Circuit
CPU Timing
Port Structures and Operation

Accessing External Memory
Timer/Counters
Serial Interface
Interrupts
Single-Step Operation

Reset
Power-Saving Modes of Operation
More About the On-Chip Oscillator
Internal Timing
80C51BH Pin Descriptions

2-1
2-2
2-3
2-4
2-5

2-8
2-10
2-13
2-23
2-26

2·26
2-27
2-28
2-31
2-31

CHAPTER 2

8051 Family Architecture

INTRODUCTION

This chapter and the remainder of Section I covers the
basic architecture and instruction set of the 8051 Family.
In these chapters the terms "8051" and ''8051 Family"
refer to the entire family of microcontrollers in both CMOS
and NMOS technologies. Differences in functionality
between the CMOS and NMOS products will be specifi­
cally noted where they occur.

The term "8052" refers to a version of the 8051 with
double the amount of memory (SK bytes ROM and 256

PO.O·P0.7

,--------_

~
P!.J
-= I

I
I
I
I
I
I
I
I
I
1.....-..._~

I~'-'--.....
I
I
I
I
I .----....---.

PSEN

ALE

Ei
RST

XTAL2

P1.0·P1.7

bytes RAM) and an extra timer. In this section it will be
used specifically to describe changes due to this third
timer.

Section II focuses on AM D's portfolio of CMOS 80C51
products. It is organized by product family with data­
sheets, application notes and other information pertain­
ing to features beyond the basic core architecture de­
scribed in Section I. Thus, the reader experienced with
the 8051 may wish to begin in Section II.

P2.0·P2.7

,Ll..LJLL.Ll...1,- - - - - - - - - - --,

I

I
I
I

I
I
I
I

~r=r:cr.:t... - - - - - _ _)
•Resident in 8052/8032 only.

P3.0·P3.7

Figure 2·1. 8051 Family Architecture

2-1

CHAPTER 2
8051 Family Architecture

Table 2·1 80C51 Core Products

Internal Memory

Part ROM EPROM RAM
(bytes) (bytes) (b~es)

80C31BH 128

80C51BH 4K 128

87C51 4K 128

80C32T2 256

80C52T2 BK 256

87C52T2 SK 256

The major 8051 Family features are:

• 8-bit CPU

• On-Chip oscillator and clock circuitry

• 321/0 lines

• 64K bytes address space for external Data Memory

• 64K bytes address space for external Program
Memory

• Two 16-bit timer/counters (three on 8032/8052)

• A five-source interrupt structure (six sources on
8032/S052) with two priority levels

• Full duplex serial port

• Boolean Processor

MEMORY ORGANIZATION

The 8051 has separate address spaces for Program .
Memory and Data Memory. The Program Memory can be
up to 64K bytes long. The lower 4K bytes (SK for
80C52T2) may reside on-chip. The Data Memory can
consist of up to 64K bytes of off-chip RAM, in addition to
which it includes 12S bytes of on-chip RAM (256 bytes for
the SOC52T2). plus a number of "SFRs" (Special Func­
tion Registers) as listed below.

Slmbol Name Address

*ACC Accumulator OEOH
*B B Register OFOH
*PSW Program Status Word ODOH
SP Stack Pointer S1H
DPTR Data Pointer 83H

(consisting of DPH and DPL) 82H
*PO Port 0 80H
*P1 Port 1 90H

2-2

Slmbol Name Address

*P2 Port 2 OAOH
*P3 Port 3 OBOH
*IP Interrupt Priority Control OBSH
*IE Interrupt Enable Control OASH
TMOD Timer/Counter Mode

Control 89H
*TCON Timer/Counter Control SSH
+*T2CON Timer/Counter 2 Control OCSH
THO Timer/Counter O

(high byte) SCH
TLO Timer/Counter 0

(low byte) BAH
TH1 Timer/Counter 1

(high byte) 8DH
TL1 Timer/Counter 1

(low byte) 8BH
+TH2 Timer/Counter 2

(high byte) OCDH
+ TL2 Timer/Counter 2

(low byte) OCCH
+ RCAP2H Timer/Counter 2 Capture

Register (high byte) OCBH
+ RCAP2L Timer/Counter 2 Capture

Register (low byte) OCAH
*SCON Serial Control 98H
SBUF Serial Data Buff 99H
PCON Power Control 87H

The SFRs marked with an asterisk (*) are both bit- and
byte-addressable. The SFRs marked with a plus sign(+)
are present in timer 2 of the 8052 only. The functions of
the SFRs are described as follows.

Accumulator

ACC is the Accumulator register. The mnemonics for
accumulator-specific instructions, however, refer to the
accumulator simply as A.

B Register

The B register is used during multiply and divide opera­
tions. For other instructions it can be treated as another
scratch pad register.

Program Status Word

The PSW register contains program status information
as detailed in Figure 2-2.

(MSB)

CHAPTER2
8051 Famlly Architecture

(LSB)

I CY I· AC FO RS1 RSO OV p I
Symbol Position

CY PSW.7

AC PSW.6

FO PSW.5

RS1 PSW.4

RSO PSW.3

ov PSW.2

Name and Significance

Carry flag.

Auxiliary Carry flag.
(For BCD operations.)

Flag 0
(Available to the user for
general purposes.)

Register bank Select
control bits 1 & 0.
Set/cleared by software to
determine working
register bank (see Note).

Overflow flag.

Symbol

p

Note-

Position

PSW.1

PSW.O

Name and Significance

(reserved)

Parity flag.
Set/cleared by hardware
each instruction cycle to
indicate an odd/even
number of "one" bits in the
accumulator, I.e., even
parity.

the contents of (RS1, RSO) enable the
working register banks as follows:

(0.0)-Bank 0 (OOH-07H)
(0.1)-Bank 1 (08H-OFH)
(1.0)-Bank 2 (10H-17H)
(1.1)-Bank3 (18H-1FH)

Figure 2-2. PSW: Program Status Word Register

Stack Pointer
The Stack Pointer register is 8 bits wide. It is incremented
before data is stored during PUSH and CALL executions.
While the stack may reside anywhere in on-chip RAM,
the Stack Pointer is initialized to 07H after a reset. This
causes the stack to begin at location 08H.

Data Pointer
The Data Pointer (DPTR) consists of a high byte (DPH)
and a low byte (DPL). Its intended function is to hold a 16-
bit address. It may be manipulated as a 16-bit register or
as two independent 8-bit registers.

Ports Oto 3
PO, P1, P2, and P3 are the SFR latches of Ports 0, 1, 2,
and 3, respectively.

Serial Data Buffer
The Serial Data Buffer is actually two separate registers,
a transmit buffer and a receive buffer register. When data
is moved to SBUF, it goes to the transmit buffer where it
is held for serial transmission. (Moving a byte to SBUF is
what initiates the transmission.) When data is moved
from SBUF, it comes from the receive buffer.

Timer Registers
Register pairs (THO, TLO), (TH1, TL 1), and (TH2, TL2)
are the 16-bit counting registers for Timer/Counters 0, 1,
and 2, respectively.

Capture Registers
The register pair (RCAP2H, RCAP2L) are the capture
registers for the Timer 2 "capture mode." In this mode, in

response to a transition at the 8052's T2EX pin, TH2 and
TL2 are copied into RCAP2H and RCAP2L. Timer 2 also
has a 16-bit auto-reload mode, and RCAP2H and
RCAP2L, hold the reloadvalueforthis mode. More about
Timer 2's features on page 2-12.

Control Registers

Special Function Registers IP, IE, TMOD, TCON,
T2CON, SCON, and PCON contain control and status
bits for the interrupt system, the timer/counters, and the
serial port. They are described in later sections.

OSCILLATOR AND CLOCK CIRCUIT

XT AL 1 and XT AL2 are the output and input of a single­
stage on-chip inverter, which can be configured with off­
chip components as a Pierce oscillator, as shown in
Figure 2-3. The on-chip circuitry, and selection of off-chip
components to configure the oscillator are discussed on
page 2-28.

30pf ± 10pl FOR CRYSTALS
40pf ± 10pl FOR CERAMIC RESONATORS

'----11(___ 1._ ____ -IXTAL 1
~ 19

30pf ± 1Dpl FOR CRYSTALS
40pf ± 1Dpl FOR CERAMIC RESONATORS

Figure 2-3. Crystal/Ceramic Resonator Oscillator

2-3

CHAPTER 2
8051 Family Architecture

The oscillator drives the internal clock generator, which
provides the internal clocking signals to the chip. The
internal clocking signals are at half the oscillator fre­
quency, and define the internal phases, states, and
machine cycles, described in the next section.

CPU TIMING

A machine cycle consists of six states (12 oscillator
periods). Each state is divided into a Phase 1 half, during
which the Phase 1 clock is active, and a Phase 2 half,
during which the Phase 2 clock is active. Thus, a machine
cycle consists of 12 oscillator periods, numbered S1 P1

2-4

osc.
(XTAL1)

I 51 I S2 I S3 I S4 I SS I S6 I S1 I S2 I S3 I S4 I SS I S6 I S1 I
~~~~~~~~~~~~~n~~~~~~~~~~~~ 

ALE 

READ OPCODE. READ NEXT 
OPCODE 

- - - - - - r-_.__.....--.....,.--~i__~(-D-IS_C_A_R_D_). __ [ _R:~D NEXT OPCODE AGAIN. 

S4 SS S6 
- - - - - - '----'--......l.--L--...L.---1.._:_:__L. 

S1 S2 $3 

I 
a. 1-byte, 1-cycle lnatructlon, e.g., INC A. 

I 

I READ OPCODE. I 
I I 
I READ 2ND BYTE.J 

- - - - - - - - ,_I __..~--.---~...1._~ ___ ___;l _ [_R:~ NEXT OPCODE. 

S2 S3 S4 SS S6 --------'---'----L--L---L-..:..:..-l....::..:_J ______ _ S1 

b. 2-byte, 1·cycle Instruction, e.g., ADD A, #data 

I 

I 
I 
I 

I 

I 
I 

READ OPCODE. 
READ NEXT 
OPCODE (DISCARD). .. •• •m ·"'··· ..... U _ ---

·- _____ ._ _ _.__--L_;_S3_L....:S4..:..:.__L__:S:.5 -L...:S&:.:.__L_:S:.:_1 _J__::S2:....JL.:S:;:3~~::_.LS:'.:5'.....J___.::S6~ _____ _ S1 S2 

c. 1·byte, 2-cycle Instruction, e.g., INC DPTR. 
I 

READ OPCODE 
(MOVX). 

READ NEXT 

NO READ NEXT OPCODE AGAIN. J 
OPCODE (DISCARD) FETCH. NO FETCH. J 

- - - - - - r:::--1.::-l::-l~l-::-""T--+: ..J.!:r-"=rc_,=N::!.0-A"TL-E--.-.ll _.---..--- ' 
~ ~ ~ S4 ~ S6 ~ ~ ~ S4 ~ S6 

- - - - - - '----'---'----l--7~~::-1--....:.:.._.L..:::.....L.::_L..::_l__:::....1~ - - - - - -l ADDR 
d. MOVX (1·byte, 2-cycle) 

I 

DATA 

ACCESS EXTERNAL MEMORY 

Figure 2-4. 8051 Fetch/Execute Sequences 



(State 1, Phase 1)throughS6P2 (States, Phase2). Each 
phase lasts for one oscillator period. Each state lasts for 
two oscillator periods. Typically, arithmetic and logical 
operations take place during Phase 1 and internal regis­
ter-to-register transfers take place during Phase 2. 

The diagrams in Figure 2-4 show the fetch/execute 
timing referenced to the internal states and phases. 
Since these internal clock signals are not user acces­
sible, the XTAL 1 oscillator signal and the ALE (Address 
Latch Enable) signal are shown for external reference. 
ALE is normally activated twice during each machine 
cycle: one during S1 P2 and S2P1, and again during 
S4P2 and S5P1. 

Execution of a one-cycle instruction begins at S1 P2, 
when the opcode is latched into the Instruction Register. 
If it is a 2-byte instruction, the second byte is read during 
S4 of the same machine cycle. If it is a 1-byte instruction, 
there is still a fetch at S4, but the byte read (which would 
be the next opcode) is ignored, and the Program Counter 
is not incremented. In any case, execution is complete at 
the end of S6P2. Figures 2-4a and 2-4b show the timing 
for a 1-byte, 1-cycle instruction and for a 2-byte, 1-cycle 
instruction. 

WRITE 
TO 
LATCH 

READ 
LATCH 

INT BUS 

WRITE 
TO 
LATCH 

ADDR/DATA 

a. Porto Bit 

ADDR 
Vee 

CONTROL 

c. Port 2 Bit 

'See Figure 2-6 for details of the internal pull up. 

CHAPTER 2 
8051 Family Architecture 

Most 8051 instructions execute in one cycle. MUL (multh 
ply) and DIV (divide) are the only instructions that take 
more than two cycles to complete. They take four cycles. 

Normally, two code bytes are fetched from Program 
Memory during every machine cycle. The only exception 
to this is when a MOVX instruction is executed. MOVX is 
a 1-byte 2-cycle instruction that accesses external Data 
Memory. During a MOVX, two fetches are skipped while 
the external Data Memory is being addressed and 
strobed. Figures 2-4c and 2-4d show the timing for a 
normal 1-byte, 2-cycle instruction and for a MOVX in­
struction. 

PORT STRUCTURES AND OPERATION 

All four ports in the 8051 are bidirectional. Each consists 
of a latch (Special Function Registers PO through P3), an 
output driver, and an input buffer. 

The output drivers of Ports 0 and 2, and the input buffers 
of Port, o, are used in accesses to external memory. In this 
application, Port o outputs the low byte of the external 
memory address, time-multiplexed with the byte being 
written or read. Port 2 outputs the high byte of the external 

WRITE 
TO 
LATCH 

b. Port 1 Bit 

ALTERNATE 
OUTPUT 

FUNCTION 

ALTERNATE 
INPUT 

FUNCTION 

d. Port 3 Bit 

Figure 2-5. 8051 Port Bit Latches and 110 Buffers 

2-5 



CHAPTER2 
8051 Family Architecture 

memory address when the address is 16 bits wide. 
Otherwise the Port 2 pins continue to emit the P2 SFR 
content. 

All the Port 3 pins, and (in the 8052) two Port 1 pins are 
multifunctional. They are not only port pins, but also 
serve the functions of various special features as listed 
below: 

Port Pin 

•p1.o 
•p1.1 

P3.0 
P3.1 
P3.2 
P3.3 
P3.4 
P3.5 
P3.6 

P3.7 

Alternate Function 

T2 (Timer/Counter 2 external input) 
T2EX (Timer/Counter 2 capture/reload 
trigger) 
RXD (serial input port) 
TXD (serial output port) 
INTO (external interrupt) 
INT1 (external interrupt) 
TO (Timer/Counter O external input) 
T1 (Timer/Counter 1 external input) 
WR (external Data memory write 
strobe) 
RD (external Data memory read 
strobe) 

*P1 .0 and P1 .1 serve these alternate functions only on 
the8052. 

The alternate functions can only be activated if the 
corresponding bit latch in the port SFR contains a 1. 
Otherwise the port pin is stuck at 0. 

1/0 Configurations 

Figure 2-5 shows a functional diagram of a typic'al bit 
latch and 1/0 buffer in each of the four ports. The bit latch 
(one bit in the port's SFR) is represented as a Type D flip­
flop, which will clock in a value from the internal bus in 
response to a ''Write to latch" signal from the CPU. The a 
output of the flip-flop is placed on the internal bus in 
response to a "read latch" signal from the CPU. The level 
of the port pin itself is placed on the internal bus in 
response to a "read pin" signal from the CPU. Some 
instructions that read a port activate the "read latch" 
signal, and others activate the "read pin" signal. More 
about that on page 2-8. 

As shown in Figure 2-5, the output drivers of Ports O and 
2 are switchable to an internal ADDR and ADDA/DATA 
bus by an internal CONTROL signal for use in external 
memory accesses. During external memory accesses, 
the P2 SFR remains unchanged, but the PO SFR gets 1 s 
written to it. 

Also shown in Figure 2-5, is that if a P3 bit latch contains 
a 1, then the output level is controlled by the signal 

2-6 

labeled "alternate output functions." The actual P3.X pin 
level is always available to the pin's alternate input 
function, if any. 

Ports 1, 2, and 3 have internal pull-ups. Port O has open­
drain outputs. Each 1/0 line can be independently used 
as an input or an output. (Ports 0 and 2 may not be used 
as general purpose 1/0 wheh being used as the ADDR/ 
DATA BUS.) To be used as an input, the port bit latch 
must contain a 1, which turns off the output driver FET. 
Then, for Ports 1, 2, and 3, the pin is pulled high by the 
internal pull-up, but can be pulled low by an external 
source. 

Port 0 differs in not having internal pullups. the pullup 
FET in the PO output driver (see Figure 2-5a) is used only 
when the Port is emitting 1s during external memory 
accesses. Otherwise the pullup FET is off. Consequently 
PO lines that are being used as output port lines are open 
drain. Writing a 1 to the bit latch leaves both output FETs 
off, so the pin floats. In that condition it can be used as a 
high-Impedance input. 

Because Ports 1, 2, and 3 have fixed internal pullups they 
are sometimes called "quasi-bidirectional" ports. When 
configured as inputs they pull high and will source current 
(Ill, in the data sheets) when externally pulled low. Port 
O, on the other hand, is considered "true" bidirectional, 
because when configured as an input it floats. 

All the port latches in the 8051 have 1 s written to them by 
the reset function. If a 0 is subsequently written to a port 
latch, it can be reconfigured as an input by writing a 1 
to it. 

Writing to a Port 

In the execution of an instruction that changes the value 
in a port latch, the new vaiue arrives at the latch during 
S6P2 of the final cycle of the instruction. However, port 
latches are in fact sampled by their output buffers only 
during Phase 1 of any clock period. (During Phase 2 the 
output buffer holds the value it saw during the previous 
Phase 1.) Consequently, the new value in the port latch 
won't actually appear at the output pin until the next 
Phase 1, which will be atS1 P1 of the next machine cycle. 

If the change requires a O-to-1 transition in Port 1, 2, or 3, 
an additional pulFup is turned on during S1 P1 and S1 P2 
of the cycle in which the transition occurs. This is done to 
increase the transition speed. The extra pull-up can 
source about 100 times the current that the normal pull­
up can. It should be noted that the internal pull-ups are 
field-effect transistors, not linear resistors. The pull-up 
arrangements are shown in Figure 2-6. 



In NMOS versions of the 8051, the fixed part of the pull­
up is a depletion-mode transistor with the gate wired to 
the source. This transistor will allow the pin to source 
about 0.25 mA when shorted to ground. In parallel with 
the fixed pull-up is an enhancement-mode transistor, 
which is activated during S1 whenever the port bit does 
a 0-to-1 transition. During this interval, if the port pin is 
shorted to ground, this extra transistor will allow the pin 
to source an additional 30 mA. 

In the CMOS versions, the pull-up consists of three 
pFETs. It should be noted that an n-channel FET (nFET) 
is turned on when logical 1 is applied to its gate, and is 
turned off when a logical o is applied to its gate. A p­
channel FET (pFET) is the opposite: it is on when its gate 
sees a 0, and off when its gate sees a 1. 

CHAPTER2 
8051 Family Architecture 

Transistor pFET 1 in Figure 2-6 is turned on for two 
oscillator periods after a O-to-1 transition in the port latch. 
While it's on, ii turns on pFET 3 (a weak pull-up) through 
the inverter. This inverter and pFET 3 form a latch which 
holds the 1. 

Note that if the pin is emitting a 1, a negative glitch on the 
pin from some external source can turn off pFET 3, 
causing the pin to go into a float state; pFET 2 is a very 
weak pull-up which is on whenever the nFET is off, in 
traditional CMOS style. It's only about 1/10 the strength 
of pFET 3. Its function is to restore a 1 to the pin in the 
event the pin had a 1 and lost it to a glitch. 

Vee 

ENHANCEMENT MODE FET 

a. NMOS Configuration 

a 
FROM PORT 

LATCH 

READ 
PORT PIN 

Vee 

b. CMOS Configuration 

Vee Vee-

Figure 2-6. Ports 1 and 3 NMOS and CMOS Internal Pull-up Configurations. 
(Port 2 Is similar except that it holds the strong pull-up on while emitting 1 s that are address bits.) 

2-7 



CHAPTER2 
8051 Family Archttecture 

Port Loading and Interfacing 

The output buffers of Ports 1, 2, and 3 can each drive four 
LS TTL inputs. The ports on NMOS versions can be 
driven in a normal manner by any TTL or NMOS circuit. 
Both NMOS and CMOS pins can be driven by open­
collector and open-drain outputs, but note that O-to-1 
transitions will not be fast. In the NMOS device, if the pin 
is driven by an open-collector output, a O-to-1 transition 
will have to be driven by the relatively weak depletion 
mode FET in Figure 2-6a. In the CMOS device, an input 
O turns off pull-up pFET3, leaving only the very weak pull­
up pFET2 to drive the transition. 

Port O output buffers can each drive 8 LS TTL inputs. 
They do, however, require external pull-ups to drive 
NMOS inputs, except when being used as the 
ADDRESS/DATA bus. 

Read-Modify-Write Feature 

Some instructions that read a port, also read the latch, 
and others read the pin. Which ones do which? The 
instructions that read the latch rather than the pin are the 
ones that read a value, possibly change it, and then 
rewrite it to the latch. These are called "read-modify­
write" instructions, listed below. When the destination 
operand is a port or a port bit, these instructions read the 
latch ratherthan the pin: 

ANL 
ORL 
XRL 
JBC 

CPL 
INC 
DEC 
DJNZ 

MOVPX.Y,C 
CLR PX.Y 
SETPX.Y 

(logical AND, e.g., ANL P1 ,A) 
(logical OR, e.g., ORL P2,A) 
(logical EX-OR, e.g., XRL P3,A) 
(jump if bit = 1 and clear bit, e.g., 
JBC P1 .1, LABEL) 
(complement bit, e.g., CPL P3.0) 
(increment, e.g., INC P2) 
(decrement, e.g., DEC P2) 
(decrement and jump if not zero, e.g., 
DJNZ P3, LABEL) 
(move carry bit to bit Y of Port X) 
(clear bit Y of Port X) 
(set bit Y of Port X) 

It is not obvious that the last three instructions in this list 
are read-modify-write instructions, but .they are. They 
read the port byte, all 8 bits, modify the addressed bit, 
then write the new byte back to the latch. 

The reason that read-modify-write instructions are di­
rected to the latch rather than the pin is to avoid possible 
misinterpretation of the voltage level at the pin. For 
example, a port bit might be used to drive the base of a 
transistor. When a 1 is written to the bit, the transistor is 

2-8 

turned on. If the CPU then reads the same port bit at the 
pin ratherthan the latch, it will read the base voltage of the 
transistor and interpret it as a 0. Reading the latch rather 
than the pin will return the correct value of 1. 

ACCESSING EXTERNAL MEMORY 

Accesses to external memory are of two types: accesses 
to external Program Memory and accesses to external 
Data Memory. Accesses to external Program Memory 
use signal PSEN (program store enable) as the read 
strobe. Accesses to external Data Memory use RD or WR 
(alternate functions of P3.7 and P3.6) to strobe the 
memory. 

Fetches from external Program Memory always use a 
16-bit address. Accesses to external Data Memory can 
use either a 16-bit address (MOVX @DPTR) or an 8-bit 
address (MOVX @Ri). 

Whenever a 16-bit address is used, the high byte of the 
address comes out on Port 2, where it is held for the 
duration of the read or write cycle. Note that the Port 2 
drivers use the strong pull-ups during the entire time that 
they are emitting address bits that are 1s. This is during 
the execution of a MOVX@DPTR instruction. During this 
time the Port 2 latch (the Special Function Register) does 
not have to contain 1s, andthecontentsofthe Port 2SFR 
are not modified. If the external memory cycle is not 
immediately followed by another external memory cycle, 
the undisturbed contents of the Port 2 SFR will reappear 
in the next cycle. 

If an 8-bit address is being used (MOVX @Ri), the 
contents of the Port 2 SFR remain at the Port 2 pins 
throughout the external memory cycle. This will facilitate 
paging. 

In any case, the low byte of the address is time-multi­
plexed with the data byte on Port 0. The ADDR/DATA 
signal drives both FETs inthe Port 0 output buffers. Thus, 
in this application the Port 0 pins are not open-drain 
outputs, and do not require external pull-ups. Signal ALE 
(address latch enable) should be used to capture the 
address byte into an external latch. The address byte is 
valid at the negative transition of ALE. Then, in a write 
cycle, the data byte to be written appears on Port o just 
before WR is activated, and remains there until after WR 
is deactivated. In a read cycle, the incoming byte is 
accepted at Port O just before the read strobe is deacti­
vated. 

During any access to external memory, the CPU writes 
OFFH to the Port O latch (the Special Function Register), 
thus obliterating whatever information the Port O SFR 
may have been holding. 



External Program Memory is accessed under two condi­
tions: 

1) Whenever signal EA is active; or 
2) Whenever the program counter (PC) contains a 

number that is larger than OFFFH (1 FFFH for the 
80C52T2) 

This requires that the ROMless versions have EA wired 
low to enable the lower 4K (BK for the 80C32T2) program 
bytes to be fetched from external memory. 

When the CPU is executing out of external Program 
Memory, all 8 bits of Port 2 are dedicated to an output 
function and may not be used for general purpose 1/0. 
During external program fetches they output the high 
byte of the PC. During this time the Port 2 drivers use the 
strong pull-ups to emit PC bits that are 1 s. 

The read strobe for external fetches is PSEN, which is not 
activated for internal fetches. When the CPU is access-

ALE 

PsEN 

CHAPTER2 
8051 Family Architecture 

ing external Program Memory, PSEN is activated twice 
every cycle (except during a MOVX instruction) whether 
or not the byte fetched is actually needed for the current 
instruction. When PSEN Is activated, its timing is not the 
same as RD. A complete RD cycle, including activation 
and deactivation of ALE and RD, takes 12 oscillator 
periods. A complete PSEN cycle, including activation and 
deactivation of ALE, and PSEN, takes 6 oscillator peri­
ods. The execution sequence for these two types of read 
cycles is shown in Figure 2-7 for comparison. 

ALE 
The main function of ALE is to provide a properly timed 
signal to latch the low byte of an address from PO to an 
external latch during fetches from external Program 
Memory. For that purpose ALE is activated twice every 
machine cycle. This activation takes place even when the 
cycle involves no external fetch. The only time an ALE 
pulse doesn't come out is during an access to external 

a. 

iiD ~~~-t-~~~~~~~~~~-+-~~~~--'~~~~~..,.-~-
Without a 

MOVX 

PO 

PsEN 

I 

lPCLOUT 
VALID 

I 
I 

lPCLOUT 
VALID 

iiD ~~~-:-~~~~~!--~--. 

I 
' 
lPCLOUT 

VALID 

I 
I 

lPCLOUT 
VALID 

Figura 2·7. External Program Memory Execution 

b. 
With a 
MOVX 

2-9 



CHAPTER2 
8051 Family Architecture 

Data Memory. The first ALE of the second cycle of a 
MOVX instruction is missing (see Figure 2-7). Conse­
quently, in any system that does not use external Data 
Memory, ALE is activated at a constant rate of 1/6 the 
oscillator frequency, and can be used for external clock­
ing or timing purposes. 

Overlapping External Program and Data 
Memory Spaces 

In some applications it is desirable to execute a program 
from the same physical memory that is being used to 
store data. In the 8051, the external Program and Data 
Memory spaces can be combined by ANDing PSEN and 
RD. A positive-logic AND of these two signals produces 
an active-low read strobe that can be used for the 
combined physical memory. Since the PSEN cycle is 
faster than the RD cycle, the external memory needs to 
be fast enough to accommodate the PSEN cycle. · 

TIMER/COUNTERS 

The 8051 has two 16-bit timer/counter registers: Timer O 
and Timer 1. The 8052 has these two plus one more: 
Timer 2. All three can be configured to operate either as 
timers or event counters. 

In the "timer'' function, the register is incremented every 
machine cycle. Thus, one can think of it as counting 
machine cycles. Since a machine cycle consists of 12 
oscillator periods, the count rate is 1/12 of the oscillator 
frequency. 

In the "counter'' function, the register is incremented in 
response to a 1-to-O transition at its corresponding exter-

(MSB) 

nal input pin, TO, T1, or (in the 8052) T2. In this function, 
the external input is sampled during S5P2 of every 
machine cycle. When the samples show a high in one 
cycle and a low in the next cycle, the count is incre­
mented. The new count value appears in the register 
during S3P1 of the cycle following the one in which the 
transition was detected. Since it takes 2 machine cycles 
(24 oscillator periods) to recognize a 1-to-O transition, the 
maximum count rate is 1/24 of the oscillator frequency. 
There are no restrictions on the duty cycle of the external 
input signal, butto ensure that a given level is sampled at 
least once before it changes, it should be held for at least 
one full machine cycle. 

In addition to the "timer'' or "counter'' selection, Timer O 
and Timer 1 have four operating modes from which to 
select. Timer 2, in the 8052, has three modes of opera­
tion: "capture," "auto-reload" and "baud rate generator." 

Timer O and Timer 1 

These timer/counters are present in both the 8051 and 
the 8052. The ''timer'' or "counter" function is selected by 
control bits elf in the Special Function Register TMOD 
(Figure 2-8). These two timer/counters have four operat­
ing modes, which are selected by bit-pairs (M1, MO) in 
counters. Mode 3 is different. The four operating modes 
are described below. 

ModeO 

Putting either Timer into mode O makes it look like an 
8048 Timer, which is an 8-bit counter with a divided-by-
32 prescaler. Figure 2-9 shows the mode O operation as 
it applies to Timer 1 . 

(LSB) 

I GATE I Clf M1 Mo GATE elf I M1 Mo I 

TIMER 1 

GATE Gating Control when set. Timer/counter 
"x"isenabledonlywhile"INTx"pinishigh 
and ''TRx" control pin is set. When 
cleared Timer "x" is enabled whenever 
"TRX" control bit is set. 

CIT Timer or Counter Selector Cleared for 
Timer operation (input from internal 
system clock). Set for Counter operation 
(input from ''Tx" input pin). 

M1 
0 
0 

MO 
0 
1 

0 

TIMERO 

Operating Modes. 
8048 TIMER ''Tlx" serves as 5-bit prescaler. 

1 16-bit Timer/Counter ''THx" and ''Tlx" are 
cascaded; there is no prescaler. 
8-bit auto-reload timer-counter "THx" hold a 
value which is to be reloaded into ''Tlx" each 
time it overflows. 

(Timer 0) TLO is an 8-bit timer-counter 
controlled by the standard Timer 
0 control bits. 
THO is an 8-bit timer only con­
trolled by Timer 1 control bits. 

(Timer 1) Timer-counter 1 stopped. 
Figure 2-8 TMOD: Timer/Counter Mode Control Register 

2-10 



In this mode, the timer register is configured as a 13-bit 
register. As the count rolls over from all 1 s to all Os, it sets 
the timer interrupt flag TF1. The counted input is enabled 
to the Timer when TR1 = 1 and either GATE= 0 or INT1 
= 1. (Setting GATE= 1 allows the Timer to be controlled 
by external input INT1, to facilitate pulse width measure­
ments.) TR1 is a control bit in the Special Function 
Register TCON (Figure 2-10). GATE is in TMOD. 

The 13-bit register consists of all 8 bits of TH1 and the 
lower 5 bits of TL 1. The upper 3 bits of TL 1 are indeter­
minate and should be ignored. Setting the run flag (TR1) 
does not clear the registers. 

Mode O operation is the same for Timer 0 as for Timer 1. 
Substitute TRO, TFO and INTO for the corresponding 
Timer 1 signals in Figure 2-9. There are two different 
GATE bits, one for Timer 1 (TMOD.7) and one for Timer 
0 (TMOD.3) 

osc 

CIT~ 0 

-----~1CIT~1 T1 PIN -
CONTROL 

TR1------1 

GATE 

Mode 1 

CHAPTER 2 
8051 Family Architecture 

Mode 1 is the same as Mode 0, except that the Timer 
register is being run with all 16 bits. 

Mode2 

Mode 2 configures the timer register as an 8-bit counter 
(TL 1) with automatic reload, as shown in Figure 2-11. 
Overflow from TL 1 not only sets TF1, but also reloads 
TL 1 withthecontentsofTH1, which is preset by software. 
The reload leaves TH1 unchanged. 

Mode 2 operation is the same for Timer/Counter 0. 

Mode3 

Timer 1 in Mode 3 simply holds its count. The effect is the 
same as setting TR1 = 0. 

TL1 TH1 
(5 Bits) (8 Bits) TF1 INTERRUPT 

Figure 2-9. Timer/Counter 1 Mode O: 13-blt Counter 

(MSB) 

I TF1 I TR1 TFO TRO 

Symbol Position Name and Significance 

TF1 TCON.7 Timer 1 overflow Flag. Set by 
hardware on timer/counter over­
flow. Cleared by hardware when 
processor vectors to interrupt 
routine. 

TR1 TCON.6 Timer 1 Run control bit. Set/ 
cleared by software to turn timer/ 
counter on/off. 

TFO TCON.5 Timer 0 overflow Flag. Set by 
hardware on timer/counter over­
flow. Cleared by hardware when 
processor vectors to interrupt 
routine. 

TRO TCON.4 Timer O Run control bit. Set/ 
cleared by software to turn timer/ 
counter on/off. 

IE1 IT1 IEO 

Symbol Position 

IE1 TCON.3 

IT1 TCON.2 

IEO TCON.1 

ITO TCON.O 

(LSB) 

ITO I 

Name and Significance 

Interrupt 1 Edge flag. Set by 
hardware when external interrupt 
edge detected. Cleared when 
interrupt processed. 
Interrupt 1 Type control bit. Set/ 
cleared by software to specify 
falling edge/low level triggered 
external interrupts. 
Interrupt 0 Edge flag. Set by 
hardware when external interrupt 
edge detected. Cleared when 
interrupt processed. 

Interrupt 0 Type control bit. Set/ 
cleared by software to specify 
falling edge/low level triggered 
external interrupts. 

Figure 2-10. TCON: Timer/Counter Control Register 

2-11 



CHAPTER2 
8051. Family .Architecture 

Timer 0 in Mode 3 establishes TLO and THO as two 
separate counters. The logic for Mode 3 on Tirner O is 
shown in Figure 2-12. TLO uses the Timer 0 control bits: 
Cif; GATE, TAO, INTO, and TFO. THO Is locked into a 
timer function (Counting .machine cycles) and takes over 
the use of TR1 and TF1 from Timer 1. Thus, THO now 
controls the ''Timer 1" interrupt. 

Mode 3 is provided for applications requiring an extra 8-
bit timer or counter. With Timer O in Mode 3, an 8051 can 
look like it has three timer/counters, and an 8052, like it 
has. four. When Timer 0 is in Mode 3, Timer 1 can be 

osc 

ci'f = o 

turned on and off by switching it out of and into its own 
Mode 3, or can still be used by the serial port as a baud 
rate generator, or in fact, in any application not requiring 
an interrupt. 

Timer 2 

Timer 2 is a 16-bit timer/counter which is present only in 
the 8052. Like Timers O and 1, it can operate either as a 
timer or as an event counter.This is selected by bit C/T2 
inthe Special f'unction RegisterT2CON (Figure 2-13). It 
has three operating modes: "capture," "autoLoad" and 

TL1 
(8Blta) TF1 INTERRUPT 

-
____ __,! CIT= 1 

CONTROL 

2-12 

T1 PIN -

GATE 

INTO PIN 

Figure 2-11. Timer/Counter 1 Mode 2: 8-blt Auto-Reload 

G--8-1112105c 

1112 'osc ------. 
cir= o 

TO PIN-----~ CIT= 1 

TR0------1 

CONTROL 

i'LO 
(8blt1) 

TFO INTERRUPT 

111210sc----------t-I ?! ·. I ·I 1:=1 H TF1 ~INTERRUPT 
tCONTROL 

TR1 --------' 

Figure 2-12. Timer/Counter o Mode 3: Two 8-blt Counters 



Symbol 

TF2 

EXF2 

RCLK 

TCLK 

EXEN2 

TR2 
C/T2 

CP/RL2 

(MSB) 

.1 TF2 

Position 

T2CON.7 

T2CON.6 

T2CON.5 

T2CON.4 

T2CON.3 

T2CON.2 
T2CON.1 

T2CON.O 

CHAPTER 2 
8051 Family Architecture 

(LSB) 

EXF2 RCLK TCLK EXEN2 TR C/T2 I CP/RL2 I 

Name and Significance 

Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. 
TF2 will not be set when either RCLK = 1 or TCLK = 1 . 
Timer 2 external flag set when either a capture or reload is caused by a negative 
transition on T2EX and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 
will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared 
by software. 

Receive clock flag. When set, causes the serial port to use Timer 2 overflow 
pulses for its receive clock in modes 1 and 3. RCLK = o causes Timer 1 overflow 
to be used for the receive clock. 

Transmit clock flag. When set, causes the serial port to use Timer 2 overflow 
pulses for its transmit clock in modes 1 and 3. TCLK = 0 causes Timer 1 overflows 
to be used for the transmit clock. 

Timer 2 external enable flag. When set, allows a capture or reload to occur as a 
result of a negative transition on T2EX if Timer 2 is not being used to clock the 
serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX. 

Start/stop control for Timer 2. A logic 1 starts the timer. 
Timer or counter select (Timer 2) 

0 = Internal timer (OSC/12) 
1 = External event counter (falling edge triggered). 

Capture/Reload flag. When set, captures will occur on negative transitions at T2EX 
if EXEN2 = 1. When cleared, auto reloads will occur either with Timer 2 overflows 
or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK 
= 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow. 

Figure 2-13. T2CON: Timer/Counter 2 Control Register. 

"baud rate generator'' which are selected by bits in In the auto-reload mode there are again two options, 
T2CON as shown in Table 2-2. which are selected by bit EXEN2 in T2CON. If EXEN2 = 

Table 2·2. Timer 2 Operating Modes 

RCLK + TCLK CP/RL2 

0 0 
0 1 
1 x 
x x 

TR2 MODE 

16-bit auto-reload 

16-bit capture 

1 baud rate generator 
o (off) 

In the capture mode there are two options which are 
selected by bit EXEN2 in T2CON. If EXEN2 = 0, then 
Timer 2 is a 16-bit timer or counter which upon overflow­
ing sets bit TF2, the Timer 2 overflow bit, which can be 
used to generate an interrupt. If EXEN2 = 1, then Timer 
2 still does the above, but with the added feature that a 
1-to-O transition at external input T2EX causes the cur­
rent value in the Timer 2 registers, TL2 and TH2, to be 
captured into registers RCAP2L and RCAP2H, respec­
tively. (RCAP2L and RCAP2H are new Special Function 
Registers in the 8052.) in addition, the transition at T2EX · 
causes bit EXF2 in T2CON to be set, and EXF2, like TF2, 
can generate an interrupt. 

The capture mode i$ illustrated in Figure 2-14. 

O, then when Timer 2 rolls over it not only sets TF2 but 
also causes the Timer 2 registers to be reloaded with the 
16-bit value in registers RCAP2L and RCAP2H, which 
are preset by software. If EXEN2 = 1, then Timer 2 still 
does the above, but with the added feature that a 1-to-O 
transition at external input T2EX will also trigger the 16-
bit reload and set EXF2. 

The auto-reload mode is illustrated in Figure 2-15. 

The baud rate generator mode is selected by RCLK = 1 
and/or TCLK = 1. It will be described in conjunction with 
the serial port. 

SERIAL INTERFACE 
The serial port is full duplex, meaning it can transmit and 
receive simultaneously. It is also receive-buffered, 
meaning it can commence reception of a second byte 
before a previously received byte has been read from the 
receive register. (However, if the first byte still hasn't 
been read by the time reception of the second byte is 
complete, one of the bytes will be lost). The serial port 
receive and transmit registers are both accessed at 

2-13 



CHAPTER2 
8051 Family Architecture 

Cm=O 

-___ __,t Cm=1 
T2 PIN -

T2EX PIN 

TRANSITION 
DETECTOR 

CONTROL 

TR2 

CONTROL 

EXEN2 

TIMER 2 
INTERRUPT 

Figure 2-14. Timer 2 In Capture Mode 

Special Function Register SBUF. Writing to SBUF loads Multiprocessor Communications 
the transmit register, and reading SBUF accesses a 
physically separate receive register. 

The serial port can operate in 4 modes: 

Mode O: Serial data enters and exits through RXD. TXD 
outputs the shift clock. B bits are transmitted/received: B 
data bits (LSB first). The baud rate is fixed at 1/12 the 
oscillator frequency. 

Mode 1 : 10 bits are transmitted (through TXD) or re­
ceived (through RXD): a start bit (0), 8 data bits (LSB 
first), and a stop bit (1). On receive, the stop bit goes into 
RBB in Special Function Register SCON. The baud rate 
is variable. 

Mode 2: 11 bits are transmitted (through TXD) or re­
ceived (through RXD): a start bit (0), 8 data bits (LSB 
first), a programmable 9th data bit, and a stop bit (1 ). On 
transmit, the 9th data bit (TBB in SCON) can be assigned 
the value of 0or1. Or, for example, the parity bit (P, in the 
PSW) could be moved into TBB. On receive, the 9th data 
bit goes into RBB in Special Function Register SCON, 
while the stop bit is ignored. The baud rate is program­
mable to either 1/32 or 1/64 the oscillator frequency. 

Mode 3: 11 bits are transmitted (through TXD) or re­
ceived (through RXD): a start bit (0), 8 data bits (LSB 
first), a programmable 9th data bit and a stop bit (1). In 
fact, Mode 3 is the same as Mode 2 in all respects except 
the baud rate. The baud rate in Mode 3 is variable. 

In all four modes, transmission is initiated by any instruc­
tion that uses SBUF as a destination register. Reception 
is initiated in Mode 0 by the condition RI = O and 
REN= 1. Reception is initiated in the other modes by the 
incoming start bit if REN = 1. 

2-14 

Modes 2 and 3 have a special provision for multiproces­
sor communications. In these modes, 9 data bits are 
received. The 9th one goes into RBS. Then comes a stop 
bit. The port can be programmed such that when the stop 
bit is received, the serial port interrupt will be activated 
only if RBB = 1. This feature is enabled by setting bit SM2 
in SCON. A way to use this feature in multiprocessor 
systems is as follows. 

When the master processor wants to transmit a block of 
data to one of several slaves, ii first sends out an address 
byte which identifies the target slave. An address byte 
differs from a data byte in that the 9th bit is 1 in an address 
byte and 0 in a data byte. With SM2 = 1, no slave will be 
interrupted by a data byte. An address byte, however, will 
interrupt all slaves, so that each slave can examine the 
received byte and see if it is being addressed. The 
addressed slave will clear its SM2 bit and prepare to 
receive the data bytes that will be coming. The slaves that 
weren't being addressed leave their SM2s set and go on 
about their business, ignoring the coming data bytes. 

SM2 has 'no effect in Mode 0, and in Mode 1 can be used 
to check the validity of the stop bit. In a Mode 1 reception, 
if SM2 = 1, the receive interrupt will not be activated 
unless a valid stop bit is received. 

Serial Port Control Register 

The serial port control and status is the Special Function 
Register SCON, shown in Figure 2-16. This register 
contains not only the mode selection bits, but also the 9th 
data bit for transmit and receive (TBB and RBB), and the 
serial port interrupt bits (T1 and R1 ). 



-----~t Cff2=1 
T2 PIN -

T2EX PIN 

TRANSITION 
DETECTOR 

TR2 

CONTROL 

EXEN2 

RELOAD 

CHAPTER 2 
8051 Family Architecture 

TIMER 2 
INTERRUPT 

Figure 2-15. Timer 2 in Auto-Reload Mode 

(MSB) (LSB) 

I SMO SM1 SM2 REN TBS RBS Tl RI I 
where SMO, SM1 specify the serial port mode, as follows: •TBS is the 9th data bit that will be transmitted in 

modes 2 and 3. Set or clear by software as 
SMO SM1 Mode Description Baud Rate desired. 

0 
0 

1 

•SM2 

0 
1 
0 

0 

2 

3 

shift register 
8-bit UART 

9-bit UART 

9-bit UART 

•osc./12 
variable 

'osc./64 
or 

•osc./32 
variable 

enables the multiprocessor communication 
feature in modes 2 and 3. In mode 2 or 3, if SM2 
is set to 1 then RI will not be activated if the 
received 9th data bit (RBS) is 0. In mode 1, if 
SM2 = 1 then RI will not be activated if a valid 
stop bit was not received. In mode 0, SM2 should 
be o. 

• REN enables serial reception. Set by software to 
enable reception. Clear by software to disable 
reception. 

• RBS in modes 2 and 3, is the 9th data bit that was 
received. In mode 1, if SM2 = 0, RBS is the 
stop bit that was received. In mode 0, RBS is 
not used. 

•Tl 

•RI 

is transmit interrupt flag. Set by hardware at 
the end of the 8th bit time in mode 0, or at 
the beginning of the stop bit in the other 
modes, in any serial transmission. Must be 
cleared by software. 

is receive interrupt flag. Set by hardware at 
the end of the 8th bit time in mode O, or 
halfway through the stop bit time in the other 
modes, in any serial reception (except see 
SM2). Must be cleared by software. 

Figure 2-16. SCON: Serial Port Control Register 

Baud Rates 

The baud rate in Mode O is fixed: 

Mode 0 Baud Rate = Oscillator Frequency 
12 

The baud rate in Mode 2 depends on the value of bit 
SMOD in Special Function Register PCON. If SMOD = O 
(which is its value on reset), the baud rate is 1/64 the 
oscillator frequency. If SMOD = 1, the baud rate is 1/32 
the oscillator frequency. 

2SMOD 
Mode 2 Baud Rate = 64 x (Oscillator Frequency) 

2-15 



CHAPTER 2 
8051 Famlly Architecture 

In the 8051, the baud rates in Modes 1 and 3 are 
determined by the Timer 1 overflow rate. In the 8052, 
these baud rates can be determined by Timer 1 , or by 
Timer 2, or by both (one for transmit and the other for 
receive). ' 

Using Timer 1 to Generate Baud Rates 

When Timer 1 is used as the baud rate generator, the 
baud rates in Modes 1 and 3 are determined by the Timer 
1 overflow rate and the value of SMOD as follows: 

Modes 1, 3 2SMoo 
Baud Rate= ~x (Timer 1 Overflow Rate) 

The Timer 1 interrupt should be disabled in this applica­
tion. The Timer itself can be configured for either ''timer" 
or "counter" operation, and in any of its 3 running modes. 
In the most typical applications, it is configured for ''timer" 
operation, in the auto-reload mode (high nibble of TMOD 
= 001 OB). In that case, the baud rate is given by the 
formula 

2SMOD Oscillator Frequency 
Modes 1, 3 Baud Rate = ~ x 12x[256-(TH 1) 1 
One can achieve very low. baud rates with Timer 1 by 
leaving the Timer 1 interrupt enabled, and configuring the 
Timer to run as a 16-bit timer (high nibble of TMOD = 
0001 B), and using the Timer 1 interrupt to do a 16-bit 
software reload. 

Nole: OSC. freq. I• divided by 2, nol 12. 

cfi2=0 

-___ __,t cfii·, 
T2 PIN -

T2EX PIN 

TRANSITION 
DETECTOR 

EXEN2 

CONTROL 

TR2 

Figure 2-17 lists various commonly used baud rates and 
how they can be obtained from Timer 1 

Timer 1 

Baud Rate 'oac SMOD ctr Mode Reload 
Value 

Mode 0 MAX: 1 MHz 12MHz x x x x 
Mode 2 MAX: 375K 12MHz x x x 
Modes 1, 3: 62.5K 12MHz 0 2 FFH 

19.2K 11.059MHz 0 2 FDH 

9.6K 11.059 MHz 0 0 2 FDH 

4.8K 11.059 MHz 0 0 2 FAH 

2.4K 11.059 MHz 0 0 2 F4H 

1.2K 11.059 MHz 0 0 2 ESH 

137.5K 11.986 MHz 0 0 2 1DH 

110 6MHz 0 0 2 72H 

110 12MHz 0 0 FEEBH 

Figure 2-17. Timer 1 Generated Commonly Used 
Baud Rates 

Using Timer 2 to Generate Baud Rates 

In the 8052, Timer 2 is selected as the baud rate genera­
tor by setting TCLK and/or RCLK in T2CON (Figure 2-
13). Note then the baud rates for transmit and receive can 
be simultaneously different. Setting RCLK and/or TCLK 
puts Timer 2 into its baud rate generator mode, as shown 
in Figure 2-18. 

"TIMER 2" 
INTERRUPT 

TIMER 1 
OVERFLOW 

RX CLOCK 

TX CLOCK 

LNote Avallablllty of Addltlonal External Interrupt 

Figure 2-18. Timer 2 In Baud Rate Generator Mode 

2-16 



The baud rate generator mode is similar to the auto­
reload mode, in that a rollover in TH2 causes the Timer 
2 registers to be reloaded with the 16-bit value in registers 
RCAP2H and RCAP2L, which are preset by software. 

Now, the baud rates in Modes 1 and 3 are determined by 
Timer 2's overflow rate as follows: 

M d 1 3 B d R t _ Timer 2 Overflow Rate o es , au a e - 16 

The Timer can be configured for either "timer" or 
"counter" operation. In the most typical applications, it is 
configured for''timer" operation (C/T2 = 0). "Timer'' opera­
tion is a little different for Timer 2 when it's being used as 
a baud rate generator. Normally as a timer it would 
increment every machine cycle (thus at 111 the oscillator 
frequency). As a baud rate generator, however, ii incre­
ments every state time (thus at 1/2 the oscillator fre­
quency). In that case the baud rate is given by the formula 

Oscillator Frequency 
Modes 1, 3 32x[65536-(RCAP2H, RCAP2L)J 
Baud Rate= 

where (RCAP2H, RCAP2L) is the content of RCAP2H 
and RCAP2L taken as a 16-bit unsigned integer. 

Timer2 as a baud rate generator is shown in Figure 2-18. 
This Figure is valid only if RCLK + TCLK = 1 in T2CON. 
Note that a rollover in TH2 does not set TF2, and will not 
generate an interrupt. Therefore, the Timer 2 interrupt 
does not have to be disabled when Timer 2 is in the baud 
rate generator mode. Note too, that if EXEN2 is set, a 1-
to-O transition in T2EX will set EXF2 but will not cause a 
reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus 
when Timer 2 is in use as a baud rate generator, T2EX 
can be used as an extra external interrupt, if desired. 

It should be noted that when Timer 2 is running (TR2 = 1) 
in ''timer'' function iri the baud rate generator mode, one 
should not try to read or write TH2 or TL2. Under these 
conditions the Timer is being incremented every state 
time, and the results of a read or write may not be 
accurate. The RCAP registers may be read, but shouldn't 
be written to, because a write might overlap a reload and 
cause write and/or reload errors. Turn the Timer off (clear 
TR2) before accessing the Timer 2 or TCAP registers, in 
this case. 

More About Mode O 

CHAPTER 2 
8051 Family Architecture 

Serial data enters and exits through RXD. TXD outputs 
the shift clock. 8 bits are transmitted/received: 8 data bits 
(LSB first). The baud rate is fixed at 1/12 the oscillator 
frequency. 

Figure 2-19 shows a simplified functional diagram of the 
serial port in mode 0, and associated timing. 

Transmission is initiated by any instruction that uses 
SBUF as a destination register. The ''write to SBUF" 
signal at S6P2 also loads a 1 into the 9th bit position of 
the transmit shift register and tells the TX Control block to 
commence a transmission. The internal timing is such 
that one full machine cycle will elapse between ''write to 
SBUF," and activation of SEND. 

SEND enables the output of the shift register to the 
alternate output function line of P3.0, and also enables 
SHIFT CLOCK to the alternate output function line of 
P3.1. SHIFT CLOCK is low during 83, 84, and 85 of 
every machine cycle, and high during S6, S1 and S2. At 
S6P2of every machine cycle in which SEND is active, the 
contents of the transmit shift register are shifted to the 
right one position. 

As data bits shift out to the right, zeros come in from the 
left. When the MSB of the data byte is at the output 
position of the shift register, then the 1 that was initially 
loaded into the 9th position, is just to the left of the MSB, 
and all positions to the left of that contain zeros. This 
condition flags the TX Control block to do one last shift 
and then deactivate SEND and set T1. Both of these 
actions occur at S1 P1 of the 10th machine cycle after 
''write to SBUF." 

Reception is initiated by the condition REN= 1 and RI= 
0. At S6P2 of the next machine cycle, the RX Control unit 
writes the bits 11111110 to the receive shift register, and 
in the next clock phase activates RECEIVE. 

RECEIVE enables SHIFT CLOCK to the alternate output 
function line of P3.1. SHI FT CLOCK makes transitions at 
S3P1 andS6P1 ofeverymachinecycle.AtS6P2ofevery 
machine cycle in which RECEIVE is active, the contents 
of the receive shift register are shifted to the left one 
position. The value that comes in from the right is the 
value that was sampled at the P3.0 pin at S5P2 of the 
same machine cycle. 

As data bits come in from the right, 1 s shift out to the left. 
When the 0 that was initially loaded into the rightmost 
position arrives at the leftmost position in the shift regis­
ter, it flags the RX Control block to do one last shift and 
load SBUF. At S1 P1 of the 10th machine cycle after the 
write to SCON that cleared RI, RECEIVE is cleared and 
RI is set. 

2-17 



CHAPTER 2 
8051 Family Architecture 

·ALE 

WRITE 
TO 

SBUF 

TX CONTROL 
88. -..----"I TX CLOCK 

SERIAL 
PORT' 

INTERRUPT 

'----.. RX CLOCK RI 
AX CONTROL SHIFT REN-~-, 

Ri 1----:s_r_A_R_T __ ..;...;....;....;....;.-;....;;...;;__, 

READ 
SBUF 

RXD 
P3.0ALT 
OUTPUT 

FUNCTION 

TXD 
P3.1 ALT 
OUTPUT 

FUNCTION 

----'(WAITE TO SBUF 

SEND S8P2 . 1~-----------------------------L_______ 
SHIFT 

_Jl WAITE TO SCON (CLEAR Al I 

Al 
RECEIVE 

SHIFT 

AXD(DATAIN)·----D""'----{µ:=..:---{J.'<=----(J="'----fllO...---{J=:l'----IJ!~---C}.::..:--­

TXD (SHIFT CLOCK) 

Figure 2·19. Serial Port Mode o 

2·18 

TRANSMIT 

RECEIVE 



More About Mode 1 

Ten bits transmitted (through TXD), or received (through 
RXD): a start bit (0), 8 data bits (LSB first), and a stop bit 
(1). On receive, the stop bit goes into RBS inSCON. lnthe 
8051 the baud rate is determined the the Timer 1 overflow 
rate. In the 8052 it is determined either by the Timer 1 
overflow rate, or the Timer 2 overflow rate, or both (one 
for transmit and the other for receive). 

Figure 2-20 shows a simplified functional diagram of the 
serial port in Mode 1, and associated timings for transmit 
and receive. 

Transmission is initiated by any instruction that uses 
SBUF as a destination register. The "write to SBUF" 
signal also loads a 1 into the 9th bit position of the transmit 
shift register and flags the TX Control unit that a transmis­
sion is requested. Transmission actually commences at 
S1 P1 of the machine cycle following the next rollover in 
the divide-by-16 counter. (Thus, the bit times are syn­
chronized to the divide-by-16 counter, not to the ''Write to 
SBUF" signal.) 

The transmission begins with activation of SEND, which 
puts the start bit at TXD. One bit time later, DATA is 
activated, which enables the output bit of the transmit 
shift register to TXD. The first shift pulse occurs one bit 
time after that. 

As data bits shift out to the right, zeros are clocked in from 
the left. When the MSB of the data byte is at the output 
position of the shift register, then the 1 that was initially 
loaded into the 9th position is just to the left of the MSB, 
and all positions to the left of that contain zeroes. This 
condition flags the TX Control unit to do one last shift and 
then deactivate SEND and set Tl. This occurs at the 10th 
divide-by-16 rollover after "write to SBUF." 

Reception is initiated by a detected 1-to-0 transition at 
RXD. For this purpose RXD is sampled at a rate of 16 
times whatever baud rate has been established. When a 
transition is detected, the divide-by-16 counter is imme­
diately reset, and 1 FFH is written into the input shift 
register. Resetting the divide-by-16 counter aligns its 
rollovers with the boundaries of the incoming bit times. 

The 16 states of the counter divide each bit time into 
16ths. At the 7th, 8th, and 9th counter states of each bit 
time, the bit detector samples the value of RXD. The 
value accepted is the value that was seen in at least 2 of 
the 3 samples. This is done for noise rejection. lfthe value 
accepted during the first bit time is not 0, the receive 
circuits are reset and the unit goes back to looking for 
another 1-to-O transition. This is to provide rejection of 
false start bits. If the start bit proves valid, it is shifted into 

CHAPTER 2 
8051 Family Architecture 

the input shift register, and reception of the rest of the 
frame will proceed. 

As data bits come in from the right, 1 s shift out to the left. 
When the start bit arrives at the leftmost position in the 
shift register, (which in mode 1 is a 9-bit register), it flags 
the RX Control block to do one last shift, load SBUF and 
RBS, and set RI. The signal to load SBUF and RBS, and 
to set RI, will be generated if, and only if, the following 
conditions are met at the time the final shift pulse is 
generated. 

1) Rl=O,and 
2) Either SM2 = 0, or the received stop bit= 1 

If either of these two conditions is not met, the received 
frame is irretrievably lost. If both conditions are met, the 
stop bit goes into RBS, the 8 data bits go into SBUF, and 
RI is activated. At this time, whether the above conditions 
are met or not, the unit goes back to looking for a 1-to-O 
transition in RXD. 

More About Modes 2 and 3 

Eleven bits are transmitted (through TXD), or received 
(through RXD): a start bit (0), 8 data bits (LSB first), a 
programmable 9th data bit, and a stop bit (1). On trans­
mit, the 9th data bit (TBS) can be assigned the value of 
0 or 1. On receive, the 9th data bit goes into RBS in 
SCON. The baud rate is programmable to either 1/32 or 
1/64 the oscillator frequency in mode 2. Mode 8 may have 
a variable baud rate generated from either Timer 1 or 2 
depending on the state of TCLK and RCLK. 

Figures 21 a and b show a functional diagram of the serial 
port in modes 2 and 3. The receive portion is exactly the 
same as in mode 1. The transmit portion differs from 
mode 1 only in the 9th bit of the transmit shift register. 

Transmission is initiated by any instruction that uses 
SBUF as a destination register. The ''write to SBUF" 
signal also loads TBS into the 9th bit position of the 
transmit shift register and flags the TX Control unit that a 
transmission is requested. Transmission commences at 
S1 P1 of the machine cycle following the next rollover in 
the divide-by-16 counter. (Thus, the bit times are syn­
chronized to the divide-by-16 counter, not to the ''write to 
SBUF" signal.) 

The transmission begins with activation of SEND, which 
puts the start bit at TXD. One bit time later, DATA is 
activated, which enables the output bit of the transmit 
shift register to TXD. The first shift pulse occurs one bit 
time after that. The first shift clocks a 1 (the stop bit) into 
the 9th bit position of the shift register. Thereafter, only 
zeroes are clocked in. Thus, as data bits shift out to the 

2-19 



CHAPTER 2 
8051 Family Architecture 

TIMER 1 
OVERFLOW 

TCLK-

TX 
LOCK 

TIMER 2 
OVERFLOW 

RXD 

1-TO·O 
TRANSITION 
DETECTOR 

Tl 

RI 

LOAD 
SBUF 

LOAD 
SBUF 
SHIFT 1--------. 
1FFH 

TXD 

TRANSMIT 

2-20 

716 RESET 
~~'L___J\__-~ 

RXO !START 81T/ DO I 01 l 02 

RECEIVE ;~~;;ecTOR SAMPLE TIMES nnn n.M..~-~-·'~-•WL-~"'·~-"'L-~·"~-~·"~-

RI 

Figure 2·20. Serial Port Mode 1 
(TCLK, RCLK, and Timer 2 are present in the 8052/8032 only.) 



RECEIVE 

CHAPTER 2 
8051 Family Architecture 

WRITE 
TO 

S8UF 

PHASE 2 CLOCK 
(1/2 fosc} 

MODE2 

RXD 

START SIT 00 02 03 04 

Tl 

LOAD 
SBUF 

LOAD 
SBUF 
SHIFTI-----~ 

TXO 

TRANSMIT 

STOPBITGEN Ll--------------------~ 
~~RESET ___J\___l\_____J\__ 

RXO BIT OETECTORLI .. _-:._.:_:_T~e_:_~oT';c~-=-_=_,._=~=-=;~=-===~=-=;_=_=~0=2~=~-=T=@~=~=-=~0=3;__-=_=~1~~~0=·~=-='.CJILI::'.:==. = _ _Q§_~:irr=::x::::Jll STOP 

SAMPLE TIMES M.__~~ 

S~H_l_F~T ______ ___IL______jl_______J_~L--~L--~L--~L--~L--~L--~L---
RI 

Figure 2-21 a. Serial Port Mode 2 

2-21 



CHAPTER 2 
8051 Family Architecture 

2-22 

TIMER 1 
OVERFLOW 

TIMER 2 
OVERFLOW 

TCLK -

RECEIVE 

RXD 

1·TO·O 
TRANSITION 
DETECTOR 

SEND 
Tl 

RI LOAD 
SBUF 

RXCONTROL SHIFTI-----~ 

LOAD 
SBUF 

TX 

-~LOC~~~~L~....J~~--'l~~IL-~~L--~~L~--'C~__,'L-~JL-~ 
_R WRITE TO SSUF 
~SEND 

DATA tC<s~1P~1;-;:r==============================================!'-----~ 
SHIFT 

STOP BIT 

SHIFT 
RI 

Figure 2-21 b. Serial Port Mode 3 

(TCLK, RCLK, and Timer 2 are present In ~he 805218032 only.) 

TXD 

TRANSMIT 



right, zeroes are clocked in from the left. When TBS is at 
the output position of the shift register, then the stop bit 
is just to the left of TBS, and all positions to the left of that 
contain zeroes. This condition flags the TX Control unit to 
do one last shift and then deactivate SEND and set Tl. 
This occurs at the 11th divide-by-16 rollover after "write 
to SBUF." 

Reception is initiated by a detected 1-to-O transition at 
RXD. For this purpose RXD is sampled at a rate of 16 
times whatever baud rate has been established. When a 
transition is detected, the divide-by-16 counter is imme­
diately reset, and 1 FFH is written to the input shift 
register. 

At the 7th, 8th, and 9th counter states of each bit time, the 
bit detector samples the value of RXD. The value ac­
cepted is the value that was seen in at least two of the 
three samples. If the value accepted during the first bit 
time is not 0, the receive circuits are reset and the unit 
goes back to looking for another 1-to-O transition. If the 
start bit proves valid, it is shifted into the input shift 
register, and reception of the rest of the frame will 
proceed. 

As data bits come in from the right, 1 s shift out to the left. 
When the start bit arrives at the leftmost position in the 
shift register (which in modes 2 and 3 is a 9-bit register), 
it flags the RX Control block to do one last shift, load 
SBUF and RBS, and set RI. The signal to load SBUF and 
RBS, and to set RI, will be generated if, and only if, the 
following conditions are met at the time the final shift 
pulse is generated: 

1) RI= 0, and 
2) Either SM2 = 0, or the received data bit = 1 

If either of these conditions is not met, the received frame 
is irretrievably lost, and RI is not set. If both conditions are 
met, the received 9th data bit goes into RBS, and the first 
8 data bits go into SBUF. One bit time later, whether the 
above conditions were met or not, the unit goes back to 
looking for a 1-to-O transition at the RXD input. 

Note that the value of the received stop bit is irrelevant to 
SBUF, RBS, or RI. 

INTERRUPTS 

The 8051 provides five interrupt sources. The 8052 
provides six. These are shown in Figure 2-22. 

The External Interrupts INTO and INT1 can each be either 
level-activated or transition-activated, depending on bits 
ITO and IT1 in Register TCON. The flags that actually 
generate these interrupts are bits IEO and IE1 in TCON. 
When an external interrupt is generated, the flag that 
generated it is cleared by the hardware when the service 
routine is vectored to only lf the interrupt was transition-

CHAPTER 2 
8051 Family Architecture 

activated. If the interrupt was level-activated, then the 
external requesting source is what controls the request 
flag, rather than the on-chip hardware. 

TFO---------

TF1---------

Tl~ 
RI~ 

TF2~ 
EXF2~ 

INTERRUPT 
SOURCES 

Figure 2-22. 8051 Family Interrupt Sources 

(MSB) (LSB) 

I EA I x jET2 I ES I ET1 jEX1 jETO jEXO I 
Symbol 

EA 

ET2 

ES 

ET1 

EX1 

ETO 

EXO 

Position Function 

IE. 7 disables all interrupts. If EA = 0, no 
interrupt will be acknowledged. If 
EA = 1, each interrupt source is in­
dividually enabled or disabled by 
setting or clearing its enable bit. 

IE.6 reserved 
IE.5 enables or disables the Timer 2 

overflow or capture interrupt. If 
ET2 = 0, the Timer 2 interrupt is 
disabled. 

IE.4 enables or disables the Serial Port 
interrupt. If ES = 0, the Timer 1 
interrupt is disabled. 

IE.3 enables or disables the Timer 1 
Overflow interrupt. If ET1 = 0, the 
Timer 1 interrupt is disabled. 

IE.2 enables or disables External 
Interrupt 1. If EX1 = 0, External 
Interrupt 1 is disabled. 

IE.1 enables or disables the Timer O 
Overflow Interrupt. If ETO = 0, the 
Timer 0 Interrupt is disabled. 

IE.O enables or disables External 
Interrupt 0. If EXO = 0, External 
Interrupt O is disabled. 

Figure 2-23. IE: Interrupt Enable Register 

2-23 



CHAPTER 2 
8051 Family Architecture 

The Timer O and Timer 1 Interrupts are generated by TFO 
and TF1, which are set by a rollover in their respective 
timer/counter registers (except see page 2-12 for Timer 
O in mode 3). When a timer interrupt is generated, the flag 
that generated it is cleared by the on-chip hardware when 
the service routine is vectored to. 

The Serial Port Interrupt is generated by the logical OR 
of RI and Tl. Neither of these flags is cleared by hardware 
when the service routine is vectored to. In fact, the 
service routine will normally have to determine whether 
it was RI or Tl that generated the interrupt, and the bit will 
have to be cleared in software. 

In the 8052, the Timer 2 Interrupt is generated by the 
logical OR of TF2 and EXF2. Neither of these flags is 
cleared by hardware when the service routine is vectored 
to. In fact, the service routine may have to determine 
whether it was TF2 or EXF2 that generated the interrupt, 
and the bit will have to be cleared in software. 

All of the bits that generate interrupts can be set or 
cleared by software, with the same result as though it had 
been set or cleared by hardware. That is, interrupts can 
be generated or pending interrupts can be canceled in 
software. 

Each of these interrupt sources can be individually en­
abled or disabled by setting or clearing a bit in Special 
Function Register IE (Figure 2-23). Note that IE contains 
also a global disable bit, EA, which disables all interrupts 
at once. 

Priority Level Structure 

Each interrupt source can also be individually pro­
grammed to one of two priority levels by setting or 
clearing a bit in Special Function Register IP (Figure 2-
24). A low-priority interrupt can itself be interrupted by a 
high-priority interrupt, but not by another low-priority 
interrupt. A high-priority interrupt can't be interrupted by 
any other interrupt sourcec 

(MSB) (LSB) 

I x I x I PT2 I PS I PT1 I PX1 I PTO I PXO I 

Symbol Position Function 

IP.7 reserved 
IP.6 reserved 

PT2 IP.5 defines the Timer 2 interrupt priority 
level. PT2 = 1 programs it to the 
higher priority level. 

PS IP.4 defines the Serial Port interrupt 
priority level. PS= 1 programs it to 
the higher priority level. 

PT1 IP.3 defines the Timer 1 interrupt priority 
level. PT= 1 programs it to the 
higher priority level. 

PX1 IP.2 defines the External Interrupt 1 
priority level. PX1 = 1 programs it to 
the higher priority level. 

PTO IP.1 defines the Timer 0 interrupt priority 
level. PTO = 1 programs it to the 
higher priority level. 

PXO IP.O defines the External Interrupt 0 
priority level. PXO = 1 programs it to 
the higher priority level. 

Figure 2-24.IP: Interrupt Priority Register 

If two requests of different priority levels are received 
simultaneously, the request of higher priority level is 
serviced. If requests of the same priority level are re­
ceived simultaneously, an internal polling sequence 
determines which request is serviced. Thus within each 
priority level there is a second priority structure deter­
mined by the polling sequence, as follows: 

Source 

1. IEO 
2. TFO 
3. IE1 
4. TF1 
5. RI +Tl 
6. TF2 + EXF2 

Priority Within Level 

(highest) 

(lowest) 

Note that the "priority within level" structure is only used 
to resolve multiple requests of the same priority level. 

·········---c1------c2-------c3---i---c4--~---cs--····· 

2-24 

IS5P21 S6 

········~·\-, --'----'11·~-....__-n---~---

~t 
INTERRUPT INTERRUPT 

GOES LATCHED 
ACTIVE 

INTERRUPTS. 
ARE POLLED 

LONG CALL TO 
INTERRUPT 

VECTOR ADDRESS 

INTERRUPT ROUTINE 

This is the fastest possible response when C2 is the final cycle of an 
instruction other than RETI or an access to IE or IP. 

Figure 2-25. Interrupt Response Timing Diagram 



How Interrupts Are Handled 

The interrupt flags are sampled at S5P2 of every ma­
chine cycle. The samples are polled during the following 
machine cycle. If one of the flags was in a set condition 
at S5P2 of the preceding cycle, the polling cycle will find 
it and the interrupt system will generate an LCALL to the 
appropriate service routine, provided this hardware­
generated LCALL is not blocked by any of the following 
conditions: 

1. An interrupt of equal or higher priority level is already 
in progress. 

2. The current (polling) cycle is not the final cycle in the 
execution of the instruction in progress. 

3. The instruction in progress is RETI or any access to 
the IE or IP registers. 

Any of these three conditions will block the generation of 
the LCALL to the interrupt service routine. Condition 2 
ensures that the instruction in progress will be completed 
before vectoring to any service routine. Condition 3 
ensures that if the instruction in progress is RETI or any 
access to IE or IP, then at least one more instruction will 
be executed before any interrupt is vectored to. 

The polling cycle is repeated with each machine cycle, 
and the values polled are the values that were present at 
S5P2 of the previous machine cycle. Note then that if an 
interrupt flag is active but not being responded to for one 
of the above conditions, if the flag is not still active when 
the blocking condition is removed, the denied interrupt 
will not be serviced. In other words, the fact that the 
interrupt flag was once active but not serviced is not 
remembered. Every polling cycle is new. 

The polling cycle/LC ALL sequence is illustrated in Figure 
2-25. 

Note that if an interrupt of higher priority level goes active 
prior to S5P2 of the machine cycle labeled C3 in Figure 
2-25, then in accordance with the above rules it will be 
vectored to during C5 and C6, without any instruction of 
the lower priority routine having been executed. 

Thus the processor acknowledges an interrupt request 
by executing hardware-generated LCALL to the appro­
priate servicing routine. In some cases it also clears the 
flag that generated the interrupt, and in other cases it 
doesn't. It never clears the Serial Port or Timer 2 flags. 
This has to be done in the user's software. It clears an 
external interrupt flag (IEO or IE1) only if it was transition­
activated. The hardware-generated LCALL pushes the 

CHAPTER 2 
8051 Family Architecture 

contents of the Program Counter onto the stack (but it 
does not save the PSW) and reloads the PC with an 
address that depends on the source of the interrupt being 
vectored to, as shown below. 

Vector 
Source Address 

IEO 0003H 
TFO OOOBH 

IE1 0013H 

TF1 001BH 

RI+ Tl 0023H 
TF2 + EXF2 002BH 

Execution proceeds from that location until the RETI 
instruction is encountered. The RETI instruction informs 
the processor that this interrupt routine is no longer in 
progress, then pops the top two bytes from the stack and 
reloads the Program Counter. Execution of the inter­
rupted program continues from where it left off. 

Note that a simple RET instruction would also have 
returned execution to the interrupted program, but it 
would have left the interrupt control system thinking an 
interrupt was still in progress. 

External Interrupts 

The external sources can be programmed to be level­
activated or transition-activated by setting or clearing bit 
IT1 or ITO in Register TCON. If ITx = 0, external interrupt 
xis triggered by a detected low at the INTx pin. If ITx = 1, 
external interrupt x is edge-triggered. In this mode if 
successive samples of the INTx pin show a high in one 
cycle and a low in the next cycle, interrupt request flag !Ex 
in TCON is set. Flag bit IEx then requests the interrupt. 

Since the external interrupt pins are sampled once each 
machine cycle, an input high or low should hold for at 
least 12 oscillator periods to ensure sampling. If the 
external interrupt is transition-activated, the external 
source has to hold the request pin high for at least one 
cycle, and then hold it low for at least one cycle to ensure 
that the transition is seen so that interrupt request flag I Ex 
will be set. I Ex will be automatically cleared by the CPU 
when the service routine is called. 

If the external interrupt is level activated, the external 
source has to hold the request active until the requested 
interrupt is actually generated. Then it has to deactivate 
the request before the interrupt service routine is com­
pleted, or else another interrupt will be generated. 

2-25 



CHAPTER 2 
8051 Family Architecture 

Response Time 

The INTO and INT1 levels are inverted and latched into 
IEO and IE1 at S5P2 of every machine cycle. The values 
are not actually polled by the circuitry until the next 
machine cycle. If a request is active and conditions are 
right for it to be acknowledged, a hardware subroutine 
call to the requested service routine will be the next 
instruction to be executed. The call itself takes two 
cycles. Thus, a minimum of three complete machine 
cycles elapse between activation of an external interrupt 
request andthe beginning of execution of the first instruc­
tion of the service routine. Figure 2-25 shows interrupt 
response timings. 

A longer response time would result if the request is 
blocked by one of the 3 previously listed conditions. If an 
interrupt of equal or higher priority level is already in 
progress, the additional wait time obviously depends on 
the nature of the other interrupt's service routine. If the 
instruction in progress is not in its final cycle, the addi­
tional wait time cannot be more than 3 cycles, since the 
longest instructions (MUL and DIV) are only 4 cycles 
long, and if the instruction in progress is RETI or an 
access to IE or IP, the additionalwaittime cannot be more 
than 5 cycles (a maximum of one more cycle to complete 
the instruction in progress, plus 4 cycles to complete the 
next instruction if the instruction is MUL or DIV). 

Thus, in a single-interrupt system, the response time is 
always more than 3 cycles and less than 9 cycles. 

SINGLE-STEP OPERATION 

The 8051 interrupt structure allows single-step execution 
with very little software overhead. As previously noted, 
an interrupt request will not be responded to while an 
interrupt of equal priority level is still in progress, nor will 
it be responded to after RETI until at least one other 
instruction has been executed. Thus, once an interrupt 
routine has been entered, it cannot be re-entered until at 
least one instruction of the interrupted program is exe­
cuted. One way to use this feature for singlecstep opera­
tion is to program one of the external interrupts, e.g., 
INTO, to be level-activated. The service routine for the 
interrupt will terminate with the following code: 

JNB P3.2,$ ;WAIT HERE UNTIL INTO GOES 
HIGH 

JB P3.2,$ ;NOW WAIT HERE UNTIL IT GOES 
LOW 

RETI ;GO BACK AND EXECUTE ONE 
INSTRUCTION 

If the INTO pin, which is also the P3.2 pin, is held normally 
low, the CPU will go right into the External Interrupt O 
routine and stay there until INTO is pulsed (from low to 
high to low). Then it will execute RETI, go back to the task 

2-26 

program, execute one instruction, and immediately re­
enter the External Interrupt 0 routine to await the next 
pulsing of P3.2. One step of the task program is executed 
each time P3.2 is pulsed. 

RESET 

The reset input is the RST pin, which is the input to a 
Schmitt Trigger. 

A reset is accomplished by holding the AST pin high for 
at least two machine cycles (24 oscillator periods), while 
the oscillator is running. The CPU responds by executing 
an internal reset. It also configures the ALE and PSEN 
pins as inputs. (They are quasi-bidirectional.) The inter­
nal reset is executed during the second cycle in which 
RST is high and is repeated every cycle until RST goes 
low. It leaves the internal registers as follows: 

Register 

PC 
ACC 
B 
PSW 
SP 
DPTR 
PO-P3 
IP (8051) 
IP (8052) 
IE (8051) 
IE (8052) 
TMOD 
TCON 
T2CON (8052 only) 
THO 
TLO 
TH1 
TL1 
TH2 
TL2 
RCAP2H (8052 only) 
RCAP2L (8052 only) 
SCON 
SBUF 
PCON (NMOS) 
PCON (CMOS) 

Content 

OOOOH 
OOH 
OOH 
OOH 
O?H 

OOOOH 
OFFH 

XXXOOOOOB 
XXOOOOOOB 
OXXOOOOOB 
OXOOOOOOB 

OOH 
OOH 
OOH 
OOH 
OOH 
OOH 
OOH 
OOH 
OOH 
OOH 
OOH 
OOH 

Indeterminate 
OXXXXXXXB 
OXXXOOOOB 

The internal RAM is not affected by reset. When VCC is 
turned on, the RAM content is indeterminate unless the 
part is returning from a reduced power mode of 
operation. 

Power-On Reset 

An automatic reset can be obtained when VCC is turned 
on by connecting the RST pin to VCC through a 1 OµF 
capacitor and to VSS through an 8.2 k resistor, providing 
the VCC rise time does not exceed a millisecond and the 



oscillator start-up time does not exceed 10 ms. This 
power-on reset circuit is shown in Figure 2-26. When 
power comes on, the current drawn by RST commences 
to charge the capacitor. The voltage at RST is the 
difference between VCC and the capacitor voltage, and 
decreases from VCC as the capacitor charges. The 
larger the capacitor, the more slowly VRST decreases. 
VRST must remain above the lower threshold of the 
Schmitt Trigger long enough to effect a complete reset. 
The time required is the oscillator start-up time, plus 2 
machine cycles. 

POWER-SAVING MODES OF OPERATION 

For applications where power consumption is critical, the 
NMOS and CMOS versions provide power-reduced 
modes of operation. 

NMOS Power Reduction Mode 

To save power when using the NMOS device, VCC may 
be reduced to zero while the on-chip RAM is saved 
through a backup supply connected to the RST pin. After 
saving relevant data in RAM, the user enables the 
backup power supply to the RST pin before VCC falls 
below its operating limit. When power returns, the backup 
supply must stay on long enough to accomplish a reset; 
it then can be removed and normal operation resumed. 

vcc 

+ 
10"' =!:= 

vcc I--' 

8051 

RST 

8.2K!l 

i 

VSS 

~ 

Figure 2-26. Power on Reset Circuit 

CHAPTER 2 
8051 Family Architecture 

CMOS Power Reduction Modes 

CMOS versions have two power-reducing modes, Idle 
and Power Down. Backup power is supplied during these 
operations through VCC. Figure 2-27 shows the internal 
circuitry which implements these features. In the Idle 
mode (IDL = 1), the oscillator continues to run and the 
Interrupt, Serial Port, and Timer blocks continue to be 
clocked, but the clock signal is gated off to the CPU. In 
Power Down (PD= 1), the oscillator is frozen. The Idle 
and Power Down modes are activated by setting bits in 
Special Function Register PCON. The address of this 
register is 87H. Figure 2-28 details its contents. 

~D~ 
XTAL 2 ~ XTAL 1 

Figure 2-27. Idle and Power Down Hardware 

(MSB) 

JSMODJ 

Symbol 

SMOD 

GF1 
GF2 
PD 

IDL 

(LSB) 

I GF1 I GFO I PD I IDL I 
Position Name and Function 

PCON.7 Double Baud rate bit. When set to 
a 1 and Timer 1 is used to 
generate baud rate, and the Serial 
Port is used in modes 1, 2, or 3. 

PCON.6 (Reserved) 
PCON.5 (Reserved) 
PCON.4 
PCON.3 
PCON.2 
PCON.1 

(Reserved) 
General-purpose flag bit. 
General-purpose flag bit. 
Power Down bit. Setting this bit 
activates power down operation. 

PCON.O Idle mode bit. Setting this bit 
activates idle mode operation. 

If 1 s are written to PD and IDL at the same time, PD takes 
precedence. The reset value of PCON is (OXXXOOOO). 

Figure 2-28. PCON: Power Control Register 

2-27 



CHAPT:ER 2 
8051 Family Architecture 

Idle Mode 

An instruction that sets PCON. 0 causes thatto be the last 
instruction executed before going into the Idle mode. In 
the Idle mode, the internal clock signal is gated off to the 
CPU, but not to the Interrupt, Timer, and Serial Port 
functions. The CPU status is preserved in its entirety: the 
Stack Pointer, Program Counter, Program Status Word, 
Accumulator, and all other registers maintain their data 
during Idle. The port pins hold the logical states they had 
at the time Idle was activated. ALE and PSEN hold at logic 
high levels. 

There are two ways to terminate the Idle. Activation of 
any enabled interrupt will cause PCON.Oto be cleared by 
hardware, terminating the Idle mode. The interrupt will be 
serviced, and following RETI the next instruction to be 
executed will be the one following the instruction that put 
the device into Idle. 

The flag bits GFO and GF1 can be used to give an 
indication if an interrupt occurred during normal opera­
tion or during an Idle. For example, an instruction that 
activates Idle can also set one or both flag bits. When Idle 
is terminated by an interrupt, the interrupt service routine 
can examine the flag bits. 

The ot~er way of terminating the Idle mode is with a 
hardware reset. Since the clock oscillator is still running, 
the hardware reset needs to be held active for only two 
machine cycles (24 oscillator periods) to complete the 
reset. 

Power Down Mode 

An instruction that sets PCON .1 causes that to be the last 

XTAL1 

instruction executed before going into the Power Down 
mode. In the Power Down mode, the on-chip oscillator is 
stopped. With the clock frozen, all functions are stopped, 
but the on-chip RAM and Special Function Registers are 
held. The port pins output the values held by their 
respective SFRs. AL!= and PSEN output lows. 

The only e><il from Power Down is a hardware reset. 
Reset redefines all the SFRs, but does not change the 
on-chip RAM. 

In the Power Down mode of operation, VCC can be 
reduced to minimize power consumption. Care must be 
taken, however, to ensure that VCC is not reduced before 
the Power Down mode is invoked, and that VCC is 
restored to its normal operating level, before the Power 
Down mode is terminated. The reset that terminates 
Power Down also frees the oscillator. The reset should 
not be activated before VCC is restored to its normal 
operating level, and must be held active long enough to 
allow the oscillator to restart and stabilize (normally less 
than 10 msec). 

MORE ABOUT THE ON-CHIP 
OSCILLATOR 

NMOS Versions 

The on-chip oscillator circuitry fort he NMOS members of 
the 8051 Family is a single stage linear inverter (Figure 
2-29), intended for use as a crystal-controlled, positive 
reactance oscillator (Figure 2-30). In this application the 
crystal is operated in its fundamental response mode as 
an inductive reactance in parallel resonance with capaci­
tance external to the crystal. 

Vee 

Vss 

TO INTERNAL 
TIMING CKTS 

XTAL2 

Figure 2-29. On-Chip Oscillator Circuitry in the NMOS Versions of the 8051 Family 

2-28 



The oscillator can be used with the same external com­
ponents as the NMOS versions, as shown in Figure 2-33. 
Typically, C1 = C2 = 30 pF when the feedback element 
is a quartz crystal, and C1 = C2 = 47 pF when a ceramic 
resonator is used. 

To drive the CMOS parts with an external clock source, 
apply the external clock signal to XT AL 1, and leave 
XTAL2 floating as shown in Figure 2-34. 

The reason for this change from the way the NMOS part 
is driven can be seen by comparing Figure 2-29 and 2-32. 
In the NMOS devices the internal timing circuits are 
driven by the signal at XTAL2. In the CMOS devices the 
Internal timing circuits are driven by the signal at XTAL 1. 

80C51 

NC XTAL2 

EXTERNAL 
XTAL1 

OSCILLATOR 

t SIGNAL 
Vss 

CMOS GATE 

.,.. 

Figure 2-34. Driving the CMOS 8051 Family Parts with an 
External Clock Source 

INTERNAL TIMING 

Figures 2-35 through 2-38 show when the various strobe 
and port signals are clocked internally. The figures do not 
show rise and fall times of the signals, nor do they show 
propagation delays between the XTAL2 signal and 
events at other pins. 

Rise and fall times are dependent on the external loading 
that each pin must drive. They are often taken to be 
something in the neighborhood of 10nsec, measured 
between 0.8 V and 2.0 V. 

Propagation delays are different for different pins. For a 
given pin they vary with pin loading, temperature, VCC, 
and manufacturing lot. If the XTAL2 waveform is taken as 
the timing reference, propagation delays may vary from 
25 to 125 nsec. 

The AC Timings section of the data sheets do not 
reference any timing to the XTAL2 waveform. Rather, 
they relate the critical edges of control and input signals 
to each other. The timings published in the data sheets 
include the effects of propagation delays under the 
specified test conditions. 

CHAPTER 2 
8051 Family Architecture 

80C51 BH PIN DESCRIPTIONS 

VCC: Supply voltage. 

VSS: Circuit ground potential. 

Port O: Port O is an 8-bil open drain bidirectional 1/0 port. 
As an open drain output port ii can sink 8 LS TTL loads. 
Port O pins that have 1 s written to them float, and in that 
state will function as high-impedance inputs. Port o is 
also the multiplexed low-order address and data bus 
during accesses to external memory. In this application 
it uses strong internal pull-ups when emitting 1 s. Port O 
also emits code bytes during program verification. In that 
application, external pull-ups are required. 

Port 1 : Port 1 is an 8-bit bidirectional 1/0 port with internal 
pull-ups. The port 1 output buffers can sink/source four 
LS TTL loads. Port 1 pins that have 1 s written to them are 
pulled high by the internal pull-ups, and in that state can 
be used as inputs. As inputs, Port 1 pins that are exter­
nally being pulled low will source current (Ill, on the data 
sheet) because of the internal pull-ups. 

In the 8052, pins P1 .0 and P1 .1 also serve the alternate 
functions of T2 and T2EX. T2 is the Timer 2 external 
input. T2 EX is the input through which a Timer 2 "capture" 
is triggered . 

Port 2: Port 2 is an 8-bit bidirectional 1/0 port with internal 
pull-ups. The Port 2 output buffers can sink/source four 
LS TTL loads. Port 2 emits the high-order address byte 
during accesses to external memory that use 16-bit 
addresses. In this application it uses the strong internal 
pull-ups when emitting 1 s. Port 2 also receives the high­
order address and control bits during 87C51 program­
ming and verification, and during program verification in 
the 80C51BH. 

Port 3: Port 3 is an 8-bit bidirectional 1/0 port with internal 
pull-ups. It also serves the functions of various special 
features of the 8051 Family, as listed below: 

Port Pin 

P3.0 
P3.1 
P3.2 
P3.3 
P3.4 
P3.5 
P3.6 

P3.7 

Alternate Function 

RXD (serial input port) 
TXD (serial output port) 
INTO (external interrupt 0) 
INT1 (external interrupt 1) 
TO (Timer 0 external input) 
T1 (Timer 1 external input) 
WR (external data memory write 
strobe) 
RD (external data memory read 
strobe) 

The Port 3 output buffers can source/sink four LS TTL 
loads. 

2-31 



CHAPTER2 
8051 Family ArchHecture 

RST: Reset input. A high on this pin for two machine 
cycles while the oscillator is running resets the device. 

ALE/'Pimll: Address Latch Enable is the output pulse 
for latching the low byte of the address during accesses 
to external memory. ALE is emitted at a constant rate of 
1/6 of the oscillator frequency, for external timing or 
clocking purposes, even when there are no accesses to 
external memory. (However, one ALE pulse is skipped 
during each access to external Data Memory.) This pin is 
also the program pulse input (PRC5G) during EPROM 
programming. 

PSEN: Program Store Enable is the read strobe to 
external Program Memory. When the device is executing 
out of external Program Memory, PSEN is activated.twice 
each machine cycle (except that two PSEN" activations 
are skipped during accesses to external Data Memory). 
PSEN" is not activated when the device is executing out of 
internal Program Memory. 

2-32 

EANPP: When EA is held high the CPU executes out of 
internal Program Memory (unless the Program Counter 
exceeds OFFFH in the 80C51 BH, or 1 FFFH in the 
80C52T2). Holding EA low forces the CPU to execute out 
of external memory regardless of the Program Counter 
value. In the 80C31 BH and 80C32T2, EA must be exter­
nally wired low. In the 87C51, this pin also receives the 
12.75 V programming supply voltage (VPP) during 
EPROM programming. 

XTAL1: Output to the inverting oscillator amplifier 
(CMOS devices only). 

XTAL2: Input from the inverting oscillator amplifier 
(CMOS devices only). 



Q2 

Vss 

TO INTERNAL 
TIMING CKTS 

XTAL2- -- - •• 

CHAPTER 2 
8051 Family Architecture 

--r--QUARTZ CRYSTAL 
OR CERAMIC RESONATOR 

Figure 2-30. Using the NMOS On-Chip 0$Clllator 

The crystal specifications and capacitance values (C 1 
and C2 in Figure 2-33) are not critical. 30 pF can be used 
in these positions at any frequency with good quality 
crystals. A ceramic resonator can be used in place of the 
crystal in cost-sensitive applications. When a ceramic 
resonator is used, C1 and C2 are normally selected to be 
of somewhat higher values, typically, 47 pF. The manu­
facturer of the ceramic resonator should be consulted for 
recommendations on the values of these capacitors. 

vcc 

8051 

EXTERNAL 
JICl>------t XTAL2 

OSCILLATOR t 
SIGNAL 

TTL 
GATE 
WITH 

TOTEM-POLE 
OUTPUT 

XTAL1 

Vss 

Figure 2·31. Driving the NMOS 8051 Family Parts 
with an External Clock Source 

To drive the NMOS parts with an external clock source, 
apply the external clock signal to XTAL2, and ground 
XTAL 1, as shown in Figure 2-31. A pull-up resistor may 
be used (to increase noise margin), but is optional if VOH 
of the driving gate exceeds the VIHM,N specification of 
XTAL2. 

CMOS 

The on-chip oscillator circuitry for the 80C51, shown in 
Figure 2-32, consists of a single-stage linear inverter 
intended for use as crystal-controlled, positive reactance 
oscillator in the same manner as the NMOS parts. 
However, there are some important differences. 

One difference is that the 80C51 is able to turn off its 
oscillator under software control (by writing a 1 to the PD 
bit in PCON). Another difference is that in the 80C51 the 
internal clocking circuitry is driven by the signal at XT AL 1, 
whereas in the NMOS versions it is by the signal at 
XTAL2. 

The feedback resistor Rf in Figure 2-32 consists of 
paralleled n- and p-channel FETs controlled by the PD 
bit, such that RI is opened when PD= 1. The diodes D1 
and D2, which act as clamps to VCC and VSS, are 
parasitic to the Rf FETs. 

2-29 



CHAPTER 2 
8051 Family Architecture 

2-30 

XTAL1 

TO INTERNAL 
TIMING CKTS 

4000 

r 

Vee 

D1 

XTAL2 

D2 

iiD 

Figure 2·32. On-Chip Oscillator Circuitry In the CMOS Versions of the 8051 Family 

TO INTERNAL 
TIMING CKTS 

Vss 

80C51 

Vee 

~__,--QUARTZ CRYSTAL 
OR CERAMIC 
RESONATOR 

Figure 2·33. Using the CMOS On-Chip Oscillator 



XTAU: 

ALE: 

PSEN: 

PO: 

P2: 

XTAU: 

ALE: 

RD: 

PO: 

P2: 

CHAPTER 2 
8051 Family Architecture 

I STATE 1 I STATE 21 STATE 31 STATE 41 STATE 51 STATE 81 STATE 1 I STATE 21 
~1~ ~1~ ~1~ ~1~ ~1~ ~1~ ~1~ ~1~ 

_J 
DATA 
SAMPLED 

PCL 
OUT 

PCH OUT PCH OUT 

Figure 2-35. External Program Memory Fetches 

DATA 
L 

SAMPLED 

PCL 
OUT 

PCH OUT 

I STATE 41 STATE 51 STATE 61 STATE 1 I STATE 21 STATE 31 STATE 41 STATE 51 
~1~ ~1~1~1~ ~1~ ~1~ ~1~ ~1~ ~1~ 

PCH OR 
P2 SFR 

DPL OR RI 
OUT 

DATA SAMPLED 

FLOAT 

DPH OR P2 SFR OUT 

Figure 2-36. External Data Memory Read Cycle 

PCH OR 
P2 SFR 

2-33 



CHAPTER2 
8051 Famlly Architecture 

2-34 

I STATE 41 STATE s 1 STATE • 1 STATE 1 I STATE 31 STATE 21 STATE 41 STATE 51 
~1~ ~1~ ~1~ ~1~ ~IP2 ~IP2 ~IP2 ~IP2 

XTAL2: 

ALE: 

Wii: 

PO: 

~ 
PCH OR 
P2SFR 

DPLOR RI 
OUT 

DATA OUT 

DPH OR ~ SFR OUT 

Figure 2-37. External Data Memory Write Cycle 

PCLOUTIF 
PROGRAM MEMORY 

IS EXTERNAL 

PCH OR 
P2SFR 

I STATE • 1 STATE 51 STATE • 1 STATE 1 I STATE 21 STATE 31 STATE 41 STATE 51 
~IP2 ~IP2 ~IP2 ~IP2 ~IP2 ~IP2 ~IP2 ~IP2 

XTAL2: 

INPUTS SAMPLED: 

MOY PORT, SRC: 

SERIAL PORT 
SHIFT CLOCK 
(MODEO) 

.~0 P1 
P2, P3, RST 

OLD DATA NEW DATA 

PO,P1~ 

P2, P3, RST =:r-1.--

____ I 
-+l i.- RXD PIN SAMPLED RXD SAMPLED -+j f.-

Figure 2-38. Port Operation 





CHAPTER3 
4 ,. ,< ' 

Programmer'.s Gulde 
Memory Organization 

Program Memo,Y 
Data Memory 
D!rect and Indirect Addr~ss Area 

Special Fun9tion Registers 
Contents of SFFls After Power-On 
SFR Memory Map 
Program Status Wo~ (PSW) 
Power Control Register (PCON) 

Interrupts 
Interrupt Enable Register (IE) 
/\ssignlng Higher Priority Levels 
Interrupt Priority Register (IP) 
Timer/Counter Control Register (TCQN) 
Timer/Counter Mode Control Register (TMOD) 

Timer Set-Up 
Timer/Co1.mter O 
Timer/Counter 1 

Timer/Counter 2 Control Regist~r (T2CON) 
Till)er/Counter 2 Set-Up 

Serial Port Control Register (SCON) 
~erial Port Set-Up 

Generating Baud Rates 

3-1 
3-1 
3-1 
3-2 
3-4 

3-6 
3-7 
3-8 
3-9 
3.9 
3-10 
3-10 
3-11 
3-11 
3-12 
3-12 

3·13 
3-13 
3-13 
3-15 
3-16 

3-17 
3-17 
3-18 



INTRODUCTION 

.. CHAPTER 3 

Programmer's Guide 

This chapter presents a programmer's reference guide to the "core" architecture of the 8051 Family. The description of 
the "8051" in this chapter applies to all 8051 Family members. The term "8052" is used to refer to an 8051AH with a 
double amount of ROM and RAM, and an extra timer called Timer 2. It is also included in this ~·core" discussion because 
its features are often found in other enhanced 8051 Family members. (See Members of the Family in Chapter 1). 

MEMORY ORGANIZATION 

Program Memory 

The 8051 has separate address spaces for Program Memory and Data Memory. The Program Memory can be up to 64K 
bytes long. The lower 4K (8K for the 8052) may reside on-chip. Figure 3-1 shows a map of the 8051 program memory; 
Figure 3-2 shows a map of the 8052 program memory. 

FFFF ----------~ 

IOK 
BYTES 

EXTERNAL 

1000----------
AND 

OFFOOOOFl .. _... ___ 4K_l_YT_ES ___ __, • INTERNAL 

---- OR -....ojlllt• . .,. 
14K 

BYTES 
lxrlflNAL 

0000 ........... __ ....-_____ ~ 

Figure 3-1. The 8051 Program Memory 

3-1 



CHAPTER3 
Programmer's Gulde 

FFFF -----------... 

58 K 
BYTES 

EXTERNAL 

2000 ...._ __________ ~ 

AND 
1FFF..------------. 

BK BYTES 
INTERNAL 

0000 ...... __________ J 

--- OR ---i~~ 
84 K 

BYTES 
EXTERNAL 

0000 -----------J 

Figure 3·2. The 8052 Prograrn Memory 

D!ita Memory 

The 8051 can address up to 64K bytes of external Data Memory. The "MOVX" instruction is used to access tbe external 
data memory. (Refer to tbe 8051 Family Instruction Set, in Chapter 4.) 

' 
The 8051 has 128 bytes of on-chip RAM (256 bytes in the 8052) plus a number of Special Function Registers (SFRs). 
The lower 128 bytes of RAM can be accessed either by direct addressing (MOV data addr) or by indirect addressing 
(MOV@ Ri). Figure 3-3 shows tbe 8051 and tbe 8052 Data Memory organization. 

3-2 



INTERNAL 

FF 
SFRa 
DIRECT 
ADDRESSING 
ONLY 

80 

7F 

DIRECT& 
INDIRECT 
ADDRESSING 

00 

---AND ~ 

0000 

a. The 8051 

MK 
BYTES 

EXTERNAL 

CHAPTER3 
Programmer's Guide 

3-3 



CHAPTER3 
Programmer's Guide 

Indirect Address Area 

Figure 3-3b the SFRs ~d the i~direct address RAM have the same addresses (80H-OFFH). Nevertheless, they are two separate 
areas and are accessed m two different ways. 

For example, the instruction 

MOY 80H,#OAAH 

writes OAAH to Port 0, which is one of the SFRs, and the instruction 

MOY R0,#80H 

MOY @RO,#OBBH 

writes OBBH in location 80H of the data RAM. Thus, after execution of both of the above instructions Port O will 
contain OAAH and location 80 of the RAM will contain OBBH. 

Direct and Indirect Address Area 

The 128 bytes of RAM which can be accessed by both direct and indirect addressing can be divided into three segments as listed below 
and shown in Figure 3-4. 

1, Register Banks 0-3: Locations 0 through lFH (32 bytes). ASM-51 and the device after reset default to register 
bank 0. To use the other register banks the user must select them in the software. Each register bank contains eight 1-byte registers, 
Othrough 7. 

Reset initializes the Stack Pointer to location 07H and it is incremented once to start from location 08H which is the 
first register (RO) of the second register bank. Thus, in order to use more than one register bank, the SP should be 
intialized to a different location of the RAM where it is not used for data storage (ie, higher part of the RAM). 

2. Bit Addressable Area: 16 bytes have been assigned for this segment, 20H-2FH. Each one of the 128 bits of this 
segment can be directly addressed (0-7FH). 

The bits can be referred to in two ways both of which are acceptable by the ASM-51. One way is to refer to their 
addresses, ie. 0 to 7FH. The other way is with reference to bytes 20H to 2FH. Thus, bits 0-7 can also be referred to 
as bits 20.0-20.7, and bits 8-FH are the same as 21.0-21.7 and so on. 

Each of the 16 bytes in this segment can also be addressed as a byte. 

3. Scratch Pad Area: Bytes 30H through 7FH are available to the user as data RAM. However, if the stack pointer 
has been initialized to this area, enough number of bytes should be left aside to prevent SP data destruction. 

3-4 



78 

70 .. 
80 

58 

50 

48 

40 

38 

30 

28 

20 

18 

10 

08 

00 

, ... ~--------- 8 Bytea--------1 ... -..1 
• 7F 

77 

IF 

87 

SF 

57 

4F 

47 

3F 

37 

... 7F 2F 

0 ... 27 

3 1F 

2 17 

1 OF 

0 07 

CHAPTER3 
Programmer's Gulde 

SCRATCH 

PAD 

AREA 

BIT 
ADDRESSAB LE 

SEGMENT 

REGISTER 

BANKS 

Figure 3-4.128 Bytes of RAM Direct and Indirect Addressable 

3-5 



CHAPTER3 
Programmer's Guide 

SPECIAL FUNCTION REGISTERS 

Table 3-1 contains a list of all the SFRs and their addresses. 

Comparing Table 3-1 and figure 3-5 shows that all of the SFRs that are byte-and bit-addressable are located on the first column in 
Figure 3-5. 

3-6 

Symbol 

•Ace 
•B 
*PSW 
SP 
DPTR 

DPL 
DPH 

•po 

*P1 
*P2 
•p3 

*IP 
*IE 
TMOD 

*TCON 
*+ T2CON 

THO 
TLO 
TH1 
TL1 

+TH2 
+TL2 
+RCAP2H 
+RCAP2L 
*SCON 
SBUF 
PCON 

• = Bit addressable 
+. = 8052 only 

Table 3-1 

Name Address 

Accumulator OEOH 
B Register OFOH 
Program Status Word ODOH 
Stack Pointer 81H 
Data Pointer 2 Bytes 
Low Byte 82H 
High Byte 83H 
Port O 80H 
Port 1 90H 
Port 2 OAOH 
Port 3 OBOH 
Interrupt Priority Control OBSH 
Interrupt Enable Control OASH 
Timer/Counter Mode Control 89H 
Timer/Counter Control 88H 
Timer/Counter 2 Control OCSH 
Timer/Counter 0 High Byte SCH 
Timer/Counter 0 Low Byte BAH 
Timer/Counter 1 High Byte 8DH 
Timer/Counter 1 Low Byte 8BH 
Timer/Counter 2 High Byte OCDH 
Timer/Counter 2 Low Byte OCCH 
TIC 2 Capture Reg. High Byte OCBH 
TIC 2 Capture Reg. Low Byte OCAH 
Serial Control 98H 
Serial Data Buffer 99H 
Power Control 87H 



What Do the SFRs Contain Just After Power-on or a Reset? 

Table 3-2 lists the contents of each SFR after power-on or a hardware reset 

Table 3·2. Contents of the SFRs After Reset 

Register 

•Ace 
•s 
•psw 
SP 
DPTR 

DPH 
DPL 

•po 
*P1 
*P2 
*P3 
*IP 

*IE 

TMOD 
*TCON 

*+ T2CON 
THO 
TLO 
TH1 
TL1 

+TH2 
+ TL2 
+RCAP2H 
+RCAP2L 
•scoN 
SBUF 
PCON 

X = Undefined 
• = Bit Addressable 
+ = 8052 only 

Value In Binary 

00000000 
00000000 
00000000 
00000111 

00000000 
00000000 
11111111 
11111111 
11111111 
11111111 
8051 xxxooooo, 
8052 xxoooooo 
8051 OXXOOOOO, 
8052 oxoooooo 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
Indeterminate 
NMOS OXXXXXXX 
CMOS OXXXOOOO 

CHAPTER3 
Programmer's Gulde 

3-7 



CHAPTER3 
Programmer's Gulete 

SFR Memory Map 

FB 
FO 
Ea 
EO 
DB 
DO 
CB 
co 
BB 
BO 
AB 
AO 
9B 

90 

BB 

BO 

3-8 

B 

ACC 

PSW 
T2CON 

IP 
P3 
IE 
P2 

SCON 
P1 

TCON 
PO 

t 
Bit 
Addressable 

SBUF 

TMOD 
SP 

8Bytes 

RCAP2L RCAP2H TL2 

TLO TU THO 
DPL DPH 

Figure 3-5. Memory Map 

TH2 

TH1 
PCON 

FF 
F7 

EF 
E7 
DF 
07 

CF 
C7 

BF 
B7 

AF 
A7 

9F 
97 

BF 
B7 



CHAPTER3 
Programmer's Guide 

Those SFRs that have their bits assigned for various functions are listed in this section. A brief description of each bit 
is provided for quick reference. For more detailed information refer to Architecture, Chapter 2. 

PSW: Program Status Word. Bit Addressable. 

CY AC 

CY PSW.7 

AC PSW.6 

FO PSW.5 

RSI PSW.4 

RSO PSW.3 

ov PSW.2 

PSW.l 

FO RS1 RSO ov 

Carry Flag. 

Auxiliary Carry Flag. 

Flag 0 available to the user for general purpose. 

Register Bank selector bit 1 (SEE NOTE 1). 

Register Bank selector bit 0 (SEE NOTE 1). 

Overflow Flag. 

Not implemented, reserved for future use.• 

p 

p PSW.O Parity flag. Set/cleared by hardware each instruction cycle to indicate an odd/even number of 
'1' bits in the accumulator. 

NOTE: 
1. The value presented by RSO and RS1 selects the corresponding register bank. 

RS1 RSO Register Bank Address 

0 0 0 OOH-O?H 
0 1 1 08H-OFH 
1 0 2 10H-17H 
1 1 3 18H-1FH 

*User software should not write ls to reserved bits. These bits may be used in future 8051 Family products to invoke new features. 
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. 

PCON: Power Control Register. Not Bit Addressable. 

SMOD GF1 GFO PD IDL 

SMOD Double baud rate bit. If Timer I is used to generate baud rate and SMOD = 1, the baud rate is doubled 
when the Serial Port is used in modes 1, 2, or 3. 

Not implemented, reserved for future use.• 

Not implemented, reserved for future use.• 

Not implemented, reserved for future use.• 

GFl General purpose flag bit. 

GFO General purpose flag bit. 

PD Power Down bit. Setting .this bit activates Power Down operation in the 80C51BH. (Available only in 

CMOS). 

IDL Idle Mode bit. Setting this bit activates Idle Mode operation in the 80C51BH. (Available only in CMOS). 

If ls are written to PD and IDL at the same time, PD takes precedence. 

*User software should not write ls to reserved bits. These bits may be used in future 8051 Family products to invoke new features. 
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. 

3-9 



CHAPTERS 
Programmer's Gulde 

Interrupts 

In order to use any of the interrupts in the 8051 Family, the following three steps must be taken. 

I. Set the EA (enable all) bit in the IE register to I. 

2. Set the corresponding individual interrupt enable bit in the IE register to 1. 

3. Begin the interrupt service routine at the corresponding Vector Address of that interrupt. See Table below. 

Interrupt Vector 
Source Address 

IEO 0003H 
TFO OOOBH 
IE1 0013H 
TF1 0018H 

Rl&TI 0023H 
TF2 & EXF2 0028H 

In addition, for external interrupts, pins INTO and INTI (P3.2 and P3.3) must be set to l, and depending on whether 
the interrupt is to be level or transition activated, bits ITO or IT! in the TCON register may need to be set to I. 

ITx = o level activated 

ITx = 1 transition activated 

IE: Interrupt Enable Register. Bit Addressable. 

If the bit is 0, the corresponding interrupt is disabled. If the bit is I, the corresponding interrupt is enabled. 

EA 

EA IE.7 

IE.6 

ET2 IE.5 

ES IE.4 

ET! IE.3 

EX! IE.2 

ETO IE.I 

EXO IE.O 

ET2 ES ET1 EX1 ETO EXO 

Disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA = I, each interrupt 
source is individually enabled or disabled by setting or clearing its enable bit. 

Not implemented, reserved for future use.• 

Enable or disable the Timer 2 overflow or capture interrupt (8052 only). 

Enable or disable the serial port interrupt. 

Enable or disable the Timer 1 overflow interrupt. 

Enable or disable External Interrupt l. 

Enable or disable the Timer 0 overflow interrupt. 

Enable or disable External Interrupt 0. 

*User software should not write ls to reserved bits. These bits may be used in future 8051 Family products to invoke new features. 
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. 

3-10 



Assigning Higher Priority to One or More Interrupts 

CHAPTER3 
Programmer's Guide 

In order to assign higher priority to an interrupt the corresponding bit in the IP register must be set to 1. 

Remember that while an interrupt service is in progress, it cannot be interrupted by a lower or same level interrupt. 

Priority Within Level 

Priority within level is only to resolve simultaneous requests of the same priority level. 

From high to low, interrupt sources are listed below: 

IEO 
TFO 
IE! 
TFI 
RI or TI 
TF2 or EXF2 

IP: Interrupt Priority Register. Bit Addressable 

If the bit is O, the corresponding interrupt has a lower priority; if the bit is 1 the corresponding interrupt has a higher priority. 

I PT2 PS PT1 PX1 

IP. 7 Not implemented, reserved for future use.• 

IP. 6 Not implemented, reserved for future use.• 

PTO 

PT2 IP. 5 Defines the Timer 2 interrupt priority level (8052 only). 

PS IP. 4 Defines the Serial Port interrupt priority level. 

PTl IP. 3 Defines the Timer 1 interrupt priority level. 

PX! IP. 2 Defines External Interrupt I priority level. 

PTO IP. I Defines the Timer 0 interrupt priority level. 

PXO IP. 0 Defines the External Interrupt 0 priority level. 

PXO 

*User software should not write 1 s to reserved bits. These bits may be used in future 8051 Family products to invoke new features. 
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. 

3-11 



CHAPTER3 
· Programmer's Gulde 

TCON: Timer/Counter Control Register. Bit Addressable 

TF1 TR1 TFO TAO IE1 IT1 IEO ITO 

TFl TCON. 7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by hard-
ware as processor vectors to the interrupt service routine. 

TRI TCON. 6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter 1 ON/OFF. 

TFO TCON. 5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by hard-
ware as processor vectors to the service routine. 

TRO TCON. 4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter O ON/OFF. 

IEl TCON. 3 External Interrupt 1 edge flag. Set by hardware when External Interrupt edge is detected. 
Cleared by hardware when interrupt is processed. 

ITl TCON. 2 Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered 
External Interrupt. 

IEO TCON. 1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared 
by hardware when interrupt is processed. 

ITO TCON. 0 Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered 
External Interrupt. 

TMOD: Timer/Counter Mode Control Register. Not Bit Addressable 

I GATE C/T M1 MO I GATE C/T M1 MO I 

GATE 

elf 

Ml 

MO 

NOTE 1: 

M1 
0 
0 
1 
1 

3-12 

TIMER 1 TIMER 0 

When TRx (in TCON) is set and GATE= 1, TIMER/COUNTERx will run only while INTx pin is high 
(hardware control). When GATE = 0, TIMER/COUNTERx will run only while TRx = 1 (software 
control). 

Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Coun­
ter operation (input from Tx input pin). 

Mode selector bit. (NOTE 1) 

Mode selector bit. (NOTE 1) 

MO 
0 
1 
0 
1 

Operating Mode 
o 13-bit Timer (8048 Family compatible) 
1 16-bit Timer/Counter 
2 8-bit Auto-Reload Timer/Counter 
3 (Timer O) TLO. is an 8-bit Timer /Counter controlled by th~ standard Tim~r 0 

control bits, THO is an 8-bit Timer and is controlled by Timer 1 control bits. 
3 (Timer 1) Timer/Counter 1 stopped. 



TIMER SET-UP 

CHAPTER3 
Programmer's Guide 

Tables 3-3 through 3-6 give some values for TMOD which can be used to set up Timer 0 in different modes. 

It is assumed that only one timer is being used at a time. Ifit is desired to run Timer 0 and 1 simultaneously, in any mode, the value 
in TMOD for Timer 0 must be ORed with the value shown for Timer 1 (Tables 3-5 and 3-6). 

For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER, 
then the value that must be loaded into TMOD is 69H (09H from Table 3-3 Ored with 60H from Table 3-6). 

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different 
point in the program by setting bit TRx (in TCON) to 1. 

Timer/Counter 0 

Asa Timer: 
Table 3-3 

TMOD 

MODE 
TIMER 0 INTERNAL EXTERNAL 

FUNCTION CONTROL CONTROL 
(NOTE 1) (NOTE 2) 

0 13-bit Timer OOH 08H 
1 16-bit Timer 01H 09H 
2 8-bit Auto-Reload 02H OAH 
3 two 8-bit Timers 03H OBH 

As a Counter: 
Table 3-4 

TMOD 

MODE 
COUNTERO INTERNAL EXTERNAL 
FUNCTION CONTROL CONTROL 

(NOTE 1) (NOTE 2) 

0 13-bit Timer 04H OCH 
1 16-bit Timer 05H OOH 
2 8-bit Auto-Reload 06H OEH 
3 one 8-bit Counter 07H OFH 

NOTES: 
1. The Timer is turned ON/OFF by setting/ clearing bit TRO in the software. 
2. The Timer is turned ON/OFF by the 1 to O transition on INTO (P3.2) when TRO = 
(hardware control). 

3-13 



CHAPTER 3 
Programmer's Guide 

Timer/Counter 1 

Asa Timer: 
Table 3·5 

MODE 
TIMER 1 INTERNAL 

FUNCTION CONTROL 
(NOTE 1) 

0 13-bit Timer OOH 
1 16-bit Timer 10H 
2 8-bit Auto-Reload 20H 
3 does not run 30H 

As a Counter: 
Table 3·6 

MODE 
COUNTER 1 INTERNAL 
FUNCTION CONTROL 

(NOTE 1) 

0 13-bit Timer 40H 
1 16-bit Timer 50H 
2 8-bit Auto-Reload 60H 
3 not available -

NOTES: 

TMOD 

EXTERNAL 
CONTROL 
(NOTE 2) 

80H 
90H 
AOH 
BOH 

TMOD 

EXTERNAL 
CONTROL 
(NOTE 2) 

COH 
DOH. 
EOH 
-

1. The Timer is turned ON/OFF by setting/clearing bit TR1 in the software. 
2. The timer is turned ON/OFF by the 1-to-O transition on INT1 (P3.3) when TR1 = 1 
(hardware control). 

3-14 



CHAPTER 3 
Programmer's Guide 

T2CON: TIMER/COUNTER 2 CONTROL REGISTER. BIT ADDRESSABLE. 

8052 Only 

I TF2 I EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 

TF2 T2CON. 7 Timer 2 overflow flag set by hardware and cleared by software. TF2 cannot be set when 

EXF2 T2CON. 6 

RCLK T2CON. 5 

TLCK T2CON.4 

EXEN2 T2CON. 3 

TR2 T2CON. 2 

C/T2 T2CON. 1 

CP/RL2 T2CON.O 

either RCLK = 1 or CLK = 1 

Timer 2 external flag set when either a capture or reload is caused by a negative transition on 
T2EX, and EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU 
to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. 

Receive clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its 
receive clock in modes 1 & 3. RCLK = 0 causes Timer 1 overflow to be used for the receive 
clock. 

Transmit clock flag. When set, causes the Serial Port to use Timer 2 overflow pulses for its 
transmit clock in modes 1 & 3. TCLK = 0 causes Timer 1 overflows to be used for the 
transmit clock. 

Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of 
negative transition on T2EX if Timer 2 is not being used to clock the Serial Port. 
EXEN2 = 0 causes Timer 2 to ignore events at T2EX. 

Software START/STOP control for Timer 2. A logic 1 starts the Timer. 

Timer or Counter select. 

0 = Internal Timer. 1 = External Event Counter (falling edge triggered). 

Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if 
EXEN2 = 1. When cleared, Auto-Reloads will occur either with Timer 2 overflows or 
negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = l, 
this bit is ignored and the Timer is forced to Auto-Reload on Timer 2 overflow. 

3-15 



CHAPTER3 
Programmer's Guide 

Timer/Counter 2 Set-up 

Except for the baud rate generator mode, the values given for T2CON do not include the setting of the TR2 bit. 
Therefore, bit 1R2 must be set separately to turn the Timer on. 

Asa Timer: 
Table 3-7 

T2CON 

MODE INTERNAL EXTERNAL 
CONTROL CONTROL 
(NOTE 1) (NOTE 2) 

16-bit Auto-Reload OOH 08H 

16-bit Capture 01H 09H 

BAUD rate generator receive & 
transmit same baud rate 34H 36H 

receive only 24H 26H 

transmit only 14H 16H 

As a Counter: 
Table 3-8 

TMOD 

MODE INTERNAL EXTERNAL 
CONTROL CONTROL 
(NOTE 1) (NOTE 2) 

16-bit Auto-Reload 02H OAH 
16-bit Capture 03H OBH 

NOTES: 
1. Capture/Reload occurs only on Timer/Counter overflow. 
2. Capture/Reload occurs on Timer/Counter overflow and a 1 to O transition on T2EX 
(P1.1) pin except when Timer 2 is used in the baud rate generating mode. 

3-16 



SCON: SERIAL PORT CONTROL REGISTER. BIT ADDRESSABLE. 

SMO SM1 SM2 REN TBS RBS Tl RI 

SMO SCON. 7 Serial Port mode specifier. (NOTE 1). 

SM! SCON. 6 Serial Port mode specifier. (NOTE 1). 

CHAPTER 3 
Programmer's Guide 

SM2 SCON. 5 Enables the multiprocessor communication feature in modes 2 & 3. In mode 2 or 3, if SM2 is set 
to 1 then RI will not be activated if the received 9th data bit (RBS) is 0. In mode 1, if SM2 = 1 
then RI will not be activated if a valid stop bit was not received. In mode 0, SM2 should be 0. 
(See Table 9). 

REN SCON. 4 Set/Cleared by software to Enable/Disable reception. 

TBS SCON. 3 The 9th bit that will be transmitted in modes 2 & 3. Set/Cleared by software. 

RBS SCON. 2 In modes 2 & 3, is the 9th data bit that was received. In mode 1, ifSM2 = 0, RBS is the stop bit 
that was received. In mode 0, RBS is not used. 

TI SCON. I Transmit interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or at the 
beginning of the stop bit in the other modes. Must be cleared by software. 

RI SCON. 0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in mode 0, or halfway 
through the stop bit time in the other modes (except see SM2). Must be cleared by software. 

NOTE 1: 

SMO 
0 
0 

SM1 

0 
1 
0 

Serial Port Set-up 

MODE 

0 
1 
2 
3 

0 
1 
2 
3 

Mode Description Baud Rate 

0 SHIFT REGISTER Fosc./12 
1 8-Bit UART Variable 
2 9-Bit UART Fosc./64 OR 

Fosc./32 
3 9-Bit UART Variable 

Table 3-9 

SCON SM2 VARIATION 

10H 
Single Processor 

50H 
90H Environment 

DOH 
(SM2 = 0) 

NA 
Multiprocessor 

70H 
BOH 

Environment 

FOH 
(SM2 = 1) 

3-17 



CHAPTER 3 
Programmer's Gulde 

GENERATING BAUD RATES 

Serial Port in Mode O 

Mode 0 has a fixed baud rate which is 1/12 of the oscillator frequency. To run the serial port in this mode none of 
the Timer/Counters need to be set up. Only the SCON register needs to be defined. 

B d Osc Freq 
au Rate = 12 

Serial Port in Mode 1 

Mode 1 has a variable baud rate. The baud rate can be generated by either Timer 1 or Timer 2 (8052 only). 

Using Timer/Counter 1 to Generate Baud Rates: 

For this purpose, Timer I is used in mode 2 (Auto-Reload). Refer to Timer Setup section of this chapter. 

B R _ K x Oscillator Freq. 
aud ate - 32 x 12 x [256 - (TH1)) 

If SMOD = 0, then K = 1. 
If SMOD = 1, then K = 2. (SMOD is the PCON register). 

Most of the time the user knows the baud rate and needs to know the reload value for THl. 
Therefore, the equation to calculate THI can be written as: 

TH1 = 256 - ~ Osc Freq. 
384 x baud rate 

THI must be an integer value. Rounding off THI to the nearest integer may not produce the desired baud rate. In 
this case, the user may have to choose another crystal frequency. 

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register. (ie, ORL 
PCON,#80H). The address of PCON is 87H. 

Using Timer/Counter 2 to Generate Baud Rates: 

For this purpose, Timer 2 must be used in the baud rate generating mode. Refer to Timer 2 Setup Table in this 
chapter. If Timer 2 is being clocked through pin T2 (PLO) the baud rate is: 

B Timer 2 Overflow Rate 
aud Rate = 16 

And if it is being clocked internally the baud rate is: 

Osc Freq 
Baud Rate = 32 x [65536 - (RCAP2H, RCAP2L)) 

To obtain the reload value for RCAP2H and RCAP2L, the above equation can be rewritten as: 

RCAP2H, RCAP2L = 65536 - Osc Freq 
32 x Baud Rate 

3-18 



Serial Port in Mode 2 

CHAPTER3 
Programmer's Guide 

The baud rate is fixed in this mode and is 1/32 or 1/ 84 of the oscillator frequency depending on the value of the SMOD 
bit in the PCON register. 

In this mode none of the Timers are used and the clock comes from the internal phase 2 clock. 

SMOD = 1, Baud Rate = 1/ 32 Osc Freq. 

SMOD = 0, Baud Rate = 1/a, Osc Freq. 

To set the SMOD bit: ORL PCON, # SOH. The address of PCON is 87H. 

Serial Port in Mode 3 

The baud rate in mode 3 is variable and sets up exactly the same as in mode I. 

3-19 



Instruction Set 
Program Status Word 
Addressing Modes 
Arithmetic Instructions 
Logical Instructions 

Data Transfers 

CHAPTER4 

Boolean Instructions 
Jump Instructions 
Instruction Set Summary 
Instruction Definitions 

4·1 

4-1 
4-1 
4-2 
4-3 

4-4 
4-6 
4-8 
4-10 
4·14 



CHAPTER 4 

Instruction Set 

INTRODUCTION 

All members of the 8051 Family execute the same instruc­
tion set, optimized for 8-bit control applications. The 
instruction set provides a variety of fast addressing modes 
for accessing the internal RAM to facilitate byte opera­
tions on small data structures. It provides extensive sup­
port for one-bit variables as a separate data type, allowing 
direct bit manipulation in control and logic systems that 
requrie Boolean processing. An overview of the instruc­
tion set is presented below, with a brief description of how 
certain instructions might be used. 

PROGRAM STATUS WORD 

The Program Status Word (PSW) contains several 
status bits that reflect the current state of the CPU. The 
PSW, shown in Figure 4-1, resides in SFR space. It con­
tains the Carry bit, the Auxiliary Carry (for BCD oper­
ations), the two register bank select bits, the Overflow 
flag, a Parity bit, and two user-definable status flags. 

The Carry bit, other than serving the functions of a 
Carry bit in arithmetic operations, also serves as the 
"Accumulator" for a number of Boolean operations. 

The bits RSO and RS 1 are used to select one of the four 
register banks shown in Figure 1-7 . A number of instruc­
tions refer to these RAM locations as RO through R 7. 
The selection of which of the four banks is being re­
ferred to is made on the basis of the bits RSO and RS 1 
at execution time. 

The Parity bit reflects the number of ls in the Accumu­
lator: P = 1 if the Accumulator contains an odd num­
ber of ls, and P = 0 if the Accumulator contains an 
even number of ls. Thus the number of ls in the Accu­
mulator plus P is always even. 

Two bits in the PSW are uncommitted and may be used 
as general purpose status flags. 

ADDRESSING MODES 

The addressing modes in the 8051 Family instruction set are as 
follows: 

Direct Addressing 

In direct addressing the operand is specified by an 8-bit 
address field in the instruction. Only internal Data 
RAM and SFRs can be directly addressed. 

Indirect Addressing 

In indirect addressing the instruction specifies a register 
which contains the address of the operand. Both inter­
nal and external RAM can be indirectly addressed. 

The address register for 8-bit addresses can be RO or 
RI of the selected register bank, or the Stack Pointer. 
The address register for 16-bit addresses can only be the 
16-bit "data pointer" register, DPTR. 

AC fO RSI RSO OV 

PSW 7 
CARRY fLAG RECEIVES CARRY OUT 

fROM BIT 1 Of ALU OPERANDS 

PSW 6 
AUXILIARY CARRY fLAG RECEIVES 

CARRY OUT fROM BIT 1 Of 
ADDITION OPERANDS 

PSWS---~ 

GENERAL PURPOSE STATUS FLAG 

PSW4-----~ 

REGISTER BANK SELECT BIT 1 

PSW 0 
PARITY Of ACCUMULATOR SET 
BY HARDWARE TO 1 If IT CONTAINS t AN ODD NUMBER Of 1 S, OTHERWISE 
IT IS RESET TO 0 

PSW 1 
USER DEFINABLE FLAG 

PSW 2 
OVERFLOW fLAG SET BY 
ARITHMETIC OPERATIONS 

'------- PSW 3 
REGISTER BANK SELECT BIT 0 

Figure 4-1. PSW (Program Status Word) Register in 8051 Family Devices 

4-1 



CHAPTER4 
Instruction Set 

Register Instructions 

The register banks, containing registers RO through R7, 
can be accessed by certain instructions which carry a 
3-bit register specification within the opcode of the in­
struction. Instructions that access the registers this way 
are code efficient, since this mode eliminates an address 
byte. When the instruction is executed, one of the eight 
registers in the selected bank is accessed. One of four 
banks is selected at execution time by the two bank 
select bits in the PSW. 

Register-Specific Instructions 

Some instructions are specific to a certain register. For 
example, some instructions always operate on the Ac­
cumulator, or Data Pointer, etc., so no address byte is 
needed to point to it. The opcode itself does that. In­
structions that refer to the Accumlator as A assemble 
as accumulator-specific opcodes. 

Immediate Constants 

The value of a constant can follow the opcode in Pro­
gram Memory. For example, 

MOY A, #100 

loads the Accumulator with the decimal number 100. 
The same number could be specified in hex digits as 
64H. 

Indexed Addressing 

Only Program Memory can be accessed with indexed 
addressing, and it can only be read. This addressing 
mode is intended for reading look-up tables in Program 
Memory. A 16-bit base register (either DPTR or the 
Program Counter) points to the base of the table, and 
the Accumulator is set up with the table entry number. 
The address of the table entry in Program Memory is 
formed by adding the Accumulator data to the base 
pointer. 

Another type of indexed addressing is used in the "case 
jump" instruction. In this case the destination address 
of a jump instruction is computed as the sum of the 
base pointer and the Accumulator data. 

ARITHMETIC INSTRUCTIONS 

The menu of arithmetic instructions is listed in Table 4-1. 
The table indicates the addressing modes that can be 
used with each instruction to access the <byte> oper­
and. For example, the ADD A, <byte> instruction can 
be written as: 

ADD 
ADD 
ADD 
ADD 

A,7FH 
A,@RO 
A,R7 
A,#127 

(direct addressing) 
(indirect addressing) 
(register addressing) 
(immediate constant) 

Table 4-1. A List of the 8051 Family Arithmetic Instructions 

Operation Addressing Modes Execution 
Mnemonic 

Time (µs) Dir Ind Reg Imm 

ADD A,<byte> A= A+ <byte> x x x x 1 

ADDC A,< byte> A = A + <byte> + C x x x x 1 

SUBB A,<byte> A = A - <byte> - C x x x x 1 

INC A A=A+1 Accumulator only 1 

INC <byte> <byte> = <byte> + 1 x x x 1 

INC DPTR DPTR = DPTR + 1 Data Pointer only 2 

DEC A A=A-1 Accumulator only 1 

DEC <byte> <byte> = <byte> - 1 x x x 1 

MUL AB B:A =Bx A ACC and B only 4 

DIV AB A= Int [A/BJ 
ACC and B only 

4 
B =Mod [A/BJ 

DA A Decimal Adjust Accumulator only 1 

4-2 



The execution times listed in Table 4-1 assume a 12MHz 
clock frequency. All of the arithmetic instructions exe­
cute in 1 /1S except the INC DPTR instruction, which 
takes 2 ,_.,s, and the Multiply and Divide instructions, 
which take 4 ,_.,s. 

Note that any byte in the internal Data Memory space 
can be incremented or decremented without going 
through the Accumulator. 

One of the INC instructions operates on the 16-bit 
Data Pointer. The Data Pointer is used to generate 
16-bit addresses for external memory, so being able to 
increment it in one 16-bit operation is a useful feature. 

The MUL AB instruction multiplies the Accumulator 
by the data in the B register and puts the 16-bit product 
into the concatenated B and Accumulator registers. 

The DIV AB instruction divides the Accumulator by 
the data in the B register and leaves the 8-bit quotient 
in the Accumulator, and the 8-bit remainder in the B 
register. 

Oddly enough, DIV AB finds less use in arithmetic 
"divide" routines than in radix conversions and pro­
grammable shift operations. An example of the use of 
DIV AB in a radix conversion will be given later. In 

CHAPTER 4 
Instruction Set 

shift operations, dividing a number by 2n shifts its n 
bits to the right. Using DIV AB to perform the division 
completes the shift in 4 ,_.,s and leaves the B register 
holding the bits that were shifted out. 

The DA A instruction is for BCD arithmetic opera­
tions. In BCD arithmetic, ADD and ADDC instruc­
tions should always be followed by a DA A operation, 
to ensure that the result is also in BCD. Note that DA 
A will not convert a binary number to BCD. The DA 
A operation produces a meaningful result only as the 
second step in the addition of two BCD bytes. 

LOGICAL INSTRUCTIONS 

Table 4-2 shows the list of 8051 Family logical instructions. 
The instructions that perform Boolean operations 
(AND, OR, Exclusive OR, NOT) on bytes perform the 
operation on a bit-by-bit basis. That is, if the Accumu­
lator contains 00110101B and <byte> contains 
0101001 lB, then 

ANL A, <byte> 

will leave the Accumulator holding 00010001B. 

Table 4·2. A List of the 8051 Family Logical Instructions 

Mnemonic Operation Addressing Modes Execution 
Dir Ind Reg Imm Tlme(,..,s) 

ANL A,<byte> A = A .AND. <byte> x x x x 1 

ANL <byte>,A <byte>= <byte>.AND.A x 1 

ANL <byte>, #data <byte> = <byte> .AND. #data x 2 

ORL A,<byte> A= A .OR. <byte> x x x x 1 

ORL <byte>,A <byte>= <byte>.OR.A x 1 

ORL <byte>, #data <byte> = <byte> .OR. #data x 2 

XRL A,<byte> A = A .XOR. <byte> x x x x 1 

XRL <byte>,A <byte>= <byte>.XOR.A x 1 

XRL <byte> ,#data <byte> = <byte> .XOR. #data x 2 

CAL A A= OOH Accumulator only 1 

CPL A A= .NOT.A Accumulator only 1 

AL A Rotate ACC Left 1 bit Accumulator only 1 

RLC A Rotate Left through Carry Accumulator only 1 

RR A Rotate ACC Right 1 bit Accumulator only 1 

ARC A Rotate Right through Carry Accumulator only 1 

SWAP A Swap Nibbles in A Accumulator only 1 

4-3 



CHAPTER4 
Instruction Set 

The addressing modes that can be u!!OO to access the 
<byte> operand are listed in Table 3. Thus, the ANL 
A, <byte> instruction may take any of the forms 

ANL 
ANL 
ANL 
ANL 

A,7FH 
A,@Rl 
A,R6 
A,#53H 

(direct addressing) 
(in(iirect addressing) 
(register addressing) 
(immediate constant) 

All of the logical instructions that are Accumulator­
specifjc execute in lµs (using a 12 MHz clock). The 
others take 2 µs. 

Note that Boolean operations can be performed on any 
byte in the internal Data Memory space without going 
through the Accumulator. The XRL <byte>, #data 
instruction, for example, offers a quick and easy way to 
invert port bits, as in 

XRL Pl,#OFFH 

If the operation is in response to an interrupt, not using 
the Accumulator saves the time and effort to stack it in 
the service routine. 

The Rotate instructions (RL A, RLC A, etc.) shift the 
Accumulator 1 bit to the left or right. For a left rota­
tion, the MSB rolls into the LSB position. For a right 
rotation, the LSB rolls into the MSB position. 

The SW AP A instruction interchanges the high and 
low nibbles within the Accumulator. This is a· useful 
operation in BCD manipulations. For example, if the 
Accumulator contains a binary number which is known 
to be less than 100, it can be quickly converted to BCD 
by the following code: 

MOV 
DIV 
SWAP 
ADD 

B,#10 
AB 
A 
A,B 

Dividing the number by 10 leaves the tens digit in the 
low nibble of the Accumulator, and the ones digit in the 
B register. The SW AP and ADD instructions move the 
tens digit to the high nibble of the Accumulator, and 
the ones digit to the low nibble. 

DATA TRANSFl:RS 

Internal RAM 

Table 4-3 shows the menu of instructions that are avail­
able for moving data around within the internal memo­
ry spaces, and the addressing modes that can be used 
with each one. With a 12 MHz clock, all of these in~ 
structions execute in either 1 or 2 µs. 

The MOV <dest>, <src> instruction allows data to 
be transferred between any two internal RAM or SFR 
locations without going through the Accumulator. Re­
member the Upper 128 byes of data RAM can be ac­
cessed only by indirect addressing, and SFR space only 
by direct addressing. 

Note that in all 8051 Family devices, the stack resides in 
on-chip RAM, and grows upwards. The PUSH instruc­
tion first increments the Stack Pointer (SP), then copies 
the byte into the stack. PUSH and POP use only direct 
addressing to identify the byte being saved or restored, 
but the stack itself is accessed by indirect addressing 
using the SP register. This means the stack can go into 
the Upper 128, if they are implemented, but not into 
SFR space. 

Table 4-3. 8051 Family Data Transfer Instructions that Access Internal Data Memory Space 

Mnemonic Operation 
Addressing Modes Execution 

Dir Ind Reg Imm Time (µs) 

MOV A,<src> A= <src> x x x x 1 

MOV <dest>,A <dest> =A x x x 1 

MOV <dest>, <src> <dest> = <src> x x x x 2 

MOV DPTR,#data16 DPTR = 16-bit immediate com;;tant. x 2 

PUSH <src> INC SP: MOV "@SP", <src> x 2 

POP <dest> MOV <dest>, "@SP": DEC SP x 2 

XCH A,<byte> ACC and <byte> exchange data x x x 1 

XCHD A,@Ri ACC and @Ri exchange low nibbles x 1 

4-4 



2A 28 2C 2D 2E 
MOV A,2EH 00 12 34 56 78 
MOV 2EH,2DH 00 12 34 56 56 
MOV 2DH,2CH 00 12 34 34 56 
MOV 2CH,28H 00 12 12 34 56 
MOV 28H,#O 00 00 12 34 56 
(a) Using direct MOVs: 14 bytes, 9 µ,s 

2A 28 2C 2D 2E 
CLR A 00 12 34 56 78 
XCH A,28H 00 00 34 56 78 
XCH A,2CH 00 00 12 56 78 
XCH A,2DH 00 00 12 34 78 
XCH A,2EH 00 00 12 34 56 
(b) Using XCHs: 9 bytes, 5 µ,s 

Figure 4·2. Shifting a BCD Number 
Two Digits to the Right 

ACC 

78 
78 
78 
78 
78 

ACC 
00 
12 
34 
56 
78 

The Upper 128 are not implemented in 8051 Family de­
vices with 128 bytes of RAM. With these devices, if the 
SP points to the Upper 128, PUSHed bytes are lost, and 
POPed bytes are indeterminate. 

The Data Transfer instructions include a 16-bit MOY 
that can be used to initialize the Data Pointer (DPTR) 
for look-up tables in Program Memory, or for 16-bit 
external Data Memory accesses. 

The XCH A, <byte> instruction causes the Accumu­
lator and addressed byte to exchange data. The XCHD 
A,@Ri instruction is similar, but only the low nibbles 
are involved in the exchange. 

To see how XCH and XCHD can be used to facilitate 
data manipulations, consider first the problem of shift­
ing an 8-digit BCD number two digits to the right. Fig­
ure 4-2 shows how this can be done using direct 
MOVs, and for comparison how it can be done using 
XCH instructions. To aid in understanding how the 
code works, the contents of the registers that are hold­
ing the BCD number and the content of the Accumula­
tor are shown alongside each instruction to indicate 
their status after the instruction has been executed. 

After the routine has been executed, the Accumulator 
contains the two digits that were shifted out on the 
right. Doing the routine with direct MOVs uses 14 code 
bytes and 9 µs of execution time (assuming a 12 MHz 
clock). The same operation with XCHs uses less code 
and executes almost twice as fast. 

MOV R1,#2EH 
MOV R0,#2DH 

loop for R1 = 2EH: 

LOOP: MOV A,@R1 
XCHD A,@RO 
SWAP A 
MOV @R1,A 
DEC R1 
DEC RO 
CJNE R1,#2AH,LOOP 

loop for R1 = 2DH: 
loop for R1 = 2CH: 
loop for R1 = 28H: 

CLR A 
XCH A,2AH 

CHAPTER 4 
Instruction Set 

2A 28 2C 2D 2E ACC 
00 12 34 56 78 xx 
00 12 34 56 78 xx 

00 12 34 
00 12 34 
00 12 34 
00 12 34 
00 12 34 
00 12 34 

56 78 78 
58 78 76 
58 78 67 
58 67 67 
58 67 67 
58 67 67 

1
00112138145167145 00 18 23 45 67 23 
08 01 23 45 67 01 

1081011231451671 00 
00 01 23 45 67 08 

Figure 4·3. Shifting a BCD Number 
One Digit to the Right 

To right-shift by an odd number of digits, a one-digit 
shift must be executed. Figure 4-3 shows a sample of 
code that will right-shift a BCD number one digit, us­
ing the XCHD instruction. Again, the contents of the 
registers holding the number and of the Accumulator 
are shown alongside each instruction. 

First, pointers Rl and RO are set up to point to the two 
bytes containing the last four BCD digits. Then a loop 
is executed which leaves the last byte, location 2EH, 
holding the last two digits of the shifted number. The 
pointers are decremented, and the loop is repeated for 
location 2DH. The CJNE instruction (Compare and 
Jump if Not Equal) is a loop control that will be de· 
scribed later. 

The loop is executed from LOOP to CJNE for Rl 
2EH, 2DH, 2CH and 2BH. At that point the digit that 
was originally shifted out on the right has propagated 
to location 2AH. Since that location should be left with 
Os, the lost digit is moved to the Accumulator. 

External RAM 

Table 4-4 shows a list of the Data Transfer instructions 
that access external Data Memory. Only indirect ad­
dressing can be used. The choice is whether to use a 
one-byte address, @Ri, where Ri can be either RO or 

4-5 



CHAPTER4 
Instruction set 

RI of the selected register bank, or a two-byte address, 
@DPTR. The disadvantage to using 16-bit addresses if 
only . a few K bytes of external RAM are involved is 
that 16-bit addresses use all 8 bits of Port 2 as address 
bus. On the other hand, 8-bit addresses allow one to 
address a few K bytes of RAM, as shown in Figure 1-5, 
without having to sacrifice all of Port 2. 

All of these instructions execute in 2 µs, with a 
12 MHz clock. 

Table 4·4. 8051 Family Data Transfer 
Instructions that Access 

External Data Memory Space 

Addreu Mnemonic Operation Execution 
Width Time (µ.s) 

B bits MOVXA,@Ri Read external 2 RAM@Ri 

B bits MOVX@Ri,A Write external 2 RAM@Ri 

16 bits MOVX A,@DPTR Read external 2 RAM@DPTR 

16 bits MOVX @DPTR,A Write external 2 RAM @DPTR 

Note that in all external Data RAM accesses, the Ac­
cumulator is always either the destination or source of 
the data. 

The read and write strobes to external RAM are acti· 
vated only during the execution of a MOVX instruc­
tion. Normally these signals are inactive, and in fact if 
they're not going to be used at all, their pins are avail­
able as extra 1/0 lines. More about that later. 

Lookup Tables 

Table 4-5 shows the two instructions that are available 
for reading lookup tables in Program Memory. Since 
these instructions access only Program Memory, the 
lookup tables can only be read, not updated. The mne­
monic is MOVC for "move constant". 

If the table access is to external Program Memory, then 
the read strobe is PSEN. 

Table 4·5. The 8051 Family 
Lookup Table Read Instructions 

Mnemonic Operation Execution 
Time (µ.s) 

MOVC A,@A+DPTR Read Pgm Memory 2 
at(A+DPTR) 

MOVC A,@A+PC Read Pgm Memory 2 
at (A+ PC) 

4-6 

The first MOVC instruction in Table 4-5 can accommo­
date a table of up to 256 entries,. numbered 0 through 
255. The number of the desired entry is loaded into the 
Accumulator, and the Data Pointer is set up to point to 
beginning of the table. Then 

MOVC A,@A+DPTR 

copies the desired table entry into the Accumulator. 

The other MOVC instruction works the same way, ex­
cept the Program Counter (PC) is used as the table 
base, and the table is accessed through a subroutine. 
First the number of the desired entry is loaded into the 
Accumulator, and the subroutine is called: 

MOY 
CALL 

A,ENTRY_NUMBER 
TABLE 

The subroutine "TABLE" would look like this: 

TABLE: MOVC A,@A+PC 
RET 

The table itself immediately follows the RET (return) 
instruction in Program Memory. This type of table can 
have up to 255 entries, numbered 1 through 255. Num­
ber 0 can not be used, because at the time the MOVC 
instruction is executed, the PC contains the address of 
the RET instruction. An entry numbered 0 would be 
the RET opcode itself. 

BOOLEAN INSTRUCTIONS 

8051 Family devices contain a complete Boolean (single-bit) 
processor. The internal RAM contains 128 addressable 
bits, and the SFR space can support up to 128 other 
addressable bits. All of the port lines are bit-address­
able, and each one can be treated as a separate single· 
bit port. The instructions that access these bits are not 
just conditional branches, but a complete menu of 
move, set, clear, complement, OR, and AND instruc­
tions. These kinds of bit operations are not easily ob­
tained in other architectures with any amount of byte­
oriented software. 



Table 4·6. A List of the 8051 Family 
Boolean Instructions 

Mnemonic Operation Execution 
Time (µ.s) 

ANL C,bit C = C .AND. bit 2 

ANL C,/bit C = C .AND .. NOT. bit 2 

ORL C,bit C = C.OR. bit 2 

ORL C,/bit C = C .OR. .NOT. bit 2 

MOV C,bit c =bit 1 

MOV bit,C bit= c 2 

CLR c C=O 1 

CLR bit bit= 0 1 

SETB c C=1 1 

SETB bit bit= 1 1 

CPL c C = .NOT.C 1 

CPL bit bit = .NOT. bit 1 

JC rel Jump if C = 1 2 
JNC rel JumpifC = O 2 

JB bit, rel Jump if bit = 1 2 

JNB bit, rel Jump if bit = 0 2 

JBC bit, rel Jump if bit = 1 ; CLR bit 2 

The instruction set for the Boolean processor is shown 
in Table 4-6. All bit accesses are by direct addressing. Bit 
addresses OOH through 7FH are in the Lower 128, and 
bit addresses 80H through FFH are in SFR space. 

Note how easily an internal flag can be moved to a port 
pin: 

MOY C,FLAG 
MOY Pl.O,C 

In this example, FLAG is the name of any addressable 
bit in the Lower 128 or SFR space. An 1/0 line (the 
LSB of Port l, in this case) is set or cleared depending 
on whether the flag bit is 1 or 0. 

The Carry bit in the PSW is used as the single-bit Accu­
mulator of the Boolean processor. Bit instructions that 
refer to the Carry bit as C assemble as Carry-specific 
instructions (CLR C, etc). The Carry bit also has a 
direct address, since it resides in the PSW register, 
which is bit-addressable. 

CHAPTER4 
Instruction Set 

Note that the Boolean instruction set includes ANL 
and ORL operations, but not the XRL (Exclusive OR) 
operation. An XRL operation is simple to implement in 
software. Suppose, for example, it is required to form 
the Exclusive OR of two bits: 

C = bitl .XRL. bit2 

The software to do that could be as follows: 

MOY C,bitl 
JNB bit2,0VER 
CPL C 

OVER: (continue) 

First, bitl is moved to the Carry. If bit2 = 0, then C 
now contains the correct result. That is, bit 1 .XRL. bit2 
= bitl if bit2 = 0. On the other hand, if bit2 = 1 C 
now contains the complement of the correct result. It 
need only be inverted (CPL C) to complete the opera­
tion. 

This code uses the JNB instruction, one of a series of 
bit-test instructions which execute a jump if the ad­
dressed bit is set (JC, JB, JBC) or if the addressed bit is 
not set (JNC, JNB). In the above case, bit2 is being 
tested, and ifbit2 = 0 the CPL C instruction is jumped 
over. 

JBC executes the jump if the addressed bit is set, and 
also clears the bit. Thus a flag can be tested and cleared 
in one operation. 

All the PSW bits are directly addressable, so the Parity 
bit, or the general purpose flags, for example, are also 
available to the bit-test instructions. 

Relative Offset 

The destination address for these jumps is specified to 
the assembler by a label or by an actual address in 
Program Memory. However, the destination address 
assembles to a relative offset byte. This is a signed 
(two's complement) offset byte which is added to the 
PC in two's complement arithmetic if the jump is exe­
cuted. 

The range of the jump is therefore -128 to + 127 Pro­
gram Memory bytes relative to the first byte following 
the instruction. 

4-7 



CHAPTER4 
Instruction Set 

JUMP INSTRUCTIONS 

Table 4-7 shows the list of unconditional jumps. 

Table 4-7. Unconditional Jumps 
In 8051 Family Devices 

Mnemonic Operation 

JMP addr Jumptoaddr 

JMP @A+DPTR Jump to A+ .DPTR 

CALL addr Call subroutine at addr 

RET Return from subroutine 

RETI Return from interrupt 

NOP No operation 

Execution 
Tlme(,...a) 

2 

2 

2 

2 

2 

1 

The Table lists a single "JMP addr" instruction, but in 
fact there are three-SJMP, UMP and AJMP-which 
differ in the format of the destination address. JMP is a 
generic mnemonic which can be used if the program­
mer does not care which way the jump is encoded. 

The SJMP instruction encodes the destination address 
.as a relative offset, as described above. The instruction 
is 2 bytes long, consisting of the opcode and the relative 
offset byte. The jump distance is limited to a range of 
-128 to + 127 bytes relative to the instruction follow­
ing the SJMP. 

The UMP instruction encodes the destination address 
as a 16-bit constant. The instruction is 3 bytes long, 
consisting of the opcode and two address bytes. The 
destination address can be anywhere in the 64K Pro­
gram Memory space. 

The AJMP instruction encodes the destination address 
as an 11-bit constant. The instruction is 2 bytes long, 
consisting of the opcod~ which itself contains 3 of the 
11 address bits, followed by another byte containing the 
low 8 bits of the destination address. When the instruc­
tion is executed, these 11 bits are simply substituted for 
the low 11 bits in the PC. The high 5 bits stay the same. 
Hence the destination has to be within the same 2K 
block as the instruction following the AJMP. 

In all cases the programmer specifies the destination 
address to the assembler in the same way: as a label or 
as a 16-bit constant. The assembler will put the destina­
tion address into the correct format for the given in­
struction. If the format required by the instruction will 
not support the distance to the specified destination ad­
dress, a "Destination out of range;, message is written 
into the List file. 

4-8 

The JMP ®A+ DPTR instruction supports case 
jumps. The destination address is computed at execu­
tion time as the sum of the 16-bit DPTR register and 
the Accumulator. Typically, DPTR is set up with the 
address of a jump table, and the Accumulator is given 
an index to the table. In a 5-way branch, for example, 
an integer 0 through 4 is loaded into the Accumulator. 
The code to be executed might be.as follows: · 

MOV 
MOV 
RL 
JMP 

DPTR,#JUMP _TABLE 
A,INDEX'_NUMBER 
A 
®A+DPTR 

The RL A instruction converts the index number (0 
through 4) to an even number on the range 0 through 8, 
because each entry in the jump table is 2 bytes long: 

JUMP _TABLE: 
AJMP 
AJMP 
AJMP 
AJMP 
AJMP 

CASE_O 
CASE_! 
CASE--2 
CASE_3 
CASE_4 

Table 4-7 shows a single "CALL addr" instruction, but 
there are two of them-LCALL and ACALL-which 
differ in the format in which the subroutine address is 
given to the CPU. CALL is a generic mnemonic which 
can be used if the programmer does not care which way 
the address is encoded. 

The LCALL instruction uses the 16-bit address format, 
and the subroutine can be anywhere in the 64K Pro­
gram Memory space. The ACALL instruction uses the 
11-bit format, and the subroutine must be in the same 
2K block as the instruction following the ACALL. 

In any case the programmer specifies the subroutine 
address to the assembler in the same way: as a label or 
as a 16-bit constant. The assembler will put the address 
into the correct format for the given instructions. 

Subroutines should end with a RET instruction, which 
returns execution to the instruction following the 
CALL. 

RETI is used to return from an interrupt service rou­
tine. The only difference between RET and RETI is 
that RETI tells the interrupt control system that the 
interrupt in progress is done. If there is no interrupt in 
progress at the time RETI is executed, then the RETI 
is functionally identical to RET. 

".\ 



CHAPTER4 
Instruction Set 

Table 4·8. Conditional Jumps In 8051 Family Devices 

Mnemonic Operation Addressing Modes Execution 

Dir Ind Reg Imm Tlme(µs) 

JZ rel Jump if A= O Accumulator only 2 

JNZ rel Jump if A '>6 O Accumulator only 2 

DJNZ <byte> ,rel Decrement and jump if not zero x x 2 

CJNE A, <byte> ,rel Jump if A '>6 <byte> 

CJNE <byte> , #data, rel Jump if <byte> '>6 #data 

Table 4-8 shows the list of conditional jumps available to the 
8051 Family user. All of these jumps specify the desti­
nation address by the relative offset method, and so are 
limited to a jump distance of -128 to + 127 bytes from 
the instruction following the conditional jump instruc­
tion. Important to note, however, the user specifies to 
the assembler the actual destination address the same 
way as the other jumps: as a label or a 16-bit constant. 

There is no Zero bit in the PSW. The JZ and JNZ 
instructions test the Accumulator data for that condi· 
ti on. 

The DJNZ instruction (Decrement and Jump if Not 
Zero) is for loop control. To execute a loop N times, 
load a counter byte with N and terminate the loop with 
a DJNZ to the beginning of the loop, as shown below 
for N = 10: 

MOY COUNTER,# 10 
LOOP: (begin loop) 

• 

(end loop) 
DJNZ COUNTER,LOOP 
(continue) 

x x 2 

x x 2 

The CJNE instruction (Compare and Jump if Not 
Equal) can also be used for loop control as in Figure 4-3. 
Two bytes are specified in the operand field of the in· 
struction. The jump is executed only if the two bytes 
are not equal. In the example of Figure 4-3, the two 
bytes were the data in RI and the constant 2AH. The 
initial data in RI was 2EH. Every time the loop was 
executed, RI was decremented, and the looping was to 
continue until the RI data reached 2AH. 

Another application of this instruction is in "greater 
than, less than" comparisons. The two bytes in the op· 
erand field are taken as unsigned integers. If the first is 
less than the second, then the Carry bit is set (I). If the 
first is greater than or equal to the second, then the 
Carry bit is cleared. 

4-9 



CHAPTER 4 
Instruction Set 

Table 4-9. 8051 Instruction Set Summary 

Interrupt Response Time: Refer to Chapter 2, page 2-24 

Instructions that Affect Flag Settings(1) 

Instruction Flag I nstructlon Flag 

ADD 
ADDC 
SUBS 
MUL 
DIV 
DA 
ARC 
RLC 
SETBC 

C OV AC 
x x x 
x x x 
x x x 
0 x 
0 x 
x 
x 
x 

CLRC 
CPLC 
ANLC,bit 
ANL C,/bit 
ORLC,bit 
ORLC,bit 
MOVC,bit 
CJNE 

C OV AC 
0 
x 
x 
x 
x 
x 
x 
x 

(!)Note that operations on SFR byte address 208 or 
bit addresses 209-215 (i.e., the PSW or bits in the 
PSW) will also affect flag settings. 

Note on instruction set and addressing modes: 
Rn - Register R7-RO of the currently se-

lected Register Bank. 
direct - 8-bit internal data location's address. 

This could be an Internal Data RAM 
location (0-127) or a SFR [i.e., 1/0 
port, control register, status register, 
etc. (128-255)]. 

@Ri - 8-bit internal data RAM location (0-
255) addressed indirectly through reg­
ister RI or RO. 

#data - 8-bit constant included in instruction. 
#data 16 -- 16-bit constant included in instruction. 
addr 16 - 16-bit destination address. Used by 

LCALL & LJMP. A branch can be 
anywhere within the 64K-byte Pro­
gram Memory address space. 

addr 11 - 11-bit destination address. Used by 
ACALL & AJMP. The branch will be 
within the same 2K-byte page of pro­
gram memory as the first byte of the 
following instruction. 

rel - Signed (two's complement) 8-bit offset 
byte. Used by SJMP and all condition­
al jumps.· Range is -128 to + 127 
bytes relative to first byte of the fol­
lowing instruction. 

bit - Direct Addressed bit in Internal Data 

4-10 

RAM or Special Function Register. 
- New operation not provided by 

8048AH/8049AH. 

Mnemonic Description 

ARITHMETIC OPERATIONS 
ADD A,Rn Add register to 

Accumulator 
ADD A,direct Add direct byte to 

Accumulator 
ADD A,@Ri Add indirect RAM 

to Accumulator 
ADD A,# data Add immediate 

data to 
Accumulator 

ADDC A,Rn Add register to 
Accumulator 
with Carry 

ADDC A,direct Add direct byte to 
Accumulator 
with Carry 

ADDC A,@Ri Add indirect 
RAM to 
Accumulator 
with Carry 

ADDC A,#data Add immediate 
data to Ace 
with Carry 

SUBS A,Rn Subtract Register 
from Ace with 
borrow 

SUBS A,direct Subtract direct 
byte from Ace 
with borrow 

SUBS A,@Ri Subtract indirect 
RAMfromACC 
with borrow 

SUBS A,#data Subtract 
immediate data 
from Ace with 
borrow 

INC A 

INC Rn 
INC direct 

INC @Ai 

DEC A 

DEC Rn 

DEC direct 

DEC @Ai 

Increment 
Accumulator 
Increment register 
Increment direct 
byte 
Increment direct 
RAM 
Decrement 
Accumulator 
Decrement 
Register 
Decrement direct 
byte 
Decrement 
indirect RAM 

Oscillator 
Byte Period 

2 

2 

2 

2 

2 

2 

2 

2 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 
12 

12 

12 

12 

12 

12 



CHAPTER4 
Instruction Set 

Table 4·9. 8051 Instruction Set Summary (Continued) 

Mnemonic Description Byte 
Osclllator Oscillator 

Period Mnemonic Description Byte 
Period 

ARITHMETIC OPERATIONS (Continued) LOGICAL OPERATIONS (Continued) 
INC DPTR Increment Data 24 XRL direct, #data Exclusive-OR 3 24 

Pointer immediate data 
MUL AB Multiply A & B 48 to direct byte 
DIV AB Divide A by B 48 CLR A Clear 12 
DA A Decimal Adjust 12 Accumulator 

Accumulator CPL A Complement 12 
LOGICAL OPERATIONS Accumulator 
ANL A,Rn AND Register to 12 RL A Rotate 12 

Accumulator Accumulator Left 

ANL A, direct AND direct byte 2 12 RLC A Rotate 12 
to Accumulator Accumulator Left 

ANL A,@Ri AND indirect 12 through the Carry 

RAM to RR A Rotate 12 
Accumulator Accumulator 

ANL A,#data AND immediate 2 12 Right 

data to RRC A Rotate 12 
Accumulator Accumulator 

ANL direct.A AND Accumulator 2 12 Right through 

to direct byte the Carry 

ANL direct,# data AND immediate 3 24 SWAP A Swap nibbles 12 
data to direct byte within the 

ORL A,Rn OR register to 12 Accumulator 

Accumulator DATA TRANSFER 

ORL A,direct OR direct byte to 2 12 MOV A,Rn Move 12 
Accumulator register to 

ORL A,@Ri OR indirect RAM 12 Accumulator 

to Accumulator MOV A, direct Move direct 2 12 
ORL A,#data OR immediate 2 12 byte to 

data to Accumulator 

Accumulator MOV A,@Ri Move indirect 12 
ORL direct.A OR Accumulator 2 12 RAM to 

to direct byte Accumulator 

ORL direct,# data OR immediate 3 24 MOV A,#data Move 2 12 
data to direct byte immediate 

XRL A,Rn Exclusive-OR 12 data to 

register to Accumulator 

Accumulator MOV Rn,A Move 12 
XRL A, direct Exclusive-OR 2 12 Accumulator 

direct byte to to register 

Accumulator MOV Rn.direct Move direct 2 24 
XRL A,@Ri Exclusive-OR 12 byte to 

indirect RAM to register 

Accumulator MOV Rn,#data Move 2 12 
XRL A,#data Exclusive-OR 2 12 immediate data 

immediate data to to register 

Accumulator MOV direct, A Move 2 12 
XRL direct.A Exclusive-OR 2 12 Accumulator 

Accumulator to to direct byte 

direct byte 

4-11 



CHAPTER4 
Instruction Set 

Table 4-9. 80!!1 Instruction Set Summary (Continued) 

Osclllator Description . Byt!I 
Osclllator Mnemonic Description Byte 

Period Mnemonic 
P!Jrlod 

DATA TRANSFER (Continued) XCH A,Rn Exchange 12 
MOV direct, Rn Move register 2 24 register wit~ 

to direct byte Accumulator 
MOV direct, direct Move direct 3 24 XCH A.direct Exchange 2 t2 

byte to direct direct byte 
MOV · direct,®Ri Move indirect 2 24 with 

RAM to Accumulator 
direct byte XCH A,®RI Exchange 12 

MOV direct, #data Move 3 24 indirect RAM 
immediate data with 
to direct byte Accumulator 

MOV ®Ri,A Move 12 XCHD A,®Ri Exchange low- 12 
Accumulator to order Digit 
indirect RAM indirect RAM 

MOV ®Ri,direct Move direct 2 24 with Ace 
byte to BOOLEAN VARIABLE MANIPULATION 
indirect RAM CLR c Clear Carry 1 12 

MOV ®Ri,#data Move 2 12 CLR bit Clear direct bit 2 12 
immediate SETB c Set Carry 1 12 
data to SETB bit Set direct bit 2 12 
indirect RAM CPL c Complement 1 12 

MOV DPTR,#data16 Load Data 3 24 Carry 
Pointer with a CPL bit Complement 2 ·12 
16-bit constant direct bit 

MOVC A,@A+DPTR Move Code 24 ANL C,bit AND direct bit 2 24 
byte relative to to CARRY 
DPTRtoAcc ANL C,/bit AND complement 2 24 

MOVC A,@A+PC Move Code 24 of direct bit 
byte relative to to Carry 
PC to Ace ORL C,bit OR direct bit 2 24 

MOVX A,@Ri Move 24 to Carry 
External ORL C,/bit OR complement 2 24 
RAM (8-bit of direct bit 
addr) to Ace to Carry 

MOVX A,@DPTR Move 24 MOV C,bit Move diret bit 2 12 
External to Carry 
RAM (16-bit MOV bit,C l\,1ove Carry to 2 24 
addr) to Ace direct bit 

MOVX @Ri,A Move Aceto 24 JC rel Jump if Carry 2 24 
External RAM is set 
(8-bit addr) JNC rel Jump if Carry 2 24 

MOVX @DPTR,A Move Aceto 24 not set 
External RAM JB bit, rel Jump if direct 3 24 
(16-blt addr) Bit is set 

PUSH direct Push direct 2 24 JNB bit, rel Jump if direct 3 24 
byte onto Bit is Not set 
stack JBC bit, rel Jump if direct 3 24 

POP direct Pop direct 2 24 Bit is set & 
byte from clear bit 
stack 

4-12 



CHAPTER4 
Instruction Set 

Table 4·9. 8051 Instruction Set Summary (Continued) 

Mnemonic Description Byte 
Oscillator 

Mnemonic Description Byte 
Oscillator 

Period Period 

PROGRAM BRANCHING PROGRAM BRANCHING (Continued) 
ACALL addr11 Absolute 2 24 CJNE Rn, #data.rel Compare 3 24 

Subroutine immediate to 
Call register and 

LCALL addr16 Long 3 24 Jump if Not 
Subroutine Equal 
Call CJNE @Ri, #data.rel Compare 3 24 

RET Return from 24 immediate to 
Subroutine indirect and 

RETI Return from 24 Jump if Not 
interrupt Equal 

AJMP addr11 Absolute 2 24 DJNZ Rn,rel Decrement 2 24 
Jump register and 

LJMP addr16 Long Jump 3 24 Jump if Not 
SJMP rel Short Jump 2 24 Zero 

(relative addr) DJNZ direct, rel Decrement 3 24 
JMP @A+DPTR Jump indirect 24 direct byte 

relative to the and Jump if 
DPTR Not Zero 

JZ rel Jump if 2 24 NOP No Operation 12 
Accumulator 
is Zero 

JNZ rel Jump if 2 24 
Accumulator 
is Not Zero 

CJNE A, direct, rel Compare 3 24 
direct byte to 
AccandJump 
if Not Equal 

CJNE A,# data, rel Compare 3 24 
immediate to 
Ace and Jump 
if Not Equal 

. 4-13 



CHAPTER4 
Instruction Set 

INSTRUCTION DEFINITIONS 

ACALL addr11 

Function: Absolute Call 

Description: ACALL unconditionally calls a subroutine located at the indicated address. The instruction 
increments the PC twice to obtain the address of the following instruction, then pushes the 
16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice. The 
destination address is obtained by successively concatenating the five high-order bits of the 
incremented PC, opcode bits 7-5, and the second byte of the instruction. The subroutine called 
must therefore start within the same 2K block of the program memory as the first byte of the 
instruction following ACALL. No flags are affected. 

4-14 

Example: Initially SP equals 07H. The label "SUBRTN" is at program memory location 0345 H. After 
executing the instruction, 

ACALL SUBRTN 

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain 
25H and OIH, respectively, and the PC will contain 0345H. 

Bytes: 2 

Cycles: 2 

Encoding: I a10 a9 as 1 o o o 1 

Operation: A CALL 
(PC) - (PC) + 2 
(SP) - (SP) + I 
((SP)) - (PC7.o) 
(SP) - (SP) + 1 
((SP)) - (PC15.g) 
(PC10.o) - page address 

a7 a6 a5 a4 a3 a2 a1 aO 



CHAPTER4 
Instruction Set 

ADD A,< src·byte > 

Function: Add 

Description: ADD adds the byte variable indicated to the Accumulator, leaving the result in the Accumula­
tor. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or 
bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an 
overflow occured. 

ADD 

ADD 

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit 6; 
otherwise OV is cleared. When adding signed integers, OV indicates a negative number pro­
duced as the sum of two positive operands, or a positive sum from two negative operands. 

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme­
diate. 

Example: The Accumulator holds OC3H (110000118) and register 0 holds OAAH (10101010B). The 
instruction, 

A,Rn 

Bytes: 

Cycles: 

Encoding: 

Operation: 

A,dlrect 

Bytes: 

Cycles: 

Encoding: 

Operation: 

ADD A,RO 

will leave 6DH (011011018) in the Accumulator with the AC flag cleared and both the carry 
flag and OV set to I. 

I o o 0 1 r r r 

ADD 
(A) +- (A) + (Rn) 

2 

I o o 1 0 0 1 0 1 direct address 

ADD 
(A) +- (A) + (direct) 

4-15 



CHAPTER4 
Instruction Set 

ADD A,@Ri 

Bytes: 

Cycles: 

Encoding: I o o 0 0 1 1 

Operation: ADD 
(A) - (A) + ((Ri)) 

ADD A,#data 

Bytes: 2 

Cycles: 

Encoding: I o o 1 0 0 1 0 0 immediate data 

Operation: ADD 
(A)-(A) + #data 

ADDC A,< src-byte > 

Function: Add with Carry 

Description: ADDC simultaneously adds the byte variable indicated, the carry flag and the Accumulator 
contents, leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, 
respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding 
unsigned integers, the carry flag indicates an overflow occured. 

4-16. 

OV is set ifthere is a carry-out of bit 6 but not out ofbit 7, or a carry-out of bit 7 but not out of 
bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number 
produced as the sum of two positive operands or a positive sum from two negative operands. 

Four source operand addressing modes are allowed: register, direct, register-indirect, or imme­
diate. 

Example: The Accumulator holds OC3H (1100001 lB) and register 0 holds OAAH (10101010B) with the 
carry flag set. The instruction, 

ADDC A,RO 

will leave 6EH (Ol lOl l lOB) in the Accumulator with AC cleared and both the Carry flag and 
OV set to I. 



ADDC A,Rn 

Bytes: 

Cycles: 

Encoding: '-I _0_0_1 _ _.__1 _r_r_r__, 

Operation: ADDC 
(A) +- (A) + (C) + (R0 ) 

ADDC A,dlrect 

Bytes: 2 

Cycles: 

Encoding: 1 o o 1 0 1 0 1 J 
Operation: ADDC 

(A) +- (A) + (C) + (direct) 

ADDC A,@Ri 

Bytes: 

Cycles: 

Encoding: ioo11io1iiJ 

Operation: ADDC 
(A) +- (A) + (C) + ((Ri)) 

ADDC A,#data 

Bytes: 2 

Cycles: 

Encoding: 1 o o 1 0 1 0 0 

Operation: ADDC 
(A)+- (A) + (C) + #data 

direct address I 

immediate da~ 

CHAPTER4 
Instruction Set 

4-17 



CHAPTER4 
Instruction Set 

AJMP addr11 

Function: Absolute Jump 

Description: AJMP transfers program execution to the indicated address, which is formed at run-time by 
concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode bits 
1-S, and the second byte of the instruction. The destination must therefore be within the same 
2K block of program memory as the first byte of the instruction following AJMP. 

Example: The label "JMPADR" is at program memory location 0123H. The instruction, 

AJMP JMPADR 

is at location 034SH and will load the PC with 0123H. 

Bytes: 2 

Cycles: 2 

Encoding: I a10 a9 as o I o o o 1 

Operation: AJMP 
(PC) .__ (PC) + 2 
(PC1o.o) .__page address 

a7 a6 a5 a4 a3 a2 a1 ao 

ANL <dest-byte>,<src-byte> 

Function: Logical-AND for byte variables 

Description: ANL performs the bitwise logical-AND operation between the variables indicated and stores 
the results in the destination variable. No flags are affected. 

4-18 

The two operands allow six addressing mode combinations. When the destination is the Accu­
mulator, the source can use register, direct, register-indirect, or immediate addressing; when 
the destination is a direct address, the source can be the Accumulator or immediate data. 

Note: When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins. 

Example: If the Accumulator holds OCJH (110000118) and register 0 holds SSH (01010101B) then the 
instruction, 

ANL A,RO 

will leave 41H. (010000018) in the Accumulator. 

When the destination is a directly addressed byte, this instruction will clear combinations of 
bits in any RAM location or hardware register. The mask byte determining the pattern of bits 
to be cleared would either be a constant contained in the instruction or a value computed in 
the Accumulator at run-time. The instruction, 

ANL Pl, #011100118 

will clear bits 7, 3, and 2 of output port 1. 

1~ 



CHAPTER4 
Instruction Set 

ANL A,Rn 

Bytes: 

Cycles: 

Encoding: I o 1 0 1 1 r r r 

Operation: ANL 
(A) +- (A) /\ (Rn) 

ANL A, direct 

Bytes: 2 

Cycles: 

Encoding: I o 1 0 1 0 1 0 1 direct address 

Operation: ANL 

(A) +- (A) /\ (direct) 

ANL A,@RI 

Bytes: 

Cycles: 

Encoding: I o 1 0 1 0 1 1 

Operation: ANL 

(A) +- (A) /\ ((Ri)) 

ANL A,#data 

Bytes: 2 

Cycles: 

Encoding: I o 1 0 1 0 1 0 0 immediate data 

Operation: ANL 
(A)+- (A) /\ #data 

4-19 



CHAPTER 4 
Instruction Set 

ANL direct,A 

Bytes: 2 

Cycles: 

Encoding: I a 1 0 1 0 0 1 0 direct address 

Operation: ANL 
(direct) - (direct) /\ (A) 

ANL direct,# data 

Bytes: 3 

Cycles: 2 

Encoding: I a 1 0 1 0 0 1 1 direct address immediate data 

Operation: ANL 
(direct) - (direct) /\ #data 

ANL C,<src-blt> 

Function: Logical-AND for bit variables 

Description: If the Boolean value of the source bit is a logical 0 then clear the carry flag; otherwise leave the 
carry flag in its current state. A slash ("/") preceding the operand in the assembly language 
indicates that the logical complement of the addressed bit is used as the source value, but the 
source bit itself is not affected. No other flags are affected. 

Only direct addressing is allowed for the source operand. 
Example: Set the carry flag if, and only if, PLO = !, ACC. 7 = I, and OV = 0: 

MOY C,Pl.O ;LOAD CARRY WITH INPUT PIN STATE 

ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT 7 

ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG 

ANL C,blt 

Bytes: 2 

Cycles: 2 

Encoding: j1oooioo1ol bit address 

Operation: ANL 
(C) - (C) /\ (bit) 

4-20 



ANL C,/blt 

Bytes: 

Cycles: 

Encoding: 

Operation: 

2 

2 

I 1 0 1 0 0 0 0 

ANL 
(C) +- (C) /\ .., (bit) 

bit address 

CHAPTER4 
Instruction Set 

CJNE < dest-byte > , < src-byte > , rel 

Function: 

Description: 

Example: 

Compare and Jump if Not Equal. 

CJNE compares the magnitudes of the first two operands, and branches if their values are not 
equal. The branch destination is computed by adding the signed relative-displacement in the 
last instruction byte to the PC, after incrementing the PC to the start of the next instruction. 
The carry flag is set if the unsigned integer value of < dest-byte> is less than the unsigned 
integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected. 

The first two operands allow four addressing mode combinations: the Accumulator may be 
compared with any directly addressed byte or immediate data, and any indirect RAM location 
or working register can be compared with an immediate constant. 

The Accumulator contains 34H. Register 7 contains 56H. The first instruction in the se­
quence, 

CJNE R7,#60H, NOT_EQ 

NOT_EQ: JC REQ_LOW 
R7 = 60H. 
IF R7 < 60H. 
R7 > 60H. 

sets the carry flag and branches to the instruction at label NOT _EQ. By testing the carry flag, 
this instruction determines whether R 7 is greater or less than 60H. 

If the data being presented to Port 1 is also 34H, then the instruction, 

WAIT: CJNE A,Pl,WAIT 

clears the carry flag and continues with the next instruction in sequence, since the Accumula­
tor does equal the data read from P !. (If some other value was being input on P 1, the program 
will loop at this point until the Pl data changes to 34H.) 

4-21 



CHAPTER 4 
Instruction Set 

CJNE A,direct,rel 

Bytes: 3 

Cycles: 2 

Encoding: I 1 O 1 1 o 1 o 1 

Operation: (PC) +- (PC) + 3 
IF (A) < > (direct) 
THEN 

direct address 

(PC) +- (PC) + relative offset 

IF (A) < (direct) 
THEN 

ELSE 
(C) +-1 

(C)+-0 

CJNE A,#data,rel 

Bytes: 3 

Cycles: 2 

Encoding: I 1 o 1 1 o 1 o o 

Operation: (PC) +- (PC) + 3 
IF (A) < > data 
THEN 

immediate data 

(PC) +- (PC) + relative offset 

IF (A) <data 
THEN 

ELSE 
(C) +-1 

(C)+-0 

CJNE Rn,# data,rel 

4-22 

Bytes: 3 

Cycles: 2 

Encoding: j 1 O 1 1 1 r r r 

Operation: (PC).+- (PC) + 3 
IF (Rn) < > data 
THEN 

immediate data 

(PC) +- (PC) + relative offset 

IF (Rn) < data 
THEN 

ELSE 
(C) +-1 

(C)+-0 

rel. address 

rel. address 

rel. address 



CJNE @Rl,#data,rel 

Bytes: 3 

Cycles: 2 

Encoding: I 1 o 1 1 o 1 1 

Operation: (PC) +-- (PC) + 3 
IF ((Ri)) < > data 
THEN 

immediate data 

(PC) +-- (PC) + relative offset 

CLR A 

IF ((Ri)) < data 
THEN 

ELSE 
(C)+-1 

(C)+-0 

Function: Clear Accumulator 

rel. address 

Description: The Accumulator is cleared (all bits set on zero). No flags are affected. 

Example: The Accumulator contains SCH (OIOl I IOOB). The instruction, 

CLR A 

will leave the Accumulator set to OOH (OOOOOOOOB). 

Bytes: 

Cycles: 

Encoding: I 1 1 1 o 1 o o 

Operation: CLR 
(A)+-0 

CLR bit 

Function: Clear bit 

CHAPTER 4 
Instruction Set 

Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on the 
carry flag or any directly addressable bit. 

Example: Port I has previously been written with 5DH (OIOl I IOIB). The instruction, 

CLR Pl.2 

will leave the port set to 59H (OIOl IOOIB). 

4-23 



CHAPTER 4 
Instruction Set 

CLR c 
Bytes: 

Cycles: 

Encoding: I 1 1 0 0 0 0 1 1 

Operation: CLR 
(C)-o 

CLR bit 

Bytes: 2 

Cycles: 

Encoding: I 1 0 0 0 0 1 0 bit address 

Operation: CLR 
(bit)-o 

CPL A 

Function: Complement Accumulator 

Description: Each bit of the Accumulator is logically complemented (one's complement). Bits which previ­
ously contained a one are changed to a zero and vice-versa. No flags are affected. 

Example: The Accumulator contains SCH (OIOlllOOB). The instruction, 

CPL A 

will leave the Accumulator set to OA3H (1010001 IB). 

Bytes: 

Cycles: 

Encoding: ~I _1 __ 1_1 ~-0_1 _o_o~ 
Operation: CPL 

(A)-'l (A) 

4-24 



CPL bit 

Function: Complement bit 

CHAPTER4 
Instruction Set 

Description: The bit variable specified is complemented. A bit which had been a one is changed to zero and 
vice-versa. No other flags are affected. CLR can operate on the carry or any directly address­
able bit. 

Note: When this instruction is used to modify an output pin, the value used as the original data 
will be read from the output data latch, not the input pin. 

Example: Port 1 has previously been written with SBH (01011 lOIB). The instruction sequence, 

CPL Pl.1 

CPL Pl.2 

will leave the port set to SBH (OIOl lOl IB). 

CPL C 

Bytes: 

Cycles: 

Encoding: ~' _1_0_1_1 _.___0_0_1_1 __, 

Operation: CPL 
(C) -- -1 (C) 

CPL bit 

Bytes: 2 

Cycles: 

Encoding: I 1 o 1 
~~~~~~~~~ 

0 0 1 0 bit address

Operation: CPL
(bit) -- ..., (bit)

4-25

CHAPTER4
Instruction Set

DA A

Function:

Description:

Example:

Bytes:

Cycles:

4-26

Decimal-adjust Accumulator for Addition

DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of two
variables (each in packed-BCD format), producing two four-bit digits. Any ADD or ADDC
instruction may have been used to perform the addition.

If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxxl 111), or if the AC flag is one,
six is added to the Accumulator producing the proper BCD digit in the low-order nibble. This
internal addition would set the carry flag if a carry-out of the low-order four-bit field propagat­
ed through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set, or if the four high-order bits now exceed nine (1010xxxx-1 l lxxxx),
these high-order bits are incremented by six, producing the proper BCD digit in the high-order
nibble. Again, this would set the carry flag if there was a carry-out of the high-order bits, but
wouldn't clear the carry. The carry flag thus indicates if the sum of the original two BCD
variables is greater than 100, allowing multiple precision decimal addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding OOH, 06H, 60H, or 66H to the Accumulator, depending on
initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD nota­
tion, nor does DA A apply to decimal subtraction.

The Accumulator holds the value 56H (OIO!Ol IOB) representing the packed BCD digits of the
decimal number 56. Register 3 contains the value 67H (0110011 IB) representing the packed
BCD digits of the decimal number 67. The carry flag is set. The instruction sequence.

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the value OBEH
(10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-order two
digits of the decimal sum of 56, 67, and the carry-in. The carry flag will be set by the Decimal
Adjust instruction, indicating that a decimal overflow occurred. The true sum 56, 67, and 1 is
124.

BCD variables can be incremented or decremented by adding OlH or 99H. If the Accumulator
initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD

DA

A,#99H

A

will leave the carry set and 29H in the Accumulator, since 30 + 99
byte of the sum can be interpreted to mean 30 - 1 = 29.

129. The low-order

!'

Encoding: 1 1 0 1 0 1 0 0

Operation: DA
-contents of Accumulator are BCD
IF [[(A3_0) > 9] V [(AC) = l]]

THEN(A3_0) - (A3_0) + 6
AND

IF [[(A7_4) > 9] V [(C) = l]]
THEN (A7_4) - (A?-4) + 6

CHAPTER 4
Instruction Set

DEC byte

Function: Decrement

Description: The variable indicated is decremented by 1. An original value of OOH will underflow to OFFH.

DEC

DEC

No flags are affected. Four operand addressing modes are allowed: accumulator, register,
direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7FH (011111 l lB). Internal RAM locations 7EH and 7FH contain OOH
and 40H, respectively. The instruction sequence,

A

Bytes:

Cycles:

Encoding:

Operation:

Rn

Bytes:

Cycles:

Encoding:

Operation:

DEC @RO

DEC RO

DEC @RO

will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to OFFH and
3FH.

I o o o 0 1 0 0

DEC
(A)-(A) -

I o o o 1 r r r

DEC
(Rn) - (Rn) - l

4-27

CHAPTER 4
Instruction Set

DEC direct

Bytes: 2

Cycles:

Encoding: I o o o 0 1 0 1 direct address

Operation: DEC
(direct) - (direct) -

DEC @RI

Bytes:

Cycles:

Encoding: I o o o 0 1 1

Operation: DEC
((Ri)) - ((Ri)) -

DIV AB

4-28

Function: Divide

Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit
integer in register B. The Accumulator receives the integer part of the quotient; register B
receives the integer remainder. The carry and OV flags will be cleared.

Exception: if 13 had originally contained OOH, the values returned in the Accumulator and B­
register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case.

Example: The Accumulator contains 251 (OFBH or 1111101 lB) and B contains 18 (12H or OOOIOOIOB).

Bytes:

The instruction,

DIV AB

will leave 13 in the Accumulator (ODH or 00001 lOlB) and the value 17 (11H or OOOIOOOlB)
in B, since 251 = (13 X 18) + 17. Carry and OV will both be cleared.

Cycles: 4

Encoding: J 1 o O O O 1 o O

Operation: DIV

(A)J5_g - (A)/(B)
(Bh-o

I'
I

CHAPTER4
Instruction Set

DJNZ <byte>,<rel-addr>

Function: Decrement and Jump if Not Zero

Description: DJNZ decrements the location indicated by I, and branches to the address indicated by the
second operand if the resulting value is not zero. An original value of OOH will underflow to
OFFH. No flags are affected. The branch destination would be computed by adding the signed
relative-displacement value in the last instruction byte to the PC, after incrementing the PC to
the first byte of the following instruction.

Example:

DJNZ Rn,rel

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Internal RAM locations 40H, SOH, and 60H contain the values OIH, 70H, and !SH, respec-
tively. The instruction sequence, ·

DJNZ 40H,LABEL_l
DJNZ SOH,LABEL_2
DJNZ 60H,LABEL_3

will cause a jump to the instruction at label LABEL_2 with the values OOH, 6FH, and !SH in
the three RAM locations. The first jump was not taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to S12 machine cycles) with a single instruction.
The instruction sequence,

MOV
TOGGLE: CPL

DJNZ

R2,#8
Pl.7
R2,TOGGLE

will toggle Pl.7 eight times, causing four output pulses to appear at bit 7 of output Port I.
Each pulse will last three machine cycles; two for DJNZ and one to alter the pin.

Bytes: 2

Cycles: 2

Encoding: 1~1_1_0_1 ~-1_r_r _r~
Operation: DJNZ

(PC) - (PC) + 2
(Rn) - (Rn) - 1
IF (Rn) > 0 or (Rn) < 0

THEN

rel. address

(PC) - (PC) + rel

4-29

CHAPTER4
Instruction Set

DJNZ dlrect,rel

Bytes: 3

Cycles: 2

Encoding: I 1 1 o 1 o 1 O 1

Operation: DJNZ
(PC) +- (PC) + 2
(direct) +-(direct) - 1
IF (direct) > 0 or (direct) < 0

THEN
(PC) +- (PC) + rel

direct address rel. address

INC <byte>

Function: Increment

Descrlptlol'!: INC increments the indicated variable by 1. An original value of OFFH will overflow to OOH.
No flags are affected. Three addressing modes are allowed: register, direct, or register-indirect.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Example: Register 0 contains 7EH (0111 l l l lOB). Internal RAM locations 7EH and 7FH contain OFFH
and 40H, respectively. The instruction sequence,

INC @RO
INC RO
INC @RO

will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding (respective­
ly) OOH and 41H.

INC A

Bytes:

Cyclits:

Encoding: iooooio100

Operation: INC
(A) +-(A)+

4-30

I
I·

INC Rn

Bytes:

Cycles:

Encoding:

Operation:

INC direct

Bytes:

Cycles:

Encoding:

Operation:

INC @RI

Bytes:

Cycles:

Encoding:

Operation:

I o o o o I 1 r r r

INC
(Rn) - (Rn) + I

2

I o o o o I 0 1 0 1

INC
(direct) - (direct) +

I o o o o I 0 1 1

INC
((Ri)) - ((Ri)) +

direct address

CHAPTER 4
Instruction Set

4-31

CHAPTER4
Instruction Set

INC DPTR

Function: Increment Data Pointer

Description: Increment the 16-bit data pointer by I. A 16-bit increment (modulo 216) is performed; an
overflow of the low-order byte of the data pointer (DPL) from OFFH to OOH will increment
the high-order byte (DPH). No flags are affected.

This is the only 16-bit register which can be incremented.

Example: Registers DPH and DPL contain 12H and OFEH, respectively. The instruction sequence,

Bytes:

INC DPTR
INC DPTR
INC DPTR

will change DPH and DPL to 13H and OIH.

Cycles: 2

Encoding: I 1 O 1 O O O 1 1

Operation: INC
(DPTR) +- (DPTR) + I

JB blt,rel

Function: Jump if Bit set

Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next
. instruction .. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.

4-32

Example: The data present at input port I is l IOOIOIOB. The Accumulator holds 56 (OIOIOl IOB). The
instruction sequence,

JB Pl.2,LABELI

JB ACC.2,LABEL2

will cause program execution to branch to the instruction at label LABEL2.

Bytes: 3

Cycles: 2

Encoding: j o o 1 o o O O O

Operation: JB
(PC) +- (PC) + 3
IF (bit) = I

THEN

bit address

(PC) +- (PC) + rel

rel. address

JBC blt,rel

Function: Jump if Bit is set and Clear bit

CHAPTER 4
Instruction Set

Description: If the indicated bit is one, branch to the address indicated; otherwise proceed with the next
instruction. The bit will not be cleared if it is already a zero. The branch destination is comput­
ed by adding the signed relative-displacement in the third instruction byte to the PC, after
incrementing the PC to the first byte of the next instruction. No flags are affected.

Note: When this instruction is used to test an output pin, the value used as the original data
will be read from the output data latch, not the input pin.

Example: The Accumulator holds 56H (010101 lOB). The instruction sequence,

JBC ACC.3,LABELl
JBC ACC.2,LABEL2

will cause program execution to continue at the instruction identified by the label LABEL2,
with the Accumulator modified to 52H (01010010B).

Bytes: 3

Cycles: 2

Encoding: (ii_o_~_o_o_o_o~

Operation: JBC
(PC) - (PC) + 3
IF (bit) = 1

THEN
(bit)-o

bit address

(PC) - (PC) + rel

rel. address

4-33

CHAPTER4
Instruction Set

JC rel

Function: Jump if Carry is set

Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice. No flags are affected.

4-34

Example: The carry flag is cleared. The instruction sequence,

JC LABELl
CPL C
JC LABEL 2

will set the carry and cause program execution to continue at the instruction identified by the
label LABEL2.

Bytes: 2

Cycles: 2

Encoding: I O 1 o o o o o o

Operation: JC
(PC) +- (PC) + 2
IF (C) = I

THEN

rel. address

(PC) +- (PC) + rel

JMP @A+DPTR

Function: Jump indirect

CHAPTER4
Instruction Set

Description: Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and
load the resulting sum to the program counter. This will be the address for subsequent instruc­
tion fetches. Sixteen-bit addition is performed (modulo 216): a carry-out from the low-order
eight bits propagates through the higher-order bits. Neither the Accumulator nor the Data
Pointer is altered. No flags are affected.

Example: An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will
branch to one of four AJMP instructions in a jump table starting at JMP _TBL:

JMP_TBL:

MOY
JMP
AJMP
AJMP
AJMP
AJMP

DPTR,#JMP_TBL
@A+DPTR
LABELO
LABELl
LABEL2
LABEL3

If the Accumulator equals 04H when starting this sequence, execution will jump to label
LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at
every other address.

Bytes:

Cycles: 2

Encoding: ~J _0 __ 1_1~_0_0_1 _1~
Operation: JMP

(PC) +- (A) + (DPTR)

4-35

CHAPTER4
Instruction Set

JNB blt,rel

Fun.ction: Jump if Bit Not set

Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.

Example: The data present at input port 1 is l 1001010B. The Accumulator holds 56H (010101 lOB). The
instruction sequence,

JNB Pl.3,LABELl
JNB ACC.3,LABEL2

will cause program execution to continue at the instruction at label LABEL2.

Bytes: 3

Cycles: 2

Encoding: I _0_0_1_1___.__o_o_o_o__,

Operation: JNB
(PC) - (PC) + 3
IF (bit) = 0

bit address

THEN (PC) ~ (PC) + rel.

rel. address

JNC rel

Function: Jump if Carry not set

Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The carry flag is not modified.

4-36

Example: The carry flag is set. The instruction sequence,

JNC LABEL!
CPL C
JNC LABEL2

will clear the carry and cause program execution to continue at the instruction identified by
the label LABEL2.

Bytes: 2

Cycles: 2

Encoding:!._ _0_1_0_1__._o_o_o_o__,

Operation: JNC
(PC) - (PC) + 2
IF (C) = 0

rel. address

THEN (PC) - (PC) + rel

JNZ rel

Function: Jump if Accumulator Not Zero

CHAPTER 4
Instruction Set

Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis­
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.

Example: The Accumulator originally holds OOH. The instruction sequence,

JNZ LABEL!
INC A
JNZ LABEL2

will set the Accumulator to OlH and continue at label LABEL2.

Bytes: 2

Cycles: 2

Encoding: !~0 __ 1 _1~_0_0_0_0~ rel. address

Operation: JNZ
(PC) +- (PC) + 2
IF (A) -:fo 0

THEN (PC) +- (PC) + rel

JZ rel

Function: Jump if Accumulator Zero

Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed with
the next instruction. The branch destination is computed by adding the signed relative-dis­
placement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.

Example: The Accumulator originally contains OlH. The instruction sequence,

JZ LABEL!
DECA
JZ LABEL2

will change the Accumulator to OOH and cause program execution to continue at the instruc­
tion identified by the label LABEL2.

Bytes: 2

Cycles: 2

Encoding: I O 1 1 O o O o O

Operation: JZ
(PC) +- (PC) + 2
IF (A) = 0

rel. address

THEN (PC) +- (PC) + rel

4-37

CHAPTER4
Instruction Set

LCALL addr16

4-38

Function: Long call

Description: LCALL calls a subroutine located at the indicated address. The instruction adds three to the
program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (law byte first), incrementing the Stack Pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively, with the second and third bytes of
the LCALL instruction. Program execution continues with the instruction at this address. The
subroutine may therefore begin anywhere in the full 64K-byte prognup memory address space.
No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label "SUBRTN" is assigned to program memory
location 1234H. After executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations OSH and 09H
will contain 26H and OlH, and the PC will contain 1235H. ·

Bytes: 3

Cycles: 2

Encoding: I o O o 1 o O 1 O

Operation: LCALL
(PC) +- (PC) + 3
(SP) +- (SP) + 1
((SP))+- (PC7.o)
(SP) +- (SP) + 1
((SP)) +- (PC1s-s)
(PC)+- addr15-0

addr15-addr6 addr7-addr0

LJMP addr16

Function: Long Jump

CHAPTER4
Instruction Set

Description: UMP causes an unconditional branch to the indicated address, by loading the high-order and
low-order bytes of the PC (respectively) with the second and third instruction bytes. The
destination may therefore be anywhere in the full 64K program memory address space. No
flags are affected.

Example: The label "JMPADR" is assigned to the instruction at program memory location 1234H. The
instruction,

UMP JMPADR

at location 0123H will load the program counter with 1234H.

Bytes: 3

Cycles: 2

Encoding: J O O O O J O O 1 O addr15-addr8 addr7 -addrO

Operation: UMP
(PC) +- addq 5-0

MOV < dest·byte >, < src-byte >

Function: Move byte variable

Description: The byte variable indicated by the second operand is copied into the location specified by the
first operand. The source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.

Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is lOH. The data
present at input port 1 is 11001010B (OCAH).

MOY R0,#30H
MOY A,@RO
MOY Rl,A
MOY R,@Rl
MOY @Rl,Pl
MOY P2,Pl

;RO<= 30H
;A<= 40H
;Rl <= 40H
;B < = lOH
;RAM (40H) < = OCAH
;P2 #OCAH

leaves the value 30H in register 0, 40H in both the Accumulator and register l, lOH in register
B, and OCAH (11001010B) both in RAM location 40H and output on port 2.

4-39

CHAPTER4
Instruction Set

MOV A,Rn

Bytes:

Cycles:

Encoding: I 1 1 1 O 1 r r r

Operation: MOY
(A)-(Rn)

MOV A,dlrect

Bytes: 2

Cycles:

Encoding: I 1 1 1 0 0 1 0 1

Operation: MOY
(A) +- (direct)

MOV A,ACC Is not a valid Instruction.

MOV A,@RI

Bytes:

Cycles:

Encoding: I 1 1 1 0 0 1

Operation: MOY
(A)+- ((Ri))

MOV A,#data

Bytes: 2

Cycles:

Encoding: I o 1 1 1 0 1 0 0

Operation: MOY
(A)+- #data

4-40

direct address

immediate data

CHAPTER4
Instruction Set

MOY Rn,A

Bytes:

Cycles:

Encoding: I 1 1 1 1 r r r

Operation: MOV
(Rn)-(A)

MOY Rn,dlrect

Bytes: 2

Cycles: 2

Encoding: I 1 0 1 0 1 r r r direct addr.

Operation: MOV
(Rn) - (direct)

MOY Rn,#data

Bytes: 2

Cycles:

Encoding: I o 1 1 r r r immediate data

Operation: MOV
(Rn)- #data

MOY direct,A

Bytes: 2

Cycles:

Encoding: j 1 1 1 0 1 0 1 direct address

Operation: MOV
(direct) - (A)

MOY dlrect,Rn

Bytes: 2

Cycles: 2

Encoding: I 1 0 0 0 1 r r r direct address

Operation: MOV
(direct) - (Rn)

4-41

CHAPTER4
Instruction Set

MOY dlrect,dlrect

Bytes: 3

Cycles: 2

Encoding: I 1 0 0 0 0 1 0 1 dir. addr. (src) dir. addr. (dest)

Operation: MOY
(direct)+- (direct)

MOY dlrect,@RI

Bytes: 2

Cycles: 2

Encoding: I 1 0 0 0 0 1 1 i direct addr.

Operation: MOY
(direct)+- ((Ri))

MOY direct,# data

Bytes: 3

Cycles: 2

Encoding: I o 1 1 1 0 1 0 1 direct address immediate data

Operation: MOY
(direct)+- #data

MOY @Rl,A

Bytes:

Cycles:

Encoding: I 1 1 1 1 0 1 1 i

Operation: MOY
((Ri)) +- (A)

MOY @Rl,dlrect

Bytes: 2

Cycles: 2

Encoding: I 1 0 1 0 0 1 1 direct addr.

Operation: MOY
((Ri)) +-(direct)

4-42

MOV @Rl,#data

Bytes: 2

Cycles:

Encoding: I o 1 1 0 1 1

Operation: MOY
((RI))+- #data

MOV < dest·blt > , < src·blt >

Function: Move bit data

immediate data

CHAPTER 4
Instruction Set

Description: The Boolean variable indicated by the second operand is copied into the location specified by
the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.

MOV

MOV

Example: The carry flag is originally set. The data present at input Port 3 is l IOOOIOlB. The data
previously written to output Port I is 35H (OOl lO!OlB).

C,blt

Bytes:

Cycles:

Encoding:

Operation:

blt,C

Bytes:

Cycles:

Encoding:

Operation:

MOY Pl.3,C
MOY C,P3.3
MOY Pl.2,C

will leave the carry cleared and changt Port I to 39H (OOl I IOOIB).

2

I 1 0 1 0 0 0 1 0 bit address

MOY
(C) +-(bit)

2

2

I 1 0 0 1 0 0 1 0 bit address

MOY
(bit)+- (C)

4-43

CHAPTER 4
Instruction Set

MOV DPTR,#data16

Function: Load Data Pointer with a 16-bit constant

Description: The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded
into the second and third bytes of the instruction. The second byte (DPH) is the high-order
byte, while the third byte (DPL) holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

Example: The instruction,

MOV DPTR,# 1234H

will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H.

Bytes: 3

Cycles: 2

Encoding: I _1 _0_0_1__.__o_o_o_o__. immed. data15-8 immed. data7-0

Operation: MOV
(DPTR) - #data1s-o
DPH D DPL - #data1s-s 0 #data7.o

4-44

MOVC A,@A+ <base·reg>

Function: Move Code byte

CHAPTER4
Instruction Set

Description: The MOVC instructions load the Accumulator with a code byte, or constant from program
memory. The address of the byte fetched is the sum of the original unsigned eight-bit Accumu­
lator contents and the contents of a sixteen-bit base register, which may be either the Data
Pointer or the PC. In the latter case, the PC is incremented to the address of the following
instruction before being added with the Accumulator; otherwise the base register is not al­
tered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits may
propagate through higher-order bits. No flags are affected.

Example: A value between 0 and 3 is in the Accumulator. The following instructions will translate the
value in the Accumulator to one of four values defined by the DB (define byte) directive.

REL_PC: INC A

MOVC A,@A+PC

RET

DB 66H

DB 77H

DB 88H

DB 99H

If the subroutine is called with the Accumulator equal to OlH, it will return with 77H in the
Accumulator. The INC A before the MOVC instruction is needed to "get around" the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the Accumulator instead.

MOVC A,@A+DPTR

Bytes:

Cycles: 2

0 0 1 1 Encoding: I 1 O O 1
~~~~-'-~~~~ 

Operation: MOVC 
(A) - ((A) + (DPTR)) 

4-45 



CHAPTER 4 
instruction Set 

MOVC A,@A +PC 

Bytes: 

Cycles: 2 

Encoding: J 1 O O O O O 1 1 

Operation: MOVC 
(PC) - (PC) + I 
(A) - ((A) + (PC)) 

MOVX < dest·byte > , < src·byte > 

4-46 

Function: Move External 

Description: The MOVX instructions transfer data between the Accumulator and a byte of external data 
memory, hence the "X" appended to MOV. There are two types of instructions, differing in 
whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM. 

Example: 

In the first type, the contents of RO or RI in the current register bank provide an eight-bit 
address multiplexed with data on PO. Eight bits are sufficient for external I/O expansion 
decoding or for a relatively small RAM array. For somewhat larger arrays, any output port 
pins can be used to output higher-order address bits. These pins would be controlled by an 
output instruction preceding the MOVX. 

In the second type of MOVX instruction, the Data Pointer generates a sixteen-bit address. P2 
outputs the high-order eight address bits (the contents of DPH) while PO multiplexes the low­
order eight bits (DPL) with data. The P2 Special Function Register retains its previous con­
tents while the P2 output buffers are emitting the contents of DPH. This form is faster and 
more efficient when accessing very large data arrays (up to 64K bytes), since no additional 
instructions are needed to set up the output ports. 

It is possible in some situations to mix the two MOVX types. A large RAM array with its 
high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to 
output high-order address bits to P2 followed by a MOVX instruction using RO or RI. 

An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/ 
I/0/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external 
RAM. Ports 1 and 2 are used for normal I/0. Registers 0 and 1 contain 12H and 34H. 
Location 34H of the external RAM holds the value 56H. The instruction sequence, 

MOVX A,@Rl 

MOVX @RO,A 

copies the value 56H into both the Accumulator and external RAM location l2H. 



MOVX A,@RI 

Bytes: 

Cycles: 

Encoding: 

Operation: 

MOVX A,@DPTR 

Bytes: 

Cycles: 

Encoding: 

Operation: 

MOVX @Ri,A 

Bytes: 

Cycles: 

Encoding: 

Operation: 

MOVX @DPTR,A 

Bytes: 

Cycles: 

Encoding: 

Operation: 

2 

I 1 1 1 0 0 0 1 i 

MOVX 
(A) +- ((Ri)) 

2 

I 1 1 1 0 0 0 0 0 

MOVX 
(A) +- ((DPTR)) 

2 

I 1 1 1 1 0 0 1 

MOVX 
((Ri)) +- (A) 

2 

I 1 1 1 1 0 0 0 0 

MOVX 
(DPTR) +- (A) 

CHAPTER4 
Instruction Set 

4-47 



CHAPTER4 
Instruction Set 

NOP 

Function: No Operation 

Description: Execution continues at the following instruction. Other than the PC, no registers or flags are 
affected. 

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A 
simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must 
be inserted. This may be done (assuming no interrupts are enabled) with the instruction 
sequence, 

CLR P2.7 

NOP 

NOP 

NOP 

NOP 

SETB P2.7 

Bytes: 

Cycles: 

Encoding: I O o O O I o o O o 

Operation: NOP 
(PC) - (PC) + 

MUL AB 

Function: Multiply 

Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The 
low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte in 
B. If the product is greater than 255 (OFFH) the overflow flag is set; otehrwise it is cleared. 
The carry flag is always cleared. 

4-48 

Example: Originally the Aecumulator holds the value 80 (50H). Register B holds the value 160 (OAOH). 

Bytes: 

The instruction, 

MUL AB 

will give the product 12,800 (3200H), so Bis changed to 32H (001 lOOlOB) and the Accumula­
tor is cleared. The overflow flag is set, carry is cleared. 

Cycles: 4 

Encoding: I 1 o 1 o O 1 O o 

Operation: MUL 
(Ah-0 - (A) X (B) 
(B)1s-s 

I' 
i 

.1 



CHAPTER4 
Instruction Set 

ORL <dest·byte> <src·byte> 

Function: Logical-OR for byte variables 

Description: ORL performs the bitwise logical-OR operatiOn between the indicated variables, storing the 
results in the destination byte. No flags are affected. 

The two operands allow six addressing mode combinations. When the destination is the Accu­
mulator, the source can use register, direct, register-indirect, or immediate addressing; when 
the destination is a direct address, the source can be the Accumulator or immediate data. 

Note: When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins. 

Example: If the Accumulator holds OC3H (llOOOOllB) and RO holds.SSH (01010101B) then the in­
struction, 

ORL A,Rn 

Bytes: 

Cycles: 

ORL A,RO 

will leave the Accumulator holding the value OD7H (110101 llB). 

When the destination is a directly addressed byte, the instruction can set combinations of bits 
in any RAM location or hardware register. The pattern of bits to be set is determined by a 
mask byte, which may be either a constant data value in the instruction or a variable computed 
in the Accumulator at run-time. The instruction, 

ORL Pl, #OOl lOOlOB 

will set bits S, 4, and 1 of output Port 1. 

Encoding: I 0 1 O O 1 r r r 

Operation: ORL 
(A) +- (A) V (Rn) 

4-49 



CHAPTER4 
Instruction Set 

ORL A, direct 

Bytes: 2 

Cycles: 

Encoding: I o 1 o o I 0 1 0 1 . direct address I 

Operation: ORL 
(A) ~ (A) V (direct) I! 

ORL A,@RI 

Bytes: i. 
1 

Cycles: 

Encoding: I o 1 o o I 0 1 1 i I 
Operation: ORL 

(A) ~ (A) V ((Ri)) 

ORL A,#data 

Bytes: 2 

Cycles: 

Encoding: I o 1 o o I 0 1 0 0 immediate data I 
Operation: ORL 

(A)~ (A) V #data 

ORL dlrect,A 

Bytes: 2 

Cycles: 

Encoding: 1 o 1 o o I 0 0 1 0 I direct address I 

Operation: ORL 
(direct) ~ (direct) V (A) 

ORL direct,# data 

Bytes: 3 

Cycles: 2 

Encoding: I o 1 o o I 0 0 1 1 direct addr. I immediate data I 

Operation: ORL 
(direct)~ (direct) V #data 

4-50 



ORL C,<src-blt> 

Function: Logical-OR for bit variables 

CHAPTER4 
Instruction Set 

Description: Set the carry flag if the Boolean value is a logical I; leave the carry in its current state 
otherwise . A slash ("/") preceding the operand in the assembly language indicates that the 
logical complement of the addressed bit is used as the source value, but the source bit itself is 
not affected. No other flags are affected. 

Example: Set the carry flag if and only if Pl.O = l, ACC. 7 = 1, or OV = 0: 

MOY C,Pl.O ;LOAD CARRY WITH INPUT PIN PIO 

ORL C,ACC.7 ;OR CARRY WITH THE ACC. BIT 7 

ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV. 

ORL C,blt 

Bytes: 2 

Cycles: 2 

Encoding: jo 1 1 0 0 1 0 bit address 

Operation: ORL 
(C) +- (C) v (bit) 

ORL C,/blt 

Bytes: 2 

Cycles: 2 

Encoding: I 1 0 1 0 0 0 0 0 bit address 

Operation: ORL 
(C) +- (C) V (bit) 

4-51 



CHAPTER 4 
Instruction Set 

POP direct 

Function: Pop from stack. 

Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the 
Stack Pointer is decremented by one. The value read is then transferred to the directly ad­
dressed byte indicated. No flags are affected. 

4-52 

Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H 
through 32H contain the values 20H, 23H, and OlH, respectively. The instruction sequence, 

POP DPH 

POP DPL 

will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this 
point the instruction, 

POP SP 

will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was 
decremented to 2FH before being loaded with the value popped (20H). 

Bytes: 2 

Cycles: 2 

Encoding: .... I _1 __ 0_1 _,__o_o_o_o_, 

Operation: POP 
(direct) +- ((SP)) 
(SP) +- (SP) - 1 

direct address 



CHAPTER4 
Instruction set 

PUSH direct 

Function: Push onto stack 

Description: The Stack Pointer is incremented by one. The contents of the indicated variable is then copied 
into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are affect· 
ed. 

RET 

Example: On entering an interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the 
value 0123H. The instruction sequence, 

PUSH DPL 

PUSH DPH 

will leave the Stack Pointer set to OBH and store 23H and OIH in internal RAM locations 
OAH and OBH, respectively. 

Bytes: 2 

Cycles: 2 

Encoding: 11100 0000 

Operation: PUSH 
(SP) +- (SP) + 1 
((SP))+- (direct) 

Function: Return from subroutine 

direct address 

Description: RET pops the high- and low-order bytes of the PC successively from the stack, decrementing 
the Stack Pointer by two. Program execution continues at the resulting address, generally the 
instruction immediately following an ACALL or LCALL. No flags are affected. 

Example: The Stack Pointer originally contains the value OBH. Internal RAM locations OAH and OBH 
contain the values 23H and OlH, respectively. The instruction, 

RET 

will leave the Stack Pointer equal to the value 09H. Program execution will continue at 
location 0123H. 

Bytes: 

Cycles: 2 

Encoding: I o o 1 O O o 1 o 

Operation: RET 
(PC15.g) +-((SP)) 
(SP) +- (SP) - 1 
(PC7-0) +-((SP)) 
(SP) +- (SP) - 1 

4-53 



CHAPTER4 
Instruction Set 

RETI 

Function: Return from interrupt 

Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores 
the interrupt logic to accept additional interrupts at the same priority level as the one just 
processed. The Stack Pointer is left decremented by two. No other registers are affected; the 
PSW is not automatically restored to its pre-interrupt status. Program execution continues at 
the resulting address, which is generally the instruction immediately after the point at which 
the interrupt request was detected. If a lower- or same-level interrupt had been pending when 
the RETI instruction is executed, that one instruction will be executed before the pending 
interrupt is processed. 

Example: The Stack Pointer originally contains the value OBH. An interrupt was detected during the 
instruction ending at location 0122H. Internal RAM locations OAH and OBH contain the 
values 23H and OlH, respectively. The instruction, 

RETI 

will leave the Stack Pointer equal to 09H and return program execution to location 0123H. 

Bytes: 

Cycles: 2 

Encoding: 1~0_0 __ ~0_0_1_0~ 
Operation: RETI 

(PC15.g) +- ((SP)) 
(SP) +- (SP) - 1 
(PC7.o) +-((SP)) 
(SP) +- (SP) - 1 

RL A 

4-54 

Function: Rotate Accumulator Left 

Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 
position. No flags are affected. 

Example: The Accumulator holds the value OCSH (l 1000101B). The instruction, 

RL A 

leaves the Accumulator holding the value SBH (1000101 lB) with the carry unaffected. 

Bytes: 

Cycles: 

Encoding: I o o 1 O o o 1 1 

Operation: RL 
(A0 + 1) +- (An) n = 0 - 6 
(AO) +-(A7) 

I' 



RLC A 

Function: Rotate Accumulator Left through the Carry flag 

CHAPTER4 
Instruction Set 

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 
7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position. No 
other flags are affected. 

Example: The Accumulator holds the value OCSH (1 lOOOIOIB), and the carry is zero. The instruction, 

RLC A 

leaves the Accumulator holding the value BBH (10001010B) with the carry set. 

Bytes: 

Cycles: 

Encoding: ._I _0_0_1 _....__0_0_1 _1_, 

Operation: RLC 

RR A 

(An+ l)+-(An) n = 0 - 6 
(AO) +-(C) 
(C) +-(A7) 

Function: Rotate Accumulator Right 

Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 
position. No flags are affected. 

Example: The Accumulator holds the value OCSH (1 IOOOIOIB). The instruction, 

RR A 

leaves the Accumulator holding the value OE2.H (11 lOOOIOB) with the carry unaffected. 

Bytes: 

Cycles: 

Encoding: I o o o o I o o 1 1 

Operation: RR 
(An)+- (An + 1) n = 0 - 6 
(A7) +-(AO) 

4-55 



CHAPTER4 
Instruction Set 

RRC A 

Function: Rotate Accumulator Right through Carry flag 

Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. 
Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7 
position. No other flags are affected. 

Example: The Accumulator holds the value OC5H (11000101B), the carry is zero. The instruction, 

RRC A 

leaves the Accumulator holding the value 62 (01100010B) with the carry set. 

Bytes: 

Cycles: 

Encoding: ._I _o_o_o_...._0_0_1 _1__, 

Operation: RRC 
(An) +-- (An + 1) n = 0 - 6 
(A7) +-- (C) 
(C) +--(AO) 

SETB <bit> 

Function: Set Bit 

Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly 
addressable bit. No other flags are affected. 

Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (001 lOlOOB). The 
instructions, 

SETB C 

SETB Pl.O 

will leave the carry flag set to 1 and change the data output on Port I to 35H (00110101B). 

SETB C 

4-56 

Bytes: 

Cycles: 

Encoding: .._I _1_1 _0_1 _.__0_0_1_1 _. 

Operation: SETB 
(C) +-- 1 



SETB bit 

Bytes: 2 

Cycles: 

Encoding: ~\ _1 _1_0_1~_0_0_1 _o~ 
Operation: SETB 

(bit) - 1 

SJMP rel 

Function: Short Jump 

bit address 

CHAPTER4 
Instruction Set 

Description: Program control branches unconditionally to the address indicated. The branch destination is 
computed by adding the signed displacement in the second instruction byte to the PC, after 
incrementing the PC twice. Therefore, the range of destinations allowed is from 128 bytes 
preceding this instruction to 127 bytes following it. 

Example: The label "RELADR" is assigned to an instruction at program memory location 0123H. The 
instruction, 

SJMP RELADR 

will assemble into location OlOOH. After the instruction is executed, the PC will contain the 
value 0123H. 

(Note: Under the above conditions the instruction following SJMP will be at 102H. Therefore, 
the displacement byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put 
another way, an SJMP with a displacement ofOFEH would be a one-instruction infinite loop.) 

Bytes: 2 

Cycles: 2 

Encoding: I 1 O O O O O O O 

Operation: SJMP 
(PC) +-- (PC) + 2 
(PC) +-- (PC) + rel 

rel. address 

4-57 



CHAPTER4 
Instruction Set 

SUBB A,<src-byte> 

Function: Subtract with borrow 

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator, 
leaving the result in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed 
for bit 7, and clears C otherwise. (If C was set before executing a SUBB instruction, this 
indicates that a borrow was needed for the previous step in a multiple precision subtraction, so 
the carry is subtracted from the Accumulator along with the source operand.) AC is set if a 
borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6, but 
not into bit 7, or into bit 7, but not bit 6. 

When subtracting signed integers OV indicates a negative number produced when ~ negative 
value is subtracted from a positive value, or a positive result when a positive number is 
subtracted from a negative number. 

The source operand allows four addressing modes: register, direct, register-indirect, or imme­
diate. 

Example: The Accumulator holds OC9H (11001001B), register 2 holds 54H (01010100B), and the carry 
flag is set. The instruction, 

SUBB A,R2 

will leave the value 74H (Ol l IOIOOB) in the accumulator, with the carry flag and AC cleared 
but OV set. 

Notice that OC9H minus 54H is 75H. The difference between this and the above result is due 
to the carry (borrow) flag being set before the operation. If the state o(the carry is not known 
before starting a single or multiple-precision subtraction, it should not be explicitly cleared by 
a CLR C instruction. 

SUBB A,Rn 

Bytes: 

Cycles: 

Encoding: ~I _1_0_0_1 ~-1_r_r _r~ 
Operation: SUBB 

(A) - (A) - (C) - (Rn) 

SUBB A,dlrect 

Bytes: 2 

Cycles: 

Encoding: ~I _1_0_0_1~_0_1 _0_1 ~ direct address 

Operation: SUBB 
(A) - (A) - (C) - (direct) 

4-58 



SUBB A,@RI 

Bytes: 

Cycles: 

Encoding: I 1 o o 1 o 1 1 

Operation: SUBB 
(A) +- (A) - (C) - ((Ri)) 

SUBB A,#data 

Bytes: 2 

Cycles: 

Encoding: I 1 O O 1 O 1 O O 

Operation: SUBB 
(A)+- (A) - (C) - #data 

SWAP A 

immediate data 

Function: Swap nibbles within the Accumulator 

CHAPTER4 
Instruction Set 

Description: SW AP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator 
(bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction. No 
flags are affected. 

Example: The Accumulator holds the value OC5H (l 1000101B). The instruction, 

SWAP A 

leaves the Accumulator holding the value 5CH (01011 lOOB). 

Bytes: 

Cycles: 

Encoding: I 1 1 o O o GiiJ 
Operation: sw AP 

(A3_0) -;: (A7_4) 

4-59 



CHAPTER4 
Instruction Set 

XCH A,<byte> 

Function: Exchange Accumulator with byte variable 

Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time 
writing the original Accumulator contents to the indicated variable. The source/destination 
operand can use register, direct, or register-indirect addressing. 

XCH 

XCH 

XCH 

4-60 

Example: RO contains the address 20H. The Accumulator holds the value 3FH (0011111 lB). Internal 
RAM location 20H holds the value 75H (Ol l 10101B). The instruction, 

A,Rn 

Bytes: 

Cycles: 

Encoding: 

Operation: 

A, direct 

Bytes: 

Cycles: 

Encoding: 

Operation: 

A,@Ri 

Bytes: 

Cycles: 

Encoding: 

Operation: 

XCH A,@RO 

will leave RAM location 20H holding the values 3FH (0011111 lB) and 75H (Ol 110101B) in 
the accumulator. 

I 1 1 0 0 1 r r r 

XCH 
(A) ::, (Rn) 

2 

I 1 1 0 0 0 1 0 1 direct address 

XCH 
(A) -;:: (direct) 

I 1 1 0 0 0 1 1 

XCH 
(A) ::, ((Ri)) 



XCHD A,@RI 

CHAPTER 4 
Instruction Set 

Function: Exchange Digit 

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing a 
hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by the 
specified register. The high-order nibbles (bits 7-4) of each register are not affected. No flags 
are affected. 

Example: RO contains the address 20H. The Accumulator holds the value 36H (001101 lOB). Internal 
RAM location 20H holds the value 75H (Ol l 10101B). The instruction, 

Bytes: 

Cycles: 

XCHD A,@RO 

will leave RAM location 20H holding the value 76H (011101 lOB) and 35H (001 lOIOlB) in the 
Accumulator. 

Encoding: ._I _1_1_0_1~_0_1_1 ~ 
Operation: XCHD 

(A3.o) -:_ ((Ri3.o)) 

XRL < dest·byte >, < src·byte > 

Function: Logical Exclusive-OR for byte variables 

Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, 
storing the results in the destination. No flags are affected. 

The two operands allow six addressing mode combinations. When the destination is the Accu­
mulator, the source can use register, direct, register-indirect, or immediate addressing; when 
the destination is a direct address, the source can be the Accumulator or immediate data. 

(Note: When this instruction is used to modify an output port, the value used as the original 
port data will be read from the output data latch, not the input pins.) 

Example: If the Accumulator holds OC3H (1100001 lB) and register 0 holds OAAH (10101010B) then 
the instruction, 

XRL A,RO 

will leave the Accumulator holding the value 69H (Ol 101001B). 

When the destination is a directly addressed byte, this instruction can complement combina­
tions of bits in any RAM location or hardware register. The pattern of bits to be complement­
ed is then determined by a mask byte, either a constant contained in the instruction or a 
variable computed in the Accumulator at run-time. The instruction, 

XRL Pl,#00110001B 

will complement bits 5, 4, and 0 of output Port 1. 

4-61 



CHAPTER4 
Instruction Set 

XRL A,Rn 

Bytes: 

Cycles: 

Encoding: I o 1 1 0 1 r r r 

Operation: XRL 
(A) +- (A) ¥ (Rn) 

11 

XRL A,direct 

Bytes: 2 

Cycles: 

Encoding: I o 1 1 0 0 1 0 1 direct address 

Operation: XRL 
(A) +- (A) ¥ (direct) 

XRL A,@Ri 

Bytes: 

Cycles: 

Encoding: I o 1 1 0 0 1 1 i 

Operation: XRL 
(A) +- (A) ¥ ((Ri)) 

XRL A,#data 

Bytes: 2 

Cycles: 

Encoding: I o 1 1 0 0 1 0 0 immediate data 

Operation: XRL 
(A)+- (A) ¥ #data 

XRL dlrect,A 

Bytes: 2 

Cycles: 

Encoding: I o 1 1 0 I o o 1 o I direct address 

Operation: XRL 
(direct) +- (direct) ¥ (A) 

4-62 



XRL dlrect,#data 

Bytes: 3 

Cycles: 2 

Encoding: 10110 0011 

Operation: XRL 
(direct) - (direct) ¥ #data 

direct address immediate data 

CHAPTER4 
Instruction Set 

4-63 



CHAPTERS 

Software Routines 
8051 Programming Techniques 

Radix Conversion Routines 
Multiple Precision Arithmetic 
Table Look-Up Sequences 

Saving CPU Status During Interrupts 
Passing Parameters on the Stack 
N-Way Branching 
Computing Branch Destinations at Run Time 
In-Line-Code Parameter-Passing 

Peripheral Interfacing Techniques 
1/0 Port Reconfiguration (First Approach) 
10 Port Reconfiguration (Second Approach) 
Simulating a Third Priority Level in Software 
Software Delay Timing 

Serial Port and Timer Mode Configuration 
Simple Serial 1/0 Drivers 
Transmitting Serial Port Character Strings 
Recognizing and Processing Special Cases 

Buffering Serial Port Output Characters 
Synchronizing Timer Overflows 
Reading a Timer/Counter "On-the-Fly" 

5-1 

5·1 
5-1 
5·2 
5-2 

5·4 
5-4 
5·6 
5·7 
5-8 

5·9 
5-9 
5-10 
5-11 
5-11 

5-12 
5-12 
5·13 
5-13 

5-14 
5·15 
5-16 



CHAPTER 5 

Software Routines 

Chapter 5 contains two sections: 

• 8051 Programming Techniques 

• Peripheral Interfacing Techniques. 

The first section has 8051 software examples for some 
common routines in controller applications. Some rou­
tines included are multiple-precision arithmetic and table 
look-up techniques. 

Peripheral Interfacing Techniques include routines for 
handling the 8051 's 1/0 ports, serial channel and timer/ 
counters. Discussed in this section is 1/0 port reconfigu­
ration, software delay timing, and transmitting serial port 
character strings along with other routines. 

8051 PROGRAMMING TECHNIQUES 

Radix Conversion Routines 

The divide instruction can be used to convert a number 
from one radix to another. BINBCD is a short subroutine 
to convert an 8-bit unsigned binary integer in the accumu­
lator (between 0 & 255) to a 3-digit (2 byte) BCD repre­
sentation. The hundred's digit is returned in one variable 
(HUND) and the ten's and one's digits returned as 
packed BCD in another (TENONE). 

;BINBCD CONVERT 8-BIT BINARY VARIABLE IN ACCUMULATOR 
TO 3-DIGIT PACKED BCD FORMAT. 

HUND 
TENO NE 

BINBCD: 

HUNDREDS' PLACE LEFT IN VARIABLE 'HUND', 
TENS' AND ONES' PLACES IN 'TENONE' . 

DATA 21H 
DATA 22H 

MOV B,UOO ;DIVIDED BY 100 TO 
DIV AB ;DETERMINE NUMBER OF 
MOV HUND,A 
MOV A,itlO ;DIVIDE REMAINDER BY 
XCH A,B ;DETERMINE NUMBER OF 
DIV AB ;TEN'S DIGIT IN ACC, 

;ONE'S DIGIT 
SWAP A 

HUNDREDS 

TEN TO 
TENS LEFT 
REMAINDER 

ADD A,B ;PACK BCD DIGITS IN ACC 
MOV TENONE,A 
RET 

IS 

The divide instruction can also separate data in the 
accumulator into sub-fields. For example, dividing 
packed BCD data by 16 will separate the two nibbles, 
leaving the high-order digit in the accumulator and the 
low-order digit (remainder) in B. Each is right-justified, so 

the digits can be processed individually. This example 
receives two packed BCD digits in the accumulator, 
separates the digits, computes their product, and returns 
the product in packed BCD format in the accumulator. 

;MULBCD 

;MULBCD: 

UNPACK TWO BCD DIGITS RECEIVED IN ACCUMULATOR 
FIND THEIR PRODUCT, AND RETURN PRODUCT 
IN PACKED BCD FORMAT IN ACCUMULATOR 

MOV 
DIV 

MUL 

MOV 
DIV 

B,ltlOH 
AB 

AB 

B,HO 
AB 

;DIVIDE INPUT BY 16 
;A & B HOLD SEPARATED DIGITS 
; (EACH RIGHT JUSTIFIED IN REGISTER) . 
;A HOLDS PRODUCT IN BINARY FORMAT 
; (0 TO 99 (DECIMAL) = 0 TO 63H) 
;DIVIDE PRODUCT BY 10 
;A HOLDS NUMBER OF TENS, B HOLDS 
;REMAINDER 

5-1 



CHAPTERS 
Software Routines 

SWAP A 
ORL 
RET 

A,B 

Multiple Precision Arithmetic 

The ADDC and SUBB instructions incorporate the previ­
ous state of the carry (borrow) flag to allow multiple­
precision calculations by repeating the operation with 
successively higher-order operand bytes. If the input 
data for a multiple-precision operation is an unsigned 

;PACK DIGITS 

string of integers, the carry flag will be set upon comple­
tion if an overflow (for ADDC) or underflow (for SUBB) 
occurs. With two's complement signed data, the most 
significant bit of the original input data's most significant 
byte indicates the sign of the string, so the overflow flag 
(OV) will indicate if overflow or underflow occurred. 

;SUBSTR SUBTRACT STRING INDICATED BY Rl 
FROM STRING INDICATED BY RO TO 
PRECISION INDICATED BY R2. 
CHECK FOR SIGNED UNDERFLOW WHEN DONE. 

SUBSTR: CLR c ;BORROW= o. 
SUBSl: MOV A,@RO ;LOAD MINUEND BYTE 

SUBB A,@Rl ;SUBTRACT SUBTRAHEND BYTE 
MOV @RO,A ;STORE DIFFERENCE BYTE 
INC RO ;BUMP POINTERS TO NEXT PLACE 
INC Rl 
DJNZ R2,SUBS1 ;LOOP UNTIL DONE 

WHEN DONE, TEST IF OVERFLOW OCCURRED 
ON LAST ITERATION OF LOOP. 

JNB OV,OV_OK 

OV·OK: RET 

Table Look-Up Sequences 

The two versions of the MOVC instructions are used as 
part of a 3-step sequence to access look-up tables in 
ROM. To use the DPTR version, load the Data Pointer 
with the starting address of a look-up table; load the 
accumulator with (or compute) the index of the entry 
desired; and execute MOVC A, @A+ DPTR. The data 
pointer may be loaded with a constant for short tables, or 
to allow more complicated data structures, and tables 
with more than 256 entries, the values for DPH and DPL 
may be computed or modified with the standard arithme­
tic instruction set. 

The PC-based version is used with smaller, "local" 
tables, and has the advantage of not affecting the data 
pointer. This makes it useful in interrupt routines or other 
situations where the DPTR contents might be significant. 
Again, a look-up sequence takes three steps: load the 
accumulator with the index; compensate for the offset 
from the look-up instruction's address to the start of the 
table by adding that offset to the accumulator; then 
execute the MOVC A,@A + PC instruction. 

As a non-trivial situation where this instruction would 
be used, consider applications wh ich store large multi-

5-2 

(OVERFLOW RECOVERY ROUTINE) 
;RETURN 

dimensional look-up tables of dot matrix patterns, non­
linear calibration parameters, and so on in the linear 
(one-dimensional) program memory. To retrieve data 
from the tables, variables representing matrix indices 
must be converted to the desired entry's memory ad­
dress. For a matrix of dimensions (MDIMEN x NDIMEN) 
starting at address BASE and respective indices INDEXI 
and INDEXJ, the address of element (INDEXI, INDEXJ) 
is determined by the formula, 

Entry Address= [BASE+ (NDIMEN x INDEX!) + INDEXJ] 

The subroutine MATRX1 can access an entry in any 
array with less than 255 elements, e.g., an 11x21 array 
with 231 elements. The table entries are defined using 
the Data Byte ("DB") directive, and will be contained in 
the assembly object code as part of the accessing 
subroutine itself. 

To handle the more general case, subroutine MATRX2 
allows tables to be unlimited in size, by combining the 
MUL instruction, double-precision addition, and the data 
pointer-based version of MOVC. The only restriction is 
that each index be between O and 255. 



;MATRX 

INDEX I 
INDEXJ 

MATRXl: 

BASEl: 

MATRX2: 

BASE2 

LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP 
TABLE IN PROGRAM MEMORY INTO ACCUMULATOR 
USING LOCAL TABLE LOOK-UP INSTRUCTION, 'MOVC A,@A + PC'. 
THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO 
BE SMALL, I.E. LESS THAN ABOUT 255 ENTRIES. 
TABLE USED IN THIS EXAMPLE IS 11 x 21. 
DESIRED ENTRY ADDRESS IS GIVEN BY THE FORMULA, 

[(BASE ADDRESS) + (21 X INDEXI) + (INDEXJ)] 

EQU R6 ;FIRST COORDINATE OF ENTRY 
DATA 23H ;SECOND COORDINATE OF ENTRY 

MOV A, INDEXI 
MOV B,t21 
MUL AB ; (21 X INDEXI) 
ADD A, INDEXJ ;ADD IN OFFSET WITHIN ROW 

ALLOW FOR INSTRUCTION BYTE BETWEEN "MOVC" AND 
ENTRY (0,0). 

INC A 
MOVC A,@A + PC 
RET 
DB 1 ; (entry 0,0) 
DB 2 ; (entry 0,1) 

DB 21 ; (entry 0, 20) 
DB 22 ; (entry 1, 0) 

DB 42 ; (entry 1, 20) 

DB 231 ; (entry 10, 20) 
MOV A,INDEXI ;LOAD FIRST COORDINATE 
MOV B,tNDIMEN 
MUL AB ; INDEXI X NDIMEN 
ADD A, now (BASE2) ;ADD IN 16-BIT BASE ADDRESS 
MOV DPL,A 
MOV A,B 
ADDC A,iHIGH(BASE2) 

CHAPTERS 
Software Routines 

(0-10). 
(0-20). 

MOV DPH,A ;DPTR=(BASE ADDR) + (INDEXI + NDIMEN) 
MOV A, INDEXJ 
MOVC A,@A + DPTR 
RET 

DB 0 
DB 0 

DB 0 
DB 0 

DB 0 

DB 0 

;ADD INDEXJ AND FETCH BYTE 

; (entry 0, 0) 
; (entry 0, 1) 

; (entry 0, NDIMEN-1) 
; (entry 1,0) 

; (entry 1, NDIMEN-1) 

; (entry MDIMEN-1, NDIMEN-1) 

5-3 



CHAPTER 5 
Software Routines 

Saving CPU Status During Interrupts 

When the 8051 hardware recognizes an interrupt re­
quest, program control branches automatically to the 
corresponding service routine, by forcing the CPU to 
process a Long CALL (LCALL) instruction to the 
appropriate address. The re turn address is stored on 
the top of the stack. After completing the service 
routine, an RETI instruction returns the processor to 
the background program at the point from which it was 
interrupted. 

5-4 

;LOC_TMP 

SERVER: 

RAM 
ADDA 

7FH 

26H 

25H 

24H 

23H 

22H 

21H 

20H 

1FH 

OOH 

EQU 

ORG 
LJMP 

ORG 
PUSH 
PUSH 

PUSH 
PUSH 
PUSH 
MOV 

POP 
POP 
POP 
POP 
POP 

RETI 

DPH 

DPL 

B 

ACC 

PSW 

PC (HIGH) 

PC(LOW) 

$ 

0003H 
SERVER 

LOC TMP 
PSW 
ACC 

B 
DPL 
DPH 
PSW,4100001000B 

DPH 
DPL 
B 
ACC 
PSW 

I+- (SP) 

097 57A-002A 

Figure 5-1. Stack Contents During Interrupt 

Interrupt service routines must not change any variable 
or hardware registers modified by the main program, or 
else the program may not resume correctly. (Such a 
change might look like a spontaneous random error. An 
example of this will be given later in this section, in the 
second method of 1/0 port reconfiguration.) Resources 
used or altered by the service routine (Accumulator, 
PSW, etc.) must be saved and restored to their previous 
value before returning from the service routine. PUSH 
and POP provide an efficient and convenient way to save 
such registers on the stack. 

;REMEMBER LOCATION COUNTER 

;STARTING ADDRESS FOR INTERRUPT ROUTINE 
;JUMP TO ACTUAL SERVICE ROUTINE LOCATE 
;ELSEWHERE 

;RESTORE LOCATION COUNTER 

;SAVE ACCUMULATOR (NOTE DIRECT ADDRESS 
;NOTATION) 
;SAVE B REGISTER 
;SAVE DATA POINTER 

;SELECT REGISTER BANK 1 

;RESTORE REGISTERS IN REVERSE ORDER 

;RESTORE PSW AND RE-SELECT ORIGINAL 
;REGISTER BANK 
;RETURN TO MAIN PROGRAM AND RESTORE 
;INTERRUPT LOGIC 

If the SP register held 1 FH when the interrupt was 
detected, then while the service routine was in progress 
the stack would hold the registers shown in Figure 5-1; 
SP would contain 26H. This is the most general case; if 
the service routine doesn't alter the B-register and data 
pointer, for example, the instruction saving and restoring 
those registers could be omitted. 

Passing Parameters on the Stack 

The stack may also pass parameters to and from subrou­
tines. The subroutine can indirectly address the parame­
ters derived from the contents of the stack pointer, or 
simply pop the stack into registers before processing. 



HEXASC: MOV RO,SP 
DEC RO 
DEC RO 
XCH A,@RO 

ANL A,JtOFH 
ADD A,it2 
MOVC A,@A + PC 
XCH A,@RO 

RET 
ASCTBL: DB '0' 

DB '1' 
DB '2' 
DB '3 
DB '4' 
DB '5' 
DB '6' 
DB '7' 
DB '8' 
DB '9' 
DB 'A' 
DB 'B' 
DB 'C' 
DB 'D' 
DB 'E' 
DB 'F' 

One advantage here is simplicity. Variables need not be 
allocated for specific parameters, a potentially large 
number of parameters may be passed, and different 
calling programs may use different techniques for deter­
mining or handling the variables. 

For example, the subroutine HEXASC converts a hexa­
decimal value to ASCII code for its low-order digit. It first 
reads a parameter stored on the stack by the calling 
program, then uses the low-order bits to access a local 
16-entry look-up table holding ASCII codes, stores the 
appropriate code back in the stack and then returns. 
The accumulator contents are left unchanged. 

PUSH HUND 
CALL HEXASC 
POP ACC 
CALL SP_OUT 
PUSH TEN ONE 
CALL HEXASC 

MOV A,TENONE 
SWAP A 
PUSH ACC 
CALL HEXASC 
POP ACC 
CALL SP OUT 
POP ACC 
CALL SP OUT 

CHAPTERS 
Software Routines 

;ACCESS LOCATION PARAMETER PUSHED ONTO 
;STACK 
;READ INPUT PARAMETER AND SAVE 
;ACCUMULATOR 
;MASK ALL BUT LOW-ORDER 4 BITS 
;ALLOW FOR OFFSET FROM MOVC TO TABLE 
;READ LOOK-UP TABLE ENTRY 
;PASS BACK TRANSLATED VALUE AND RESTORE 
;ACCUMULATOR 
;RETURN TO BACKGROUND PROGRAM 
;ASCII CODE FOR OOH 
;ASCII CODE FOR OlH 
;ASCII CODE FOR 02H 
;ASCII CODE FOR 03H 
;ASCII CODE FOR 04H 
;ASCII CODE FOR OSH 
;ASCII CODE FOR 06H 
;ASCII CODE FOR 07H 
;ASCII CODE FOR 08H 
;ASCII CODE FOR 09H 
;ASCII CODE FOR OAH 
;ASCII CODE FOR OBH 
;ASCII CODE FOR OCH 
;ASCII CODE FOR ODH 
;ASCII CODE FOR OEH 
;ASCII CODE FOR OFH 

The background program may reach this subroutine with 
several different calling sequences, all of which PUSH a 
value before calling the routine and POP the result to any 
destination register or port later. There is even the option 
of leaving a value on the stack if it won't be needed until 
later. The example below converts the three-digit BCD 
value computed in the Radix Conversion example above 
to a three-character string, calling a subroutine SP_ OUT 
to output an 8-bit code in the accumulator. 

;CONVERT HUNDREDS DIGIT 

;TRANSMIT HUNDREDS CHARACTER 

;CONVERT ONE'S PLACE DIGIT 
;BUT LEAVE ON STACK! 

;RIGHT-JUSTIFY TEN'S PLACE 
;CONVERT TEN'S PLACE DIGIT 

;TRANSMIT TEN'S PLACE CHARACTER 

;TRANSMIT ONE'S PLACE CHARACTER 

5-5 



CHAPTERS 
Software Routines 

N-Way Branching 

There are several different means for branching to 
sections of code determined or selected at run time. 
(The single destination addresses incorporated into 
conditional and unconditional jumps are, of course, fixed 
at assembly time.) Each has advantages for different 
applications. 

In a typical N-way branch situation, the potential destina­
tions are generally known at assembly time. One of a 
number of small routines is selected according to the 
value of an index variable determined while the program 
is running. The most efficient way to solve this problem 
is with the MOVC and an indirect jump instruction, using 
a short table of offset values in ROM to indicate the 
relative starting addresses of the several routines. 

JMP @A+ DPTR is an instruction which performs an 
indirect jump to an address determined during program 

;MEMSEL EQU R3 

JUMP_4: MOV A,MEMSEL 
MOV DPTR,llJMPTBL 
MOVC A,@A + DPTR 
JMP @A + DPTR 

JMPTBL: DB MEMSPO-JMPTBL 
DB MEMSPl-JMPTBL 
DB MEMSP2-JMPTBL 
DB MEMSP3-JMPTBL 

MEMSPO: MOV A,@RO 
RET 

MEMSPl: MOVX A,@RO 
RET 

MEMSP2: MOV DPL,RO 
MOV DPH,Rl 
MOVX A,@DPTR 
RET 

MEMSP3: MOV A,Rl 
ANL A, i07H 
ANL Pl, U1111000B 
ORL Pl,A 
MOVX A,@RO 
RET 

To use this approach, the size of the jump table plus the 
length of the alternate routines must be less than 256 
bytes. The jump table and routines may be located 
anywhere in program memory and are independent of 
256-byte program memory pages. 

For applications where up to 128 destinations must be 
selected, all residing in the same 2K page of program 
memory, the following technique may be used. In the 

5-6 

execution. The instruction adds the 8-bit unsigned ac­
cumulator contents with the contents of the 16-bit data 
pointer, just like MOV A,@A + DPTR. The resulting sum 
is loaded into the program counter and is used as the 
address for subsequent instruction fetches. Again, a 16-
bit addition is performed: a carry-out from the low-order 
eight bits may propagate through the higher-order bits. In 
this case, neither the accumulator contents nor the data 
pointer is altered. 

The example subroutine below reads a byte of RAM into 
the accumulator from one of four alternate address 
spaces, as selected by the contents of the variable 
MEMSEL. The address of the byte to be read is deter­
mined by the contents of RO (and optionally R1 ). It might 
find use in a printing terminal application, where four 
different model printers all use the same ROM code but 
use different types (and sizes) of buffer memory for 
different speeds and options. 

;READ FROM INTERNAL RAM 

;READ FROM 256 BYTE EXTERNAL RAM 

;READ 64K BYTE EXTERNAL RAM 

;READ 4K BYTE EXTERNAL RAM 

printing terminal example, this sequence could process 
128 different codes for ASCII characters arriving via the 
8051 serial port. 

The destinations in the jump table (PROCOO-PROC7F) 
are not all necessarily unique routines. A large number 
of special control codes could each be processed with 
their own unique routine, with the remaining printing 
characters all causing a branch to a common routine for 
entering the character into the output queue. 

i.1 
I 



OPTION EQU R3 

JMP128: MOV A, OPTION 
RL A 
MOV DPTR, UNSTBL 
JMP @A + DPTR 

INSTBL: AJMP PROCOO 
AJMP PROCOl 
AJMP PROC02 

AJMP PROC7E 
AJMP PROC7F 

Computing Branch Destinations 
at Run Time 

In some rare situations, 128 options are insufficient, the 
destination routines may cross a 2K page boundary, or a 
branch destination is not known at assembly time (for 
whatever reason), and therefore cannot be easily in­
cluded in the assembled code. These situations can all 
be handled by computing the destination address at run­
time with standard arithmetic or table look-up instruc­
tions, then performing an indirect branch to that address. 

RTEMP 

JMP256: 

LOW128: 

EQU 

MOV 
MOV 
CLR 
RLC 
JNC 
INC 
MOV 
INC 
MOVC 
PUSH 
MOV 
MOVC 
PUSH 

R7 

DPTR,tADRTBL 
A, OPTION 
c 
A 
LOW128 
DPH 
RTEMP,A 
A 
A,@A + DPTR 
ACC 
A,RTEMP 
A,@A + DPTR 

ACC 

MULTIPLY BY 2 FOR 2-BYTE JUMP 
FIRST ENTRY IN JUMP TABLE 
JUMP INTO JUMP TABLE 

;128 CONSECUTIVE 

; AJMP INSTRUCTIONS 

CHAPTERS 
Software Routines 

TABLE 

There are two simple ways to execute this last step, 
assuming the 16-bit destination address has already 
been computed. The first is to load the address into the 
DPH and DPL registers, clear the accumulator and 
branch using the JMP @A + DPTR instruction; the 
second is to push the destination address onto the stack, 
low-order byte first (so as to mimic a call instruction) then 
pop that address into the PC by performing a return 
instruction. This also adjusts the stack pointer to its 
previous value. The code segment below illustrates the 
latter possibility. 

; FIRST ADDRESS TABLE ENTRY 
; LOAD INDEX INTO TABLE 

;MULTIPLY BY 2 FOR 2-BYTE JUMP TABLE 

;FIX BASE IF INDEX >127. 
; SAVE ADJUSTED ACC FOR SECOND READ 
; READ LOW-ORDER BYTE FIRST 
; GET LCM-ORDER BYTE FROM TABLE 

; RELOAD ADJUSTED ACC 
; GET HIGH-ORDERED BYTE FROM TABLE 

THE TWO ACC PUSHES HAVE PRODUCED 

ADRTBL: 

A "RETURN ADDRESS" ON THE STACK WHICH CORRESPONDS 
TO THE DESIRED STARTING ADDRESS. 
IT MAY BE REACHED BY POPPING THE STACK 
INTO THE PC. 
RET 

DW 
ow 

PROCOO 
PROCOl 

DW PROCFF 

;UP TO 256 CONSECUTIVE DATA 
;WORDS INDICATING STARTING ADDRESSES 

5-7 



CHAPTER 5 
Software Routines 

In-Line-Code Parameter-Passing 

Parameters can be passed by loading appropriate regis­
ters with values before calling the subroutine. This 
technique is inefficient if a lot of the parameters are 
constants, since each would require a separate register 
to carry it, and a separate instruction to load the register 
each time the routine is called. 

If the routine is called frequently, a more code-efficient 
way to transfer constants is "in-line-code" parameter­
passing. The constants are actually part of the program 
code, immediately following the call instruction. The 
subroutine determines where to find them from the return 
address on the stack, and then reads the parameters it 
needs from program memory. 

For example, assume a utility named ADD-BCD adds a 
16-bit packed-BCD constant with a 2-byte BCD variable 

ADDBCD: 

5-8 

CALL ADD BCD 
DW 
DB 
DB 

POP 
POP 
MOV 
MOVC 
MOV 
MOV 
MOVC 
MOV 
MOV 
MOVC 
ADD 
DA 
MOV 
INC 
INC 
CLR 
MOVC 
ADDC 
DA 
MOV 
MOV 
JMP 

1234H 
56H 
78H 

DPH 
DPL 
A,#2 
A,@A + 
RO,A 
A,#3 
A,@A + 
Rl,A 
A,itl 
A,@A + 
A,@RO 
A 
@Rl,A 
RO 
Rl 
A 
A,@A + 
A,@RO 
A 
@Rl,A 
A,#4 

DPTR 

DPTR 

DPTR 

DPTR 

@A + DPTR 

in internal RAM and stores the sum in a different 2-byte 
buffer. The utility must be given the constant and both 
buffer addresses. Rather than using four working regis­
ters to carry this information, all 4 bytes could be inserted 
into program memory each time the utility is called. 
Specifically, the calling sequence below invokes the 
utility to add 1234 (decimal) with the string at internal 
RAM address 56H, and store the sum in a buffer at 
location 78H. 

The ADDBCD subroutine determines at what point the 
call was made by popping the return address from the 
stack into the data pointer high- and low-order bytes. A 
MOVC instruction then reads the parameters from pro­
gram memory as they are needed. When done, 
ADDBCD resumes execution by jumping to the instruc­
tion following the last parameter. 

;BCD CONSTANT 
;SOURCE STRING ADDRESS 
;DESTINATION STRING ADDRESS 
;CONTINUATION OF PROGRAM 

;POP RETURN ADDRESS INTO DPTR 

;INDEX FOR SOURCE STRING PARAMETER 
;GET SOURCE STRING LOCATION 

;INDEX FOR DESTINATION STRING PARAMETER 
;GET DESTINATION ADDRESS 

;INDEX FOR 16-BIT CONSTANT LOW BYTE 
;GET LOW-ORDER VALUE 
;COMPUTE LOW-ORDER BYTE OF SUM 
;DECIMAL ADJUST FOR ADDITION 
;SAVE IN BUFFER 

;INDEX FOR HIGH-BYTE= 0 
;GET HIGH-ORDER CONSTANT 

DECIMAL ADJUST FOR ADDITION 
SA VE IN BUFFER 
INDEX FOR CONTINUATION OF PROGRAM 
JUMP BACK INTO MAIN PROGRAM 



This example illustrates several points: 

1. The "subroutine" does not end with a normal return 
statement; instead, an indirect jump relative to the 
data pointer returns execution to the first instruction 
following the parameter list. The two initial POP 
instructions correct the stack-pointer contents. 

2. Either an ACALL or LCALL works with the subrou­
tine, since each pushes the address of the next 
instruction or data byte onto the stack. The call may 
be made from anywhere in the full 8051 address 
space, since the MOVC instruction accesses all 64K 
bytes. 

3. The parameters passed to the utility can be listed in 
whatever order is most convenient, which may not be 
that in which they're used. The utility has essentially 
"random access" to the parameter list, by loading the 
appropriate constant into the accumulator before 
each MOVC instruction. 

4. Other than the data pointer, the whole calling and 
processing sequence only affects the accumulator, 
PSW and pointer registers. The utility could have 
pushed these registers onto the stack (after popping 
the parameter list starting address), and popped 
before returning. 

Passing parameters through in-line-code can be used in 
conjunction with other variable passing techniques. 

CHAPTER 5 
Software Routines 

Th~ utility can also get input variables from working 
registers or from the stack, and return output variables to 
registers or to the stack. 

PERIPHERAL INTERFACING TECHNIQUES 

1/0 Port Reconfiguration (First Approach) 

110 ports must often transmit or receive parallel data in 
formats other than as 8-bit bytes. For example, if an 
application requires three 5-bit latched output ports 
(called X, Y, and Z), these "virtual" ports could be mapped 
onto the pins of "physical'' ports 1 and 2 (see example at 
bottom of page). 

This pin assignment leaves P2. 7 free for use as a test pin 
input data pin, or control output through software. ' 

Notice that the bits of port Z are reversed. The highest­
order port Z pin corresponds to pin P2.2, and the lowest­
order pin of port Z is P2.6, due to PC board layout 
considerations. When connecting an 8051 to an imme­
diately adjacent keyboard column decoder or another 
device with weighted inputs, the corresponding pins may 
not be aligned. The interconnections must be 
"scrambled" to compensate either with interwoven circuit 
board traces or through software (as shown below and 
on the following page). 

PORT"Z" PORT''Y" PORT"X" 

PZO PZ1 PZ2 PZ3 PZ4 PY4 PY3 PY2 PY1 PYO PX4 PX3 PX2 PX1 PXO 

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 

PX MAP 
PY MAP 
PZ MAP 

OUT PX: 

OUT PY: 

OUT_PZ: 

DATA 
DATA 
DATA 

ANL 
MOV 
A CALL 
RET 

MOV 
A CALL 
A CALL 
RET 

MOV 
A CALL 
RET 

20H 
21H 
22H 

A, 4100011111B ;CLEAR BITS ACC.7 - ACC.5 
PX_MAP,A ;SAVE DATA IN MAP BYTE 
OUT Pl ;UPDATE PORT 1 OUTPUT LATCH 

PY_MAP,A ;SAVE IN MAP BYTE 
OUT Pl ; UPDATE PORT 1 
OUT P2 ;AND PORT 2 OUTPUT LATCHES 

PZ_MAP,A ;SAVE DATA IN MAP BYTE 
OUT P2 ; UPDATE PORT 2. 

5-9 



CHAPTERS 
Software Routines 

OUT_Pl: MOV A,PY_MAP 
SWAP A 
RL A 
ANL A, flllOOOOOB 
ORL A,PX_MAP 
MOV Pl,A 
RET 

OUT_P2: MOV C,PZ_MAP.0 
RLC A 
MOV C,PZ_MAP.1 
RLC A 
MOV C,PZ_MAP.2 
RLC A 
MOV C,PZ_MAP.3 
RLC A 
MOV C,PZ_MAP.4 
RLC A 
MOV C,PZ_MAP.4 
RLC A 
MOV C,PZ_MAP.3 
RLC A 
SETB ACC.7 
MOV P2.A 
RET 

Writing to the virtual ports must not affect any other pins. 
Since the virtual output algorithms are non-trivial, a 
subroutine is needed for each port: OUT _PX, OUT _PY 
and OUT_PZ. Each is called with data to output right­
justified in the accumulator, and any data in bits ACC.7-
ACC.5 is insignificant. Each subroutine saves the data in 
a "map" variable for the virtual port, then calls other 
subroutines which use the data in the various map bytes 
to compute and output the 8-bit pattern needed for each 
physical port affected. The two level structure of the 
above subroutines can be modified somewhat if code 
efficiency and execution speed are critical: incorporate 
the code shown as subroutines OUT _P1 and OUT _P2 
directly into the code for OUT _PX and OUT _PZ, in place 
of the corresponding CALL instructions. OUT _PY would 
not be changed, but now the destinations for its ACALL 
instructions would be alternate entry points In OUT _PX 
and OUT_PZ, instead of isolated subroutines. 

1/0 Port Reconfiguration 
(Second Approach) 

A trickier situation arises if two sections of code which 
write to the same port or register, or call virtual output 
routines like those above, need to be executed at differ­
ent interrupt levels. For example, suppose the back­
ground program wants to rewrite Port X (using the port 
associations in the previous example), and has com­
puted the bit pattern needed for P1. An interrupt is 

5-10 

;OUTPUT ALL Pl BITS 

;SHIFT PY_MAP LEFT 5 BITS 
;MASK OUT GARBAGE 
;INCLUDE PX_MAP BITS 

;LOAD CY WITH P2.6 BIT 
;AND SHIFT INTO ACC. 
;LOAD CY WITH P2.5 BIT 
;AND SHIFT INTO ACC. 
;LOAD CY WITH P2.4 BIT 
;AND SHIFT INTO ACC. 
;LOAD CY WITH P2.3 BIT 
;AND SHIFT INTO ACC. 
;LOAD CY WITH P2.2 BIT 
;AND SHIFT INTO ACC. 
;LOAD CY WITH P2.1 BIT 
;AND SHIFT INTO ACC. 
;LOAD CY WITH P2.0 BIT 
;AND SHIFT INTO ACC. 
; (ASSUMING INPUT ON P2.7) 

detected just before the MOV P1 ,A instruction, and the 
service routine tries to write Port Y. The service routine 
would correctly update P1 and P2, but upon returning 
to the background program P1 is immediately re­
written with the data computed before the interrupt! Now 
pins P2.1 and P2.0 indicate (correctly) data written to port 
Y in the interrupt routine, but the earlier data written to 
P.7-P1.5 is no longer valid. The same sort of confusion 
could arise if a high-level interrupt disrupted such an 
output sequence. 

One solution is to disable interrupts around any section ' 
of code which must not be interrupted (called a "critical 
section"), but this would adversely affect interrupt la­
tency. Another is to have interrupt routines set or clear a 
flag ("semaphore") when a common resource is altered 
- a rather complex and elaborate system. 

An easier way to ensure that any instruction which writes 
the port X field of P1 does not change the port Y field pins 
from their state at the beginning of that instruction, is 
shown next. A number of 8051 operations read, modify, 
and write the output port latches all in one instruction. 
These are the arithmetic and logical instructions (INC, 
DEC, ANL, ORL, etc.), where an addressed byte is both 
the destination variable and one of the source operands. 
Using these instructions, instead of data moves, elimi­
nates the critical section problem entirely. 

1· 



OUT_PX: ANL Pl,UllOOOOOB 
ORL Pl,A 
RET 

OUT_PY: MOV B,i20H 
MUL AB 
ANL Pl, tOOOlllllB 
ORL Pl,A 
MOV A,B 
ANL P2, tlllllOOB 
ORL P2,A 
RET 

OUT_PZ: RRC A 
MOV P2.6,C 
RRC A 
MOV P2.5,C 
RRC A 
MOV P2.4,C 
RRC A 
MOV P2.3,C 
RRC A 
MOV P2.2,C 
RET 

Simulating a Third Priority Level 
in Software 

Some applications require more than the two priority 
levels that are provided by on-chip hardware in 8051 
devices. In these cases, relatively simple software can 
be written to produce the same effect as a third priority 
level. 

First, interrupts that are to have higher priority than 1 are 
assigned to priority 1 in the IP (Interrupt Priority) register. 
The service routines for priority 1 interrupts that are 
supposed to be interruptible by "priority 2" interrupts are 
written to include the following code: 

LABEL: 

PUSH IE 
MOV IE, #MASK 

CALL LABEL 

(execute service routine) 

POP 
RET 
RETI 

IE 

As soon as any priority 1 interrupt is acknowledged, the 
IE (Interrupt Enable) register is re-defined as as to disable 
all but "priority 2" interrupts. Then, a CALL to LABEL 
executes the RETI instruction, which clears the priority 1 

;CLEAR BITS Pl.4-Pl.O 

CHAPTERS 
Software Routines 

; SET Pl PIN FOR EACH ACC BIT SET 

; SHIFT B A LEFT 5 BITS 
; CLEAR PY FIEID OF PORT 1 
; SET PY BITS ON PORT 1 
; 'LOAD 2 BITS SHIFTED INTO B 
; AND UPDATE P2 

;MOVE ORIGINAL ACC.O INTO CY 
;AND STORE TO PIN P2.6. 
;MOVE ORIGINAL ACC. l INTO CY 
;AND STORE TO PIN P2.5. 
;MOVE ORIGINAL ACC.2 INTO CY 
;AND STORE TO PIN P2.4. 
;MOVE ORIGINAL ACC.3 INTO CY 
;AND STORE TO PIN P2.3. 
; MOVE ORIGINAL ACC. 4 INTO CY 
; AND STORE TO PIN P2 • 2. 

interrupt-in-progress flip-flop. At this point any priority 1 
interruptthat is enabled can be serviced, but only "priority 
2" interrupts are enabled. 

POPping IE restores the original enable byte. Then a 
normal RET (rather than another RETI) is used to termi­
nate the service routine. The additional software adds 1 O 
µs (at 12 MHz) to priority 1 interrupts. 

Software Delay Timing 

Many 8051 applications invoke exact control over output 
timing, A software-generated output strobe, for instance, 
might have to be exactly 50 µs wide. The DJNZ 
operation can insert a one instruction software delay into 
a piece of code, adding a moderate time delay of two 
instruction cycles per iteration. For example, two instruc­
tions can add a 49-µsec. software delay loop to code to 
generate a pulse on the WR pin. 

CLR WR 
MOV 
DJNZ 
SETB 

R2,ll24 
R2,$ 
WR 

The dollar sign in this example is a special character 
meaning '1he address of this instruction". It can be used 
to eliminate instruction labels on nearby source lines. 

5-11 



CHAPTERS 
Software Routines 

Serial Port and Timer Mode Configuration 

Configuring the 8051 's Serial Port for a given data rate 
and protocol requires essentially three short sections of 
software. On power-up or hardware reset the serial port 
and timer control words must be initialized to the appro­
priate values. Additional software is also needed in the 
transmit routine to load the serial port data register and in 
the receive routine to unload the data as it arrives. 

To choose one arbitrary example, assume the 8051 
should communicate with a standard CRT operating at 
2400 baud (bits per second). Each character is transmit­
ted as seven data bits, odd parity, and one stop bit. The 
resulting character rate is 2400 baucl/9 bits, approxi­
mately 265 characters per second. 

For the sake of clarity, the transmit and receive subrou­
tines here are driven by simple-minded software status 

; 
, 

SPINIT: 

INITIALIZE SERIAL PORT 
FOR 8-BIT UART MODE 
& SET TRANSMIT READY FLAG. 
MOV SCON,f01010010B 

INITIALIZE TIMER 1 FOR 
AUTO-RELOAD AT 32 X 2400 HZ 

polling code rather than interrupts. The serial port must 
be initialized to 8-bit UART mode (SMO, SM1 .. 01), 
enabled to receive all messages (SM2=0, REN=1). The 
flag indicating that the transmit register is free for more 
data will be artificially set in order to let the output 
software know the output register is available. All this can 
be set !JP with the instruction at label SPINIT. 

Timer 1 will be used in auto-reload mode as a baud rate 
generator. To achieve a data rate of 2400 baud, the timer 
must divide the 1 MHz internal clock by 

1x106 

(32) (2400) 

which equals 13 (actually, 13.02) instruction cycles. The 
timer must reload the value 13, or OF3H, as shown by the 
code at label TllNIT. (ASM51 will accept both the signed 
decimal or hexadecimal representations.) 

(TO USED AS GATED 16-BIT COUNTER.) 

TIINIT: MOV TCON,tll010010B 
MOV TH1,U3 
SETB TRl 

Simple Serial 1/0 Drivers 

SP _OUT is a simple subroutine to transmit the character 
passed to it in the accumulator. First it must compute 
the parity bit, insert it into the data byte, wait until the 
transmitter is available, output the character, and then 
return. 

SP _IN is an equally simple routine which waits until a 
character is received, sets the carry flag if there is an odd­
parity error, and returns the masked seven-bit code in the 
accumulator. 

;SP_OUT ADD ODD PARITY TO ACC AND 
TRANSMIT WHEN SERIAL PORT READY 

SP_OUT: MOV C,P ;MOVE PARITY BIT TO CARRY BIT 
CPL c 
MOV ACC.7,C ;INSERT INTO DATA BYTE 
JNB TI,$ ;WAIT FOR TRANSMITTER AVAILABLE 
CLR TI 
MOV SBUF,A ;OUTPUT THE CHARACTER 
RET 

5-12 



SP_IN: JNB RI,$ 
CLR RI 
MOV A,SBUF 
MOV C,P 
CPL c 
ANL A,i7FH 
RET 

Transmitting Serial Port Character Strings 

Any application which transmits characters through a 
serial port to an ASCII output device will on occasion 
need to output "canned" messages, including error 

CR EQU ODH 
LF EQU OAH 
ESC EQU lBH 

CALL XSTRING 
DB CR,LF 
DB 'AMD QUALITY' 
DB ESC 

(CONTINUATION OF PROGRAM) 

XSTRING: POP DPH 
POP DPL 

XSTR_l: CLR A 
MOVC A,@A + DPTR 

XSTR_2: JNB TI,$ 
CLR TI 
MOV SBUF,A 
INC DPTR 
CLR A 

MOVC A, (!A + DPTR 
CJNE A,fESC,XSTR_2 
MOV A,fl 
JMP @A + DPTR 

Recognizing and Processing Special Cases 

Before operating on the data it receives, a subroutine 
might give "special handling" to certain input values. 
Consider a word processing device which receives 
ASCII characters through the 8051 serial port and drives 
a thermal hard-copy printer. A standard routine trans­
lates most printing characters to bit patterns, but certain 

CHAR EQU R7 

INTERP: CJNE CHAR, i7FH, INTP_l 

RET 
INTP 1: CJNE CHAR,f07H,INTP_2 

RET 

CHAPTERS 
Software Routines 

;WAIT FOR A CHARACTER TO BE RECEIVED 

;MOVE CHARACTER TO THE ACCUMULATOR 

;SET CARRY BIT TO ONE IF ODD-PARITY ERROR 
;MASK OUT PARITY BIT FROM CHARACTER 

messages, diagnostics, or operator instructions. These 
character strings are most easily defined with in-line data 
bytes defined with the DB directive. 

;ASCII CARRIAGE RET 
;ASCII LINE-FEED 
;ASCII ESCAPE CODE 

;NEW LINES 
;MESSAGE 
;ESCAPE CHARACTER 

;LOAD DPTR WITH FIRST CHARACTER 

; (ZERO OFFSET) 
;FETCH FIRST CHARACTER OF STRING 
;WAIT UNTIL TRANSMITTER READY 
;MARK AS NOT READY 
;OUTPUT NEXT CHARACTER 
; BUMP POINTER 

;GET NEXT OUTPUT CHARACTER 
;LOOP UNTIL ESCAPE READ 

;RETURN TO CODE AFTER ESCAPE 

control characters (<DEL>, <CR>, <LF>, <BEL>, 
<ESC>, or <SP>) must invoke corresponding special 
routines. Any other character with an ASCII code less 
than 20H should be translated into the <NUL> value, 
OOH, and processed with the printing characters. The 
CJNE operation provides essentially a one-instruction 
CASE statement. 

;CHARACTER CODE VARIABLE 

;SKIP UNLESS RUBOUT 
(SPECIAL ROUTINE FOR RUBOUT CODE) 

;SKIP UNLESS BELL 
(SPECIAL ROUTINE FOR BELL CODE) 

5-13 



CHAPTERS 
Software Routines 

INTP_2: 

INTP_3: 

INTP_4: 

INTP_S: 

INTP 6: 

PRINTC: 

CJNE CHAR,lt0AH,INTP_3 

RET 
CJNE CHAR,lt0DH,INTP_4 

RET 
CJNE CHAR,ltlBH,INTP_S 

RET 
CJNE CHAR,lt20H,INTP_6 

RET 
JC PRINTC 
MOV CHAR,ltO 

RET 

Buffering Serial Port Output Characters 

It is not always efficient to transmit characters through the 
serial port one-at-a-time. Most applications generate a 
short burst of characters all at once (English words or 
multi-digit numbers, for instance), with the bursts them­
selves occurring at longer ihtervals. Instead of waiting 
while the UART outputs each character, it would be more 
efficient if the background program could enter all the 
characters into a first-in first-out (FIFO) data structure, 

QHEAD 
QTAIL 
BOTLIM 
TOP LIM 

DATA 
DATA 
EQU 
EQU 

6EH 
6FH 
70H 
7FH 

;SKIP UNLESS I.FEED 
(SPECIAL ROUTINE FOR LFEED CODE) 

;SKIP UNLESS RETURN 
(SPECIAL ROUTINE FOR RETURN CODE 

;SKIP UNLESS ESCAPE 
(SPECIAL ROUTINE FOR ESCAPE CODE) 

;SKIP UNLESS SPACE 
(SPECIAL ROUTINE FOR SPACE CODE) 

;JUMP IF CODE 20H 
;REPIACE CONTROL CHARACTER WITH 
;NULL CODE 
;PROCESS STANDARD PRINTING 
;CHARACTER 

and continue about its business, letting an ihterrupt 
routine transmit each character as ·the serial port be­
comes available. 

Assume there is a 16-byte output data buffer starting at 
70H. QHEAD and QTAIL keep track of the head and 
tail portion of the buffer being used. The subroutine 
ENTERQ waits until there is space in the queue, then 
copies a character code from the accumulator to 
the queue. 

; LAST BYTE ENTERED INTO QUEUE 
; LAST BYTE READ FROM QUEUE 

QUEUE IS EMPTY WHEN QHEAD = QTAIL AND 
FULL WHEN Q HEAD + 1 (WITHIN RANGE) - QTAIL. 
!IJJV QHEAD,ltTOPLIM 
!IJJV QTAIL,ltTOPLIM 

ENTERQ: !IJJV RO,A ; SAVE ACC DATA 
!IJJV A,QHEAD ;LOAD HEAD POINTER 
INC A ;PRE-INCREMENT POINTER 
CJNE A,ltTOPLIM+l,ENTQ_l 
!IJJV A,ltBOTLIM ;RELOAD ON OVERFLOW 

ENTQ_l: CJNE A,QTAIL,ENTQ_2 ;TEST IF QUEUE FULL 
SJMP ENTQ_l ; LOOP UNTIL SPACE AVAILABLE 

ENTQ_2: XCH A,RO ; STORE POINTER AND RELOAD ACC 
!IJJV @RO,A ;ENTER INTO QUEUE 
!IJJV QHEAD,RO ;UPDATE HEAD POINTER 
SETB ES ; ENABLE SERIAL PORT INTERRUPTS 
RET 

5-14 

1~ 
I 



The interrupt routine DQUEUE is invoked when the 
transmitter is ready for another character. First it deter­
mines if any characters are available for transmission, 
indicated by OHEAD and OTAIL being not equal. If more 
data is available, it is written to the transmit buffer (SBUF) 

ORG 0023H 
PUSH ACC 
PUSH PSW 
MOV PSW, it30Q 

DQUEUE: MOV A,QTAIL 
CJNE A,QHEAD,DQ_l 
CLR ES 
SJMP TI RET 

DQ_l: CLR TI 
INC A 
CJNE A,iTOPLIM+l,DQ_2 
MOV A,iBOTLIM 

DQ_2: MOV RO,A 
MOV SBUF,@RO 
MOV QTAIL,A 

TI RET: POP PSW 
POP ACC 
RETI 

Synchronizing Timer Overflows 

8051 timer overflows automatically generate an internal 
interrupt request, which will vector program execution to 
the appropriate interrupt service routine if interrupts are 
enabled and no other service routines are in progress at 
the time. However, it is not predictable exactly how long 
it will take to reach the service routine. The service 
routine call takes two instruction cycles, but 1, 2, or 4 
additional cycles may be needed to complete the instruc­
tion in progress. If the background program ever dis­
ables interrupts, the response latency could further in­
crease by a few instruction cycles. (Critical sections 
generally involve simple instruction sequences - rarely 
multiplies or divides.) Interrupt response delay is gener­
ally negligible, but certain time-critical applications must 
take the exact delay into account. For example, gener­
ating interrupts with timer 1 every millisecond (1000 in-

CLR EA 
CLR TRl 
MOV A, now c-1000+1) 
ADD A,TLl 
MOV TLl,A 
MOV A,iHIGH(-1000+7) 
ADDC A,THl 
MOV THl,A 
SETB THl 

CHAPTERS 
Software Routines 

and the pointers are updated. If not, DQUEUE disables 
serial port interrupts and returns to the background 
program. ENTERQ will re-enable such interrupts as 
more data is available. (This example does not consider 
interrupt-driven serial input.) 

;SAVE CPU STATUS 

;SELECT BANK 3 

;TEST IF QUEUE EMPTY 
;IF SO, CLEAR ENABLE BIT AND RETURN 

;ELSE ACKNOWLEDGE REQUEST 
;COMPUTE NEXT BYTE'S ADDRESS 

;REVISE ACC IF POINTER OVERFLOWED 
;LOAD INDEX REGISTER 
;RELOAD TRANSMITTER 
;SAVE LAST POINTER USED. 
;RESTORE STATUS AND RETURN 

struction cycles) or so would normally call for reloading it 
with the value, -1000 (OFC18H). But if the interrupt 
interval (average overtime) must be accurate to 1 instruc­
tion cycle, the 16-bit value reload into the timer must be 
computed, taking into account when the timer actually 
overflowed. 

This simply requires reading the appropriate timer, which 
has been incremented each cycle since the overflow 
occurred. A sequence like the one below can stop the 
timer, computer how much time should elapse before the 
next interrupt, and reload and restart the timer. The 
double-precision calculation shown here compensates 
for any amount of timer overrun within the maximum 
interval. Note that it also takes into account that the timer 
is stopped for seven instruction cycles in the process. All 
interrupts are disabled, so a higher priority request will not 
be able to disrupt the time-critical code section. 

;DISABLE ALL INTERRUPTS 
;STOP TIMER 1 
;LOAD LOW-ORDER DESIRED COUNT 
;CORRECT FOR TIMER OVERRUN 
;RELOAD LOW-ORDER BYTE 
;REPEAT FOR HIGH-ORDER BYTE 

;RESTART TIMER 

5-15 



CHAPTERS 
Software Routines 

Reading a Timer/Counter "On-the-Fly" 

The preceding example simply stopped the timer before 
changing its contents. This is normally done when 
reloading a timer so that the time at which the timer is 
started (i.e. the "run" flag is set) can be exactly controlled. 
There are situations, though, when it is desired to read 
the current count without disrupting the timing process. 
The 8051 timer/counter registers can all be read or 
written while they are running, but a few precautions 
must be taken. 

RDTIME: MOV A,THO 
MOV RO,TLO 
CJNE A,THO,RDTIME 
MOV Rl,A 
RET 

5-16 

Suppose the subroutine RDTIME should return in <R1 > 
<RO> a 16-bit value indicating the count in timer 0. The 
instant at which the counter was sampled is not as critical 
as the fact that the value returned must have been valid 
at some point while the routine was in progress. There is 
a potential problem that between reading the two halves, 
a low-order register overflow might increment the high­
order register, and the two data bytes returned would be 
"out of phase·. The solution is to read the high-order byte 
first, then the low-order byte, and then confirm that the 

· high-order byte has not changed. If it has, repeat the 
whole process. 

SAMPLE TI MERO (HIGH) 
SAMPLE TI MERO (LOi'I) 

REPEAT IF NECESSARY 
STORE VALID READ 



CHAPTERS 

8051 Famlly Boolean Processing Capabllltles 

Boolean Processor Operation 
Boolean Processor Applications 

Bit Permutation 
Software Serial 1/0 
Combinatorial Logic Equations 
Automotive Dashboard Functions 

6-1 

6-1 
6-11 
6-12 
6-15 
6-18 
6-21 





CHAPTERS ~ 

8051 Family Boolean Processing Capabilities 

The 8051 incorporates a number of special features that 
support the direct manipulation and testing of individual 
bits and allow the use of single-bit variables in performing 
logical operations. Taken together, these features are 
referred to as the 8051 Family Boolean Processor. While 
the bit-processing capabilities alone would be adequate 
to solve many control applications, their true power 
comes when they are used in conjunction with the 
microcomputer's byte-processing and numerical capa­
bilities. The purpose of this discussion is to explain these 
concepts and show how they are used. 

BOOLEAN PROCESSOR OPERATION 

The Boolean Processing capabilities of the 8051 are 
based on concepts that have been around for sometime. 
Digital computer systems of widely varying designs all 
have four functional elements in common (Figure 6-1): 

• a central processor (CPU) with the control, 
timing, and logic circuits needed to execute 
stored instructions, 

• a memory to store the sequence of instructions 
making up a program or algorithm, 

• data memory to store variables used by the 
program, and 

• some means of communicating with the outside 
world. 

PROGRAM 
MEMORY 

TIMING & 
CONTROL 

The CPU usually includes one or more accumulators or 
special registers for computing or storing values during 
program execution. The instruction set of such a proces­
sor generally includes, at the minimum, operation 
classes to perform arithmetic or logical functions on 
program variables, to move variables from one place to 
another, to cause program execution to jump or condi­
tionally branch based on register or variable states, and 
to call and return from subroutines. The program and 
data memory functions sometimes share a single mem­
ory space, but this is not always the case. When the 
address spaces are separated, program and data 
memory need not even have the same basic word width. 

A digital computer's flexibility comes in part from its ability 
to combine simple, fast operations to produce more 
complex (albeit slower) ones, which in turn link together 
to eventually solve the problem at hand. A 4-bit CPU 
executing multiple precision subroutines can, for ex­
ample, perform 64-bit addition and subtraction. The 
subroutines could in turn be building blocks for floating­
point multiplication and division routines. Eventually, the 
4-bit CPU can simulate a far more complex "virtual" 
machine. 

In fact, any digital computer with the above fourfunctional 
elements can (given time) complete any algorithm 
(though the proverbial room full of chimpanzees at word 

ACCUMULATOR 
& REGISTERS 

DATA 
MEMORY 

CENTRAL 
PROCESSING 
UNIT 

INPUT/ 
OUTPUT 
PORTS 

Figure 6-1. Block Diagram for Abstract Digital Computer 

REAL 
WORLD 

6-1 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

processors might first re-create Shakespeare's classics 
and this chapter)! This fact offers little consolation to 
product designers who want programs to run as quickly 
as possible. By definition, a real-time control algorithm 
must proceed quickly enough to meet the preordained 
speed constraints of other equipment. 

One of the factors determining how long it will take a 
microcomputer to complete a given task is the number of 
instructions it must execute. What makes a given com­
puter architecture particularly well- or poorly-suited for a 
class of problems is how well its instruction set matches 
the tasks to be performed. The better the "primitive" 
operations correspond to the steps taken by the control 
algorithm, the lower the number of instructions needed, 
and the quicker the program will run. All else being equal, 
a CPU supporting 64-bit arithmetic directly could clearly 
perform floating-point math faster than a machine 
bogged down by multiple-precision subroutines. In the 
same way, direct support for bit manipulation naturally 
leads to more efficient programs handling the binary 
input and output conditions inherent in digital-control 
problems. 

Processing Elements 

The following shows how the four basic elements of a 
digital computer - a CPU with associated registers, 
program memory, addressable data RAM, and 1/0 capa­
bilities - relate to Boolean variables. 

CPU. The 8051 CPU incorporates special logic devoted 
to executing several bit-wide operations. All told, there 
are 17 such instructions, all listed in Table 6-1. Not shown 
are 94 other (mostly byte-oriented) 8051 instructions. 

Program Memory. Bit-processing instructions are 
fetched from the same program memory as other arith­
metic and logical operations. In addition to the instruc­
tions ofTable 6-1, several sophisticated program control 
features, like multiple addressing modes, subroutine 
nesting, and a two-level interrupt structure, are useful in 
structuring Boolean Processor-based programs. 

Boolean instructions are one, two, or three bytes long, 
depending on what function they perform. Those involv­
ing only the carry flag have either a single-byte opcode or 
an opcode followed by a conditional-branch destination 
byte (Figure 6-2). The more general instructions add a 
"direct address" byte after the opcode to specify the bit 
affected, yielding two or three byte encodings (Figure 
6-2). Though this format allows potentially 256 directly 
addressable bit locations, not all of them are imple­
mented in the 8051 Family. 

6-2 

Table 6-1. 8051 Family Boolean Processing Instruction 
Subset 

Mnemonic Description Byte Cyc 

SETB c Set Carry flag 1 1 
SETB bit Set direct bit 2 1 
CLR c Clear Carry flag 1 1 
CLR bit Clear direct bit 2 1 
CPL c Complement Carry flag 1 1 
CPL bit Complement direct bit 2 1 

MOV C,bit Move direct bit to Carry flag 2 1 
MOV bit,C Move Carry flag to direct bit 2 2 

ANL C,bit AND direct bit to Carry flag 2 2 
ANL C,bit AND complement of direct 2 2 

bit to Carry flag 

ORL C,bit OR direct btt to Carry flag 2 2 
ORL C,bit OR complement of direct 2 2 

bit to Carry flag 

JC rel Jump if Carry flag is set 2 2 
JNC rel Jump if No Carry flag 2 2 
JB bit, rel Jump if direct bit set 3 2 
JNB bit, rel Jump if direct bit not set 3 2 
JBC bit, rel Jump if direct bit is set & 3 2 

Clear bit 

Address mode abbreviations 

c Carry flag. 
bit 128 software flags, any 1to pin, control or status bit. 
rel All conditional jumps include an 8-bit offset byte. 

Range is +127-128 bytes relative to first byte of 
the following instruction. 

Data Memory. The instructions in Figure 6-2 can oper­
ate directly upon 144 general-purpose bits forming the 
Boolean processor "RAM." These bits can be used as 
software flags or to store program variables. Two oper­
and instructions use the CPU's carry flag ("C") as a 
special one-bit register; in a sense, the carry is a 
"Boolean accumulator" for logical operations and data 
transfers. 

Input/Output. All 32 1/0 pins can be addressed as 
individual inputs, outputs, or both, in any combination. 
Any pin can be a control strobe output, status (Test) input, 
or serial 1/0 link implemented via software. An additional 
33 individually addressable bits reconfigure, control, and 
monitor the status of the CPU, and all on-chip peripheral 
functions (timer counters, serial port modes, interrupt 
logic, and so forth). 



I opcode I 

SETS C 
CLRC 
CPLC 

j opcod!J I displacement I 

JC 
JNC 

rel 
rel 

a. Carry Control and Test Instructions 

opcode Liii:_iddres_:i] 

SETS bit 
CLR bit 
CPL bit 

ANLC, bit 
ANL C,/ bit 
ORLC, bit 
ORL C,/ bit 
MOVC, bit 

MOV bit,C 

opcode I I bit address I displacement J 

JB bit, rel 
JNS bit, rel 
JBC bit, rel 

b. Bit Manipulation and Test Instructions 

Figure 6-2. Bit Addressing Instruction Formats 

Direct Bit Addressing 

The most significant bit of the direct-address byte selects 
one of two groups of bits. Values between 0 and 127 
(OOH and 7FH) define bits in a block of 16 bytes of on­
chip RAM, between RAM addresses 20H and 2FH 
(Figure 6-3a). They are numbered consecutively from 
the lowest-order byte's lowest-order bit through the 
highest-order byte's highest-order bit. 

Bit addresses between 128 and 255 (80H and OFFH) 
correspond to bits in a number of special registers, 
mostly used for 1/0 or peripheral control. These positions 
are numbered with a different scheme than RAM; the five 
high-order address bits match those of the register's own 

CHAPTER 6 
8051 Family Boolean Processing Capabilities 

address, while the three low-order bits identify the bit 
position within that register (Figure 6-3b). 

Notice the column labeled "Symbol" in Figure 6-4. Bits 
with special meanings in the PSW and other registers 
have corresponding symbolic names. General-purpose 
(as opposed to carry-specific) instructions may access 
the carry like any other bit by using the mnemonic CY in 
place of C. PO, P1, P2, and P3 are the 8051 's four 1/0 
ports; secondary functions assigned to each of the eight 
pins of P3 are shown in Figure 6-5. 

Figure 6-6 shows the last four bit-addressable registers. 
TCON (Timer Control) and SCON (Serial-Port Control) 
control and monitor the corresponding peripherals, while 
IE (Interrupt Enable) and IP (Interrupt Priority) enable 
and prioritize the five hardware interrupt sources. Like 
the reserved hardware register addresses, the five bits 
not implemented in IE and IP should not be accessed; 
they cannot be used as software flags. 

Addressable Register Set. There are 20 special-func­
tion registers in the 8051, but the advantages of bit 
addressing only relate to the 11 described below. Five 
potentially bit-addressable register addresses (OCOH, 
OC8H, OD8H, OE8H, & OF8H) are reserved for expansion 
in microcomputers based on the 8051 Family architec­
ture. Reading or writing non-existent registers in the 8051 
series is pointless, and may cause unpredictable results. 
Byte-wide logic operations can be used to manipulate 
bits in all non-bit-addressable registers and RAM. 

The accumulator and B registers (A and S) are normally 
involved in byte-wide arithmetic, but their individual bits 
can also be used as 16 general software flags. Added 
with the 128 flags in RAM, this gives 144 general purpose 
variables for bit-intensive programs. The program status 
word (PSW) in Figure 6-4 is a collection of flags and 
machine status bits including the carry flag itself. Byte 
operations acting on the PSW can, therefore, affect the 
carry. 

Instruction Set 

Having looked at the bit variables available to the 
Boolean Processor, we will now look at the four classes 
of instructions that manipulate these bits. It may be 
helpful to refer back to Table 6-1 while reading this 
section. 

State Control. Addressable bits or flags may be set, 
cleared, or logically complemented in one instruction 
cycle with the two-byte instructions SETB, CLR, and 
CPL. The "B" affixed to SETB distinguishes it from the 
assembler "SET" directive used for symbol definition. 
SETB and CLR are analogous to loading a bit with a 
constant, 1 or 0. Single byte versions perform the same 
three operations on the carry. 

6-3 



CHAPTER 6 
8051 Famny Boolean Processing Capabllltles 

RAM 
Byte (MSB) 

7FH~ 
2FH 

2EH 

2DH 

2CH 

2BH 

2AH 

29H 

28H 

27H 

26H 

2SH 

24H 

23H 

22H 

21H 

20H 

1FH 

18H 
17H 

10H 
OFH 

08H 
07H 

00 

6-4 

1-

7F 

77 

6F 

67 

5F 

S7 

4F 

47 

3F 

37 

2F 

27 

1F 

17 

OF 

07 

7E 

76 

6E 

66 

5E 

S6 

4E 

46 

3E 

36 

2E 

26 

1E 

16 

OE 

06 

70 7C 7B 7A 

75 74 73 72 

60 6C 6B 6A 

65 64 63 62 

50 5C 5B 5A 

55 54 S3 52 

40 4C 4B 4A 

45 44 43 42 

30 3C 3B 3A 

35 34 33 32 

2D 2C 2B 2A 

2S 24 23 22 

1D 1C 1B 1A 

1S 14 13 12 

OD oc OB OA 

OS 04 03 02 

Bank 3 

Bank 2 

Bank 1 

Bank 0 

a. Ram Bit Addresses 

79 

71 

69 

81 

59 

S1 

49 

41 

39 

31 

29 

21 

19 

11 

09 

01 

(LSB) 

1-

78 

70 

68 

60 

58 

so 

48 

40 

38 

30 

28 

20 

18 

10 

08 

00 

Direct 
B11te 

Bit AddrelHI 

Addre11 (MSB) (LSB). 

OFFH 

OFOH F7 F& FS F4 F3 F2 F1 FO 

OEOH E7 E6 ES E4 E3 E2 E1 EO 

ODOH D7 D6 DS D4 D3 D2 D1 DO 

OB8H BC BB BA B9 B8 

OBOH B7 B8 BS B4 B3 B2 B1 BO 

OA8H AF AC AB AA A9 A8 

.OAOH A7 A& AS A4 A3 A2 A1 AO 

98H 9F 9E 9D 9C 98 9A 99 98 

90H 97 96 95 94 93 92 91 90 

88H 8F 8E 8D 8C 88 8A 89 88 

80H 87 86 85 84 83 82 81 80 

Herd ware 
Aegt1ter 
Symbol 

B 

ACC 

PSW 

IP 

P3 

IE 

P2 

SCON 

P1 

TCON 

PO 

b. Special Function Register Bit Addresses 

Figure 6-3. Bit Address Maps 

I' 



(MSB) (LSB) 

[CY I AC I FO RS1 RSO ov p 

Symbol Position Name and Significance 

CY PSW.7 Carry flag. 
Set/ cleared by hardware or 
software during certain arith­
metic and logical instructions. 

AC PSW.6 Auxiliary Carry flag. 
Seti cleared by hardware dur­
ing addition or subtraction in­
structions to indicate carry or 
borrow out of bit 3. 

FO PSW.5 Flag 0. 
Set/cleared/tested by soft­
ware as a user-defined status 
flag. 

RS1 PSVV.4 Register bank Select control 
bits. 

RSO PSW.3 1 & 0. Set/cleared by software 
to determine working register 
bank (see Note). 

ov 

p 

CHAPTER 6 
8051 Family Boolean Processing Capabilities 

PSW.2 Overflow flag. 
Set/cleared by hardware dur­
ing arithmetic instructions to 
indicate overflow conditions. 

PSW.1 (reserved) 

PSW.O Parity flag. 
Seti cleared by hardware each 
instruction cycle to indicate an 
odd/even number of "one" 
bits in the accumulator, i.e., 
even parity. 

Note- the contents of (RS1, RSO) 
enable the working register 
banks as follows: 
(0,0) - Bank 0 (OOH-07H) 
(0, 1) - Bank 1 (08H-OFH) 
(1,0)- Bank 2 (10H-17H) 
(1,1)-Bank3 (18H-1FH) 

Figure 6-4. PSW - Program Status Word Organization 

(MSB) (LSB) 

~~R TT1fT.o [ INT1 [ INToTTxo I Rxo-] 

Symbol Position Name and Significance 

RD P3.7 Read data control output. 
Active low pulse generated by 
hardware when external data 
memory is read. 

WR P3.6 Write data control output. 
Active low pulse generated by 
hardware when external data 
memory is written. 

T1 P3.5 Timer/counter 1 external input 
or test pin. 

TO P3.4 Timer/counter 0 external input 
or test pin. 

INT1 P3.3 

INTO P3.2 

TXD P3.1 

RXD P3.0 

Interrupt 1 input pin. 
Low-level or falling-edge trig­
gered. 

Interrupt 0 input pin. 
Low-level or falling-edge trig­
gered. 

Transmit Data pin for serial 
port in UART mode. Clock out­
put in shift register mode. 

Receive Data pin for serial 
port in UART mode. Data 1/0 
pin in shift register mode. 

Figure 6-5. P3 - Alternate 1/0 Functions of Port 3 

6-5 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

(MSe) (LSe) 

I TF1 I TR1 I TFO I TRO I 1E1 I 1T1 I •EO I •TO I 
Symbol Position Name and Significance 
TF1 TCON.7 Timer 1 overflow Flag. 

Set by hardware on timer I 
counter overflow. Cleared 
when interrupt processed. 

TR1 TCON.6 Timer 1 Run control bit. 
Seti cleared by software to turn 
timer/counter on/off. 

TFO TCON.5 Timer O overflow Flag. 
Set by hardware on timer/ 
counter overflow. Cleared 
when interrupt processed. 

TAO TCON.4 Timer 0 Run control bit. 
Seti cleared by software to turn 
timer/counter on/off. 

IE1 

IT1 

IEO 

ITO 

TCON.3 Interrupt 1 Edge flag. 
Set by hardware when exter­
nal interrupt edge detected. 
Cleared when interrupt pro­
cessed. 

TCON.2 Interrupt 1 Type control bit. 
Seti cleared by software to 
specify falling edge/low level 
triggered external interrupts. 

TCON.1 Interrupt 0 Edge flag. 
Set by hardware when exter­
nal interrupt edge detected. 
Cleared when interrupt pro-
cessed. · 

TCON.O Interrupt 0 Type control bit. 
Seti cleared by software to 
specify falling edge/low level 
triggered external interrupts. 

a. TCON-Timer/Counter Control/Status Register 

(MSe) (LSe) 

I SMO I SM1 I SM2 j REN J Tea J Res I Tl I RI I 
Symbol Position Name and Significance 

SMO SCON.7 Serial port Mode control bit 0. 
Seti cleared by software (see 
note). 

SM1 SCON.6 Serial port Mode control bit 1. 
Set/cleared by software (see 
note). 

SM2 SCON.5 Serial port Mode control bit 2. 
Set by software to disable re­
ception of frames for which bit 
8 is zero. 

REN SCON.4 Receiver Enable control bit. 
Seti cleared by software to en­
able/ disable serial data recep­
tion. 

TB8 SCON.3 Transmit Bit 8. 
Seti cleared by hardware to de­
termine state of ninth data bit 
transmitted in 9-bit UART 
mode. 

RBS 

Tl 

RI 

SCON.2 Receive Bit 8. 
Seti cleared by hardware to in­
dicate state of ninth data bit 
received. 

SCON.1 Transmit Interrupt flag. 
Set by hardware when byte 
transmitted. Cleared by soft­
ware after servicing. 

SCON.O Receive Interrupt flag. 
Set by hardware when byte re­
ceived. Cleared by software 
after servicing. 

Note· the state of (SMO, SM1) 
selects: 
(0,0)-Shift register 1/0 

expansion. 
(0, 1 )-8-bit UART, variable 

data rate. 
(1,0)-9-bit UART, fixed data 

rate. 
(1,1)-9-bit UART, variable 

data rate. 

b. SCON-Serlal Port Control/Status Register 

Figure 6-6. Peripheral Configuration Registers 

6-6 



(MSB) (LSB) 

I EA I - I - I ES I ET1 EX1 ET1 I EXO I 
Symbol Position Name and Significance 

EA IE.7 Enable All control bit. 

ES 

ET1 

Cleared by software to disable 
all interrupts, independent of 
the state of IE.4-IE.O. 

IE.6 (reserved) 

IE.5 

IE.4 

IE.3 

Enable Serial port control bit. 
Set/ cleared by software to en­
able/ disable interrupts from Tl 
or RI flags. 

Enable Timer 1 control bit. 
Seti cleared by software to en­
able/ disable interrupts from 
timer/counter 1. 

EX1 

ETO 

EXO 

CHAPTER 6 
8051 Family Boolean Processing Capabilities 

IE.2 

IE.1 

IE.O 

Enable External interrupt 1 
control bit. Set/cleared by 
software to enable/disable in­
terrupts from INT1. 

Enable Timer O control bit. 
Set/ cleared by software to en­
able/ disable interrupts from 
timer/counter 0. 

Enable External interrupt 0 
control bit. Seti cleared by 
software to enable/ disable in­
terrupts from INTO. 

c. IE-Interrupt Enable Register 

(MSB) (LSB) 

1-1-1-IPs PT1 PX1 PTO I PXO I 
Symbol Position Name and Significance 

PS 

PT1 

IP.7 (reserved) 
IP.6 (reserved) 
IP.5 (reserved) 

IP.4 

IP.3 

Serial port Priority control bit. 
Set/cleared by software to 
specify high/low priority inter­
rupts for Serial port. 

Timer 1 Priority control bit. 
Seti cleared by software to 
specify high/low priority inter­
rupts for timer/counter 1. 

PX1 IP.2 

PTO IP.1 

PXO IP.0 

d. IP-Interrupt Priority Contol Register 

External interrupt 1 Priority 
control bit. Set/cleared by 
software to specify high/low 
priority interrupts for I NT1. 

Timer 0 Priority control bit. 
Set/cleared by software to 
specify high/low priority inter­
rupts for timer/counter 0. 

External interrupt O Priority 
control bit. Set/ cleared by 
software to specify high/low 
priority interrupts for INTO. 

Figure 6-6. Peripheral Configuration Registers (continued) 

6-7 



CHAPTER 6 
8051 Family Boolean Processing capabilities 

ASM51 specifies a bit address in any of three ways: 

• by the number or expression corresponding to 
the direct bit address (0-255); 

• by the name or address of the register containing 
the bit, the dot operator symbol (a period:".'), 
and the bit's position in the register (7-0); 

• in the case of control and status register, by the 
predefined assembler symbols listed in the first 
columns of Figures 6-4 through 6-6. 

Bits may also be given user-defined names with the 
assembler "BIT" directive and any of the above tech­
niques. For example, bit 5 of the PSW may be cleared by 
any of the four instructions. 

USR_FLG BIT PSW.5 ; User Symbol Definition 

CLR OD5H ; Absolute Addressing 

CLR PSW.5 ; Use of Dot Operator 

CLR FO ; Pre-Defined Assembler Symbol 

CLR USR_FLG ; User-Defined Symbol 

Data Transfers. The two-byte MOV instructions can 
transport any addressable bit to the carry in one cycle, or 
copy the carry to the bit in two cycles. A bit can be moved 
between two arbitrary locations via a carry by combining 
the two instructions. (If necessary, one may push and 
pop the PSW to preserve the previous contents of the 
carry.) These instructions can replace the multi-instruc­
tion sequence of Figure 6-7, which shows a program 
structure appearing in controller applications whenever 
flags or outputs are conditionally switched on or off. 

Logical Operations. Four instructions perform the 
logical-AND and logical-OR operations between the 
carry and another bit, and leave the results in the carry. 

. The instruction mnemonics are ANL and ORL; the ab­
sence or presence of a slash mark ("!') before the source 
operand indicates whether to use the positive-logic value 
or the logical complement of the addressed bit. (The 
source operand itseH is never affected.) 

Bit-test Instructions. The conditional jump instructions 
"JC rel" (Jump on Carry) and "JNC rel" (Jump on Not 
Carry) test the state of the carry flag, branching if it is a 
one or zero, respectively. The letters "rel'' denote relative 
code addressing. The 3-byte instructions "JB bit, rel" and 
"JNB bit, rel'' (Jump on Bit and Jump on Not Bit) test the 
state of any addressable bit in a similar manner. A fifth 
instruction combines the Jump on Bit and Clear opera­
tions. "JBC bit, rel" conditionally branches to the indi­
cated address, then clears the bit in the same 2-cycle 
instruction. This operation is the same as the 8048-family 
"JTF" instructions. 

6-8 

All 8051 conditional jump instructions use program 
counter-relative addressing, and all execute in two 
cycles. The last instruction byte encodes a signed dis­
placement rangingfrom-128 to +127. During execution, 
the CPU adds this value to the incremented program 
counter to produce the jump destination. Put another 
way, a conditional jump to the immediately following 
instruction would encode OOH in the offset byte. 

A section of program or subroutine written using only 
relative jumps to nearby addresses will have the same 
machine code independent of the code's location. An 
assembled routine may be repositioned anywhere in 
memory, even crossing memory.page boundaries, with­
out having to modify the program or recompute destina­
tion addresses. To facilitate this flexibility, there is an 
unconditional "Short Jump" (SJMP) which uses relative 
addressing as well. Since a programmer would have 
quite a chore trying to compute relative offset values from 
one instruction to another, ASM51 automatically com­
putes the displacement needed, giving only the destina­
tion address or label. An error message will alert the 
programmer if the destination is "out of range." 

The so-called "Bit Test" instructions implemented on 
many other microprocessors simply perform the logic­
AND operation between a byte variable and a constant 
mask, and set or clear a zero flag depending on the result. 

YES 

SET 
DESTINATION 

BIT 

ISOLATE 
SOURCE 

BIT 

NO 

CLEAR 
DESTINATION 

BIT 

Figure 6-7. Bit Transfer Instruction Operation 

1. 
I 



CHAPTER 6 
8051 Family Boolean Processing Capabllltles 

This is essentially equivalent to the 8051 "MOV C,bit" Table 6-2. Other Instructions Affecting the carry Flag 
instruction. A second instruction is then needed to condi-
tionally branch based on the state of the zero flag. This Mnemonic Description Byte Cyc 
does not constitute abstract bit-addressing in the 8051 ADD A,Rn Add register to 
Family sense. A flag exists only as a field within a register; Accumulator 
to reference a bit the programmer must know and specify ADD A, direct Add direct byte to 2 
both the encompassing register and the bit's position Accumulator 
therein. This constraint severely limits the flexibility of ADD A,@Ri Add indirect RAM to 
symbolic bit addressing and reduces the machine's Accumulator 
code-efficiency and speed. ADD A,#data Add immediate data 2 

Interaction with Other Instructions. The carry flag is to Accumulator 

also affected by the instructions listed in Table 6-2. It can ADDC A,Rn Add register to 

be rotated through the accumulator, andalteredas a side Accumulator with 

effect of arithmetic instructions. Refer to the User's Carry flag 

Manual for details on how these instructions operate. ADDC A.direct Add direct byte to 2 
Accumulator with 

Simple Instruction Combinations Carry flag 
ADDC A,@Ri Add indirect RAM to 

By combining general purpose bit operations with certain Accumulator with 
addressable bits, one can "custom build" several Carry flag 
hundred useful instructions. All eight bits of the PSW can ADDC A,#data Add immediate data 2 
be tested directly with conditional jump instructions to to Ace with Carry flag 
monitor (among other things) parity and overflow status. SUBB A,Rn Subtract register from 
Programmers can take advantage of 128 software flags Accumulator with 
to keep track of operating modes, resource usage, and borrow 
so forth. SUBB A, direct Subtract direct byte 2 

The Boolean instructions are also the most efficient way 
from Ace with borrow 

to control or reconfigure peripheral and 1/0 registers. All SUBB A,@Ri Subtract indirect RAM 

32 1/0 lines become "test pins," for example, tested by from Ace with borrow 

conditional jump instructions. Any output pin can be SUBB A,#data Subtract immediate 2 

toggled (complemented) in a single instruction cycle. data from Ace with 

Setting or clearing .the Timer Run flags (TRO and TR 1) borrow 

turn the timer-counters on or off; polling the same flags MUL AB Multiply A & B 4 

elsewhere lets the program determine if a timer is run- DIV AB Divide A by B 4 

ning. The respective overflow flag (TFO and TF1) can be DA A Decimal Adjust 1 

tested to determine when the desired period or count Accumulator 

has elapsed, then cleared in preparation for the next RLC A Rotate Accumulator 
repetition. These bits are all part of the TCON register, Left through the Carry 
Figure 6-6a. Thanks to symbolic bit addressing, the pro- flag 
grammer only needs to remember the mnemonic asso- RRC A Rotate Accumulator 
ciated with each function, and does not need to memo- Right through Carry 
rize control word layouts. flag 

In the 8048-family, instructions corresponding to some of CJNE A,direct,rel Compare direct byte 3 2 
the above functions require specific opcodes. Ten differ- to Ace & Jump if Not 
ent opcodes serve to clear and complement the software Equal 
flags FO and F1, enable and disable each interrupt, and CJNE A,#data,rel Compare immediate 3 2 
start/stop the timer. In the 8051 instruction set, just three to Ace & Jump if Not 
opcodes (SETB, CLR, CPL) with a direct bit address Equal 
appended perform the same functions. Two test instruc- CJNE Rn,#data,rel Compare immed to 3 2 
lions (JB and JNB) can be combined with bit addresses register & Jump if Not 
to test the 8048 software flags, the 1/0 pins, TO, T1, and Equal 
INT, and the eight accumulator bits, replacing 15 more CJNE @Ri, #data, rel Compare immed to 3 2 
different instructions. indirect & Jump if Not 

Equal 

6-9 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

Table 6-3a shows how 8051 programs implement soft­
ware flag and machine control functions associated with 
special opcodes in the 8048. In every case the 8051 

FamilY' solution requires the same. number of machine 
cycles, and executes 2.5 limes faster. 

Table 6-3a. Contrasting 8048 and 8051 Bit Control and Testing Instructions 

8048 
Bytes Cycles µs 8051 Bytes Cycles&µs 

Instruction Instruction 

Flag Control 
CLR c 2.5 CLR c 1 
CPL FO 2.5 CPL FO 2 

Flag Testing 
JNC offset 2 2 5.0 JNC rel 2 2 
JFO offset 2 2 5.0 JS FO,rel 3 2 
JS? offset 2 2 5.0 JS ACC.7,rel 3 2 

Peripheral Polling 
JTO offset 2 2 5.0 JS TO,rel 3 2 
JN1 offset 2 2 5.0 JNS INTO.rel 3 2 
JTF offset 2 2 5.0 JSC TFO,rel 3 2 

Machine and Peripheral Control 
STAT T 1 2.5 SETS TRO 2 
EN 1 1 2.5 SETS EXO 2 
DIS TCNT1 1 2.5 CLR ETO 2 

Table 6-3b. Replacing 8048 Instruction Sequences with Single 8051 Instructions 

8048 Bytes Cycles 
8051 Bytes Cycles&µs 

Instruction 
µs Instruction 

Flag Control 
Set carry 

CLR c 
SETS c CPL c 2 2 5.0 

Set Software Flag 
CLR FO 

SETS FO 2 CPL FO 2 2 5.0 

Turn Off Output Pin 
ANL P1, #OFBH 2 2 5.0 CLR P1.2 2 

Complement Output Pin 
IN A,P1 
XRL A, #04H 
OUTL P1,A 4 6 15.0 CPL P1.2 2 

Clear Flag in RAM 
MOV RO,#FLGADR 
MOV A,@RO 
ANL A,#FLGMASK 
MOV @RO,A 6 6 15.0 CLR USER_FLG 2 

6-10 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

Table 6·3b. Replaclng 8048 Instruction Sequences with Single 8051 Instructions (continued) 

8048 Bytes Cycles µs 
Instruction 

Flag Testing: 
Jump if Software Flag is O 

JFO $+4 
JMP offset 4 4 10.0 

Jump if Accumulator bit is O 
CPL A 
JB7 offset 
CPL A 4 4 10.0 

Peripheral Polling 
Test if Input Pin is Grounded 

IN A.P1 
CPL A 
JB3 offset 4 5 12.5 

Test if Interrupt Pin is High 
JN1 $+4 
JMP offset 4 4 10.0 

BOOLEAN PROCESSOR APPLICATIONS 

So what does all this buy you? 

Qualitatively, nothing. All the same capabilities could be 
(and often have been) implemented on other machines 
using awkward sequences of other basic operations. As 
mentioned earlier, any CPU can solve any problem given 
enough time. 

Quantitatively, the differences between a solution pro­
vided by the 8051 and those required by previous archi­
tectures are numerous. The 8051 Family solution is a 
faster, cleaner, lower-cost solution to microcontroller 
applications. 

The opcode space freed by condensing many specific 
8048 instructions in a few general operations has been 
used to add new functionality to the 8051 family architec­
ture - both for byte and bit operations. 144 software 
flags replace the 8048's two. These flags (and the carry) 
may be directly set, not just cleared and complemented, 
and all can be tested for either state, not just one. 
Operating mode bits previously inaccessible may be 
read, tested, or saved. Situations where the 8051 instruc­
tion set provides new capabilities are contrasted with 
8048 instruction sequences in Table 6-3b. Here the 8051 
speed advantage ranges from Sx to 15x! 

8051 Bytes· Cycles& µs 
Instruction 

JNB FO,rel 3 2 

JNB ACC.7,rei 3 2 

JNB P1 .3,rei 3 2 

JB INTO.rel 3 2 

Combining Boolean and byte-wide instructions can pro­
duce great synergy. An 8051 Family based application 
will prove to be: 

• simpler to write since the architecture correlates 
more closely with the problems being solved; 

• easier to debug because more individual instruc­
tions have no unexpected or undesirable side­
effects; 

• more byte efficient due to direct bit addressing 
and program counter relative branching; 

• faster running because fewer bytes of instructions 
need to be fetched and fewer conditional jumps 
are processed; 

• lower cost because of the high level of system-
integration within one component. 

These rather unabashed claims of excellence shall not 
go unsubstantiated. The rest of this chapter examines 
less trivial tasks simplified by the Boolean processor. The 
first three compare the 8051 with other microprocessors; 
the last two go into 8051-based system designs in much 
greater depth. 

6-11 



CHAPTER 6 
8051 Family Boolean Processing capabllltles 

Design Example #1 - Bit Permutation 

First, we'll use the bit-transfer instructions to permute a 
lengthy pattern of bits. 

A steadily increasing number of data communication 
products use encoding methods to protect the security of 
sensitive information. By law, interstate financialtransac­
tions involving federal banking system must be transmit­
ted using the Federal Information Processing Data En­
cryption Standard (DES). 

Basically, the DES combines eight bytes of "plaintext" 
data (in binary ASCII, or any other format) with a 56-bit 
"key", producing a 64-bit encrypted value for transmis­
sion. At the receiving end the same algorithm is applied 
to the incoming data using the same key, reproducing the 
original eight byte message. The algorithm used for 
these permutations is fixed; different user-defined keys 
ensure data privacy. 

It is not the purpose here to describe the DES in any 
detail. Suffice it to say that encryption/decryption is a 
long, iterative process consisting of rotations, exclusive­
OR operations, function table look-ups, and an extensive 
sequence of bit permutation, packing, and unpacking 
steps. The bit manipulation steps are included, it is 
rumored, to impede a general purpose digital supercom­
puter trying to "break" the code. Any algorithm imple­
menting the DES with previous generation microproces­
sors would spend virtually all of its time diddling bits. 

The bit manipulation performed is typified by the Key 
Schedule Calculation represented in Figure 6-8. This 
step is repeated 16 times for each key used in the 
course of a transmission. In essence, a 7-byte, 56-bit 
"Shift Key Buffer" is transformed into an 8-byte, "Permu­
tation Buffer" without altering the shifted key. The arrows 
in Figure 6-8 indicate a few of the translation steps. Only 
six bits of each byte of the Permutation Buffer are used; 

the two high-order bits of each byte are cleared. This 
means only 48 of the 56 Shifted Key Buffer bits are used 
in any one iteration. 

Different microprocessor architectures would best imple­
ment this type of permutation in different ways. Most 
approaches would share the steps of Figure 6-9a: 

• Initialize the Permutation Buffer to default state 
(ones or zeroes); 

• Isolate the state of a bit of a byte from the Key 
Buffer. Depending on the CPU, this might be 
accomplished by rotating a word of the Key 
Buffer through a carry flag or testing a bit in 
memory or an accumulator against a mask byte; 

• Perform a conditional jump based on the carry or 
zero flag if the Permutation Buffer default state is 
correct; 

• Otherwise reverse the corresponding bit in the 
permutation buffer with logical operations and 
mask bytes. 

Each step above may require several instructions. The 
last three steps must be repeated for all 48 bits. Most 
microprocessors would spend 300 to 3,000 µson each of 
the 16 iterations. 

Notice, though, that this flow chart looks a lot like Figure 
6-7. The Boolean Processor can permute bits by simply 
moving them from the source to the carry to the 
destination - a total of two instructions taking 4 bytes 
and 3 µs per bit. Assume the Shifted Key Buffer and Per­
mutation Buffer both reside in bit-addressable RAM, with 
the bits of the former assigned symbolic names SKB_1, 
SKB_2 ... SKB_56. Then working from Figure 6-8, the 
software for the permutation algorithm would be that 
of Example 6-1a. The total routine length would be 
192 bytes, requiring 144 µs. 

Permuted and Shifted 56-Bit Key Buffer 

C1 Di -------------- -----------

PERMUTATION BYTE 1 PERM BYTE2 PERM BYTE 3 ?ERM BYTE 4 BYTE 5 BYTE6 PERM BYTE8 

48-Bit Key K1 

Figure 6-8. DES Key Schedule Transformation 

6-12 



CHAPTER 6 
8051 Famlly Boolean Processing Capabilities 

CLEAR ALL BITS 
OF PERMUTATION 

BUFFER 

SE"T PER.MUTATION 
BUFFER BIT 

PC2 (II 

ISOLATE 
SKB BIT ill 

r--
1. 

(LEAVE PERML!T A. TION 
BUFFER BIT 
CLEARED! 

I 
I 

REPEAT 
FOR EACH 
BIT OF 
SHIFTED 
KEY 
BUFFER 
148 llMESi 

Figure 6·9a. Flowchart for Key Permutation Attempted with a Byte Processor 

The algorithm of Figure 6-9b is just slightly more efficient 
in this time-critical application and illustrates the syn­
ergy of an integrated byte and bit processor. The bits 
needed for each byte of the Permutation Buffer are 
assimilated by loading each bit into the carry (1 µs.) and 
shiftingitintotheaccumulator(1 µs.). Each byte is stored 
in RAM when completed. Forty-eight bits thus need a 
total of 112 instructions, some of which are listed in 

Example 6-1b. Worst-case execution time would be 112 
µs, since each instruction takes a single cycle. Routine 
length should also decrease, to 168 bytes. Actually, in the 
context of the complete encryption algorithm, each per­
muted byte would be processed as soon as it is assimi­
lated - saving memory and cutting execution time by 
another 8 µs. 

6-13 



CHAPTER 6 
8051 Family Boolean Processing Capabilltles 

CLEAR ACCUMULATOR 

LOAD BIT MAPPED ONTO BIT 5 OF 
PERMUTATION BYTE INTO CARRY 

ROTATE LEFT INTO ACC. 

LOAD BIT MAPPED ONTO BIT 4 
OF PERMUTATION BYTE INTO CARRY 

ROTATE LEFT INTO ACC. 

LOAD BIT MAPPED ONTO BIT 0 
OF PERMUTATION BYTE INTO CARRY 

ROTATE LEFT INTO ACC. 

STORE ACC. INTO PERMUTATION 
BUFFER 

t 

REPEAT 
FOR EACH 
BYTE OF 
PERMUTATION 
BUFFER 
18 TIMES) 

Figure 6-9b. DES Key Permutation with Boolean Processor 

6-14 



Example 6-1. DES Key Permutation Software 

a. "Brute Force" technique 

MOV C,SKB_1 

MOV PB_1.1,C 

MOV C,SKB_2 

MOV PB_4.0,C 

MOV C,SKB_3 

MOV 

MOV 

MOV 

MOV 

PB_2.5,C 

C,SKB_4 

PB_1.0,C 

C,SKB_SS 

MOV PB_S.O,C 

MOV C,SKB_56 

MOV PB_7.2,C 

b. Using Accumulator to Collect Bits 

CLR A 

MOV 

RLC 

MOV 

RLC 

MOV 

RLC 

MOV 

RLC 

MOV 

RLC 

MOV 

RLC 

MOV 

C,SKB_14 

A 

C,SKB_17 

A 

C,SKB_11 

A 

C,SKB_24 

A 

C,SKB_1 

A 

C,SKB_S 

A 

PB_1,A 

MOV C,SKB_29 

RLC A 

MOV C,SKB_32 

RLC A 

MOV PB_8,A 

CHAPTER 6 
8051 Family Boolean Processing Capabilities 

To date, most banking terminals and other systems using 
the DES have needed special boards or peripheral 
controller chips just for the encryption decryption proc­
ess, anp still more hardware to form a serial bit stream 
for transmission (Figure 6-10a). An 8051 solution 
could pack most of the entire system onto the one chip 
(Figure 6-1 Ob). The whole DES algorithm would require 
less than one-fourth of the on-chip program memory, with 
the remaining bytes free for operating the banking termi­
nal (or whatever) itself. 

Moreover, since transmission and reception of data is 
performed through the on-board UART, the unencrypted 
data (plaintext) never even exists outside the microcom­
puter! Naturally, this would afford a high degree of 
security from data interception. 

Design Example #2 - Software Serial 1/0 

An example often imposed on beginning microcomputer 
students is to write a program simulating a UART. 
Though doing this with the 8051 Family may appear to be 
a moot point (given that the hardware for a full UART is 
on-chip), it is still instructive to see how it would be done, 
and maintains a product-line tradition. 

As it turns out, the 8051 microcomputers can receive or 
transmit serial data via software very efficiently using the 
Boolean instruction set. Since any 1/0 pin may be a serial 
input or output, several serial links could be maintained 
at once. 

Figure 6-11 a and 11 b, show algorithms for receiving or 
transmitting a byte of data. (Another section of program 
would invoke this algorithm eight times, synchronizing it 
with a start bit, clock signal, software delay, or timer 
interrupt.) Data is received by testing an input pin, setting 
the carry to the same state, shifting the carry into a data 
buffer, and saving the partial frame in internal RAM. Data 
is transmitted by shifting an output buffer through the 
carry, and generating each bit on an output pin. 

A side-by-side comparison of the software for this com­
mon application with three different microprocessor 
architectures is shown in Table 6-4a and 6-4b. The 8051 
solution is more efficient than the others on every count! 

6-15 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

DISPLAY 

KEYBOARD 

6-16 

DISPLAY 

I 

I 
L 

KEYBOARD 

CONTROL AND ADDRESS BUSSES 

CPU RAM ROM 

SYSTEM DATA BUS 

DATA 
ENC RY 
PTION 
UNIT 

a. Using Multi-Chip Processor Technology 

r P2 
~ 

TxD 

.A 8051 
PO 

-Yi RxD -
V"- P1 
~ 

b. Using One Single-Chip Microcomputer 

Figure 6-1D. Secure Banking Terminal Block Diagram 

1 

I 

I 
UART 

I 
I 

J 

TO 
MODEM 

TO 
MODEM 



INPUT 

PIN 

SET CARRY 

LOAD BUFFER 

ROTATE THRU C 

STORE BUFFER 

a. Reception 

OUTPUT 

LOAD BUFFER 

ROTATE THRU C 

STORE BUFFER 

CARRY = 0 

CLEAR OUTPUT 

b. Transmission 

CHAPTERS 
8051 Family Boolean Processing Capabilities 

PIN= 0 

CLEAR CARRY 

CARRY 

SET OUTPUT 

Figure 6-11. Serial 110 Algorithms 

6-17 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

Table 6-4. Serial 1/0 Programs for Various Microprocessors 

a.) Input Routine 

8085 6048 8051 
IN SERPORT MOV C, SERPIN 
AN! MASK CLR c 
JZ LO JNTO LO 
CMC CPL c 

LO: LXI HL,SERBUF MOV RO,#SERBUF 
MOV A,M MOV A,@RO MOV A,SERBUF 
RR RRC A RRC A 
MOV M,A MOV @RO,A MOV SERBUF,A 

RESULTS: 
8 Instructions 7 Instructions 4 Instructions 

7 Bytes 14 Bytes 9 Bytes 
56 States 9 Cycles 4 Cycles 
19 µs 22.5 µs 4 µs 

b.) Ouput Routine 
8085 8048 6051 
LXI HL,SERBUF MOV RO,#SERBUF 
MOV A,M MOV A,@RO MOV A, SERBUF 
RR RRC A RRC A 
MOV M,A MOV @RO,A MOV SERBUF,A 
IN SERPORT 
JC HI JC HI 

LO: AN! NOT MASK ANL SERPRT,#Nar MASK MOV SERPIN,C 
JMP CNT JMP CNT 

HI: ORI MASK HI: ORL SE.RPRT, #MASK 
CNT: OUT SERPORT CNT: 
RESULTS: 

10 Instructions 8 Instructions 4 Instructions 
7 Bytes 20 Bytes 13 Bytes 

72 States 11 Cycles 5 Cycles 
24 µs 27.5 µs 

Design Example #3 - Combinatorial Logic 
Equations 

Some simple uses for bit-test instructions and logical 
operations follow. 

Virtually all hardware designers have solved complex 
functions using combinatorial logic. While the hardware 
involved may vary from relay logic, vacuum tubes, or TIL 
or to more esoteric technologies like fluidics, in each case 
the goal is the same: to solve a problem represented by 
a logical function of several Boolean variables. 

Figure 6-12 shows TIL and relay logic diagrams for a 
function of the six variables U through Z. Each is a 
solution of the equation 

Q = (U . (V + W)) + (X. Y) + z 
Equations of this sort might be reduced using Karnaugh 
Maps or algebraic techniques, but that is not the purpose 
of this example. As the logic complexity increases, so 
does the difficulty of the reduction process. Even a minor 
change to the function equations as the design evolves 
would require tedious re-reduction from scratch. 

6-18 

5 µs 

For the sake of comparison, this function is implemented 
three ways, restricting the software to three proper 
subsets of. the 8051 Family instruction set. It is also 
assumed that U and V are input pins from different input 
ports, Wand X are status bits for two peripheral control­
lers, and Y and Z are software flags set up earlier in the 
program. The end result must be written to an output pin 
on some third port. The first two implementations follow 
the flow-chart shown in Figure 6-13. Program flow would 
embark on a routine down a test-and-branch tree and 
leaves either the ''True" or "Not True" exit as soon as the 
proper result has been determined. These exits then 
rewrite the output port with the result bit respectively one 
or zero. 

Other digital computers must solve equations of this type 
with standard word-wide logical instructions and condi­
tional jumps. So for the first implementation, no general­
ized bit-addressing instructions are used. As we shall 
soon see, being constrained to such an instruction sub­
set produces somewhat sloppy software solutions. 8051 
Family mnemonics are used in Example 6-2a; other 
machines might further cloud the situation by requiring 
operation-specific mnemonics like INPUT, OUTPUT, 
LOAD, STORE, etc., instead oflhe MOV mnemonic used 
for all variable transfers in the 8051 instruction set. 



u 

v 
w 

x 
y 

z 

v 

w 

x 

CHAPTER 6 
8051 Family Boolean Processing Capabllltles 

0 = (U•(V + W)) + (X•Y) + Z 

a. UslngTIL 

u 

y 

CR1 

CR2 

z 

b. Using Relay Logic 

Figure 6-12. Hardware Implementations of Boolean Functions 

6-19 



CHAPTER 6 
8051 Famlly Boolean Processing capabilities 

FUNCTION 
IS FALSE 

CLEAR Q 

FUNCTION 
IS TRUE 

SET Q 

Figure 6-13. Flow Chart for Tree-Branching Algorlthm 

The code that results is cumbersome and error prone. It 
would be difficult to prove whether the software worked 
for all input combinations in programs of this sort. Fur­
thermore, execution time varies widely with input data. 

Thanks to the direct bit-test operations, a single instruc­
tion can replace each move mask conditional jump 
sequence in Example 6-2a, but the algorithm would be 
equally convoluted (see Example 6-2b). To lessen the 
confusion, "a bit" each input variable is assigned a 
symbolic name. 

6-20 

A more elegant and efficient implementation (Example 
6-2c) strings together the Boolean ANL and ORL func­
tions to generate the output function with straight-line 
code. When finished, the carry flag contains the result, 
which is simply copied out to the destination pin. No 
flow chart is needed - code can be written directly 
from the logic diagrams in Figure 6-12. The result is 
simplicityitseH;fast, flexible, reliable, easy to design, and 
easy to debug. 

An 8051 program can simulate an N-il')put AND or OR 
gate with at most N + 1 lines of source program-one for 
each input and one line to store the results. To simulate 
NANO or NOR gates, complement the carry after com­
puting the function. When some inputs to the gate have 
'1nversion bubbies," perform the ANL or ORL operation 
on inverted operands. When the first input is inverted, 
either load the operand into the carry and then comple­
ment it, or use DeMorgan's Theorem to convert the gate 
to a different form. · 

Example 6-2. Software Solutions to Logic Function 
of Figure 6-12. 

a. Using only byte-wide loglcal Instructions. 

; BUFNCI SOLVE RANDOM LOGIC FUNCTION 

OF 6 VARIABLES BY LOADING AND 

MASKING THE APPROPRIATE BITS 

IN THE ACCUMULATOR, THEN 

EXECUTING CONDITIONAL JUMPS 

BASED ON ZERO CONDITION. 

(APPROACH USED BY BYTE­

ORIENTED ARCHITECTURES.) 

BYTE AND MASK VALUES 

CORRESPOND TO RESPECTIVE BYTE 

ADDRESS AND BIT POSITIONS. 

OUTBUF DATA 22H ;OUTPUT PIN STATE MAP 

TESTV: MOV A,P2 

ANL A,#00000100B 

JNZ , TESTU 

MOV A,TCON 

ANL A,#001 OOOOOB 

JZ TES TX 

TESTU: MOV A,P1 

ANL A,#00000010B 

JNZ SETO 

I 
I 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

TE STX: MOV A,TCON CLR_Q: CLR a 
ANL A,#00001000B JMP NXTTST 

JZ TESTZ SET_Q: SETB a 
MOV A,20H NXTTST: ;CONTINUATION OF PROGRAM 

ANL A,#00000001 B c. Using logical operations on Boolean variables. 
JZ SETO ;FUNC3 SOLVE A RANDOM LOGIC FUNCTION 

TESTZ: MOV A,21H OF 6 VARIABLES USING 
ANL A,#00000010B STRAIGHT_LINE LOGICAL 
JZ SETO INSTRUCTIONS ON 8051 BOOLEAN 

CLRQ: MOV A,OUTBUF VARIABLES. 
ANL A,#11110111B 

JMP OUTQ 

SETO: MOV A,OUTBUF MOV C,V 
ORL A,#00001000B ORL C,W ;OUTPUT OF OR GATE 

OUTQ: MOV OUTBUF,A ANL C,U ; OUTPUT OF TOP AND GATE 
MOV P3,A MOV FO,C ; SAVE INTERMEDIATE STATE 

b. Using only bit-test Instructions. MOV C,X 

; BFUNC2 SOLVE RANDOM LOGIC FUNCTION ANL C,Y ; OUTPUT OF BOTTOM AND GATE 

OF 6 VARIABLES BY DIRECTLY ORL C,FO ; INCLUDE VALUE SAVED ABOVE 

POLLING EACH BIT. ORL C,Z ; INCLUDE LAST INPUT VARIABLE 

(APPROACH USING 8051-FAMIL Y UNIQUE MOV O,C ; OUTPUT COMPUTED RESULT 

BIT-TEST INSTRUCTION CAPABILITY.) An upper limit can be placed on the complexity of soft-

SYMBOLS USED IN LOGIC DIAGRAM ware to simulate a large number of gates by summing the 

ASSIGNED TO CORRESPONDING 8x51 
total number of inputs and outputs. The actual total 
should be somewhat shorter, since calculations can be 

BIT ADDRESSES. "chained," as shown above, The output of one gate is 
often the first input to another, bypassing the intermedi-

u BIT P1.1 
ate variable to eliminate two lines of source. 

v BIT P2.2 Design Example #4 - Automotive Dash· 
w BIT TFO board Functions 
x BIT 1E1 Now let's apply these techniques to designing the soft-
y BIT 20H.O ware for a complete controller system. This application is 

z BIT 21H.1 
patterned after a familiar real-world application which 
isn't nearly as trivial as it might first appear: automobile 

a BIT P3.3 turn signals. 

TEST_V: JB V,TEST_U 
Imagine the 3-position turn lever on the steering column 
as a single-pole, triple-throw toggle switch. In its central 

JNB W,TEST_X position all contacts are open. In the up or down position, 

TEST_U: JB U,SET_Q 
contacts close causing corresponding lights in the rear of 
the car to blink. So far very simple. 

TEST_X: JNB X,TEST_Z 

JNB Y,SET_Q 

TEST_l: JNB Z,SET_Q 

6-21 



CHAPTERS 
8051 Family Boolean Processing Capabilities 

Two more turn signals blink inthe front of the car, and two 
others in the dashboard. All six bulbs flash when an 
emergency switch is closed. A thermo-mechanical relay 
(accessible under the dashboard in case it wears out) 
causes the blinking. 

Applying the brake pedal turns the tail light filaments on 
constantly - unless a turn is in progress, in which case 
the blinking tail light is not affected. (Of course, the front 
turn signals and dashboard indicators are not affected by 
the brake pedal.) Table 6-5 summarizes these operating 
modes. 

But we're not done yet. Each of the exterior turn signal 
(but not the dashboard) bulbs has a second, somewhat 
dimmer filament for the parking lights. Figure 6-14 shows 
TTL circuitry which could control all six bulbs. The signals 
labeled "High Freq." and "Low Freq." represent two 
square-wave inputs. Basically, when one of the tum 
switches is closed or the emergency switch is activated, 
the low frequency signal (about 1 Hz) is gated through to 
the appropriate dashboard indicator(s) and turn 
signal(s). The rear signals are also activated when the 
brake pedal is depressed provided a turn is not being 
made in the same direction. When the parking light 
switch is closed the higher frequency oscillator is gated 
to each front and rear turn signal, sustaining a low­
intensity background level. (This is to eliminate the need 
for additional parking light filaments.) 

In most cars, the switching logic to generate these 
functions requires a number of multiple-throw contacts. 
As many as 18 conductors thread the steering column of 
some automobiles solely for turn-signal and emergency 
blinker functions. 

A multiple-conductor wiring harness runs to each corner 
of the car, behind the dash, up the steering column, and 
down to the blinker relay below. Connectors at each 
termination for each filament lead to extra cost and labor 
during construction, lower reliability and safety, and more 
costly repairs. And considering the system's present 
complexity, increasing its reliability or detecting failures 
would be quite difficult. 

There are two reasons for going into such painful detail 
describing this example. First, it shows that the hardest 
part of many system designs is determining what the 
controller should do. Writing the software to solve these 
functions is comparatively easy. Secondly, it shows the 
many potential failure points in the system. Later we'll 
see how the peripheral functions and intelligence built 
into a microcomputer (with a little creativity) can greatly 
reduce external interconnections and mechanical parts 
count. 

Table 6-5. Truth Table for Turn-Signal Operation 

Input Signals Output Signals 

Brake Emerg. 
Left Right Left Right 

Left Right 
Turn Turn Front Front 

Switch Switch 
Switch Switch &Dash &Dash 

Rear Rear 

0 0 0 0 Off Off Off Off 
0 0 0 1 Off Blink Off Blink 
0 0 1 0 Blink Off Blink Off 

0 1 0 0 Blink Blink Blink Blink 
0 1 0 1 Blink Blink Blink Blink 
0 1 1 0 Blink Blink Blink Blink 

1 0 0 0 Off Off On On 
1 0 0 1 Off Blink On Blink 
1 0 1 0 Blink Off Blink On 

1 1 0 0 Blink Blink On On 
1 1 0 1 Blink Blink On Blink 
1 1 1 0 Blink Blink Blink On 

6-22 



L. TURN 
EM ERG 

BRAKE 

R. TURN 

LO. 
FREQ. 

OSCILLATOR 

CHAPTERS 
8051 Family Boolean Processing Capabilities 

-------- L. DASH 

L. FRNT 

L. REAR 

,,______,_,,__ ____ R. DASH 

HI. 
FREQ. 
OSCILLATOR 

R.FRNT 

R. REAR 

Figure 6-14. TTL Logic Implementation of Automotive Turn Signals 

The Single-Chip Solution EMERG BIT P1.1 ; EMERGENCY BLINKER 
ACTIVATED 

The circuit shown in Figure 6-15 indicates five input pins PARK BIT P1.2 ; PARKING LIGHTS ON to the five input variables - left-turn select, right-turn 
select, brake pedal down, emergency switch on, and L_TURN BIT P1.3 ; TURN LEVER DOWN 
parking lights on. Six output pins turn on the front, rear, R_TURN BIT P1.4 ; TURN LEVER UP 
and dashboard indicators for each side. The microcom-
puter implements all logical functions through software, 

OUTPUT PIN DECLARATIONS which periodically updates the output signals as time 
elapses and input conditions change. 

Design Example #3 demonstrated that symbolic ad- L_FRNT BIT P1.5 ; FRONT LEFT-TURN 
dressing with user-defined bit names makes code and ·INDICATOR 
documentation easierto write and maintain. Accordingly, R_FRNT BIT P1.6 ; FRONT RIGHT-TURN 
we'll assign these 1/0 pins names for use throughout the INDICATOR 
program. (The format of this example will differ some- L_DASH BIT P1.7 ; DASHBOARD LEFT-TURN 
what from the others. Segments of the overall program INDICATOR 
will be presented in sequence as each is described.) 

R_DASH BIT P2.0 ; DASHBOARD RIGHT-TURN 
INDICATOR 

INPUT PIN DECLARATIONS: L_REAR BIT P2.1 ; REAR LEFT-TURN 
(ALL INPUTS ARE POSITIVE-TRUE LOGIC) INDICATOR 

R_REAR BIT P2.2 ; REAR RIGHT-TURN 
BRAKE BIT P1.0 ; BRAKE PEDAL DEPRESSED INDICATOR 

6-23 



CHAPTER6 
8051 Family Boolean Processing capabilities 

BRAKE 
PEDAL 

EMERGENCY 
SWITCH 

PARKING 
LIGHTS 

TURN 
SWITCH 

-
MOOE 
SENSORS 

LEFT 

RIGHT 

+12Y 

SIGNAL 
CONDITIONING 

+12Y 

8051 
LEFT 
FRONT 

P1.5 
P1.0 

RIGHT 
FRONT 

PU PU 

LEFT 
PU DASH BO ARO 

P1.7 

P1.3 RIGHT 
DASHBOARD 

P2.0 

PU 
LEFT 

PZ.1 
REAR 

• 
CONTROLLER OUTPUT SIGNAL 

BUFFERS IULBS 

Figure 6·15. Microcomputer Turn-Signal Connections 

Another key advantage of symbolic addressing appears 
further on in the design cycle. The locations of cable 
connectors, signal conditioning circuitry, voltage regula· 
tors, and heat sinks, etc., all affect PC board layout. It is 
quite likely that the somewhat arbitrary pin assignment 
defined early in the software design cycle will prove to be 
less than optimum; rearranging the 1/0 pin assignment 
could well allow a more compact module, or eliminate 
costly jumpers on a single-sided board. (These consid· 
erations apply especially to automotive and other cost· 
sensitive applications needing single-chip controllers.) 
Since other architectures use mask bytes or "clever" 
algorithms to isolate bits by rotating them into the carry, 
re-routing an input signal (from P1 .1, for example, to 
P3.4) could require extensive modifications throughout 
the software. 

The Boolean Processor's direct bit addressing makes 
such changes trivial. The number of the port containing 
the pin is irrelevant, and masks and complex program 
structures are not needed. Only the initial Boolean vari" 
able declarations need to be changed; ASM51 automati­
cally adjusts all addresses and symbolic references to the 
reassigned variables. The user is assured that no addi­
tional debugging or software verification will be required. 

6·24 

; INTERRUPT RATE SUBDIVIDER 

SUB_DIV DATA 20H 

; HIGH-FREQUENCY OSCILLATOR BIT 

Hl_FREQ BIT SUB_DIV.0 

; LOW-FREQUENCY OSCILLATOR BIT 

LO_FREQ BIT SUB-DIV.7 

ORG OOOOH 

JMP INIT 

ORG 100H 

; PUT TIMER 0 IN MODE 1 

INIT: MOV TMOD,#00000001 B 

; INITIALIZE TIMER REGISTERS 

MOV TL0,#0 

MOV TH0,#-16 

; SUBDIVIDE INTERRUPT RATE BY 244 

MOV SUB_DIV,#244 

; ENABLE TIMER INTERRUPTS 

SETB ETO 



; GLOBALLY ENABLE ALL INTERRUPTS 

SETB EA 

; ST ARTTIMER 

SETB TAO 

; (CONTINUE WITH BACKGROUND PROGRAM) 

; PUT TIMER 0 IN MODE 1 

; INITIALIZE TIMER REGISTERS 

; SUBDIVIDE INTERRUPT RATE BY 244 

; ENABLE TIMER INTERRUPTS 

; GLOBALLY ENABLE ALL INTERRUPTS 

; STARTTIMER 

Timer 0 (one of the two on-chip timer/counters) replaces 
the thermo-mechanical blinker relay in the dashboard 
controller. During system initialization, it is configured as 
a timer in mode 1 by setting the least significant bit of the 
timer mode register (TMOD). In this configuration the 
low-order byte (TLO) is incremented every machine 
cycle, overflowing and incrementing the high-order byte 
(THO) every 256 µs. Timer-interrupt 0 is enabled so that 
a hardware interrupt will occur each time THO overflows. 

An 8-bit variable in the bit-addressable RAM array is 
needed to further subdivide the interrupts via software. 
The lowest-order bit of this counter toggles very fast to 
modulate the parking lights; bit 7 is ·iumed" to approxi­
mately 1 Hz for the tum- and emergency-indicator blink­
ing rate. 

Loading THO with -'6 will cause an interrupt after 
4,096 ms. The interrupt service routine reloads the high­
order byte of timer O for the next interval, saves the CPU 
registers likely to be affected on the stack, and then 
decrements SUB_DIV. Loading SUB_DIV with 244 ini­
tially and each time it decrements to zero, will produce a 
0.999 second period for the highest-order bit. 

ORG OOOBH ; TIMER 0 SERVICE VECTOR 

MOV TH0,#-16 

PUSH PSW 

PUSH ACC 

PUSH B 

DJNZ SUB_DIV,TOSERV 

MOV SUB_DIV,#244 

The code to sample inputs, performs calculations, and 
update outputs - the real essence of the signal-control­
ler algorithm - may be performed either as part of the 

CHAPTER 6 
8051 Family Boolean Processing Capabllltles 

interrupt-service routine or as part of a background­
program loop. The only concern is that it must be exe­
cuted at least several dozen times per second to prevent 
parking light flickering. We will assume the former .case, 
and insert the code into the timer 0 service routine. 

First, notice from the logic diagram (Figure 6-14) thatthe 
subterm (PARK. H_FREQ), asserted when the parking 
lights are to be on dimly, figures into four of the six output 
functions. Accordingly, we will first compute thatterm and 
save it in a temporary location named "DIM". The PSW 
contains two general purpose flags: FO, which corre­
sponds to the 8048 flag of the same name, and PSW.1. 
Since the PSW has been saved and will be restored to its 
previous state after servicing the interrupt, we can use 
either bit for temporary storage. 

DIM BIT PSW.1 ; DECLARE TEMP STORAGE 
FLAG 

MOV C,PARK ; GATE PARKING LIGHT 
SWITCH 

ANL Hl_FREQ ; WITH HIGH FREQUENCY 
SIGNAL 

MOV DIM,C ; AND SAVE IN TEMP 
VARIABLE. 

This simple 3-line selection of code illustrates a remark­
able point. The software indicates in very abstract terms 
exactly what function is being performed, independent of 
the hardware configuration. The fact that these three bits 
include an input pin, a bit within a program variable, and 
a software flag in the PSW is totally invisible to the 
programmer. 

Now generate and output the dashboard left turn signal. 

MOV C,L_TURN ; SET CARRY IF TURN 

ORL C,EMERG ; OR EMERGENCY SELECTED. 

ANL C,LO_FREQ ; GATE IN 1 HZ SIGNAL 

MOV L_DASH,C ; AND OUTPUT TO DASHBOARD. 

To generate the left-front tum signal, we only need to add 
the parking light function in FO. But notice that the 
function in the carry will also be needed for the rear 
signal. We can save effort later by saving its current state 
in FO. 

MOV FO,C 

ORL C,DIM 

MOV L_FRNT,C 

; SAVE FUNCTION SO FAR. 

; ADD IN PARKING LIGHT FUNCTION 

; AND OUTPUT TO TURN SIGNAL. 

6-25 



CHAPTERS 
8051 Family Boolean Processing capabilities 

Finally, the rear left-tum signal should also be on when 
the brake pedal is depressed, provided a left turn is not 
in progress. 

MOV C,BRAKE ; GATE BRAKE PEDAL SWITCH 

ANL C,L_TURN ; WITH TURN LEVEfl. 

ORL C,FO ; INCLUDE TEMP. VARIABLE 
FROM DASH 

ORL C,DIM ; AND PARKING LIGHT FUNCTION 

MOV L_REAR,C ; AND OUTPUT TO TURN SIGNAL 

Now we have to go through a similar sequence for the 
right-hand equivalents to all the left-turn lights. This also 
gives us a chance to see how the ~e segments above 
look when combined. 

MOV C,R_TURN ; SET CARRY IF TURN 

ORL C,EMERG ; OR EMERGENCY SELECTED. 

ANL C,LO_FREQ ; IF SO, GATE IN 1 HZ SIGNAL 

MOV R_DASH,C ; AND OUTPUT TO DASHBOARD. 

MOV FO,C ; SAVE FUNCTION SO FAR. 

ORL C,DIM ; ADD IN PARKING LIGHT 
FUNCTION 

MOV R_FRNT,C ; AND OUTPUT TO TURN SIGNAL. 

MOV C,BRAKE ; GATE BRAKE PEDAL SWITCH 

ANL C,R_TURN ; WITH TURN LEVER. 

ORL C,FO ; INCLUDE TEMP.VARIABLE FROM 
DASH 

ORL C,DIM ; AND PARKING LIGHT FUNCTION 

MOV R_REAR,C ; AND OUTPUT TO TURN SIGNAL. 

The perceptive reader may notice that simiJly rearrang­
ing the steps could eliminate one instruction from each 
sequence. 

Now that all six bulbs are in the proper states, we can 
return from the interrupt routine, and the program is 
finished. This code essentially needs to reverse the 
status saving steps at the beginning of the interrupt. 

POP B ; RESTORE CPU REGISTERS. 

POP ACC 

POP PSW 

RETI 

Program Refinements. The luminescence of an incan­
descent light bulb filament is generally non-linear; the 
50%dutycycleofHl_FREQmaynotproducethedesired 
intensity. If the application requires, duty cycles of 25%, 
75%, etc., are easily achieved by ANDing and ORing in 
additional low-order bits of SUB_DIV. For example, 
30 Hz signals of seven different duty cycles could be 
produced by considering bits 2-0 as shown in Table 6-6. 
The only software change required would be to the code 
which sets-up variable DIM: 

MOV C,SUB_DIV.1 ; START WITH 50 PERCENT 

ANL C,SUB_DIV.O ; MASK DOWN TO 25 

ORL C,SUB_DIV.2 ; AND BUILD BACK TO 62 

MOV DIM,C 

PERCENT 

; DUTY CYCLE FOR PARKING 
LIGHTS. 

Table 6-6. Non-trh(lal Duty Cycles 

Sub_Div Bits Duty Cycles 
7 6 5 4 3 2 1 0 12.5% 25.0% 37.5% 50.0% 62.5% 75.0o/o 87.5% 

x x x x x 0 0 0 Off Off Off Off Off Off Off 
x x x x x 0 0 1 Off Off Off Off Off Off On 
x x x x x 0 1 0 Off Off Off Off Off On On 
x x x x x 0 1 1 Off Off Off Off On On On 
x x x x x 1 0 0 Off Off Off On On On On 
x x x x x 1 0 1 Off Off On On On On On 
x x x x x 1 1 0 Off On On On On On On 
x x x x x 1 1 1 On On On On On On On 

6-26 



Interconnections increase cost and decrease reliability. 
The simple buffered pin-per-function circuit in Figure 
6-15 is insufficient when many outputs require higher­
than-TIL drive levels. A lower-cost solution uses the 
8051 serial port in the shift-register mode to augment 1/0. 
In mode 0, writing a byte to the serial port data buffer 
(SBUF) causes the data to be output sequentially 
through the "RXD" pin while a burst of eight clock pulses 
is generated on the ''TXD" pin. A shift register connected 
to these pins (Figure 6-16) will load the data byte as it is 
shifted out. A number of special peripheral driver circuits 
combining shift-register inputs with high drive level out­
puts are available. 

Cascading multiple shift registers end-to-end will expand 
the number of outputs even further. The data rate in the 
1/0 expansion mode is 1 Mb/s, or 8 µs per byte. This is the 
mode which the serial port defaults to following a reset, 
so no initialization is required. 

The software for this technique uses the B register as a 
"map" corresponding to the different output functions. 
The program manipulates these bits instead of the 
output pins. After all functions have been calculated, the 
B register is shifted by the serial port to the shift-register 
drive. The outputs may glitch as data is shifted through 
them; at 1 Mb/s, however, the results (blinking lights) will 
not be noticed. Many shift registers provide an "enable" 
bit to hold the output states while new data is being 
shifted in. 

This is where the earlierdecisionto address bits symboli­
cally throughout the program pays off. This major 1/0 
restructuring is nearly as simple to implement as rear­
ranging the input pins. Again, only the bit declarations 
need to be changed. 

8051 

CHAPTER 6 
8051 Famlly Boolean Processing Capabilities 

L_FRNT BIT B.O ; FRONT LEFT-TURN 
INDICATOR 

R_FRNT BIT B.1 ; FRONT RIGHT-TURN 
INDICATOR 

L_DASH BIT B.2 ; DASHBOARD LEFT-TURN 
INDICATOR 

R_DASH BIT B.3 ; DASHBOARD RIGHT-TURN 
INDICATOR 

L_REAR BIT B.4 ; REAR LEFT-TURN INDICATOR 

R_REAR BIT B.5 ; REAR RIGHT-TURN 
INDICATOR 

The original program to compute the functions need not 
change. After computing the output variables, the control 
map is transmitted to the buffered shift register through 
the serial port: 
MOV SBUF,B ; LOAD BUFFER AND TRANSMIT 

The Boolean Processor solution holds a number of 
advantages over older methods. Fewer switches are 
required. Each is simpler, requiring fewer poles and 
lower current contacts. The flasher relay is eliminated 
entirely. Only six filaments are driven, rather than ten. 
The wiring harness is, therefore, simpler and less expen­
sive -one conductor for each of the six lamps and each 
of the five sensor switches. The fewer conductors use far 
fewer connectors. The whole system is more reliable. 

And since the system is much simpler it would be feasible 
to implement redundancy and or fault detection on the 
four main turn indicators. Each could still be a standard 
double •uament bulb, but with the filaments driven in 
parallel to tolerate single-element failures. 

+12V 

P3.0 1----~ DATA 07 05 05 

P3.1 1-------~ CLK 8·BIT SHIFT REGISTER 

Figure 6·16. Output Expansion Using Serial Port 

6-27 



CHAPTERS 
8051 Family Boolean Processing capabilities 

Even with redundancy, the lights will eventually fail. To 
handle this inescapable fact, current or voltage sensing 
circuits on each main drive wire can verify that each bulb 
and its high-current driver is functioning properly. Figure 
6-17 shows one such circuit. 

Assume all of the lights are turned on except one, i.e., all 
but one of the collectors are grounded. For the bulb that 
is turned off, if there is continuity from+ 12 Vthrough the 
bulb base and filament, the control wire, all connectors, 
and the PC boards traces; and if the transistor is indeed 
not shorted to ground, then the collector will be pulled to 
+ 12 V. This turns on the base of Q7 through the 

P1.5 

= 

P1.6 

P1.7 

P2.0 

P2.1 

P2.2 

+SV 

07 

corresponding resistor, and grounds the input pin, verify­
ing that the bulb circuit is operational. The continuity of 
each circuit can be checked by software in this way. 

Now turn al/the bulbs on, grounding all the collectors. 07 
should be turned off, and the Test pin (TO) should be high. 
However, a control wire shorted to + 12 V or an open­
circuited drive transistor would leave one ofthe collectors 
at the higher voltage even now. This too would turn on 
07, indicating a different type of failure. Software could 
perform these checks once per second by executing the 
routine every time the software counter SUB_DIV is 
reloaded by the interrupt routine. 

WIRING 
HARNESS 

I 

+12V 

Figure 6-H. Fault Detection 

6-28 



DJNZ SUB_DIV, TOSERV 

MOV SUB_DIV,#244 ; RELOAD COUNTER 

ORL P2,#111 OOOOOB ; SET CONTROL OUTPUTS 
HIGH 

ORL P2,#00000111B 

CLR L_FRNT ; FLOAT DRIVE COLLECTOR 

JB TO,FAULT ; TO SHOULD BE PULLED 
LOW 

SETB L_FRNT ; PULL COLLECTOR BACK 
DOWN 

CLR L_DASH 

JB TO.FAULT 

SETB L_DASH 

CLR L_REAR 

JB TO.FAULT 

SETB L_REAR 

CLR R_FRNT 

JB TO,FAULT 

SETB R_FRNT 

CLR R_DASH 

JB TO.FAULT 

SETB R_DASH 

CLR R_REAR 

JB TO,FAULT 

SETB R_REAR 

; WITH ALL COLLECTORS GROUNDED, TO SHOULD BE HIGH 

; IF SO, CONTINUE WITH INTERRUPT ROUTINE. 

JB TO,TOSERV 

FAULT: ; ELECTRICAL FAILURE 

; PROCESSING ROUTINE 

TOSERV: ; CONTINUE WITH 
INTERRUPT PROCESSING 

The resulting code consists of 67 program statements, 
not counting declarations and comments, which as­
semble into 150 bytes of object code. Each pass through 
the service routine requires (coincidentally) 67 µs, plus 
32 µs once per second for the electrical test. If executed 
every 4 ms as suggested, this software would typically 
reduce the throughput of the background program by 
less than 2%. 

CHAPTER 6 
8051 Family Boolean Processing Capabllltles 

Once a microcomputer has been designed into a 
system, new features suddenly become virtually free. 
Software could make the emergency blinkers flash 
alternately or at a rate faster than the turn signals. Turn 
signals could override the emergency blinkers. Adding 
more bulbs would allow multiple tail light sequencing 
and syncopation. 

Design Example #5 - Complex Control 
Functions 

Finally, we'll mix byte and bit operations to extend the use 
of the 8051 into extremely complex applications. 

Programmers can arbitrarily assign 110 pins to input and 
output functions only if the total does not exceed 32, 
which is insufficient for applications with a very large 
number of input variables. One way to expand the num­
ber of inputs is with a technique similar to multiplexed­
keyboard scanning. 

Figure 6-18 shows a block diagram for a moderately 
complex programmable industrial controller with the fol­
lowing characteristics: 

• 64 input variable sensors; 

• 12 output signals; 

• Combinational and sequential logic computations; 

• Remote operation with communications to a host 
processor via a high-speed full-duplex serial link; 

• Two prioritized external interrupts; 

• Internal real-time and time-of-day clocks. 

While many microprocessors could be programmed to 
provide these capabilities with assorted peripheral sup­
port chips, an 8051 microcomputer needs no other inte­
grated circuits! 

The 64 input sensors are logically arranged as an 8 x 8 
matrix, The pins of Port 1 sequentially enable each 
column of the sensor matrix; as each is enabled Port 0 
reads in the state of each sensor in that column. An eight­
byte block in bit-addressable RAM remembers the data 
as it is read in so that after each complete scan cycle 
there is an internal map of the current state of all sensors. 
Logic functions can then directly address the elements of 
the bit map. 

The computer's serial port is configured as a nine-bit 
UART, transferring data at 17,000 bytes-per-second. 
The ninth bit may distinguish between address and 
data bytes. 

6-29 



CHAPTER 6 
8051 Family Boolean Processing Capabllltles 

+SY 
"T" 

'1 1.0uF 

~ 
XTAL1 VCC RST· 

12M#Z 

~ XTAL2 --
SERIAL I RXD INTO. ~ --LINK ' TXO INT1 

RETURN 8051 
LINES 

0 8 16 24 32 40 48 56 
~ P3.4 

PO.O 

57 P0.1 
P3.5 

1 
P3.6 

2 58 P0.2 

7 1--i t- 8x8 
P3.7 

59 P0.3 

4 
SENSOR 

60 P0.4 
MATRIX P2.0 

5 61 P0.5 
P2.1 

6 62 P0.6 

7 15 23 31 39 47 55 63 P0.7 
P2.2 

1 
'-' P2.3 

• P2.4 
f""I 

P1.0 P2.S 

P11 P2.6 

P1.2 PV 

PU 

P1.4 

P1.5 ALE f--- N.C. 

P1.6 PSEN f--NC. 

P17 -
/v VSS EA 

SCAN -p LINES 

Figure 6-18. Block Diagram of 64-lnput Machine Controller 

6-30 

ASYNCHRONANS 
INTERRUPTS 

MACHINE 
ACTUATORS 

i' 



The 8051 serial port can be configured to detect bytes 
with the address bit set, automatically ignoring all others. 
Pins INTO and INT1 are interrupts configured respec­
tively as high-priority, falling-edge triggered and low­
priority, low-level triggered. The remaining 12 1/0 pins 
output TTL-level control signals to 12 actuators. 

There are several ways to implement the sensor matrix 
circuitry, all logically similar. Figure 6-19a shows one 
possibility. Each of the 64 sensors consists of a pair of 
simple switch contacts in series with a diode to permit 
multiple contact closures throughout the matrix. 

The scan lines from Port 1 provide eight un-encoded 
active-high scan signals for enabling columns of the 
matrix. The return lines on rows where a contact is closed 
are pulled high and read as logic ones. Open return lines 
are pulled to ground by one of the 40 kQ resistors and are 
read as zeros. The resistor values must be chosen to 
ensure all return lines are pulled above the 2.0 V logic 
threshold, even intheworstcase, whereallcontactsinan 
enabled column are closed. Since PO is provided open­
collector outputs and high-impedance MOS inputs, its 
input loading may be considered negligible. 

The circuits in Figures 6-19b and dare variations on this 
theme. When input signals must be electrically isolated 
from the computer circuitry as in noisy industrial environ­
ments, phototransistors can replace the switch diode 
pairs and provide optical isolation as in Figure 6-19b. 
Additional opto-isolators could also be used on the con­
trol output and special signal lines. 

The other circuits assume that input signals are already 
at TTL levels. Figure 6-19c uses octal 3-state buffers 
enabled by active-low scan signals to gate eight signals 
onto Port O. Port O is available for memory expansion or 
peripheral chip interfacing between sensor matrix 
scans. The 8-to-1 multiplexers in Figure 6-19d select 
one of eight inputs for each return line as determined 
by encoded address bits output on three pins of Port 1. 
Five more output pins are thus freed for more control 
functions. Each output can drive at least one standard 
TIL or up to 10 low-power TTL loads without additional 
buffering. 

Going back to the original matrix circuit, Figure 6-20 
shows the method used to scan the sensor matrix. Two 
complete bit maps are maintained in the bit-addressable 

CHAPTER 6 
8051 Family Boolean Processing Capabilities 

region of the RAM; one for the current state and one for 
the previous state read for each sensor. If the need 
arises, the program could then sense input transitions 
and ordebounce contact closures by comparing each bit 
with its earlier value. 

The code in Example 6-3 implements the scanning 
algorithm for the circuits in Figure 6-19. Each column is 
enabled by setting a single bit in a field of zeroes. The bit 
maps are positive logic; ones represent contacts that are 
closed or isolators turned on. 

Example 6-3. 

INPUT-SCAN: ; SUBROUTINE TO READ 
CURRENT STATE OF 64 
SENSORS AND SAVE IN 
RAM 20H-27H. 

MOV R0,#20H ; INITIALIZE POINTERS 

MOV R1,#28H ; FOR BIT MAP BASES. 

MOV A,#80H ; SET FIRST BIT IN ACC. 

SCAN: MOV P1,A ; OUTPUT TO SCAN LINES. 

RR A ; SHIFT TO ENABLE NEXT 
COLUMN NEXT. 

MOV R2,A ; REMEMBER CURRENT 
SCAN POSITION. 

'MOV A,PO ; READ RETURN LINES. 

XCH A,@RO ; SWITCH WITH PREVIOUS 
MAP BITS. 

MOV @R1,A ; SAVE PREVIOUS STATE 
AS WELL. 

INC RO ; BUMP POINTERS. 

INC R1 

MOV A,R2 ; RELOAD SCAN LINE MASK 

JNB ACC.7,SCAN ; LOOP UNTIL ALL EIGHT 
COLUMNS READ. 

RET 

What happens after the sensors have been scanned 
depends on the individual application. Rather than 
inventing some artificial design problem, software 
corresponding to commonplace logic elements will be 
discussed. 

6-31 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

··r· 
.....J._ 

~ 

6-32 

+ SV 
-r 

+ 8x4K 

"S6" 
.....L. 

RETURN 

/LINES 

8051 

~Ji_ 
t- +-+----+----~---+--+-------- PO.O 

··9·· "'S7" 

L......A'3_ ..J.... ...-- ...... 2 
'---+----~-+-""i - -+ t- --+----J::---+-+-------~ P0.1 

-~-----1+~ 1-1 -+ 1---1------+-+----+1-+-~ P0.2 

--: -----+-f t=-Y t ~ ... :~.: 
----------- I + '-+ I ~ :~.: 

··1s·· "'63'" 

--'- -L. 

~~ ...... x 
t- -I P0.7 ~ 

1 
~ 

'""" 
8x40K ~ ~~ ·~ ~ 

,...... 
P1.0 

PU 

P12 

PU 

P1.4 

P1.S 

P1.6 

PU 
,...... 

SCAN 
LINES 

a. Using Switch Contact/Diode Matrix 

Figure 6-19. Sensor Matrix Implementation Methods 



CHAPTERS 
8051 Famlly Boolean Processing Capabilities 

+SV 
"T" 

h - h.. -);¥) "O" G~ .... 
1 I 1-

t"-1 t-:::1. -

l +lx4K 

h ,...- RETURN 

CT"'~"S6" l'LINES 

8051 

l - ,.. 
I- t- 1----~~-. ----------- PO.O 

h. _r-
~ .. , .. (~§)"9" 

T l~+-1+-
Q;~"57" 
I ~ 

-+---+-4~.,_-~-++-----4*-~ P0.1 

1 ---1-----+,-I - + r---+------t-+------.M-+-1-.j P0.2 

------- -- -- r+---,T------+-+------.~++-1--.1 P0.3 

--: ---t-1--1-t I Po.4 

-----' + I+ r :::: 

~ ~ .r-I I 
a,~ .. 7.. 0,~ .. ,5 .. 

t~ I '-" 

'------~---------1 P1.0 

"---------+-+------- P1.1 

'----------~--------1 P1.2 

------------------ P1.3 

'-------------+-+.------- PU 

--------------------P1.5 

'-------------------t-+--------1 PU 

"------------------------+-+---------1 PU 

SCAN 
LINES 

b. Using Optically-Coupled Isolators 

Figure 6-19. Sensor Matrix Implementation Methods (continued) 

6-33 



CHAPTER 6 
8051 Family Boolean Processing Capabilities 

r·8051 

11111111 llllilll nrr1111 
-NM•.-NM 
c( <( c( c( c( <( <( ~ <~~;4~~~ <r:~~~<;;t 

,.... .- ...- N N 
"' .. <( <( 
N N N .-..- .-NNNN 

reoi 1G. 2G 74LS244 
.- .- N N N 

~ 1G. 2G 74LS244 ,.-. 1G. 2G 74LS244 

6-34 

"' "' > > > 
M ... 
> > 
N N 

N M .. .- N 
>>>>>> 

.- .- .- N N 
"' ... > > 
N N 

N M .. .­
> > > > > .... _. .- N 

'--+--+--+-+--t-+-+--.... -+--t-t--+--+--+----+----+--+--+-t-t--+-+---4'~P01 
' '--+-....,_-+--+--+--<--------+--+--<t--+-+---+----+--+--+--+-t--+--~P02 

-+--t---+--+-t--------+--+--<~+----~----+--+--+--+-1---~P03 

.._+-4---+-+------..... -+--+--<t-----+------.__.__._--+--~P04 

-+-+--t-----------+--+---+---------+--+----i P0.5 

-+-+---------o--+---+----------+--+----<"'i P06 
'--+---------..._ ___ _,__ _________ ..._ ___ ~P07 

I I I I I 

l P1 0 

PU 

P1.2 

PU 

PU 

P15 

PU 

'--

c. Using ITL Three-State Buffers 

Figure 6·19. Sensor Matrix Implementation Methods (continued} 



~ ~ ~ :.. lo. ~ ~ ~ r' \"' r ~ ln i.. 
r' \"' 

j 
~ ·~ 

;... 
'f' 

CHAPTERS 
8051 Family Boolean Processing Capabilities 

8051 

~ ~ .. ~ j... ln i.. 
r' \"' ~ 'f' 'f' 

Do D1 D2 D3 ll4 D5 De D1 

74151 

Do 01 D2 D3 D4 D5 De D1 

74151 

Do D1 D2 D3 D4 D5 De D1 

74151 

C B A y s C1 B A y s C B A y s 

= 
~-----t---t--r---+----------+--t---t----1t--------.i PO.O 

~----------1t--r--+---+------.! P0.1 

~-......,~---+---+--------- P0.2 

...._.-~-------~------ P0.3 
~-i-------+--+-----1------ P0.4 

"-1---+---+-----1------ P0.5 

~----+--+--1------- PO.e 

'-------- P0.7 

d. Using TTL Data Selectors 

Figure 6-19. Sensor Matrix Implementation Methods (continued) 

P1.0 

P1.1 

P1.2 

6-35 



CHAPTERS 
8051 Famlly Boolean Processing C8pabllltles 

INPUT 
SCAN 

INITIALIZE MAP 
BUFFER POINTERS 
AND SCAN MASK 

OUTPUT SCAN 
MASK TO SCAN 

LINES; 
STORE SHIFTED 

MASK 

READ RETURN 
LINES AND UPDATE 

BIT MAPS 

INCREMENT 
BUFFER POINTS 

RETURN 

Figure 6-2D. Flowchart for Reading In Sensor Matrix 

6-36 

Combinator/al Output Variables. An output variable 
which is a simple (or not so simple) corrbinational func­
tion of several input variables is computed in the spirit of 
· Design Example #3. All 64 inputs are represented in the 
bit maps; in fact, the sensor numbers in Figure 6-19 
corresp0nd to the absolute bit addresses in RAM! The 
code in Example 6-4 activates an actuator connected to 
P2.2 when sensors 12, 23, and 34 are closed and 
sensors 45 and 56 are open. 

Example 6-4. Simple Combinatorial Output Varl­
ablfa. 

; SET P2.2 = (12) (23) (34) (45) (56) 

MOV C,12 

ANL C,23 

ANL C,34 

ANL C,45 

ANL C,56 

MOV P2.2,C 

lntennedlate Variables. The examination of a typical 
relay-logic ladder diagram Will show that many of the 
rungs control are not outputs, but rather relays whose 
contacts figure into the computation of other functions. In 
effect, these relays indicate the state of intermediate 
variables of a computation. 

The 8051 Family solution can use any directly address­
able bit for the storage of such intermediate variables. 
Even when all 128 bits of the RAM array are dedicated (to 
input bit maps in this example), the accumulator, PSW, 
and B register provide 18 additionalflags for intermediate 
variables. 

For example, suppose switches 0 through 3 control a 
safety interlock system. Closing any of them should 
deactivate certain outputs. Figure 6-21 is a ladder dia­
gram for this situation. The interlock function could be 
recomputed for every output affected, or it may be 
computed.once and saved (as implied by the diagram). 
As the program proceeds this bit can qualify each output. 

i! 



.. , .. 

"2" 

Figure 6-21. Ladder Diagram for Output override 
Circuitry 

Example 6-5. Incorporating Override signal Into 
actuator outputs. 

CALL INPUT_SCAN 

MOV C,O 

ORL C,1 

ORL C,2 

ORL C,3 

MOV FO,C 

COMPUTE FUNCTION 0 

ANL 

MOV 

C,FO 

P1.0,C 

COMPUTE FUNCTION 1 

ANL 

MOV 

C,FO 

P1.1,C 

CHAPTER 6 
8051 Famlly Boolean Processing Capabllltles 

COMPUTE FUNCTION 2 

ANL C,FO 

MOV P1.2,C 

Latching Relays. A latching relay can be forced into 
either the ON or OFF state by two corresponding input 
signals, where it will remain until forced onto the opposite 
state - analogous to a TTL Set-Reset flip-flop. The relay 
is used as an intermediate variable for other calculations. 
In the previous example, the emergency condition could 
be remembered and remain active until an "emergency 
cleared" button is pressed. 

Any flag or addressable bit may represent a latching relay 
with a few lines of code (see Example 6-6). 

Example 6-6. Simulating a latching relay. 

; L_SET SET FLAG 0 IF C = 1 

L_SET: ORL C,FO 

MOV FO,C 

; L_RESET RESET FLAG 0 IF C = 1 

L_RESET CPS 

ANL 

MOV 

c 
C,FO 

FO,C 

Time Delay Relays. A time delay relay does' not respond 
to an input signal until it has been present (or absent) for 
some predefined time. For example, a ballast or load 
resistor may be switched in series with a de motor when 
it is first turned on, and shunted from the circuit after one 
second. This sort of time delay may be simulated by an 
interrupt routine driven by one of the two 8051 timer/ 
counters. The procedure followed by the routine de­
pends heavily on the detai Is of the exact function needed; 
time-outs or time delays with resettable or non-resettable 
inputs are possible. If the interrupt routine is executed 
every 10 ms the code in Example 6-7 will clear an 
intermediate variable set by the background program 
after it has been active for 2 s. 

Example 6-7. Code to clear USRFLG after a fixed 
time delay. 

JNB USR_FLG,NXTTST 

DJNZ DLAY_COUNT,NXTTST 

CLR USR_FLG 

MOV DLAY_COUNT,#200 

NXTTST: 

6-37 



CHAPTER6 
8051 Famlly Boolean Processing C8pabllltles 

Serial Interface (o Remote Processor. When it detects 
emergency conditions represented by certain input 
combinations (such as the earlier Emergency Override), 
the controller could shut down the machine immedi­
ately and/or alert the host processor via the serial port. 
Code bytes indicating the nature of the problem could 
be transmitted to a central computer. In fact, at 
17,000 bytes-per-second, the entire contents of both bit 
maps could be sent to the host processor for further 
analysis in less than a millisecond! If the host decides that 
conditions warrant, it could alert other remote processors 
in the system that a problem exists and specify which 
shut-down sequence each should initiate. 

Response Timing. One difference between relay and 
programmed industrial controllers (when each is consid­
ered as a ''black box") is their respective reaction times to 
input changes. As reflected by a ladder diagram, relay 
systems contain a large number of "rungs" operating in 
parallel. A change in input conditions will begin propagat­
ing through the system immediately, possibly affecting 
the output state within milliseconds. 

Software, on the other hand, operates sequentially. A 
change in input states will not be detected until the next 
time an input scan is performed, and will not affect the 
outputs until that section of the program is reached. For 
that reason the raw speed of computing the logical 
functions is of extreme importance. 

Here the Boolean processor pays off. Every instruc­
tion mentioned in this chapter completes in 1 or 2 µs at 
12 MHz - the minimum instruction execution time for 
many other microcontrollers! A ladder diagram contain­
ing a hundred rungs, with an average of four contacts per 
rung can be replaced by approximately five hundred lines 
of software. A complete pass through the entire matrix 
scanning routine and all computation would require 
about a millisecond; less than the time· it takes for most 
relays to change state. 

A programmed controller which simulates each Boolean 
function with a subroutine would.be less efficient by at 
least an order of magnitude. Extra software is needed for 
the simulation routines, and each step takes longer to 
execute for three reasons: several byte-wide logical 
instructions are executed per user program step (rather 
than one Boolean operation); most of those instructions 
take longer to execute with microprocessors performing 
multiple off-chip accesses; and calling and returning from 
the various subroutines requires overhead for stack 
operations. 

In fact, the speed of the Boolean Processor solution is 
likely to be much faster than the system requires. The 
CPU might use the time left over to compute feedback 
parameters, collect and analyze execution statistics, or 
perform system diagnostics. 

6-38 

Additional functions and uses 

With the building-block basics mentioned above many 
more operations may be synthesized by short instruction 
sequences. 

Exclusive-OR. There are·no common mechanical de­
vices or relays analogous to the Exclusive-OR operation, 
so this instruction was omitted from the Boolean Proces­
sor. However, the Exclusive-OR or Exclusive-NOR 
operation may be performed in two instructions by con­
ditionally complementing the carry or a Boolean variable 
based on the state of any other testable bit. 

; EXCLUSIVE-OR FUNCTION IMPOSED ON CARRY 

; USING FO AS INPUT VARIABLE. 

XOR_FO: JNB FO,XORCNT ; ('JB' FOR X-NOR) 

CPL C 

XORCNT: 

XCH. The contents of the carry and some other bit may 
be exchanged (switched) by using the accumulator as 
temporary storage. Bits can be moved into and out of the 
accumulator simultaneously using the rotate-through­
carry instructions, though this would alter the accumula­
tor data. 

; EXCHANGE CARRY WITH USRFLG 

XCHBIT: RLC A 

MOV C,USR_FLG 

RRC A 

MOV USR_FLG,C 

RLC A 

Extended Bit Addressing. The 8051 can directly ad­
dress 144 general-purpose bits for all instructions in 
Figure 6-2b. Similar operations may be extended to any 
bit anywhere on the chip with some loss of efficiency. 

The logical operations AND, OR, and Exclusive-OR are 
performed on byte variables using six different address­
ing modes, one of which lets the source be an immediate 
mask, and the destination any directly addressable byte. 
Any bit may thus be set, cleared, or complemented with 
a three-byte, two-cycle instruction if the mask has all bits 
but one set or cleared. 

Byte variables, registers, and indirectly addressed RAM 
may be moved to a bit addressable register (usually the 
accumulator) in one instruction. Once transferred, the 
bits may be tested with a conditional jump, allowing any 
bit to be polled in 3 µs - still much faster than most 
architectures - or used for logical calculations. This 
technique can also simulate additional bit addressing 
modes with byte operations. 



Parity of bytes or bits. The parity of the current accumu· 
lators contents is always available in the PSW, from 
whence it may be moved to the carry and further proc· 
essed. Error-correcting Hamming codes and similar 
applications require computing parity on groups of iso· 
lated bits. This can be done by conditionally complement· 
ing the carry flag based on those bits or by gathering the 
bits into the accumulator (as shown in the DES example) 
and then testing the parallel parity flag. 

Multiple byte shift and CRC codes. Though the 8051 
serial port can accommodate 8· or 9-bit data transmis· 
sions, some protocols involve much longer bit streams. 
The algorithms presented in Design Example 6·2 can be 
extended quite readily to 16 or more bits by using multi· 
byte input and output buffers. 

Many mass data storage peripherals and serial commu­
nications protocols include Cyclic Redundancy (CRC) 
codes to verify data integrity. The function is generally 
computed serially by hardware using shift registers and 
Exclusive-OR gates, but it can be done with software. As 
each bit is received into the carry, appropriate bits in the 
multi-byte date buffers are conditionally complemented 
based on the incoming data bit. When finished, the CRC 
register contents may be checked for zero by ORing the 
two bytes in the accumulator. 

. CHAPTER 6 
8051 Family Boolean Processing Capabilities 

SUMMARY 

A unique facet of the 8051 Family microcomputer family 
design is the collection of features optimized for the one­
bit operations so often desired in real-world, real-time 
control applications. Included are 17 special instructions, 
a Boolean accumulator, implicit and direct-addressing 
modes, program and mass-data storage, and many 1/0 
options. These are the world's first single-chip microcom· 
puters able to efficiently manipulate, operate on, and 
transfer either bytes or individual bits as data. 

This chapter has detailed the information needed by a 
microcomputer system designer to make full use of these 
capabilities. Five design examples were used to contrast 
the solutions allowed by the 8051 and those required by 
previous architectures. Depending on the individual 
application, the 8051 solution will be easier to design; 
more reliable to implement, debug, and verify; use less 
program memory; and run up to an order-of-magnitude 
faster than the same function implemented on previous 
digital-computer architectures. 

Combining byte· and bit-handling capabilities in a single 
microcomputer has a strong synergistic effect; the power 
of the result exceeds the power of byte- and bit-proces· 
sors laboring individually. Virtually all user applications 
will benefit in some ways from this duality. Data-intensive 
applications will use bit addressing for test pin monitoring 
or program control flags; control applications will use byte 
manipulation for parallel 1/0 expansion or arithmetic 
calculations. 

6·39 





SECTION II 

8051 Family Device Description 

Section II contains the data sheets, device-specific 
application information, software routines, third-party 
development support, and package outlines. 

data sheets follow the ROM data sheets with which they 
are associated. 

Application information and software routines immedi­
ately follow the data sheets for which they are most 
closely intended, although they will also be of use with 
data sheets of more enhanced devices. 

The data sheets are divided into three chapters corre­
sponding to three product families. In general, devices 
are listed in order of increasing functionality. EPROM 

Chapter 7 Chapter 8 

80C51 Family 80C521 Family 
Industry Standard Watchdog Timer/ 
CMOS Products Dual Data Pointers 

Memory (bytes) 
ROM/RAM 

EJ 161</256 

SK/256 I soc'm I EJ 
41</256 I"~,·· I 

Functionality 

Chapter 9 

80C324 
Port Expansion 

Mode 

EJ 





CHAPTER 7 

80C51 Family 

80C51 BH/80C31 BH/80C52T2/80C32T2 Data Sheet 
87C51/87C52T2 Data Sheet 
Designing with the 80C51BH Applications Note 

7·1 
7·13 
7·27 





80C51BH/80C31BH/80C52T2/80C32T2 
CMOS Single-Chip Microcontrollers 

DISTINCTIVE CHARACTERISTICS 

• Industry Standard CMOS Microcontrollers 
• Low Power Modes-Idle & Power-Down 
• 32 Programmable I/ 0 Lines 
• Two 16-bit Counter/Timers 
• Programmable Serial Channel 

- Five-source, two-level Interrupt Structure 
- Boolean Processor 

• 64K bytes Program Memory Space 
• 64K bytes Data Memory Space 

SOC31BH 
SOC51BH 
SOC32T2 
SOC52T2 

RAM 
(bytes) 

12S 
12S 
256 
256 

SOC51BH = SOC31BH+4K bytes ROM 
SOC52T2 = SOC32T2+ SK bytes ROM 

ROM 
(bytes) 

4K 

SK 

GENERAL DESCRIPTION 

The SOC51BH and SOC31BH are CMOS versions of the 
industry-standard S051 architecture. The SOC52T2 and 
SOC32T2 are identical products except they contain double 
the on-chip memory. 

Both the SOC51 BH and SOC31 BH include 12S bytes of 
RAM, while the SOC52T2 and SOC32T2 include 256 bytes 
of RAM. The SOC51 B 

timers; a full-duplex serial port; a five-source, two-level 
interrupt structure; and an on-chip oscillator and clock 
circuits. 

In addition, all CMOS SOC51-based products have two 
software-selectable modes of reduced activity for further 
power conservation-Idle and Power-Down. In the Idle 

the RAM, timers, serial port, 
function. In the Power-

nd all other functions are 

PLCC packages offer 
ilizing previously unused 

ss connections. 

BLOCK DIAGRAM 

FREQUENCY 
REFERENCE 

l 
OSCILLATOR 

• TIMING 

INTERRUPTS 

INTERRUPTS 

Publication # Rev. Amendment 
04815 D /0 

Issue Date: October 1989 

ROM 
4KBYTES 

(80C51 ONLY) 
BK BYTES 

(BOC52T2 Of>&. Y) 

64K-BYTE BUS 
EXPANSION 
CONTROL 

CONTROL 

RAM 
128 BYTES 
256 BYTES 

(B0<?52T2/80C32T2) 

PARALLEL PORTS 
ADDRESS DATA BUS 

ANO l/OPlNS 

COUNTERS 

TW016-BIT 
TIMEAIEVENT 
COUNTERS 

PROGRAMMABLE 
SERIAL PORT 
•FULL DUPLEX 

UART 
•SYNCHRONOUS 

SHIFTER 

SERIAL SERIAL 
IN OUT 

80007232 

80C51 BH/80C31 BH/80C52T2/80C32T2 7-1 



7-2 

P1.0 

P1.1 

P1.2 

P1.3 

P1.4 

P1.I 

P1.I 

P1.7 

llST 

RICO P3.0 

TXD P3.1 

IRTo P3.2 

ilii', P3.2 

To PU 

T1 Pa.I 

WI! Pa.I 

lil5 P3.7 

XTAl.z 

XTAl.1 

Vea 

CONNECTION DIAGRAMS 
Top View 

DIP 
80C51BH/80C31BH 
80C52T2/80C32T2 

~ ., 
[ [ 

I 
Pl.I 

R8T 

P3.0 

NC 

"3..t 

P3.2 

P3.3 

P3..4 

P3.I 

18 ti 

f 
.. 
f 

Yee 

PO.O Ao,, 
P0.1 AD1 

P0.2 ADz 

P0.3 ADz 

P0.4 AD4 

PO.I ADg 

PO.I Alie 
P0.7 AO,. 

iA 
ALE 

lllD 
P2.7 A11 

P2.I A,, 

Pl.I A13 

P2.4 A1z 

P2.3 An 

P2.2 A10 

PZ.1 Ao 
PZ.O Ao 

CD005554 

PLCC 

80C52T2/80C32T2 

Oj 

t ~ ~~ ~ t ~ ii! [ 

4 3 2 1 44 43 42 41 40 
39 • 
37 

• 
31 

34 

33 

32 

31 

30 

20 21 22 23 24 21 • 27 28 

N ~ •• 

~ ~ > > ~ ~ i f ~ 

PLCC 
80C51BH/80C31BH 

i ~ i l 2 i r ~ r ~ r 
CD009443 

P0.4 

PG.I 

po.e 

P0.7 

EA 
Vss 
ALE 

~ 

P2.7 

PU 

PU 

CD009444 

Note: Pin 1 is marked for orientation. 

80C51 BH/80C31 BH/80C52T2/80C32T2 



LOGIC SYMBOL 

Vss Vee AST 
XTAL, 

~ 
~ 

Cl .. ~ 
:I 

~ .. 
XTAL2 i ~ 

i!A 

1) 
PiEN 

ALE 

I --1 l -) TXD-

=~ iATo-

iNT, - i ~. I I 
To-
T,-
Wii-
e-

LS001323 

80C51 BH/80C31 BH/80C52T2/80C32T2 7-3 



ORDERING INFORMATION 

Commodity Products 

AMO commodity products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: a. Temperature Range 

7-4 

b. Package Type 
c. Device Number 
d. Speed Option 
e. Optional Processing 

-L L e. OPTIONAL PROCESSING 
Blank = S1andard processing 

d. SPEED OPTION 
Blank= 0.1 to 12 MHz 

-1 =0.1 to 16 MHz 
-20 = 0.1 to 20 MHz (preliminary) 

c. DEVICE NUMBER/DESCRIPTION 
BOC51 BH/80C31 BH/80C52T2/80C32T2 
CMOS Single-Chip Microcontrollers 

b. PACKAGE TYPE 
p = 40-Pin Plastic DIP (PD 040) 
N = 44-Pin Plastic Leaded Chip Carrier (PL 044) 

a. TEMPERATURE RANGE* 
Blank = Commercial (0 to + 70°C) 

I= Industrial (-40 to +85°C) 

Valid Combinations 

BOC51BH 

P, N BOC51 BH-1 

IP, IN BOC31BH 

BOC31BH-1 

p BOC31BH-20 

P, N BOC52T2-1 

IP, IN BOC32T2-1 

*This device will also be available in Military temperature 
range. 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local 
AMO sales office to confirm availability of specific valid 
combinations, to check on newly released valid combi­
nations, and to obtain additional data on AMO's stan­
dard military grade products. 

80C51 BH/80C31 BH/80C52T2/80C32T2 



PIN DESCRIPTION 

Port O (Bldlrectlonal, Open Drain) 
Port 0 is an open-drain bidirectional 1/0 port. Port 0 pins that 
have 1 s wriiten to them float, and in that state can allow 
them to be used as high-impedance inputs. 

Port O is also the multiplexed Low-order address and data 
bus during accesses to external Program and Data Memory. 
In this application it uses strong internal pullups when 
emitting 1 s. Port 0 also outputs the code bytes during 
program verification in the 80C51 BH. External pullups are 
required during program verification. 

Port 1 (Bldlrectlonal) 
Port 1 is an 8-bit bidirectional 1/0 port with internal pullups. 
The Port 1 output buffers can sink/source four LS TTL 
inputs. Port 1 pins that have 1 s written to them are pulled 
High by the internal pullups and can be used as inputs while 
in this state. As inputs, Port 1 pins that are externally being 
pulled Low will source current (l1L on the data sheet) 
because of the internal pullups. 

Port 1 also receives the Low-order address bytes during 
program verification. 

Port 2 (Bldlrectlonal) 
Port 2 is an 8-bit bidirectional 1/0 port with internal pullups. 
The Port 2 output buffers can sink/source four LS TTL 
inputs. Port 2 pins having 1 s written to them are pulled High 
by the internal pullups and can be used as inputs while in 
this state. As inputs, Port 2 pins externally being pulled Low 
will source current Cl1L) because of the internal pullups. 

Port 2 emits the High-order address byte during fetches 
from external Program Memory and during accesses to 
external Data Memory that use 16-bit addresses (MOVX 
@DPTR). In this application it uses strong internal pullups 
when emitting 1 s. During accesses to external data memory 
that use 8-bit addresses (MOVX @Ri), Port 2 emits the 
contents of the P2 Special Function register. 

Port 2 also receives the High-order address bits during ROM 
verification. 

Port 3 (Bldlrectlonal) 
Port 3 is an 8-bit bidirectional 1/0 port with internal pullups. 
The Port 3 output buffers can sink/source four LS TTL 
inputs. Port 3 pins that have 1 s written to them are pulled 
High by the internal pullups and can be used as inputs while 
in this state. As inputs, Port 3 pins externally being pulled 
Low will source current (l11J because of the pullups. 

Port 3 also serves the functions of various special features 
as listed below: 

Port Pin Alternate Function 

P3.o RxD (serial input port) 

P3.1 TxD (serial output port) 

P3.2 INTo (external interrupt O) 

P3_3 INT 1 (external interrupt 1) 

P3_4 To (Timer 0 external input) 

P3_5 T 1 (Timer 1 external input) 

P3.s WR (external Data Memory write strobe) 

P3_7 RD (external Data Memory read strobe) 

RST Reset (Input, Active High) 
A High on this pin (for two machine cycles while the 
oscillator is running) resets the device. An internal diffused 
resistor to Vss permits power-on reset, using only an 
external capacitor to V cc. 

ALE Address Latch Enable (Output, Active High) 
Address Latch Enable is the output pulse for latching the 
Low byte of the address during accesses to external 
memory. 

In normal operation ALE is emitted at a constant rate of 1 /6 
the oscillator frequency, allowing use for external-timing or 
clocking purposes. Note, however, that one ALE pulse is 
skipped during each access to external Data Memory. 

PSEN Program Store Enable (Output, Active Low) 
PSEN is the read strobe to external Program Memory. When 
the 80C51 BH is executing code from external program 
memory, i5SEiii is activated twice each machine cycle­
except that two PSEN activations are skipped during each 
access to external Data Memory. PSEN is not activated 
during fetches from internal Program Memory. 

EA External Access Enable (Input, Active Low) 
EA must be externally held Low to enable the device to 
fetch code from external Program Memory locations OOOOH 
to OFFFH. If EA is held High, the device executes from 
internal Program Memory unless the program counter 
contains an address greater than OFFFH. 

XTAL1 Crystal (Input) 
Input to the inverting-oscillator amplifier, and input to the 
internal clock-generator circuits. 

XTAL2 Crystal (Output) 
Output from the inverting-oscillator amplifier. 

Vee Power Supply 
Supply voltage during normal, idle, and power-down 
operations. 

Vss Circuit Ground 

80C51 BH/80C31 BH/80C52T2/80C32T2 7-5 



7-6 

FUNCTIONAL DESCRIPTION 

Oscillator Characteristics 

XTAL1 and XTAL2 are the input and output, respectively, of an 
inverting amplifier which is configured for use as an on-chip 
oscillator (see Figure 1 ). Either a quartz crystal or ceramic 
resonator may be used. 

To drive the device from an external clock source, XT AL 1 
should be driven while XTAL2 is left unconnected (see Figure 
2). There are no requirements on the duty cycle of the 
external-clock signal since the input to the internal clocking 
circuitry is through a divide-by-two flip-flop, but minimum and 
maximum High and Low times specified on the data sheet 
must be observed. 

TC003411 

Figure 1. Crystal Oscillator 

NC 

EXTERNAL 
OSCILLATOR ------------1 XTAL1 
SIGNAL 

Vss 

TC003392 

Figure 2. External Drive Configuration 

Note: Different from NMOS configuration. 

Idle and Power-Down Operation 

Figure 3 shows the internal Idle and Power-Down clock 
configuration. As illustrated, Power-Down operation freezes 
the oscillator. Idle mode operation shows the interrupt, serial 
port, and timer blocks to continue to function while the clock to 
the CPU is halted. 

These special modes are activated by software via the Special 
Function Register, PCON (Table 1). Its hardware address is 
87H; PCON is not bit-addressable. 

If 1 s are written to PD and IDL at the same time, PD takes 
precedence. The reset value of PCON is "OXXXOOOO." 

TC003383 

Figure 3. Idle and Power·Down Hardware 

TABLE 1. PCON (Power Control Register) 

(LSB) 

GF1 GFO PD I IDL 

Symbol Position Name and Description 

SMOD PCON.7 Double-baud-rate bit. When set to a 
1 , the baud rate is doubled when 
the serial port is being used in 
either modes 1, 2, or 3. 

- PCON.6 (Reserved) 

- PCON.5 (Reserved) 

- PCON.4 (Reserved) 

GF1 PCON.3 General-purpose flag bit 

GFO PCON.2 General-purpose flag bit 

PD PCON.1 Power-Down bit. Setting this bit 
activates power-down operation. 

IDL PCON.O Idle-mode bit. Setting this bit 
activates idle-mode operation. 

Idle Mode 

The instruction that sets PCON.O is the last instruction 
executed in the normal operating mode before Idle mode is 
activated. Once in the Idle mode, the CPU status is preserved 
in its entirety: the Stack Pointer, Program Counter, Program 
Status Word, Accumulator, RAM, and all other registers 
maintain their data during Idle. Table 2 describes the status of 
the external pins during Idle mode. 

There are two ways to terminate the Idle mode. Activation of 
any enabled interrupt will cause PCON.O to be cleared by 
hardware, terminating Idle mode. The interrupt is serviced, and 
following R ETI, the next instruction to be executed will be the 
one following the instruction that wrote a 1 to PCON.O. 

The flag bits GFO and GF1 may be used to determine whether 
the interrupt was received during normal execution or during 
the Idle mode. For example, the instruction that writes to 
PCON.O can also set or clear one or both flag bits. When Idle 
mode is terminated by an enabled interrupt, the service routine 
can examine the status of the flag bits. 

The second way of terminating the Idle mode is with a 
hardware reset. Since the oscillator is still running, the 

80C51 BH/80C31 BH/80C52T2/80C32T2 



hardware reset needs to be active for only 2 machine cycles 
(24 oscillator periods) to complete the reset operation. 

Power-Down Mode 

The instruction that sets PCON.1 is the last executed prior to 
going into Power-Down. Once in Power-Down, the oscillator is 
stopped. Only the contents of the on-chip RAM are preserved. 
The Special Function Registers are not saved. A hardware 
reset is the only way of exiting the Power-Down mode. 

In the Power-Down mode, Vee may be lowered to minimize 
circuit power consumption. Care must be taken to ensure the 
voltage is not reduced until the Power-Down mode is entered, 
and that the voltage is restored before the hardware reset is 
applied, which frees the oscillator. Reset should not be 
released until the oscillator has restarted and stabilized. 

Table 2 describes the status of the external pins while in the 
Power-Down mode. It should be noted that if the Power-Down 
mode is activated while in external program memory, the port 
data that is held in the Special Function Register P2 is 
restored to Port 2. If the data is a 1, the port pin is held High 
during the Power-Down mode by the strong pullup, P1, shown 
in Figure 4. 

80C51BH 1/0 Ports 

The 1/0 port drive of the 80C51 BH is similar to the 8051. The 
1/0 buffers for Ports 1, 2, and 3 are implemented as shown in 
Figure 4. 

When the port latch contains a 0, all pFETS in Figure 4 are off 
while the nFET is turned on. When the port latch makes a 0-to-
1 transition, the nFET turns off. The strong pullup pFET, P1, 
turns on for two oscillator periods, pulling the output High very 
rapidly. As the output line is drawn High, pFET P3 turns on 
through the inverter to supply the loH source current. This 
inverter and P3 form a latch which holds the 1 and is 
supported by P2. 

When Port 2 is used as an address port, for access to external 
program of data memory, any address bit that contains a 1 will 
have its strong pullup turned on for the entire duration of the 
external memory access. 

When an 1/0 pin on Ports 1, 2, or 3 is used as an input, the 
user should be aware that the external circuit must sink 
current during the logical 1-to-O transition. The maximum sink 
current is specified as ITL under the D.C. Specifications. When 
the input goes below approximately 2 V, P3 turns off to save 
Ice current. Note, when returning to a logical 1, P2 is the only 
internal pullup that is on. This will result in a slow rise time if 
the user's circuit does not force the input line High. 

TABLE 2. STATUS OF THE EXTERNAL PINS DURING IDLE AND POWER-DOWN MODES 

Mode Program Memory 

Idle 

Idle 

Power-Down 

Power-Down 

a 
FROM PORT 

LATCH 

Internal 

External 

Internal 

External 

ALE 

1 

1 

0 

0 

PSEN PORTO PORT1 

1 Port Data Port Data 

1 Floating Port Data 

0 Port Data Port Data 

0 Floating Port Data 

Vee Vee 

Figure 4. 1/0 Buffers in the 80C51BH (Ports 1, 2, 3) 

80C51 BH/80C31 BH/80C52T2/80C32T2 

PORT2 PORT3 

Port Data Port Data 

Address Port Data 

Port Data Port Data 

Port Dat11 Port Data 

Vee 

TC003402 

7-7 



ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 
Storage Temperature .......................... -65°C to +150°C Commercial (C) Devices 
Voltage on Any Temperature (T Al .................................. O to + 70°C 
Pin to Vss ............................... -0.5 v to Vee +0.5 v 80C51 BH/80C31 BH 
Voltage on Vee to Vss ....................... -0.5 V to 6.5 V Supply Voltage (Vee) ...................... + 4 V to + 6 V 
Power Dissipation .......................................... 200 mW 80C52T2/80C32T2 

Stresses above those listed under ABSOLUTE MAXIMUM Supply Voltage (Vee) ................. + 4.5 V to + 5.5 V 

RA TINGS may cause permanent device failure. Functionality Ground (Vss) .................................................. 0 v 
at or above these limits is not implied. Exposure to absolute Industrial (I) Devices 
maximum ratings for extended periods may affect device Temperature (T Al ............................... -40 to + 85°C 
reliability. 80C51 BH/80C31 BH 

Supply Voltage (Vee) ................. + 4.5 V to + 5.5 V 
80C52T2/80C32T2 

Supply Voltage (Vee) ................. + 4.5 V to + 5.5 V 
Ground (Vss) .................................................. o V 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

DC CHARACTERISTICS over operating ranges unless otherwise specified 

Parameter Parameter Test Conditions Min. Max. Units Symbol Description 

V1L Input Low Voltage (Except EA) -0.5 .2 Vcc-0.1 v 
V1L1 Input Low Voltage (EA') -0.5 .2 Vcc-0.3 v 

V1H Input High Voltage (Except XTAL1, RST) 0.2 Vee+ o.9 Vee+ o.5 v 

V1H1 Input High Voltage (XTAL1 RST) o.7 Vee Vee+ o.5 v 

VOL Output Low Voltage (Ports 1, 2, 3) loL = 1.6 mA (Note 1) 0.45 v 

Vol1 Output Low Voltage (Port 0, ALE. ~) loL = 3.2 mA (Note 1) 0.45 v 
loH = -60 µA, Vee= 5 V±10% 2.4 v 

VoH Output High Voltage (Ports 1, 2, 3) IQH =-25 µA 0.75 Vee v 
IQH = -10 µA 0.9 Vee v 

loH=-400 µA, Vcc=5 V±10% 2.4 v 
VQH1 ~~£u~ Voltage (Port 0 in External Bus Mode, loH=-150 µA 0.75 Vee v 

, loH = -40 µA (Note 2) 0.9 Vee v 
l1L Logical O Input Current (Ports 1, 2, 3) V1N = 0.45 V -50 µA 

ITL Logical 1 to o Transition Current (Ports 1, 2, 3) V1N = 2 V -650 µA 

lu Input Leakage Current (Port 0, EA) 0.45 < V1N <Vee ±10 µA 

RRST Reset Pulldown Resistor 50 150 kll 

CIO Pin Capacitance Test Freq.= 1 MHz, TA= 25°C 10 pF 

lpo Power Down Current Vee = 2 to 6 v (Note 3) 50 µA 

80C51BH/80C31BH MAXIMUM Ice {mA) 

Operating (Note 4) Idle (Note 5) 
Freq. Vee 4 v 5 v 6 v 4 v 5V 6 v 

0.1 MHz 1.2 1.5 2.5 0.5 0.7 1.1 
3.5 MHz 4.3 5.7 7.5 1.1 1.6 2.2 
8.0 MHz 8.3 11 14 1.8 2.7 3.7 
12 MHz 12 16 20 2.5 3.7 5 
16 MHz 16 20.5 25 3.5 5 6.5 

80C52T2/80C32T2 MAXIMUM Ice {mA) 

Operating (Note 4) Idle (Note 5) 
Freq. Vee 4.5 v 5.0 v 5.5 v 4.5 v 5.0 v 5.5 v 

0.1 MHz 2.2 3.1 3.8 0.7 0.9 1.4 
3.5 MHz 6 8 10 1.5 2 3 
8.0 MHz 11 14 18 2.5 3.5 5 
12 MHz 15 20 25 3.5 5 6 
16 MHz 19 25 32 4.5 6.5 8.5 

Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VqLS of ALE and Ports 1 and 3. The noise 
is due to external bus capacitance discharging into the Port O and Port 2 pins when these pins make 1-to-O transitions during bus 

~~~j,~~~~sidnq~ha~ifyoArEc~r~ ~~.;'~~~e j-~~~~ ~r1 ~~.f~;, t~~d~~~: r,u1~e ~~hth: ~;~~ii~~ T~a~e~xg~~~~~ Y.;~~1such cases it may be 
2. Capacitive loading on Ports O and 2 may cause the VoH on ALE and~ to momentarily fall~efore the .9 Vee specification when the

address bits are stabilizing. _ ·
3. Power-Down Ice is measured with all outputs pins disconnected; EA= Port O =Vee; XTAL2 N.C.; AST= Vss.
4. ~8 i~easured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, V1L = Vss + 0.5 V, V1H = Vee-0.5 V; XTAL2

; A = RST = Port 0 = Vee;. ig;; would be slightly higher 1f a crystal oscillator is used.
5. I le Ice is measured with a!L.Qutput ~ins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, V1L = Vss + 0.5 V, V1H =Vee -0.5 V;

XTAL2 NC; Port 0 =Vee; EA= RS = V55.

7-8 80C51 BH/80C31 BH/80C52T2/80C32T2

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified
(CL for Port 0, ALE and PSEN Outputs= 100 pF; CL for All Other Outputs= 80 pF)

Parameter Parameter
Symbol Description Max

External Program and Data Memory Characteristics

1/TCLCL Oscillator Frequency 0.1 20 0.1 16 0.1 12 0.1 16

TLHLL ALE Pulse Width 60 85 127 2TCLCL-40

TAVLL Address Valid to
ALE Low 20 7 28 TCLCL-55

TL LAX Address Hold After
ALE Low 15 27 48 TCLCL-35

TLLIV ALE Low to Valid
Instr. In 120 150 234 4TCLCL-100

TL LPL ALE Low to
'l>sENLow 25 22 43 TCLCL-40

TPLPH J5SEJil Pulse Width 115 142 205 3TCLCL-45

TPLIV PSEN Low to Valid
Instr. In 75 83 145 3TCLCL-105

TPXIX Input Instr. Hold
After PSEN 0 0 0 0

TPXIZ Input Instr. Float
AfterPSEN 35 38 59 TCLCL-25

TAVIV Address to Valid
Instr. In 165 208 312 5TCLCL-105

TPLAZ PSEN Low to
Address Float 0 10 1.0 10

TRLRH Rl5 Pulse Width 200 275 400 6TCLCL-100

TWLWH 'im Pulse Width 200 275 400 6TCLCL-100

TRLDV RC) Low to Valid
Data In 145 148 252 5TCLCL-165

TRHDX Data Hold After RD 0 0 0 0

TRHDZ Data Float After M 60 55 97 2TCLCL-70

TLLDV ALE Low to Valid
Data In 310 350 517 8TCLCL-150

TAVDV Address to Valid
Data In 350 398 585 9TCLCL-165

TLLWL ALELowtoiID
or WR Low 100 200 137 238 200 300 3TCLCL-50 3TCLCL+50

TAVWL Address Valid to
Read or Write Low 110 120 203 4TCLCL-130

TQVWX Data Valid to WR
Transition 95 2 23 TCLCL-60

TQVWH Data Valid to
Write High 200 287 433 7TCLCL-150

TWHQX Data Hold After WR 25 12 33 TCLCL-50

TRLAZ RI) Low to Address
Float 0 0 0 0

TWHLH m or WR High to
ALE High 20 70 22 103 43 123 TCLCL-40 TCLCL+40

80C51 BH/80C31 BH/80C52T2/80C32T2

Unhs

MHz

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

7-9

ALE

PORTO

PORT2

ALE

TAVLL

PORTO

PORT2

7-10

SWITCHING WAVEFORMS

-TAVLL-TU:Pl--TPLPH ---

TLLIV

TLLAX -- TPLAZ

TPXIZ1-­

TPXIX- -

INSTR
IN

External Program Memory Read Cycle

TWHLH

1-----TLLDV----•I

-TLLWL- ---TRLRH-t---•I

--TRLDV--

P2.0-P2.7 OR Ae-A15.FROM DPH-

External Data Memory Read Cycle

80C51 BH/80C31 BH/80C52T2/80C32T2

WF021962

A9-A15 FROM PCH

WF020962

SWITCHING WAVEFORMS (continued)

ALE

-TLLWL----TWLWH ---

TQVWX

~
1~-+--TQVWH-----

PORT 0 DATA OUT

PORT 2 P2.0-P2.7 OR A9-A,5 FROM DPH A9-A,5 FROM PCH

WF020932

External Data Memory Write Cycle

INSTRUCTION

ALE

1-TXLXL-I

CLOCK -----...
TQVXHl--J i-TXHQX

OUTPUT DATA

+ SET n .._,--i
WRITE TO SBUF

l~TDATA ______ _,.v_~_IJD.,_~-~v-~_10,...__.~v_•_uo""'-''""""""--''-~'--" -"--~--""'--""""""~

t t
SET N

CLEAR RI

WF020951

Shift Register Timing Waveforms

80C51 BH/80C31 BH/80C52T2/80C32T2 7-11

EXTERNAL CLOCK DRIVE

Parameter Parameter
Symbol Description Min. Max. Units

1/TCLCL Oscillator Frequency 0.1 20 MHz

TCHCX High Time 20 ns

TCLCX Low Time 20 ns

TCLCH Rise Time 20 ns

TCHCL Fall Time 20 ns

vcc-u ----

U'<c~ A ~
llAIY o.2Ycc-0.1 . 1-TCHCX

~TCLCX-~-
TCllCI. r TCLCL

WF020910
External Clock Drive Waveform

SERIAL PORT TIMING - SHIFT REGISTER MODE
Test Conditions: TA= 0°C to 70°C; Vee= 5 V ±20%; Vss = 0 V; Load Capacitance= 80 pF

16 MHz Osc. Variable Oaclllator
Parameter Parameter

Symbol Description Min. Max. Min. Max. Units

TXLXL Serial Port Clock Cycle Time 750 12TCLCL ns

TQVXH Output Data Setup to Clock Rising Edge 492 1 OTCLCL - 133 ns

TXHQX Output Data Hold After Clock Rising Edge 8 2TCLCL-117 ns

TXHDX Input Data Hold After Clock Rising Edge 0 0 ns

TXHDV Clock Rising ·Edge to Input Data Valid 492 1 OTCLCL - 133 ns

Vcc-o.5 0.2 Vcc+0.9 VLoAo+0.1 v ~Vo110.1 V
VLOAD TIMING REFERENCE

0.2 Vcc-0.1 POINTS
0.45 v VLoAo-0.1 v VOL +0.1 V

WF020901 WF020941
AC inputs during testing are driven at Vcc-0.5 for a logic 1 and 0.45 V For timing purposes a port pin is no longer floating when a 100 mV
for a logic o. Timing measurements are made at V1H min. for a logic 1 change from Joad voltage occurs, and begins to float when a 100 mV
and V1L max. for a logic 0. chance from the loaded VoHIVoLlevel occurs. loLlloH ;;.±20 mA.

AC Testing Input/Output Waveforms Float Waveform

7-12 80C51 BH/80C31 BH/80C52T2/80C32T2

87C51/87C52T2
8-Bit CMOS Microcontrollers

PRELIMINARY

DISTINCTIVE CHARACTERISTICS

• Software- and pin-compatible with SOC51
• Beneficial for prototyping and initial production
• All SOC51 BH and SOC52T2 features retained
• Flashrite TM EPROM programming
• Two-level Program Memory Lock
• 32-Byte Encryption Array
• In-Circuit Test Mode facilitates testing

S7C51
S7C52T2

RAM
(bytes)

12S
256

S7C51 =User-programmable SOC51 BH
S7C52T2 = User-programmable BOC52T2

EPROM
(bytes)

4K
SK

GENERAL DESCRIPTION

The S7C51 and 87C52T2 are CMOS EPROM versions of
the SOC51 BH and SOC52T2, respectively. The 87C51
includes 4K bytes of on-chip EPROM, and the S7C52T2
includes SK bytes of EPROM.

These user-programmable products are software- and pin­
compatible with their ROM-based counterparts. All of the
SOC52BH and SOC52T2 features are retained. For more
information consult t
SOC32T2 data sheet

OSCILLATOR
&

TIMING

80CS1
CPU

INTERRUPTS

INTERRUPTS

Publication # Rev. Amendment

EPROM
4K/BK BYTES

64K-BYTE BUS
EXPANSION
CONTROL

CONTROL

Additionally, several new features are offered on the
EPROM versions. The S7C51 and S7C52T2 EPROM array
support the Flashrite programming algorithm that allows a
4K-byte EPROM array to be programmed in approximately
12 seconds. A two-level programmable lock structure
prevents externally fetched code from accessing internal
Program Memory and can disable EPROM verification and
programming. A 32-byte Encryption Array can be used to

RAM
128 BYTES/256 BYTES

PARALLEL PORTS
ADDRESS DATA BUS

ANO 1/0 PINS

ring EPROM verification.

rwo 1s-s1T
TIMER/EVENT
COUNTERS

PROGRAMMABLE
SERIAL PORT
•FULL DUPLEX

UART
• SYNCHRONOUS

SHIFTER

SERIAL SERIAL
IN OUT

80007254

09743 B --,-0-- 87C51 /87C52T2
lssue Date: October 1989

7-13

7-14

Pt.O

P1.1

P1.2

P1.2

P1.4

PU

Pl.I

Pl.7

llST

RXD P3.0

TXD P3.I

IATo P3.2

iii'i', P3.3

To PU

T1 P3.S

WR P3.I

liii P3.7
XTALz

XTAL1

v ..

DIP

Pl.I

Pl.7

1181'

P3.0

NC

PS.I

P3.2

P3.3

P3.4

P3.5

CONNECTION DIAGRAMS
Top. View

"':
Yee a:
PG.O "Do
PG.I Ao,

P1.5
PG.2 Alla

PG.3 ADa P1.6

PG.4 AD4 P1.7
P0.5 Alls
PO.I Ao,,

AST

PG.7 AO, P3.0

EA/Ypp NC
ALE/iiiiOii

lllD P3.1

P2.7 "11 P32

Pl.I ~14 P3.3
PU A13

P2.4 A12

p2.3 An P3.5
P2.2 A10

P2.I At

P2.0 "' ~
00005553

PLCC

LCC

"! "! Cl ~~ ~ a: a: a: a: a..

~ ~N ($ $~ <Ii
a..

38 PO.a

PO.I

P0.7

EA/Vpp

Vss
ALE/illmii

32 l5i§i

31 P2.7

30 PU

29 PU

18 19 20 21 22 11:1 2' 25 29 27 28

CD009442

g g .., f

P0.4

PM

P0.6

P0.7

EANpp

\Ss
,,LE/PROO

l5m1

P2.7

P2.6

P2.5

"' "! ~ <Ii N a.. a..

CD010873

Notes: Pin 1 is marked tor orientation.
NC pins on the PLCC and LCC packages have been utilized as additional Vee and Vss connections
to improve noise immunity. It is recommended that these pins (1, 23, and 37) be connected
appropriately; however, they may be left floating to insure second source compatibility.

87C51/87C52T2

LOGIC SYMBOL

Vss Vee AST

XTAL1

!:!
.¢.

..
CJ ~

i ~ ..
XTAL2 Ul

~ a:

~
EA/Vpp

il PSEN

ALEtiiRoi

I
RXO_.

TXD-

i ~.-
i IHTt- i i .. To-

i T1-
WA-
lili-

LS001326

ORDERING INFORMATION

Commodity Products

AMO commodity products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of: a. Temperature Range

b. Package Type
c. Device Number
d. Speed Option
e. Optional Processing

T
-I '------.. OPTIONAL PROCESSING

Blank = Standard processing

"-· --------d. SPEED OPTION
Blank = 3.5 to 12 MHz

-1=3.5 to 16 MHz

c. DEVICE NUMBER/DESCRIPTION
87C51 /87C52T2
B-Bit CMOS Microcontrollers
87C51 - 4K EPROM
87C52T2 - SK EPROM

'------------------b. PACKAGE TYPE

a. TEMPERATURE RANGE
Blank = Commercial (0 to + 70°C)

I= Industrial (-40 to + 85°C)

D = 40·Pin Ceramic DIP (CDV040)
R = 44-Pin Ceramic Leadless Chip Carrier (CLV044)
P = 40-Pin Plastic DIP (PD 040)
N = 44-Pin Plastic Leadless Chip Carrier (PL 044)

Valid Combinations

Valid Combinations Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local AMO
sales office to confirm availability of specific valid
combinations, to check on newly released combinations, and
to obtain additional data on AMO's standard military grade
products.

87C51

D, R, P, N 87C51-1
ID, IA, IP, IN 87C52T2

87C52T2·1

87C51/87C52T2 7-15

PIN DESCRIPTION

Port O (Bldlrectlonal; Open Drain)
Port O is an open-drain 1/0 port. Port O pins that have 1 s
written'to them float, and in that state can be used as high­
impedance inputs.

Port O is also the multiplexed low-order address and data
bus during accesses to external Program and Data Memory. ·
In this application it uses strong internal pullups when
emitting 1 s. Port O also outputs the code bytes during
program verification in the 87C51 /87C52T2. External
pullups are required during program verification.

Port 1 (Bldlrectlonal)
Port 1 is an 8-bit bidirectional 110 port with internal pullups.
The Port 1 output buffers can sink/source four LS TTL
inputs. Port 1 pins that have 1 s written to them are pulled
High by the internal pullups and can be used as inputs while
in this state. As inputs, Port 1 pins that are externally being
pulled Low will source current (l1L on the data sheet)
because of the internal pullups.

Port 1 also receives the low-order address bytes during
program verification.

Port 2 (Bldlrectlonal)
Port 2 is an 8-bit bidirectional 110 port with internal pullups.
The Port 2 output buffers can sink/ source four LS TTL
inputs. Port 2 pins having 1 s written to them are pulled High
by the internal pullups and can be used as inputs while in
this state. As inputs, Port 2 pins externally being pulled Low
will source current (l1Ll because of internal pullups.

Port 2 emits the high-order address byte during fetches from
external Program Memory and during accesses to external
Data Memory that use 16-bit addresses (MOVX @DPTR). In
this application it uses strong internal pullups when emitting
1 s. During accesses to external Data Memory that use 8-bit
addresses (MOVX @Ri), Port 2 emits the contents of the P2
Special Function register.

Port 2 also receives the high-order address bits during the
programming of the EPROM and during program verification
of ttie EPROM, as well as some control signals.

Port 3 (Bidirectional)
Port 3 is an 8-bit bidirectional 110 port with internal pullups.
The Port 3 output buffers can sink/source four LS TTL
inputs. Port 3 pins having 1 s written to them are pulled High
by the internal pullups and can be used as inputs while in
this state. As inputs, Port 3 pins externally being pulled Low
will source current (l1Ll because of the pullups. Port 3 also
receives some control signals for EPROM programming and
program verification.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function

Pa.o RxD (Serial Input Port)

Pa.1 TxD (Serial Output Port)

Pa.2 INT o (External Interrupt 0)

P3,3 iFl'Fj (External Interrupt 1)

Pa.4 To (Timer 0 External Input)

Pa.5 T 1 (Timer 1 External Input)

Pa.6 WI!! (External Data Memory Write Strobe)

Pa.7 Im (External Data Memory Read Strobe)

RST Reset (Input; Active High)
This pin is used to reset the device when held High for two
machine cycles while the oscillator is running. A small
imernal resistor permits power-on reset using only a
capacitor connected to Vee.

ALE/JifiCm Addreaa Latch Enable/Program Pulse
(Input/Output)

Address Latch Enable is the output pulse for latching the
low byte of the address during accesses to external
memory. ALE can drive eight LS TTL inputs.

In normal operation ALE is emitted at a constant rate of 1 /8
the oscillator frequency, allowing use for external-timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory. This
pin also accepts the program pulse input (i5ROG) when
programming the EPROM.

P§EJil Program Store Enable (Output; Active Low)
J5SE1\J is the read strobe to external Program Memory. PSEN
can drive eight LS TTL Inputs. When the device Is executing
code from an external program memory, J5SE1\J is activated
twice each machine cycle-except that two J5'SE1ii
activations are skipped during each access to external Data
Memory. PSEN is not activated during fetches from internal
Program Memory.

EA/Vpp =e-xt,_e-rn-a""'l-A c_c_e_s_s""'E"'n-a""'b""'le-/Programmlng
Voltage (Input; Active Low)

EA must be externally held Low to enable the device to
fetch code from external Program Memory locations OOOOH
to OFFFH. If EA is held High, the 87C51 /87C52T2 executes
from internal Program Memory unless the program counter
contains an address greater than OFFFH.

This pin also receives the 12.75-V programming supply
voltage during programming of the EPROM.

XTAL1 Crystal (Input)
Input to the inverting-oscillator amplifier, and input to the
internal clock-generator circuits.

XTAL2 Crystal (Output)
Output of the inverting-oscillator amplifier.

Vee Power Supply
Power supply during normal, idle, and power-down
operations.

Vss Circuit Ground

7-16 87C51 /87C52T2

I·

PROGRAMMING To program the EPROM, either the internal or external

The 87C51/87C52T2 can be programmed with the Flashrite
oscillator must be running between 4 and 6 MHz, since the
internal bus is used to transfer address and program data to

algorithm. It differs from other methods in the value used for the appropriate internal registers. Table 1 shows the various
Vpp (programming supply voltage) and in the width and EPROM programming modes.
number of the ALE/~ pulses.

TABLE 1. EPROM PROGRAMMING MODES FOR THE 87C51/87C52T2

Mode RST l5SEN ALE/PROG EA/Vpp P2.7 P2.6 P3.7 P3.6

Program Code H L L* Vpp H L H H

Verify Code H L H Vppx L L H H

Pgm Encryption Table H L L* Vpp H L H L

Pgm Lock Bit 1 H L L* Vpp H H H H

Pgm Lock Bit 2 H L L* Vpp H H L L

Read Silicon Signature H L H H L L L L

Key: H = Logic High for that pin
L = Logic Low for that pin
Vpp = 12.75 v ±0.25 v
Vee • 5 V ±10% during programming and verification
2.0 V < Vppx < 13.0 V

*ALE/PROG receives 25 programming pulses while Vpp is held at 12.75 V. Each programming pulse is low
for 100 µ.s (±10% µ.s) and high for a minimum of 10 µ.s.

Programming Figure 1, ALE/PROG is pulsed low 25 times as shown in
Figure 2.

The programming configuration is shown in Figure 1. The The maximum voltage applied to the EA/Vpp pin must not
address of the EPROM location to be programmed is applied exceed 13 V at any time as specified for Vpp. Even a slight
to Ports 1 and 2 as shown in the figure. The programming spike can cause permanent damage to the device. The Vpp
configuration of the 87C52T2 is identical except that P2.4 is source should thus be well regulated and glitch-free.
also used as an address input. The code byte to be pro-

When programming, a 0.1 µ.F capacitor is required across Vpp grammed into that location is applied to Port 0. Once AST,
~. Port 2, and Port 3 are held to the levels indicated in and ground to suppress spurious transients which may .dam-

age the device.

+5V

~
Vee ADOR P1

OOOOH-OFFFH
Po ~MDATA

./ P2.o·P2.3
VIH P3.8 87C51 c P3.7

ALE I-PROO (25, 100 ... pulses to GNO)
v._ P2.8

VIH
P2.7

4-6MHz 6 t XTAL2 EA I-Vpp • 12.75 V

..:r:.. XTAL1 tRST i4-V1H1

~ Vss '''Tl __._
-

TC004691

Figure 1. 87C51 Programming Configuration

87C51/87C52T2 7-17

1
1• 25 PULSES • i

~ROO:----:wLJll-----l!Wu-
1\-. IOpsMIN.11• :~: •1

ALEIPROO: -°' n rL
WF025700

Figure 2. PROG Waveforms

Program Verification

The 87C51/87C52T2 pro.vides a method of reading the
programmed code bytes in the EPROM array for program
verification. This function is possible as long as Lock Bit 2 has
not been programmed.

For program verification, the address of the Program Memory
location to be read is applied to Ports 1 and 2 as shown in

AODR P1

OOOOH-OFFFH

P2.o-P2.3

VIH p3.8

p3.7

VIL Pz.11

ENAiii£ • Vil p2.7

XTAL2

XTAL1

Vss

Figure 3. Verification of the 87C52T2 is identical except that
P2.4 is also used as an address input. Once RST, PSEN, Port
2, and Port 3 are held to the levels indicated, the contents of
the addressed location will be emitted on Port O. External
pullups are required on Port 0 for this operation. The EPROM
programming and verification waveforms provide further
details.

+5V

Vee
READ

Po
DATA
(USE 10k
PULL-UPS)

87C51

Al.E.f'ROO VIH

EANpp Vppx
2.0 V < Vppx < 13.0 V

RST VIH1

i>SEN

TC004672

Figure 3. 87C51 Program Verification

7-18 87C51/87C52T2

Program Encryption Table To program the Encryption Table, programming is set up as

The B7C51 /87C52T2 features a 32-byte Encryption Array. It
usual, except that P3.6 is held Low, as shown in Table 1. The
25-pulse programming sequence is applied to each address,

can be programmed by the customer, thus encrypting the 00 through 1 FH. The programming of these bytes does not
·program code bytes read during EPROM verification. The affect the standard 4K-byte EPROM array. When the Encryp-
EPROM verification procedure is performed as usual except lion Table is programmed, the Program Verify operation will
that each code byte comes out logically X-NORed with one of produce only encrypted data.
the 32 key bytes.

The key byte used is the one whose address corresponds to
The Encryption Table cannot be directly read. The program:

the lower 5 bits of the EPROM verification address. Thus,
ming of Lock Bit 1 will disable further Encryption Table

when the EPROM is verified starting with address OOOOH, all
programming.

32 keys in their correct sequence must be known. Unpro- Security Lock Bits.
grammed bytes have the value FFH. Thus, if the Encryption
Table is left unprogrammed, no encryption will be performed, The 87C51 contains two Lock Bits which can be programmed
since any byte X-NORed with FFH leaves that byte un- to obtain additional security features. P - Programmed and
changed. U = Unprogrammed.

Lock Bit 1 Lock Bit 2 Result

u u Normal Operation

p u • Externally fetched code cannot access internal Program Memory
• All further Programming disabled (except Lock Bit 2)

u p Reserved

p p • Externally fetched code cannot access internal Program Memory
• All further Programming disabled
• Program Verification disabled

To program the Lock Bits, a 100 pulse programming sequence In-Circuit Test Mode
is required using the levels shown in Table 1. After Lock Bit 1

The In-Circuit Test Mode facilitates testing and debugging of is programmed, further programming of the Code Memory and
Encryption Table is disabled. However, Lock Bit 2 may still be systems using the 87C51 without the 87C51 having to be

programmed, providing the highest level of security available removed from the circuit. The In-Circuit Test Mode is invoked

on the 87C51/87C52T2. by:

1. Pulling ALE Low while RST is held High, and J5SEfil is High.
When Lock Bit 1 is programmed, the logic level atthe EA pin is 2. Holding ALE Low as AST is de-activated.
sampled and latched during reset. If the device is powered up
without a reset, the latch initializes to a random value, and While the device is in In-Circuit Test Mode, the Port O pins go
holds that value until reset is activated. It is necessary that the into a float state, and the other port pins and ALE and J5Sm
latched value of EA be in agreement with the current logic are weakly pulled High. The oscillator circuit remains active.
level at that pin in order for the device to function properly. While the 87C51 is in this mode, an emulator or test CPU can

be used to drive the circuit. Normal operation is restored when

Siiicon Signature Verification a Hardware Reset is applied.

Erasure Characteristics
AMO supports silicon signature verification for the 87C51 /

Light and other forms of electromagnetic radiation can lead to
87C52T2. The manufacturer code and part code can be read
from the device before any programming is done to enable the

erasure of the EPROM when exposed for extended periods of

EPROM Programmer to recognize the device.
time.

Wavelengths of light shorter than 4000 angstroms, such as
To read the silicon signature, the external pins are set up as sunlight or indoor fluorescent lighting, can ultimately cause

shown in Figure 4. This procedure is the same as a normal inadvertent erasure and should, therefore, not be allowed to

verification except that P3.6 and P3.7 are pulled to a logic expose the EPROM for lengthy durations (approximately one
Low. The values returned are: week in sunlight or three years in room-level fluorescent

lighting). It is suggested that the window be covered with an
Manufacturer Code Address: 0030H Code: 01H opaque label if an application is likely to subject the device to

87C51 Part Code Address: 0031 H Code: BOH
this type of radiation.

87C52T2 Part Code Address: 0031 H Code: 31H
It is recommended that ultraviolet light (of 2537 angstroms) be
used to a dose of at least 15 W-sec/cm2 when erasing the
EPROM. An ultraviolet lamp rated at 12,000 µW/cm2 held one

Code 01 H indicates AMO as the manufacturer. Code BOH inch away for 2Cl-30 minutes should be sufficient.
indicates the device type is the 87C51, and Code 31H EPROM erasure leaves the Program Memory in an "all ones"
indicates a 87C52T2. state.

87C51187C52T2 7-19

ADOR P1
OOOOH-0001 H

P2.o-P2.3

VIL P3.6

VIL p3.7

VIL P2.6

ENAelE=V1L P2.7

XTAL2

XTAL1

Vss

+5V

87C51

~p

RST

READ
DATA
(USE 10kn
PULL·UPS)

Vppx

2.0V <Vppx < 13.0V

(Address 0030) ... Manufacture COda
=01H·AMD

(Address 0031) = Part Coda
= BOH· 87C51

TC004683

Figure 4. 87C51 Silicon Signature Verification Configuration

Oscillator Characteristics

XTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier which is configured for use as an on-chip
oscillator (see Figure 5). Either a quartz crystal or ceramic
resonator may be used.

To drive the device from an external clock source, XTAL1
should be driven while XTAL2 is left unconnected (see Figure
6). There are no requirements on the duty cycle of the external
clock signal since the input to the internal clocking circuitry is
through a divide-by-two flip-flop, but minimum and maximum
High and Low times specified on the data sheet must be
observed.

TC004710

Figure 5. Crystal Oscillator

NC

TC004700

Figure 6. External Drive Configuration

7-20 87C51/87C52T2

I~

ABSOLUTE MAXIMUM RATINGS OPERATING RANGES
Storage Temperature -65 to + 150°C Commercial (C) Devices
Voltage on EA/Vpp Pin to Vss •............ -0.5 to +13.0 V Ambient Temperature (TA) 0 to + 70°C
Voltage on Vee to Vss -0.5 to + 6.5 V Supply Voltage (Vee) +4.5 to +5.5 V
Voltage on Any Other Pin to Vss -0.5 to + 6.5 V Ground (Vss> .. o v
Power Dissipation .. 200 mW Industrial (I) Devices
Stressss above those listed under ABSOLUTE MAXIMUM
RA TINGS may cause permanent device failure. Functionality
st or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

Ambient Temperature (TA) -40 to +85°C
Supply Voltage (Vee) +4.5 to +5.5 v
Ground (Vss)•.. o v

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges

Parameter
Symbol

V1L

V1L1

V1H

VoH1

Parameter Description
Input Low Voltage (Except EA)

Input Low Voltage (EA)

Input High Voltage (Excapt XTAL1o RST)

Input High Voltage to XTAL1. RST

Output Low Voltage (Porta 1, 2, 3)

Output Low Voltage (Port 0, ALE, J5§Elil)

Output High Voltage (Porta 1, 2, 3), ALE,

Output High Voltage (Port u
Mode)

Teat Conditions

loL • ~N'lfl 1)

.~3. 1)

1~--10 p.A

IOH • -800 p.A,
Vcc•5 V ±10%

loH - -80 p.A (Note 2)

Min.
-0.5

0

0.2
Vee+ o.9

0.7 Vee

2.4

0.9 Vee

2.4

Max.
0.2 Vcc-0.1

0.2 Vcc-0.3

Vee+ 0.5

Vee+ 0.5

0.45

0.45

Unit
v
v

v
v
v
v

v

v

Logical l1L , 3) V1N • 0.45 V -50 p.A

1--~IT~L'--~~+-~Lo~·lllJi-.;.,:illll) -~t~(-Port~s_1~·-2~·~3)'----1'-'(~No_t_e_3~)~~~~~---1o~~~--1-~~--8_50~~-1--.....:.p.A~~~
Ill lnpu ... e nt (Port 0) V1N • V1L or VtH ± 10 p.A

Ice

RRST

Powe~ly Current: Nota 4
Activ ode @ 12 MHz (Note 4)
Idle Mode @ 12 MHz (Note 4) (Note 5) Note 4
Power-Down Mode 50

Reset Pulldown Resistor 50 300

Pin Capacitance Test Freq• 1 MHz, 10
TA= 25"C

mA

kO

pF

Notes: 1. Capacitive loeding on Porta O and 2 may cause spurious noies pulses to be superimposed on the VoLs of ALE and Porta 1 and 3. The noles
Is due to external bus capacitance discharging into the Port O and Port 2 pins when these pins make 1-to-O transitions during bus operations.
In the worst caess (capacitive loeding > 100 pF), the noise pules on the ALE line may exceed 0.8 V. In such cases it may be desirable to
qualify ALE with a Schmitt Trigger, or ues an address latch with a Schmitt Trigger STROBE input.

2. C&pacitive loading on Ports O and 2 may caues the VoH on ALE and J!SElil to momentarily fall below the 0.9 Vee specffication when the
address bits are stabilizing.

3. Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to o. The transHion current reaches Its
maximum value when VtN is approximately 2 V.

4. ICCMAX at other frequencies Is given by:
Active Mode: Ice TYPICAL = 0.94 x Freq + 13. 71 Ice MAX - 1.38 x Freq + 20.4
Idle Mode: Ice TYPICAL - 0.38 x Freq + 5.4 Ice MAX - 0.38 x Freq + 11.9

where Freq is the external oscillator frequency in MHz. lccMAX is given in mA (ses Figure 5).
5. Active Mode Ice is measured with all output pins disconnacted; XTAL1 driven with TCLCH, TCHCL - 5 ns, V1L = Vss + 0.5 V,

VtH•Vcc-0.5 V; XTAL2 N.C.; EA•RST•Port o-vcc.
Idle Mode Ice is measured with all output pjns disconnacted; XTAL1 driven with TCLCH, TCHCL = 5 ns, VtL • Vss + 0.5 V,
VtH=Vcc-0.5 V; XTAL2=N.C.; Port O•Vcc; EA-RST•Vss. -
Power-Down Mode Ice is measured with all output pins dll!connacted; EA= Port O =Vee; XTAL2 NC; RST = Vss.

87C51/87C52T2 7-21

SWITCHING CHARACTERISTICS over operating ranges
(Load Capacitance for Port 0, ALE, and 'l5SEfil = 100 pF, Lriad Capacitance for All Other Outputs = 80 pF)

Parameter
16 .MHz Oac, 12 MHz Oac. Variable Oaclllator

Parameter
Symbol Description Min. Max. Min. Max. Min. Mail.

1/TCLCL Oscillator Fraqueocy 3.5 18
TLHLL ALE Pulse Wid1h 85 127 2 CLCL-40
TAVLL Address Valid to ALE Low · 7 28 1 LCL-55
TLLAX Address Hold After ALE Low 27 48 .. a: ra..: CL-35
TLLIV ALE LOw to Valid Instr. In 150. ... l 4TCLCL-100
TL LPL ALE Low to~ Low 22

~
1: lllCL-40

TPLPH ~Pulse Width 142
-,,.

3TCLCL-45
TPLIV J5!!Elil LoW to Valid Instr. . In ..:'.!.... 3TCLCL-105
TPXIX Input Instr. Hold Alter~- 0 0
TPXIZ Input Instr. Float After J5!!Elil

~
TCLCL-25

TAVIV Addr&l!S to Valid Instr. In 312 5TCLCL-105
TPLAZ ~Low to Ad.dress Float 10 10
TRLRH -~-Pulse Width ~ 400 6TCLCL-100
TWLWH ~Pulse Width 400 STCLCL-100
TRLOV ~Low to ~In., 252 5TCLCL-165
TRHDX Data Hold Aft :Jl....1 ..._,,, 0 0 0
TRHDZ Data Float A- :"fl: 55 97 2TCLCL-70
TLLDV ALE Low to Vali ta In 350 517 8TCLCL-150
TAVDV Address to Valid °""In 398 585 9TCLCL-165
TLLWL ALE Low to~or~Low 137 238 200 300 3TCLCL-50 3TCLCL+50
TAVWL Address Valid to~ or~ Low 120 203 4TCLCL~130

TQVWX Data valid to~ Transition 2 23 TCLCL-60
TQVWH Data Valid to WA High 287 433 7TCLCL-150
TWHQX Data Hold After WA 12 33 TCLCL-50
TRLAZ 'AD Low 10 Address Float 0 0 0
TWHLH ~or~High to ALE~ 22 103 43 123 TCLCL-40 TCLCL+40

SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WA YI FORM INPUTS OUTPUTS

--- MUSTllE WILLBf
STEADY STEADY ---

\\\\\\. MAY CHANGE WILLIE
FAOMHTOL CHANGING

FAOMHTOL

1lliff MAY CHANCE WILL BE
CHANGING FAOML TOH FROML TOH

• OON"TCAAE; CHANGING;
ANYCHAllCE STATE
H:RMITTED UNKNOWN

:ffi-tK
CENTER

DOES NOT LINE ISHIOH
APPLY IMl'IDANCI!

''OFF" STATE

KS000010

7-22 87C51/87C52T2

Unit
MHz
ns

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

ns
ns
nS
nS
nS
ns
ns

ns
nS
ns
nS
ns

I
I

ALE

PORTO

PORT2

ALE

TAVLL

PORTO

PORT2

SWITCHING WAVEFORMS

-TAVLL-T'LLPL-TPLPH --

TLLIV

TPXIZ1-

TPXIX- -

INSTR
IN

External Program Memory Read Cycle

TWHLH

1-----TLLDV----1

-TLLWL- ---TRLRH;~----1

--TRLDV--

TLLAX

P2.0-P2.7 OR As-A15 FROM DPH

External Data Memory Read Cycle

87C51/87C52T2

WF021962

Ae-A15 FROM PCH

WF020962

7-23

SWITCHING WAVEFORMS (continued)

ALE

-TLLWL-- TWLWH -

TQVWX

~

PORT 0 DATA OUT

PORT 2 P2.0-P2.7 OR As-A,s FROM DPH A9-A15 FROM PCH

WF020932

External Data Memory Write Cycle

INSTRUCTION

j-TxLxL-j

CLOCK -----..
TQVXHl--I f.TXHQX

OUTPUT DATA

TXHDVl--..i ~ f. TXHDX

t
SET n ~

WRITE TO SBUF

ltf>UTOATA __________ .,..,v_~_ID"""--"-VA-L~ID,,_..J~_,-\.....1'..-;.n. __ r.;,~"""--"-VA-LIJD"-..J'V-ALmlD,..___.n....-.J~

t t
SET N

CLEAR RI

WF020951

Shift Register Timing Waveforms

7-24 87C51 /87C52T2

EXTERNAL CLOCK DRIVE

Parameter
Symbol Unit

1/TCLCL 16 MHz

TCHCX ns

TCLCX ns

TCLCH 20 ns

TCHCL 20 ns

WF020910

External Clock Drive Waveform

SERIAL PORT TIMING - SHIFT REGISTER MODE
(Test Conditions: TA = o to + 70°C; Vee= 5 V ± 10%; Vss = o V; Load Capacitance = 80 pF)

Parameter
Symbol

TXLXL

TQVXH

TXHOX

TXHDX

TXHDV Clock Rising Edge to Input Data Valid

16MHz
Osc.

492

Varlable Osclllator

Max. Unit

ns
ns

ns

ns

10TCLCL-133 ns

AC Testing

0.2 Vcc+0.9

0.45 v
02 vcc-0.1

WF020901

AC inputs during testing are driven at Vcc-0.5 for a logic 1 and 0.45 V for
a logic o. Timing measurements are made at V1H min. for a logic 1 and V1L
max. for a logtc 0.

Input/Output Waveform

TIMING REFERENCE
POINTS

VOH-0.1 V

VoL +0.1 V

WF020941

For timing purposes a port pin Is no longer floating when a 100 mV change
from load voltage occurs, and begins to float when a 100 mV change from
the loaded VoH/VoLlevel occurs. IQLllOH ~ ± 20 mA.

Float Waveform

87C51/87C52T2 7-25

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS
(TA= +21 to +27°C)

Parameter
Symbol

Vpp

lpp

1/TCLCL

TAVGL

TGHAX

TDVGL

TGHDX

TEHSH

TSHGL

TGHSL

TGLGH

TAVQV

TELQV

TEHQZ

TGHGL

Parameter
Description

Programming Supply Voltaga

Programming Supply Current

~ to Data Valid

Data Float After ~

PROO High to i5R1m Low

Max.
13.0

50

6

48TCLCL

48TCLCL

48TCLCL

48TCLCL

10

10

90 110

48TCLCL

48TCLCL

0 48TCLCL

10

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS

P1.0-P1.7
P2.0-P2.3

PROGRAMMING

ADDflESS

LOGICO

VERIFICATION

ADDRESS

TAVQV

DATA OUT

LOGIC1

TEHSH
TELOV ~1-------'~J---T-EH_o_z_

7-26

For Programming conditions, see Figures 1 and 2.
For Verification conditions, see Figure 3.

87C51/87C52T2

WF025693

Unit
v

mA

MHz

i'

/JS

/JS

/JS

/JS

CHAPTER7
80C51 Family

Designing with the 80C51 BH

CMOS EVOLVES
The original CMOS logic families were the 4000-series
and the 74C-series circuits. The 74C-series circuits are
functional equivalents to the correspondingly numbered
74-series TTL circuits, but have CMOS logic levels and
retain the other well-known characteristics of CMOS
logic.

These characteristics are: low power consumption, high
noise immunity, and slow speed. The low power con­
sumption is inherent to the nature of the CMOS circuit.
The noise immunity is due partly to the CMOS logic
levels, and partly to the slowness of the circuits. The slow
speed was due to the technology used to construct the
transistors in the circuit.

This technology is called metal-gate CMOS, because the
transistor gates are formed by metal deposition. More
importantly, the gates are formed after the drain and
source regions have been ·
source and drain somew
ances. This overlap plu
transistors result in high
what limits the speed of t

High-speed CMOS became
men! of the self-aligning silicon-gate technology. In this
process, polysilicon gates are deposited before the
source and drain regions are defined. Then the source
and drain regions are formed by ion implantation using
the gate itself as a mask for the implantation. This elimi­
nates most of the overlap capacitance. In addition, the
process allows smaller transistors, resulting in a signifi­
cant increase in circuit speed. The 74HC-series of
CMOS logic circuits is based on this technology, and has
speed comparable to LS TTL, which is to say about 1 O
times faster than the 74C-series circuits.

The size reduction that contributes to the higher speed
also demands an accompanying reduction in the maxi­
mum supply voltage. High-speed CMOS is generally lim­
ited to 6 V.

WHAT IS CMOS?
There are two CMOS processes, one based on an n-well
structure and one based on a p-well structure. In the
n-well structure, n-type wells are diffused into a p-type
substrate. Then the n-channel transistors (nFETs) are
built into the substrate and pFETs are built into the
n-wells. In the p-well structure, p-type wells are diffused
into an n-type substrate. Then the nFETs are built into
the wells and pFETs into the substrate. Both processes
have advantages and disadvantages, which are largely
unseen by the user.

Lower operating voltages are easier to obtain with the
p-well structure than with the n-well structure. But the
p-well structure does not easily adapt to an EPROM
which would be pin-for-pin compatible with NMOS
EPROMs. On the other hand the n-well structure can be
based on the solidly founded NMOS process, in which
nFETs are built into a p-type substrate. This allows
somewhat more than half of the transistors in a CMOS
chip to be constructed by processes that are already well
characterized.

THE 8051 FAMILY IN CMOS
The 80C51 BH is the CMOS version of the original 8051.
The 80C31BH is the ROMless 80C51BH, equivalent to
the 8031. These CMOS devices are architecturally iden­
tical with their NMOS counterparts, except Iha) they have
two added features for reduced power: Idle and Power­
Down modes of operation.

can directly replace the
It can execute the same
t signals from the same

loads. However, the
ge of speeds, will emit

C loads, and will draw about
1/1 O the current of an 8051 (and less in the reduced
power modes). Interchangeability between the NMOS
and CMOS devices is discussed in more detail in the final
section.

It should be noted that the 80C51 BH CPU is not static.
That means if the clock frequency is too low, the CPU
might forget what it was doing. This is because the cir­
cuitry uses a number of dynamic nodes. A dynamic node
is one that uses the node-to-ground capacitance to form
a temporary storage cell. Dynamic nodes are used to
reduce the transistor count, and hence the chip area to
produce a more economical device.

This is not to say that the on-chip RAM in CMOS
microcontrollers is dynamic. It's not. It is the CPU that is
dynamic, and that is what imposes the minimum clock
frequency specification.

LATCHUP
Latchup is an SCA-type turn-on phenomenon that is the
traditional nemesis of CMOS systems. The substrate,
the wells, and the transistors form parasitic pnpn struc­
tures within the device. These parasitic structures turn
on like an SCR if a sufficient amount of forward current is
driven through one of the junctions. From the circuit de­
signer's point of view, it can happen whenever an input or
output pin is externally driven a diode drop above Vee or

7-27

CHAPTER7
80C51 Family

below Vss by a source that is capable of supplying the
required trigger current. ·

However much of a problem latchup has been in the
past, it is good to know that in most recently developed
CMOS devices, the current required to trigger latchup is
typically well over 100 mA. The 80C51BH is virtually
immune to latchup. (References 1 and 2 present a dis­
cussion of the latchup mechanisms and the steps that
are taken on the chip to guard against it.) Modern CMOS
is not immune to latchup, but with trigger currents in the
hundreds of mA, latchup is certainly a lot easier to avoid
than it once was.

A careless power-up sequence might trigger latchup in
the older CMOS families, but it's unlikely to be a major
problem in high-speed CMOS. There is still some risk
incurred in inserting or removing chips or boards in a
CMOS system while the power is on. Also, severe tran­
sients, such as inductive kicks or momentary short cir­
cuits, can exceed the trigger current for latchup.

For applications in which some latchup risk seems un­
avoidable, put a small resistor (100 ohms or so) in series
with the signal lines to ensure that the trigger current will
never be reached. This also helps to control overshoot
and RFI.

LOGIC LEVELS AND INTERFACING
PROBLEMS

CMOS logic levels differ from TTL levels in two ways.
First, for equal supply voltages, CMOS gives (and re­
quires) a higher "logic 1" level than TTL. Secondly,
CMOS logic levels are Vee (or Voo) dependent, whereas
guaranteed TIL logic levels are fixed when Vee is within
TTL specs.

Standard 74HC logic levels are as follows:

V1H min = 70% of Vee
V1L max = 20% of Vee
VoHmin = Vee-0.1 V, lloHI S20 µA
VoL max= 0.1V, iloLI S 20 µA

Table 7-1 compares 74HC, LS TTL, and 74HCT logic
levels with those of the NMOS 8051 and CMOS
80C51 BH for Vee= 5 V.

Output logic levels depend of course on load current, and
are normally specified at several load currents. When
CMOS and TTL are powered by the same Vee, the logic
levels guaranteed on the data sheets indicate that
CMOS can drive TTL, but TIL cannot drive CMOS. The
incompatibility is that the TTL circuit's VOH level is too
low to reliably be recognized by the CMOS circuit as a
valid V1H. Since NMOS circuits were designed to be TTL­
compatible, they have the same incompatibility.

Fortunately, 74HCT-series circuits are available to ease
these interfacing problems. They have TTL-compatible
logic levels at the inputs and standard CMOS levels at
the outputs.

The 80C51BH is designed to work with either TTL or
CMOS. Therefore, its logic levels are specified very
much like 74HCT circuits. That is, its input logic levels
are TTL-compatible, and its output characteristics are
like standard high-speed CMOS.

NOISE CONSIDERATIONS

One of the major reasons for going to CMOS has tradi­
tionally been that CMOS is less susceptible to noise than
TTL. As previously noted, its low susceptibility to noise is
partly due to superior noise margins, and partly due to its
slow speed.

Noise margin is the difference between VoL and V1L, or
between VoH and V1H. If VoH from a driving circuit is 2.7 V
and V1H to the driven circuit is 2.0 V, then the driven circuit
has 0.7 V of noise margin at the logic high level. These
kinds of comparisons show that an all-CMOS system has
wider noise margins than an all-TTL system. Table 7-2
shows noise margins in CMOS and LS TTL systems
when both have Vee = 5 V; CMOS/CMOS systems have
an edge over LS TTL in this respect.

Table 7-1. Logic Level Comparison (output levels are for minimum loading)

Vcc=5V

Logic State 74HC 74HCT LS TTL 8051 80C51BH

V1H 3.5 v 2.0 v 2.0V 2.0 v 1.9V
v,l 1.0V 0.8 v 0.8 v 0.8 v 0.9 v
VoH 4.9 v 4.9 v 2.7V 2.4 v 4.5 v
Vol 0.1 v 0.1 v 0.5 v 0.45 v 0.45 v

7-28

i'

Noise margins can be misleading, however, because
they do not say how much noise energy in the circuit it
takes to induce a noise voltage of sufficient amplitude to
cause a logic error. This involves consideration of the
width of the noise pulse as compared with the circuit
response speed, and the impedance to ground from the
point of noise introduction in the circuit.

Table 7·2. Noise Margins for CMOS and
LS TTL Circuits

Interface

74HCto 74HC
LSTILto LSTIL
LSTIL to 74HCT
LSTIL to 80C51BH
7 4HC to 80C51 BH
80C51BH to 74HC

Noise Margins for Vee= 5 V

Logic Low Logic High
VIL-VoL Vo..-VoH

0.9 v
0.3 v
0.3 v
0.3 v
0.8 v
0.8 v

1.4V
0.7V
0.7V
0.7V
3.0 v
1.0V

When these considerations are included, it is seen that
using the slower 7 4C- and 4000-series circuits with a 12-
or 15-V supply voltage does offer a truly improved level
of noise immunity, but that high-speed CMOS at 5 Vis
not significantly better than TTL.

One should not mistake the wider supply voltage toler­
ance of high-speed CMOS for Vee glitch immunity. Sup­
ply voltage tolerance is a DC rating, not a glitch rating.

For any clocked CMOS, and most especially for VLSI
CMOS, Vee decoupling is critical. CMOS draws current
in extremely sharp spikes at the clock edges. The VHF
and UHF components of these spikes are not drawn from
the power supply, but from the decoupling capacitor. If
the decoupling circuit is not sufficiently low in inductance,
Vee will glitch at each clock edge. A 0.1-µF decoupler cap
should be used in a minimum-inductance configuration
with the microcontroller. A minimum-inductance configu­
ration minimizes the area of the loop formed by the chip
(Vee to Vss), the traces to the decoupler cap, and the
decoupler cap. PCB designers too often fail to under­
stand that if the traces that connect the decoupler cap to
the Vee and Vss pins are not short and direct, the
decoupler loses much of its effectiveness.

Overshoot and ringing in signal lines are potential
sources of logic upsets. These can largely be controlled
by circuit layout. Inserting small resistors (about 100
ohms) in series with signal lines that seem to need them
will also help.

The sharp edges produced by high-speed CMOS can
cause RFI problems. The severity of these problems is
largely a function of the PCB layout. All RFI problems are
not necessarily solved by a better PCB layout. It may well
be, for example, that in some RFl-sensitive designs,

CHAPTER 7
80C51 Family

high-speed CMOS is simply not the answer. But circuit
layout is a critical factor in the noise performance of any
electronic system, and more so in high-speed CMOS
systems than others.

Circuit layout techniques for minimizing noise suscepti­
bility and generation are discussed in References 3
and4.

UNUSED PINS
CMOS input pins should not be left to float, but should
always be pulled to one logic level or the other. If they
float, they tend to float into the transition region between
O and 1, where pull-up and pull-down devices in the input
buffer are both conductive. This causes a significant in­
crease in Ice. A similar ejfect exists in NMOS circuits, but
with less noticeable results.

In 80C51BH and 80C31BH designs, unused pins of
Ports 1, 2, and 3 can be ignored, because they have
internal pull-ups that will hold them at a valid logic-1 level.
Port 0 pins are different, however; they do not have inter­
nal pull-ups (except during bus operations).

When the 80C51 BH is in reset, the Port o pins are in a
float state unless they are externally pulled up or down. If
the device is to be held in reset for just a short time, the
transient float state can probably be ignored. When the
device comes out of reset, the pins stay afloat unless
they are externally pulled either up or down. Alterna­
tively, the software can internally write Os to whatever
Port O pins may be unused.

The same considerations are applicable to the 80C31 BH
when it is in reset. But when the 80C31 BH comes out of
reset, it commences bus operations, during which the
logic levels at all pins are always well defined as high or
low.

When the 80C31 BH is in the Power-Down and Idle
modes, however, it is not fetching instructions, and the
Port 0 pins will float if not externally pulled high or low.
The choice of whether to pull them high or low is the
designer's. Normally it is sufficient to pull them up to Vee
with 1 OK resistors. But if power is going to be removed
from circuits that are connected to the bus, it will be
advisable to pull the bus pins down (normally with 1 OK
resistors). Considerations involved in selecting pull-up
and pull-down resistor values are as follows.

PULL-UP RESISTORS
If a pull-up resistor is to be used on a Port 0 pin, its
minimum value is determined by loL requirements. If the
pin is trying to emit a o, then it will have to sink the current
from the pull-up resistor plus whatever other current may
be sourced by other loads connected to the pin, as
shown in Figure 7-1a, while maintaining a valid output
low (VoL).

7-29

CHAPTER 7
80C51 Famlly

80C51BH

Vee -,-

a. Minimum Value (PO.X Is emitting a loglc low)

Vee

80C51BH

R ''" ---+- External
Loads PO.X

VoH " Vee - (IL,+ l1H) · R

b. Maximum Value (PO.X Is in a high Impedance state)

Figure 7·1. Conditions Defining Values of Pull-Up Resistor R

80C51BH
l1H ___..

PO.X 1---------

R

External
Loads

80C51BH

Po.xi--------

R

External
Loads

a. Minimum Value (PO.X Is emitting a 1 In a
bus operation)

b. Maximum Value (PO.X Is In a high Impedance state)

Figure 7·2. Conditions Defining Values of Pull-Down Resistor R

To guarantee that the pin voltage will not exceed 0.45 V,
the resistor should be selected so that loL does not
exceed the value specified on the data sheet. In most
CMOS applications, the minimum value would be
about 2K.

The maximum value would depend on how fast the pin
must pull up after bus operations have ceased, and how
high the VoH level must be. The smaller the resistor, the
faster it pulls up. Its effect on the VoH level is that VoH =
Vee -(lu + l1H) · R. lu is the input leakage current to the
Port 0 pin, and l1H is the input high current to the external
loads, as shown in Figure 7-1b. Normally VoH can be
expected to reach 0.9 Vee if the pull-up resistance does
not exceed about SOK.

PULL-DOWN RESISTORS
If a pull-down resistor is to be used on a Port O pin, its
minimum value is determined by VoH requirements dur-

7-30

ing bus operations, and its maximum value is, in most
cases, determined by leakage current.

During bus operations, the port uses internal pull-ups to
emit 1 s. The DC Characteristics in the data sheet list
guaranteed VoH levels for given loH currents. (The "-"
sign in the loH value means the pin is sourcing that cur­
rent to the external load, as shown in Figure 7-2.) To
ensure the VoH level listed in the data sheet, the resistor
has to satisfy

VoH I I R +l1HS Iott

where liH is the input high current to the external loads.

When the pin goes into a high-impedance state, the pull­
down resistor will have to sink leakage current from the
pin, plus whatever other current may be sourced by other
loads connected to the pin, as shown in Figure 7-2b. The

Port O leakage current is lu on the data sheet. The resis­
tor should be selected so that the voltage developed
across it by these currents will be seen as a logic low by
whatever circuits are connected to it (including the
80C51BH). In CMOS/CMOS applications, SOK is nor­
mally a reasonable maximum value.

DRIVE CAPABILITY OF THE INTERNAL
PULL-UPS
There is an important difference between NMOS and
CMOS port drivers. The pins of Ports 1, 2, and 3 of the
CMOS parts each have three pull-ups: strong, normal,
and weak, as shown in Figure 7-3. The strong pull-up
(P1) is only used during 0-to-1 transitions, to hasten the
transition. The weak pull-up (P2) is on whenever the bit
latch contains a 1. The "normal" pull-up (P3) is controlled
by the pin voltage itself.

The reason that P3 is controlled by the pin voltage is that
if the pin is being used as an input, and the external
source pulls it to a low, then turning off P3 makes for a
lower l1L The data sheet shows an "ITL" specification. This
is the current that P3 will source during the time the pin
voltage is making its 1-to-O transition. This is what l1L
would be if an input low at the pin did not turn P3 off.

a
From Port

Latch

~ 2 Osc. Periods

Input
Data

CHAPTER7
80C51 Family

Note, however, that this P3 turn-off mechanism puts a
restriction on the drive capacity of the pin if it's being
used as an output. If you're trying to output a logic high,
and the external load pulls the pin voltage below the pin's
V1H min spec, P3 might turn off, leaving only the weak
P2 to provide drive to the load. To prevent this from
happening, you need to ensure that the load does not
draw more than the loH spec for a valid VoH. The idea is to
make sure the pin voltage never falls below its own V1H
min specification.

POWER CONSUMPTION
The main reason for going to CMOS, of course, is to
conserve power. There are other reasons, but this is the
main one. Conserving power does not mean just reduc­
ing the electric bill; nor does it necessarily relate to
battery operation, although battery operation without .
CMOS is pretty unhandy. The main reason for conserv­
ing power is to be able to put more functionality into a
smaller space. Reduced power consumption allows the
use of smaller and lighter power supplies. With less heat
generated, denser packaging of circuit components is
possible, and expensive fans and blowers can usually be
eliminated. A cooler running chip is also more reliable,
since most random and wearout failures relate to die

Read
Port
Pin

P2

Figure 7-3. 80C51 BH Output Drivers for Ports 1, 2, and 3

7-31

CHAPTER?
80C51 Family

temperature. And finally, the lower power dissipation al­
lows more functions to be integrated onto the chip.

CMOS consumes less power than NMOS because when
CMOS is in a stable state, there is no path of conduction
from Vee to Vss except through various leakage paths.
CMOS does draw current when it is changing states.
How much current is drawn depends on how often and
how quickly CMOS changes states.

During logical transitions, CMOS circuits draw current in
sharp spikes that are made up of two components. One
is the current that flows during the transition time when
pull-up and pull-down FETs are both active. The average
(DC) value of this component is larger when the transi­
tion times of the input signals are longer. Fort his reason,
if the current draw is a critical factor in the design, slow
rise and fall times should be avoided, even when the

· system speed does not seem to justify a need for
nanosecond switching speeds.

The other component is the current that charges stray
and load capacitance at the nodes of a CMOS logic gate.
The average value of this current spike is its area (inte­
gral over time) multiplied by its repetition rate. Its area is
the amount of charge it takes to raise the node capaci­
tance, C, to Vee. That amount of charge is just C ·Vee. So
the average value of the current spike is C ·Vee· f, where
f is the clock frequency. This component of current in­
creases linearly with clock frequency.

Keep in mind, though, that the other component of cur­
rent is due to slow rise and fall times. A sinusoid is not the
optimal waveform with which to drive the XT AL 1 pin. Yet
crystal oscillators, including the one on the 80C51 BH,
generate sinusoidal waveforms. Therefore, if the on-chip
oscillator is being used, the device will draw more current
at 500 kHz than it does at 1.5 MHz, as shown in Figure
7-4. If a good sharp square wave is derived from an
external oscillator and is used to drive XTAL 1, the micro­
controller will draw less current. But the external oscilla­
tor will probably make up the difference.

The 80C51 BH has two power-saving features not avail­
able in the NMOS devices: Idle and Power-Down modes
of operation. The on-chip hardware that implements

XTAL2

XTAL1

PD

ICC

-1.5 MHz Clock Frequency

Figure 7·4. 80C51 BH ICC versus Clock Frequency

these reduced power modes is shown in Figure 7-5. Both
modes are invoked by software.

Idle: In the Idle Mode (IDL = O in Figure 7-5), the CPU
puts itself to sleep by gating off its own clock. It does not
stop the oscillator; it just stops the internal clock signal
from getting to the CPU. Since the CPU draws 80 to 90
percent of the chip's power, shutting it off represents a
fairly significant power savings. The on-chip peripherals
(timers, serial port, interrupts, etc.) and RAM continue to
function as normal. The CPU status is preserved in its
entirety: the Stack Pointer, Program Counter, Program
Status Word, Accumulator, and all other registers main­
tain their data during Idle.

The Idle Mode is invoked by setting bit O (IDL) of the
PCON register. PCON is not bit-addressable, so the bit
has to be set by a byte operation, such as

ORL PCON,#1

The PCON register also contains flag bits GFO and GF1,
which can be used lo~ any general purposes, or to give
an indication if an interrupt occurred during normal op­
eration or during Idle. In this application, the instruction
that invokes Idle also sets one or both of the flag bits.
Their status can then be checked in the interrupt
routines.

1----- CPU

Interrupt
Serial Port

Timer/Counters

Figure 7·5. Oscillator and Clock Circuitry Showing Idle and Power-Down Hardware

7-32

While the device is in the Idle mode, ALE and PSEN emit
logic high (VoH), as shown in Table 7-3. This is so exter­
nal EPROM can be deselected and have its output
disabled.

The port pins hold the logical states they had at the time
the Idle was activated. If the device was executing out of
external program memory, Port O is left in a high imped­
ance state and Port 2 continues to emit the high byte of
the program counter (using the strong pull-ups to emit
1s). If the device was executing out of internal program
memory, Ports 0 and 2 continue to emit whatever is in the
PO and P2 registers.

There are two ways to terminate Idle. Activation of any
enabled interrupt will cause the hardware to clear bit 0 of
the PCON register, terminating the Idle mode. The inter­
rupt will be serviced, and following RETI the next instruc­
tion to be executed will be the one following the instruc­
tion that invoked Idle.

The other way is with a hardware reset. Since the clock
oscillator is still running, AST only needs to be held ac­
tive for two machine cycles (24 oscillator periods) to
complete the reset. Note that this exit from Idle writes 1 s
to all the ports, initializes all SFRs to their reset values,
and restarts program execution from location 0.

Power Down: In the Power-Down mode (PD= O in Fig­
ure 7-5), the CPU puts the whole chip to sleep by turning
off the oscillator. In case it was running from an external
oscillator, it also gates off the path to the internal phase
generators, so no internal clock is generated even if the
external oscillator is still running. The on-chip RAM, how­
ever, saves its data, as long as Vee is maintained. In this
mode, the only lee that flows is leakage, which is normally
in the micro-amp range.

The Power-Down mode is invoked by setting bit 1 in the
PCON register, using a byte instruction such as

ORL PCON,#2

CHAPTER 7
80C51 Family

While the device is in Power Down, ALE and PSEN emit
lows (VoL), as shown in Table 7-3. ALE and PSEN are
designed to emit lows so that power can be removed
from the rest of the circuit, if desired, while the 80C51 BH
is in its Power-Down mode.

The port pins continue to emit whatever data was written
to them. Note that Port 2 emits its P2 register data even if
execution was from external program memory. Port 0
also emits its PO register data, but if execution was from
external program memory, the PO register data is FF.
The oscillator is stopped, and the part remains in this
state as long as Vee is held, and until it receives an
external reset signal.

The only exit from Power Down is a hardware reset.
Since the oscillator was stopped, AST must be held ac­
tive long enough for the oscillator to re-start and stabilize.
Then the reset function initializes all the Special Function
Registers (ports, timers, etc.) to their reset values, and
re-starts the program from location 0. Therefore, timer
reloads, interrupt enables, baud rates, port status, etc.
need to be re-established. Reset does not affect the
content of the on-chip data RAM. If Vee was held during
Power Down, the RAM data is still good.

USING THE POWER-DOWN MODE
The software-invoked Power-Down feature offers a
means of reducing the power consumption to a mere
trickle in systems that are to remain dormant for some
period of time, while retaining important data. The user
should give some thought to what state the port pins
should be left in during the time the clock is stopped, and
write those values to the port latches before invoking
Power Down.

Table 7·3. Status of Pins In Idle and Power-Down Modes
("SFR data" means the port pins emit their Internal register data;

"PCH" Is the high byte of the program counter)

Internal Execution External Execution

Pin Idle Power Down Idle Power Down

ALE 0 0
PSEN 0 0

PO SFRdata SFRdata high-Z high-Z
P1 SFRdata SFRdata SFRdata SFRdata
P2 SFR data SFR daa PCH SFRdata
P3 SFRdata SFRdata SFRdata SFRdata

7-33

CHAPTER7
80C51 Famlly

If Vee is going to be held to the entire circuit, values
should be written to the port latches that would deselect
peripherals before invoking Power Down. For example, if
external memory is being used, the P2 SFR should be
loaded with a value that will not generate an active chip
select to any memory device.

In some applications, Vee to part of the system may be
shut off during Power Down, so that even quiescent and
standby currents are eliminated. Signal lines that con­
nect to those chips must be brought to a logic low,
whether the chip in question is CMOS, NMOS, or TTL,
before Vee Is shut off to them. CMOS pins have parasitic
pn junctions to Vee, which will be forward biased if Vee is
reduced to zero while the pin is held at a logic high.
NMOS pins often have FETs that look like diodes to Vee.
TTL circuits may actually be damaged by an input high if
Vee= 0. That is why the 80C518Houtputs low at ALE and
PSEN during Power Down.

Figure 7-6 shows a circuit that can be used to turn Vee off
to part of the system during Power Down. The circuit will
ensure that the secondary circuit is not de-energized

20K

01

02

1 µF

80C31BH

----1RST

P2.7
R

until after the 80C31 BH is in Power Down, and that the
80C31BH does not receive a reset (terminating the
Power-Down mode) before the secondary circuit is re­
energized. Therefore, the program memory itself can be
part of the secondary circuit.

In Figure 7-6, when Vee is switched on to the 80C31 BH,
capacitor C1 provides a power-on reset. The reset func­
tion writes 1 s to all the port pins. The 1 at P2.6 turns 01
on, enabling Vee to the secondary circuit through transis­
tor 02. As the 80C31BH comes out of reset, Port 2
commences emitting the high byte of the Program
Counter, which results in the P2. 7 and P2.6 pins output­
ting Os. The 0 at P2.7 ensures continuation of Vee to the
secondary circuit,

The system software must now write a 1 to P2. 7 and a O
to P2.6 in the Port 2 SFR, P2. These values will not
appear at the Port 2 pins as long as the device is fetching
instructions from external program memory. However,
whenever the 80C31 BH goes into Power Down, these
values will appear at the port pins, and will shut off both
transistors, disabling Vee to the secondary circuit.

P2.6 t--'V'-rv----.
__,. Vcc2

7-34

33K

C2

1 µF

20K

Figure 7-6. The 80C31 BH De-energizes Part of the ClrcuH (Vccz) During Power Down
(selectlons of R and 02 depend on Vcc2 current draw)

Closing the switch S 1 re-energizes the secondary circuit,
and at the same time sends a reset through C2 to the
80C31 BH to wake it up. The diode D1 is to prevent C1
from hogging current from C2 during this secondary re­
set. D2 prevents C2 from discharging through the RST
pin when Vee to the secondary circuit goes to zero.

USING POWER MOSFETS TO
CONTROL Vee
Power MOSFETs are gaining in popularity and availabil­
ity. The easiest way to control Vee is with a Logic Level
pFET, as shown in Figure 7-7a. This circuit allows the full
Vee to be used to turn the device on. Unfortunately,
power pFETs are not economically competitive with
bipolar transistors of comparable ratings.

Power nFETs are both economical and available, and
can be used in this application if a DC supply of higher
voltage is available to drive the gate. Figure 7-7b shows
how to implement a Vee switch using a powernFET and a
(nominally)+ 12-V supply. The problem here is that if the
device is on, its source voltage is +5 V. To maintain the
on state, the gate has to be another 5or1 O V above that.
The "12-V" supply is not particularly critical. A minimally
filtered, unregulated rectifier will suffice.

BATTERY BACKUP SYSTEMS
Here we consider circuits that normally draw power from
the AC line, but switch to battery operation in the event of
a power failure. We assume that in battery operation
high-current loads will be allowed to die along with the
AC power. The system may continue then with reduced
functionality, monitoring a control·transducer, perhaps,
or driving an LCD. Or it may go into a bare-bones survival
mode, in which critical data is saved but nothing else
happens until AC power is restored.

a. Using a pFET

CHAPTER7
80C51 Famlly

In any case, it is necessary to have some earlywaming of
an impending power failure so that the system can ar­
range an orderly transfer to battery power. Early warning
systems can operate by monitoring either the AC line
voltage or the unregulated rectifier output, or even by
monitoring the regulated DC voltage.

Monitoring the AC line voltage gives the earliest warning.
That way you can know within one or two half-cycles of
line frequency that AC power is down. In most cases you
then have at least another half-cycle of line frequency
before the regulated Vee starts to fall. In a half-cycle of
line frequency, an 80C51 BH can execute about 5,000
instructions-plenty of time to arrange an orderly trans­
fer of power.

The circuit in Figure 7-8 uses a Zener diode to test the
line voltage each half cycle, and a junction transistor to
pass the information on the 80C51 BH. Obviously a volt­
age comparator with a suitable reference source can
perform the same function, if one prefers. If the line volt­
age reaches an acceptably high level, it breaks over Z1,
drives 01 to saturation, and interrupts the 80C51BH.
The interrupt would be transition-activated in this appli­
cation. The interrupt service routine reloads one of the
80C51 BH's timers to a value that will make it roll over in
something between one and two half-cycles of line fre­
quency. As long as the line voltage is healthy, the timer
never rolls over, because it is reloaded every half cycle. If
there is a single half cycle in which the line voltage does
not reach a high enough level to generate the interrupt,
the timer rolls over and generates a timer interrupt.

The timer interrupt then commences the transition to
battery backup. Critical data needs to be copied into
protected RAM. Signals to circuits that are going to lose
power must be written to logic low. Protected circuits

+12V

b. Using an nFET

Figure 7-7. Using Power MOSFETs to Control Vec2

7-35

CHAPTER7
80C51 Family

20K

- -

INTO

Backup
Battery

Vee r-I
-

.01 µF 80C51BH
80C31BH

Vss

or Equivalent - -

Figure 7-8. Power Failure Detector with Battery Backup
(when AC power falls, Vcc1 goes down and Vcc2 Is held)

(those powered by Vcc2) that communicate with unpro­
tected circuits must be deselected. The microcontroller
itself may be put into Idle, so that it can continue some
level of interrupt-driven functionality, or it may be put into
Power Down. ·

Note that if the CPU is going to invoke Power Down, the
Special Function Registers may also need to be copied
into protected RAM, since the reset that terminates the
Power-Down mode will also initialize all the SFRs to their
reset values.

The circuit in Figure 7-8 does not show a wake-up
mechanism. A number of choices are available, how­
ever. A pushbutton could be used to generate an inter­
rupt, if the CPU is in Idle, or to activate reset, if the CPU is
in Power Down.

Automatic wake-up on power restoration is also possi­
ble. If the CPU is in Idle, it can continue to respond to any
interrupts that might be generated by 01. The interrupt
service routine determines from the status of flag bits
GFO and GF1 in PCON that it is in Idle because there was
a power outage. It can then sample Vcc1 through a volt­
age comparator similar to Z1, 01 in Figure 7-8. A satis­
factory level of Vcc1 would be indicated by the transistor
being in saturation.

But perhaps the timer, that is the key to the operation of
the circuit in Figure 7-8, cannot be spared. In that case a
retriggerable one-shot, triggered by the AC line voltage,
can perform essentially the same function. Figure 7-9
shows an example of this type of power-failure detector.
A retriggerable one-shot (one half of a 74HC123) moni­
tors the AC line voltage through transistor 01. 01 retrig­
gers the one-shot every half cycle of line frequency. If the

7-36

output pulse width is between one and two half-cycles of
line frequency, then a single missing or low half cycle will
generate an active low warning flag, which can be used
to interrupt the microcontroller.

The interrupt routine takes care of the transition to bat­
tery back-up. From this point, Vcc1 may or may not actu­
ally drop out. The missing half-cycle of line voltage that
caused the Power-Down sequence may have been noth­
ing more than a short glitch. If the AC line comes back
strong enough to trigger the one-shot while Vcc1 is still up
(as indicated by the state of transistor02), then the other
half of the 74HC123 will generate a wake-up signal.

Having been awakened, the 80C51BH will stay awake
for at least another half-cycle of line frequency (another
5,000 or so instructions) before possibly being told to
arrange another transfer of power. Consequently, if the
line voltage is jittering erratically around the switchover
point (determined by diode Z1), the system will limp
along executing in half-cycle units of line frequency.

On the other hand, if the power outage is real and
lengthy, Vcc1 will eventually fall below the level at which
the backup battery takes over. The backup battery main­
tains power to the 80C51 BH, the 74HC123, and to what­
ever other circuits are being protected during this out­
age. The battery voltage must be high enough to
maintain Vcc(mln> specs to the 80C51 BH.

If the microcontroller is an 80C31 BH, executing out of
external ROM, and if the 80C31 BH is put into Idle during
the power outage, then the external ROM must also be
supplied by the battery. On the other hand, if the
80C31BH is put into Power Down during the outage,
then the ROM can be allowed to die with the AC power.

20K 20K

Vcc2

10K 1 µF

CHAPTER 7
80C51 Family

Backup
Battery

Q Wake-Up

1/2 74HC123

'-----------~~ lNiO
(80C51BH)

Figure 7-9. Power Failure Detector uses retrlggerable one-shots to flag Impending power
outage and generate automatic wake-up when power returns

The considerations here are the same as in Figure 7-6:
Vee to the ROM is still up at the time Power Down is
invoked, and we must ensure (through selection of diode
Z2 in Figure 7-9)thatthe 80C31 BH is not awakened until
ROM power is back in spec.

POWER SWITCHOVER CIRCUITS
Battery backup systems need to have a way for the pro·
tected circuits to draw power from the line-operated
power supply when that source is available, and to switch
over to battery power when required. The switchover
circuit is simple if the entire system is to be battery pow-

Vcc2

a. Using a PNP Transistor

ered in the event of a line power outage. In that case a
pair of diodes suffice, as shown in Figure 7-9, provided
Vcctmln) specs are still met after the diode drop has been
subtracted from its respective power source.

The situation becomes more complicated when part of
the circuit is going to be allowed to die when the AC
power goes out. In that case it is difficult to maintain
equal Vccs to protected and unprotected circuits (and
possibly dangerous not to). The problem can be allevi­
ated by using a Schottky diode instead of a 1 N4001, for
its lower forward voltage drop. The 1 N5820, for example,

b. Using a Power MOSFET

Figure 7-10. Power Switchover Circuits

7-37

CHAPTER7
80C51 Family

has a forward drop of about 0 .35 V at 1 A. Other solutions
are to use a transistor or power MOSFET switch, as
shown in Figure 7-10. With minor modifications this
switch can be controlled by port pins.

80C31 BH + CMOS EPROM
The 27C256 is AMD's 32K-byte CMOS EPROM. It re­
quires an external address latch, and can be used with
the 80C31 BH as shown in Figure 7-11 a. In most 8031 +
27256 (NMOS) applications, the Chip Enable (CE) pin is
hardwired to ground (since it's normally the only program
memory on the bus). This can be done with the CMOS
versions as well, but there is some advantage in connect­
ing CE to ALE, as shown in Figure 7-11. The advantage
is that if the 80C31BH is put into Idle mode, since ALE
goes to a 1 in that mode, the 27C256 will be deselected
and go into a low-current standby mode. ·

The timing waveforms for this configuration are shown in
Figure 7-11b. The signals and timing parameters in pa­
rentheses are those of the 27C256 and the others are of
the 80C31HB, except Tprop is a parameter of the ad­
dress latch. The requirements for timing compatibility are

TAVIV - Tprop > tACC
TLLIV >ICE
TPLIV >!OE
TPXIZ>tDF

If the application is going to use the Power-Down mode
there is another consideration; in Idle, ALE = PSEN = 1,

xB

8 o o,

80C31BH 74HC373 270256

A.-A1

A.-A,.

ALE!------...._ __ _.,~

~ (51:

and in Power Down, ALE = PSEN = O. In a realistic
application there are likely to be more chips in the circuit
than are shown in Figure 7-11, and it is likely that the
nonessential ones will have their Vee removed while the
CPU is in Power Down. In that case the EPROM and the
address latch should be among the chips that have Vee
removed, and logic lows are exactly what are required at
ALE and PSEN.

But if Vee is going to be maintained to the EPROM during
Power Down, then it will be necessary to deselect the
EPROM when the CPU is in Power Down. If Idle is never
invoked, CE of the EPROM can be connected to P2. 7 of
the 80C31BH, as shown in Figure 7-12a. In normal op­
eration, P2.7 will be emitting the MSB of the Program
Counter, which is 0 if the program contains less than 32K
of code. Then when the CPU goes into Power Down, the
Port 2 pins emit P2 SFR data, which puts a 1 at P2.7, thus
deselecting the EPROM.

If Idle and Power Down are both going to be used, CE of
the EPROM can be driven by the logical OR of ALE and
P2.7, as shown in Figure 7-12b. In Idle, ALE = 1 will
deselect the EPROM, and in Power Down, P2.7 = 1 will
deselect it.

Pull-down resistors are shown in Figure 7-11 under the
assumption that something on the bus is going to have its
Vee removed during Power Down. If this is not the case,
pull-ups can be used as well as pull-downs.

tACC

TAVIV

TLLIV
ALE: (ICE)

TPLIV

._ ___ _.. ~----'

a, Circuit b. Timing Waveforms

Figure 7-11. 80C31 BH + 27C256

7-38

P2.7
of

BOC31BH

CE
of

27C256

a. Power Down Is Used but Not Idle

CHAPTER 7
80C51 Family

b. Idle and Power Down Both Used

Figure 7·12. Modifications to 80C31/27C256 Interface

SCANNING A KEYBOARD
There are many different kinds of keyboards, but alpha­
numeric keyboards generally consist of a matrix of eight
scan lines and eight receive lines as shown in Figure
7-13. Each set of lines connects to one port of the
microcontroller. The software has written Os to the scan
lines, and 1 s to the receive lines. Pressing a key con­
nects a scan line to a receive line, thus pulling the receive
line to a logic low.

re_

The eight receive lines are ANDed to one of the external
interrupt pins, so that pulling any of the receive lines low
generates an interrupt. The interrupt service routine has
to identify the pressed key, if only one key is down, and
convert that information to some useful output. If more
than one key in the line matrix is found to be pressed, no
action is taken. (This is a "two key lock-out" scheme.)

-~ --" ' I' I' I'
--" -" ' I'

I' "
_l ' l' l' l'

l ~ ' l' l' l'
___l _, ' l' I'" I'"
-~ _l ' I' I' I'"
--" -" -"

I' I' I'
--" -" _,

I'- " I'

Scan Lines

' ' ~ " I'
' ' ~ " I'

' '
l' "
' ' ' ~ 'I'

' ' 'II
~ 'I' l"-

~ ' " ~ 'I' I'

' ' " 'I'
"' ~ ' .I

" " I'

--" _j

" " j _j

" " - ' I' " ___l

I' I'
--" _,

" " --" _,

" " --" _j
I' 1\-

--" _j

I' "

Receive
Lines }

_.__ ~80C51BH, i-._.-1

> P1 P2 ~

J \.

\. INTO

Figure 7·13. Scanning a Keyboard

7-39

CHAPTER 7
80C51 Family

On some keyboards, certain keys (Shift, Control,
Escape, etc.) are not a part of the line matrix. These keys
would connect directly to a port pin on the microcon­
troller, and would not cause Jock-out if pressed simulta­
neously with a matrix key, nor generate an interrupt if
pressed singly.

Normally the microcontrollerwould be in Idle mode when
a key has not been pressed, and another task is not in
progress. Pressing a matrix key generates an interrupt,
which terminates the Idle. The interrupt service routine
would first call a 30-ms (or so) delay to debounce the key,
and then set about the task of identifying which key is
down.

First, the current state of the receive lines is latched into
an internal register. Then Os are written to the receive
lines and 1 stothe scan lines, andthe scan lines are read.
If a single key is down, all but one of these lines would
be read as 1 s. By locating the single O in each set of
Jines, the pressed key can be identified. If more than one
matrix key is down, one or both sets of lines will contain
multiple Os.

A subroutine is used to determine which of 8 bits in either
set of lines is O, and whether more than one bit is O. Table
7-4 shows a subroutine (SCAN) that does that using the
8051 bit-addressing capability. To use the subroutine,
move the line data into a bit-addressable RAM location
named LINE, and call the SCAN routine. The number of
LINE bits that are zero is returned in ZERO_ COUNTER.
If only one bit is zero, its number (1 through 8) is returned
in ZERO_BIT.

The interrupt service routine that is executed in response
to a key closure might then be as follows:

RESPONSE_ TO_KEY _CLOSURE:

CALL DEBOUNCE_DELAY

MOV LINE,P1; ;See Figure 9-16.

CALL SCAN

DJNZ ZERO_COUNTER,REJECT

MOV ADDRESS,ZERO_BIT

MOV P2,#0FFH; ;See Figure 9-16.

MOV P1,#0

MOV LINE,P2

CALL SCAN

DJNZ ZERO_COUNTER,REJECT

XCH A,ZERO_BIT

SWAP A

ORL ADDRESS,A

XCH A,ZERO_BIT

MOV P1 ,#OFFH

MOV P2,#0

REJECT: CLR EXO

RETI

Notice that RESPONSE_ TO_KEY _CLOSURE does
not change the Accumulator, the PSW, nor any of
the registers RO through R7. Neither do SCAN or

Table 7·4. Subroutine SCAN Determines which of Eight Bits In LINE Is o

SCAN: MOV ZERO_COUNTER,#0 ZERO_ COUNTER counts the number of Os in LINE.
JB LINE.O,ONE Test LINE bit 0.
INC ZERO COUNTER If LINE.O • 0, increment ZERO_COUNTER
MOV ZERo:::sJT,#1 and record that line number 1 is active.

ONE: JB LINE.1,TWO Procedure continues for other LINE bits.
INC ZERO_COUNTER
MOV ZERO_BIT,#2 Line number 2 is active.

TWO: JB LINE.2,THREE
INC ZERO_COUNTER
MOV ZERO_BJT,#3 Line number 3 is active.

THREE: JB LINE.3,FOUR
INC ZERO COUNTER
MOV ZERO:::BIT,#4 Line number 4 is active.

FOUR: JB LINE.4,FIVE
INC ZERO COUNTER
MOV ZERO:::BJT,#5 Line number 5 is active.

FIVE: JB LINE.5,SIX
INC ZERO_QOUNTER
MOV ZERO_BIT,#6 Line number 6 is active.

SIX: JB LINE.6,SEVEN
INC ZERO COUNTER
MOV ZERo::::siT,#7 Line number 7 is active.

SEVEN: JB LINE. 7,EJGHT
INC ZERO COUNTER
MOV ZERO:::BIT,#8 Line number 8 is active.

EIGHT: RET

7-40

,,
I

DEBOUNCE_DELAY. The result is a one-byte key
address (ADDRESS) that identifies the pressed key. The
key's scan line number is in the upper nibble of
ADDRESS, and its receive line number is in the lower
nibble. ADDRESS can be used in a look-up table to
generate a key code to transmit to a host computer,
and/or to a display device.

The keyboard interrupt itself must be edge-triggered,
rather than level-activated, so that the interrupt routine is
invoked when a key is pressed, and is not constantly
being repeated as long as the key is held down. In
edge-triggered mode, the on-chip hardware clears the
interrupt flag (EXO, in this case) as the service routine is
being vectored to. In this application, however, contact
bounce will cause several more edges to occur after the
service routine has been vectored to, during the
DEBOUNCE_DELAY routine. Consequently, it is neces­
sary to clear EXO again in software before executing
RETI.

The de bounce delay routine also takes advantage of the
Idle mode. In this routine a timer must be preloaded with
a value appropriate to the desired length of delay. This
value would be

t. 1 d (OSC kHz)· (delay time µs)
1mer pre oa = -

12

For example, with a 3.58-MHz oscillator frequency, a
30-ms delay could be obtained using a preload value of
-8950, or DDOA, in hex digits.

In the debounce delay routine (Table 7-5), the timer inter­
rupt is enabled and set to a higher priority than the key­
board interrupt, because as we invoke Idle, the keyboard
interrupt is still "in progress." An interrupt of the same
priority will not be acknowledged, and will not terminate
the Idle mode. With the timer interrupt set to priority 1
while the keyboard interrupt is a priority 0, the timer
interrupt, when it occurs, will be acknowledged and will
wake up the CPU. The timer interrupt service routine

CHAPTER 7
80C51 Family

does not itself have to do anything. The service routine
might be nothing more than a single RETI instruction.
RETI from the timer interrupt service routine then returns
execution to the debounce delay routine, which shuts
down the timer and returns execution to .the keyboard
service routine.

DRIVING AN LCD
An LCD (Liquid Crystal Display) consists of a backplane
and any number of segments or dots that will be used to
form the displayed image. Applying a voltage (nominally
4 to 5 V) between any segment and the backplane
causes the segment to darken. The only catch is that the
polarity of the applied voltage has to be periodically re­
versed, or else a chemical reaction takes place in the
LCD that causes deterioration and eventual failure of the
liquid crystal.

To prevent this from happening, the backplane and all
the segments are driven with an AC signal, which is
derived from a rectangular voltage waveform. If a seg­
ment is to be "off," it is driven by the same waveform as
the backplane. Thus, it is always at backplane potential.
If the segment is to be "on," it is driven with a waveform
that is the inverse of the backplane waveform. Thus, it
has about 5 V of periodically changing polarity between it
and the backplane.

With a little software overhead, the 80C51 BH can per­
form this task without the need for additional LCD driv­
ers. The only drawback is that each LCD segment uses
up one port pin, and the backplane uses one more. If
more than, say, two 7-segment digits are being driven,
there are not many port pins left for other tasks. Never­
theless, assuming a given application leaves enough
port pins available to support this task, the consider­
ations for driving the LCD are as follows.

Suppose, for example, it is a 2-digit display with a deci­
mal point. One port (TENS_DIGIT) connects to the
seven segments of the tens digit plus the backplane.

Table 7·5. Subroutine DEBOUNCE_DELAY Puts the 80C51 BH Into Idle During the Delay Time

DEBOUNCE DELAY:
-MOV
MOV
SETB
SETB
SETB
ORL

TL 1,#TL 1 PRE LOAD
TH1 ,#THf PRELOAD
ET1 -
PT1
TR1
PCON,#1

Preload low byte.
Preload high byte.
Enable Timer 1 interrupt.
Set Timer 1 interrupt to high priority.
Start timer running.
Invoke Idle mode.

The next instruction will not be executed until the delay times out.

CLR
CLR
CLR
RET

TR1
PT1
ET1

Stop the timer.
Back to priority O (ij desired).
Disable Timer 1 interrupt (if desired).
Continue keyboard scan.

7-41

CHAPTER 7
80C51 Family

Another port (ONES_DIGIT) connects to a decimal point
plus the seven segments of the ones digit.

One of the 80C51BH timers is used to mark off half­
periods of the drive voltage waveform. The LCD drive
waveform should have a rep rate between 30 and 100
Hz, but it's not very critical. A half-period of 12 ms will set
the rep rate to about 42 Hz. The preload/reload value to
get 12 ms to rollover is the 2's complement negative of
the oscillator frequency in kHz: If the oscillator frequency
is 3.58 MHz, the reload value is -3850, or F204 in hex
digits.

Now, the 80C51 BH would normally be in Idle, to con­
serve power, during the time that the LCD and other
tasks are not requiring servicing. When the timer rolls
over, it generates an interrupt that brings the 80C51 BH
out of Idle. The service routine reloads the timer (for the
next rollover), and inverts the logic levels of all the pins
that are connected to the LCD. It might look like this:

LCD_DRIVE_INTERRUPT:
MOV TL 1,#LOW(-XTAL_FREQ)
MOV TH1,#HIGH(-XTAL_FREO)
XRL TENS_DIGIT,#OFFH
XRL ONES_DIGIT,#OFFH
RETI

To update the display, one would use a look-up table to
generate the characters. In the table, "on" segments are
represented as 1 s, and "off" segments as Os. The back­
plane bit is represented as a 0. The quantity to be dis­
played is stored in RAM as a BCD value. The look-up
table operates on the low nibble of the BCD value, and
produces the bit pattern that is to be written to either the
ones digit or the tens digit. Before the new patterns can
be written to the LCD, the LCD drive interrupt has to be
disabled. That isito prevent a polarity reversal from tak­
ing place between the times the two digits are written.
The update subroutine is shown in Table 7-6.

USING AN LCD DRIVER
As was noted, driving an LCD directly with an 80C51 BH
uses a lot of port pins. LCD drivers are available in
CMOS to interface an 80C51 BH to a 4-digit display using
only seven of the 80C51 BH's 1/0 pins. Basically, the
BOC51 BH tells the LCD driver what digit is to be dis­
played (four bits) and what position it is to be displayed in
(two bits), and toggles a Chip Select pin to tell the driver
to latch this information. The LCD driver generates the
display characters (hex digits), and takes care of the
polarity reversals using its own RC oscillator to generate
the timing. Figure 7-14 shows an 80C51BH working with
an ICM7211 M to drive a 4-digit LCD; the software that
updates the display is shown in Table 7-7.

One could equally well send information to the LCD
driver over the bus by setting up the Accumulator with the
digit select and data input bits, and executing a MOVX@
RO,A instruction. The LCD-driver chip select would be
driven by the CPU WR signal. This is a little easier in
software than the direct bit manipulation shown in Figure
7-14. However, it uses more 1/0 pins, unless there
is already some external memory involved. In that case,
no extra pins are used up by adding the LCD driver to
the bus.

RESONANT TRANSDUCERS
Analog transducers are often used to convert the value of
a physical property, such as temperature, pressure, etc.,
to an analog voltage. These kinds of transducers then
require an analog-to-digital converter to put the mea­
surement into a form that is compatible with a digital
control system. Another kind of transducer is now be­
coming available that encodes the value of the physical
property into a signal that can be directly read by a digital
control system. These devices are called resonant
transducers.

Table 7-6. UPDATE LCD Routine Writes Two Digits to an LCD

7-42

UPDATE_ LCD:
CLR
MOV
MOV
SWAP
ANL
MOVC
MOV
MOV
ANL
MOVC
MOV
MOV
MOV
SETB
RET

ET1
DPTR,#TABLE_ADDRESS
A,BCD_VALUE
A
A,#OFH
A,@A+DPTR
TENS_DIGIT,A
A,BCD_VALUE
A,#OFH
A,@A+DPTR
C,DECIMAL_POINT
ACC.7,C
ONES_DIGIT,A
ET1

Disable LCD drive interrupt.
Look-up table begins at TABLE_ADDRESS.
Digits to be displayed.
Move tens digit to low nibble.
Mask off high nibble.
Tens digit pattern to accumulator.
Update LCD tens digit.
Digits to be displayed.
Mask off tens digit.
Ones digit pattern to accumulator.
Add decimal point to segment

pattern. Update LCD decimal point
and ones digit.

Re-enable LCD drive interrupt.

CHAPTER7
80C51 Famlly

80C518H
} Digit

2 Select

Any

~) Port
.81 Data LCD = Input

~

Figure 7·14. Using an LCD Driver

Resonant transducers are oscillators whose frequency
depends in a known way on the physical property being
measured. These devices output a train of rectangular
pulses whose repetition rate encodes the value of the
quantity being measured. The pulses can in most cases
be fed directly imo the 80C51 BH, which then measures
either the frequency or period of the incoming signal,
basing the measurement on the accuracy of its own clock
oscillator. The BOC51 BH can even do this in its sleep,
that is, in Idle.

When the frequency or period measurement is com­
pleted, the 80C51 BH wakes itseH up for a very short time
to perform a sanity check on the measurement and con­
vert it in software to any scaling of the measured quantity
that may be desired. The software conversion can in­
clude corrections for nonlinearities in the transducer's
transfer function.

Table 7·7. UPDATE_LCD Routine Writes Four Digits to an LCD Driver

UPDATE_LCD:
MOV A,DISPLAY_HI High byte of 4-digit display.
SET8 DIGIT_SELECT_2 Select leftmost digit of LCD.
SET8 DIGIT_SELECT_1 (digit address .. 118.)
CALL SHIFT_AND_LOAD High nibble of high bYte to selected digit.
CLR DIGIT_SELECT_ 1 Select second digit of LCD (address .108).
CALL SHIFT_AND_LOAD Low nibble of high byte to selected digit.
MOV A,DISPLAY_LO Low byte of 4-diglt display.
CLR DIGIT_SELECT_2 Select third digit of LCD.
SET8 DIGIT_SELECT_1 (digit address- 018.)
CALL SHIFT_AND_LOAD High nibble of low byte to selected digit.
CLR DIGIT_SELECT_1 Select fourth digit (address• 008).
CALL SHIFT_AND_LOAD Low nibble of low byte to selected digit.
RET

SHIFT_AND_LOAD
RLC A MSB to carry bit (CY).
MOV DAT_INPUT_B3,C CY to Data Input pin 83.
RLC A Next bit to CY.
MOV DATA_INPUT_82,C CY to Data Input pin 82.
RLC A Next bit to CY.
MOV DATA_INPUT_81,C CY to Data Input pin 81.
RLC A Last bit to CY.
MOV DATA_INPUT_80,C CY to Data Input pin 80.
CLR CHIP _SELECT Toggle Chip Select.
SET8 CHIP _SELECT O-to-1 transition latches info.
RET

7-43

CHAPTER7
80C51 Family

Resolution is also controlled by software, and can even
be dynamically varied to meet changing needs as a situ­
ation becomes more critical. For example, in a process
controller, resolution can be increased (''fine tune" the
control) as the process approaches its target.

The nominal reference frequency of the output signal
from these devices is in the range of. 20 Hz to 500 kHz,
depending on the design. Transducers are available that
have a full-scale frequency shift of 2 to 1. The transducer
operates from a supply voltage range of 3 V to 20 V,
which means it can operate from the same supply volt­
age as the 80C51 BH. At 5 V, the transducer draws less
than 5 mA (Refer~nce 5). It can normally be connected
directly to one of the 80C51BH port pins, as shown in
Figure 7-15.

Resonant
Transducer

v,,,,
SOC51BH

1----~ Into
or
TO

Figure 7·15. Resonant Transducer Does Not
Require An AID Converter

FREQUENCY MEASUREMENTS

Measuring a frequency means counting pulses for a
known sample time. Two timer/counters can be used,
one to mark off the sample time and one to count pulses.
If the frequency being counted does not exceed 50 kHz
or so, one may equally well connect the transducer signal
to one of the external interrupt pins and count pulses in
software. That frees up one timer, with very little cost in
CPU time.

The count that is directly obtained is T · F, where T is the
sample time and Fis the frequency. The full scale range
is T · (Fmax - Fmin). For n-bit resolution

1 LSB • T · (Fmax - Fminl
2"

Therefore, the sample time required for n~bit resolution is

Tm 2" .
Fmax-Fmm

7-44

For example, 8~it resolution in the measurement of a
frequency that varies between 7 kHz and 9 kHz would
require, according to this formula, a sample time of 128
ms. The maximum acceptable frequency count would be
128 ms · 9 kHz= 1152 counts. The minimum would be
896 counts. Subtracting 896 from each frequency count
(or presetting the frequency counter to -896 = OFC80H)
would allow the frequency to be reported on a scale of O
to FF in hex digits.

To implement the measurement, one timer is used to
establish the sample time. The timer is preset to a value
that causes it to roll over at the end of the sample time,
generating an interrupt and waking the CPU from its Idle
mode. The required preset value is the 2's complement
negative of the sample time measured in machine cy­
cles. The conversion from sample time to machine cy­
cles is to multiply it by 1/12 the clock frequency. For
example, if the clock frequency is 12 MHz, then a sample
time of 128 ms is

(128 ms)· (12000 kHz)/12 = 128000 machine cycles.

Then the required preset value to cause the timer to roll
over in 128 ms is

-128000 = FEOCOO, in hex digits.

Note that the preset value is three bytes wide, whereas
the timer is only two bytes wide. This means the timer
must be augmented in software in the timer interrupt
routine to three bytes. The 80C51 BH has a DJNZ in­
struction (decrement and jump if not zero) that makes it
easier to code the third timer byte to count down instead
of up. If the third timer byte counts down, its reload value
is the 2's complement of what it would be for an up­
counter. For example, if the 2's complement of the sam­
ple time is FEOCOO, then the reload value for the third
timer byte would be 02, instead of FE. The time interrupt
routine might then be:

TIMER_INTERRUPT_ROUTINE:
DJNZ THIRD_TIMER_BYTE,OUT
MOV TL0,#0
MOV THO,#OCH
MOV THIRD_Tlly!ERBYTE,#2
MOV FREQUENCY,COUNTER_LO

;Preset COUNTER to -896:
MOV COUNTER_LO,#SOH
MOV COUNTER_Hl,#OFCH

OUT: RETI

At this point the value of the frequency of the transducer
signal, measured to 8-bit resolution, is contained in FRE­
QUENCY. Note that the timer can be reloaded on the fly.
Note too that for 8-bit resolution only the low byte of the
frequency counter needs to be read, since the high byte
is necessarily O. However, one may want to test the high
~yte to ensure that it is 0, as a sanity check on the data.
Both bytes, of course, must be reloaded.

1~

PERIOD MEASUREMENTS
Measuring the period of the transducer signal means
measuring the total elapsed time over a known number,
N, of transducer pulses. The quantity that is directly
measured is NT, where Tis the period of the transducer
signal in machine cycles. The relationship between T in
machine cycles and the transducer frequency F in arbi­
trary frequency units is

T- F~al · (1/12)

where Fxtal is the 80C51 BH clock frequency, in the same
units as F.

The full scale range then is N · (Tmax -Tmin). For n-bit
resolution

1 LSB • N · (Tmax - Tm in)
2"

Therefore the number of periods over which the elapsed
time should be measured is

2" N-----Tmax-Tmin

However, N must also be an integer. It is logical to evalu­
ate the above formula (do not forget Tmax and Tmin
have to be in machine cycles) and select for N the next
higher integer. This selection gives a period measure­
ment that has somewhat more than n-bit resolution, but it
can be scaled back if desired.

For example, suppose an 8-bit resolution is wanted in the
measurement of the period of a signal with a frequency
that varies from 7.1 to 9 kHz. If the clock frequency is
12 MHz, Tmax is (12000 kHz/7.1 kHz) · (1/12) • 141
machine cycles. Tmin is 111 machine cycles. The re­
quired value for N, then, is 256/(141 - 111) • 8.53 peri•
ods, according to the formula. Using N = 9 periods will
give a maximum NT value of 141 · 9 = 1269 machine cy­
cles. The minimum NT will be 111 · 9 = 999 machine cy­
cles. A lookup table can be used to scale these values
back to a range of O to 255, giving precisely the 8-bit
resolution desired.

To implement the measurement, one timer is used to
measure the elapsed time, NT. The transducer is con­
nected to one of the external interrupt pins, and this
interrupt is configured to the transition-activated mode.
In the transition-activated mode, every 1-to-O transition
in the transducer output will generate an interrupt. The
interrupt routine counts transducer pulses, and when it
gets to the predetermined N, it reads and clears the
timer. For the specific example cited above, the interrupt
routine might be:

CHAPTER7
80C51 Famlly

INTERRUPT _RESPONSE:
DJNZ N,OUT

MOV N,#9
CLR
CLR
MOV
MOV
MOV
MOV
SETB
SETB
CALL

OUT: RETI

EA
TR1
NT_LO,TL1
NT_Hl,TH1
TL1,#9
TH1,#0
TR1
EA
LOOKUP _TABLE

In this routine a pulse c:Ounter N Is decremented from its
preset value, 9, to O. When the counter gets to o it is
reloaded to 9. Then all interrupts are blocked for a short
time while the timer is read and cleared. The timer is
stopped during the read and clear operations, so "clear­
ing" it actually means presetting it to 9, to make up for the
9 machine cycles that are missed while the timer is
stopped.

The subroutine LOOKUP_ TABLE is used to scale the
measurement back to the desired 8-bit resolution. It can
also include built-in corrections for errors or non­
linearities In the transducer's transfer function.

The subroutine uses the MOVC A,@ A+ DPTR instruc­
tion to access the table, which contains 270 entries com­
mencing at the 16-bit address referred to as TABLE. The
subroutine must compute the apdress of the table entry
that corresponds to the measured value of NT. This ad­
dress is
DPTR =TABLE+ NT- NTMIN,

' where NTMIN '"'999, in this specific example.

LOOKUP _TABLE:
PUSH ACC
PUSH PSW
MOV A,#LOW(TABLE - NTMIN)
ADD A,NT_LO
MOV DPL,A
MOV A,#HIGH(TABLE- NTMIN)
ADDC A,NT_HI
MOV DPH,A
CLR A
MOVC A,@A + DPTR
MOV PERIOD.A
POP PSW
POP ACC
RET

7-45

CHAPTER7
80C51 Famlly

At this point the value of the period of the transducer
signal, measured to 8-bit resolution, is contained in
PERIOD.

PULSE WIDTH MEASUREMENTS
The 80C51 BH timers have an operating mode, called the
"gate" mode, that is particularly suited to pulse-width
measurements, and is useful in these applications if the
transducer signal has a fixed duty cycle.

In this mode, the timer is turned on by the on-chip cir­
cuitry in response to an input high at the external inter­
rupt pin, and off by an input low, and it can do this while
the 80C51 BH is in Idle. (The "gate" mode of timer opera­
tion is described in Chapter Two, Timer/Counters.) The
external interrupt itseH can be enabled, so the same
1-to-O transition from the transducer that turns off the
timer also generates an interrupt. The interrupt routine
then reads and resets the timer.

The advantage of this method is that the transducer sig­
nal has direct access to the timer gate, with the resu ltthat
variations in interrupt response time have no effect on
the measurement.

Resonant transducers that are designed to fully exploit
the gate mode have an internal divide-by-N circuit that
fixes the duty cycle at 50% and lowers the output fre­
quency to the range of 250to 500 Hz(tocontrol RFI). The
transfer function between transducer period and mea­
sure and value is approximately linear, with known and
repeatable error functions.

NMOS/CMOS INTERCHANGEABILITY
The CMOS version of the 8051 is architecturally identical
with the NMOS version, but there are nevertheless some
important differences between them of which the de­
signer should be aware. In addition, some applications
require interchangeability between NMOS and CMOS
parts. The differences are as follows:

External Clock Drive: To drive the NMOS 8051 with an
external clock signal, one normally grounds the XTAL 1
pin and drives the XTAL2 pin. To drive the CMOS 8051
with an external clock signal, one must drive the XT AL 1
pin and leave the XT AL2 pin unconnected. The reason
for the difference is that in the NMOS 8051, the XTAL2
pin drives the internal clocking circuits, whereas in the
CMOS version, the XT AL 1 pin drives the internal clock­
ing circuits.

There are several ways to design an external clock drive
to work with both types. For low clock frequencies (below
6 MHz), the NMOS 8051 can be driven the same way as
the CMOS version, namely, through XTAL 1 with XTAL2
unconnected. Another way is to drive both XT AL 1 and
XTAL2, that is, drive XTAL 1 and use an external inverter
to derive from XTAL 1 a signal with which to drive XTAL2.

7-46

In either case, a 74HC or 74HCT circuit makes an excel­
lent driver for XT AL 1 and/or XT AL2, because neither the
NMOS nor the CMOS XTAL pins have TTL-like input
logic levels.

Unused Pins: Unused pins of Ports 1, 2, and 3 can be
ignored in both NMOS and CMOS designs. The internal
pull-ups will put them into a defined state. Unused Port O
pins in 8051 applications can be ignored, even if they're
floating. But in 80C51 BH applications, these pins should
not be left afloat. They can be externally pulled up or
down, or they can be internally pulled down by writing Os
to them.

80C31 BH designs may or may not need pull-ups on Port
0. Pull-ups are not needed for program fetches, because
in bus operations the pins are actively pulled high or low
by either the 8031 or the external program memory.
However, they are needed for the CMOS part if the Idle
or Power-Down mode is invoked, because in these
modes, Port O floats.

Logic Levels: If Vee is between 4.5 V and 5.5 V, an input
signal that meets the NMOS 8051 input logic levels will
also meet the CMOS 80C51 BH input logic levels (except
for XT AL 1 /XT AL2 and RST). Forthe same Vee condition,
the CMOS device will reach or surpass the output logic
levels of the NMOS device. The NMOS device will not
necessarily reach the output logic levels of the CMOS
device. This is an important consideration if NMOS/
CMOS interchangeability must be maintained in an oth­
erwise CMOS system.

NMOS 8051 outputs that have internal pull-ups (Ports 1,
2, and 3) ''typically" reach 4 V or more if loH is 0, but not
fast enough to meet timing specs. Adding an external
pull-up resistor will ensure the logic level, but still not the
timing, as shown in Figure 7-16. If timing is an issue, the
best way to interface NMOS to CMOS is through a
74HCT circuit.

CMOS\

CMOSVIH

TTL VIH

tit
Figure 7·16. Transition Shows Unspecified Delay

(tit) In NMOS to 79HC Logic

Idle and Power Down: The Idle and Power-Down
modes exist only on the CMOS devices, but if one wishes
to preserve the capability of interchanging NMOS and
CMOS 8051s, the software has to be designed so that
the NMOS parts will respond in an acceptable manner
when a CMOS reduced power mode is invoked.

For example, an instruction that invokes Power Down
can be followed by a "JMP $":

CLR EA
ORL PCON,#2
JMP $

The CMOS and NMOS parts will respond differently to
this sequence of code. The CMOS part, going into a
normal CMOS Power-Down mode, will stop fetching in­
structions until it gets a hardware reset. The NMOS part
will go through the motions of executing the ORL instruc­
tion, and then fetch the JMP instruction. It will continue
fetching and executing JMP $until hardware reset.

Maintaining NMOS/CMOS 8051 interchangeability in re­
sponse to Idle requires more planning. The NMOS part
will not respond to the instruction that puts the CMOS
part into Idle, so that instruction needs to be followed by a
software Idle. This would be an idling loop which would
be terminated by the same conditions that would termi­
nate the CMOS hardware Idle. Then when the CMOS
device goes into Idle, the NMOS version executes the
idling loop until either a hardware reset or an enabled

CHAPTER7
80C51 Famlly

interrupt is received. Now if Idle is terminated by an
interrupt, execution for the CMOS device will proceed
after RETI from the instruction following the one that
invoked Idle. The instruction following the one that in­
voked Idle is the idling loop that was inserted for the
NMOS device. At this point, both the NMOS and CMOS
devices must be able to fall through the loop to continue
execution.

One way to achieve the desired effect is to define a ''fake"
Idle flag, and set it just before going into Idle. The instruc­
tion that invokes Idle is followed by a software idle:

SETB IDLE
ORL PCON,#1
JB IDLE,$

Now the interrupt that terminates the CMOS Idle must
also break the software idle. It does so by clearing the
"Idle" bit:

CLR IDLE
RETI

Note too that the PCON register in the NMOS 8051
contains only one bit, SMOD, whereas the PCON regis­
ter in CMOS contains SMOD plus four other bits. Two of
those other bits are general purpose flags. Maintaining
NMOS/CMOS interchangeability requires that these
flags not be used.

7-47

CHAPTER 8

80C521 Family

BOC521/80C321/80C541 Data Sheet
87C521/87C541 Data Sheet
Software Routines

Dual Data Pointer Routines
Block Move in External RAM
Higher Performance Interrupt Routines
Full Duplex Transmit/Receive Buffering
Tree Structure Manipulation
ROM Table Access
Creating an External Stack

Watchdog Timer Routines
WOT Enable, Clear, and Reset Cause
Power-Down Operation
Testing the Watchdog Timer
Using the Watchdog Timer as a Standard Timer

Software Reset Routines
Using Software Reset
Improving Reliability with Software Reset

8-1
8-22
8-37
8-37
8-37
8-39
8-40
8-40
8-41
8-41
8-42
8-42
8-43
8-45
8-45
8-47
8-47
8-48

80C521/80C321/80C541
CMOS Single-Chip Microcontroller

FINAL

DISTINCTIVE CHARACTERISTICS

• Software and pin-compatible with SOC51
• Dedicated Watchdog Timer

- Robust: immune to software disables
- Flexible: user programmable from

12S microseconds to 4 seconds at 12 MHz
• Dual Data Pointers

- Faster external memory access
• Software Reset

SOC321
SOC521
SOC541

SOC521 = SOC321 + SK bytes ROM
SOC541 = SOC321 + 16K bytes ROM

RAM
(bytes)

256
256
256

ROM
(bytes)

SK
16K

GENERAL DESCRIPTION

The SOC521 Family (SOC521, SOC321, and SOC541) is a
fully instruction-set-compatible and pin-compatible en­
hancement of the industry-standard SOC51 architecture.
These products include a programmable Watchdog Timer
and Dual Data Pointers to enhance reliability and improve
performance.

The SOC521, SOC321, and
RAM. The SOC521 has S
the SOC541 has 1 BK byt
on-chip ROM.

A dedicated Watchdo
hanced system relia
ESD, and software failu
special software and electrical isolation features. For exam­
ple, it cannot be disabled by potentially corrupted software.

It is user programmable from 12S microseconds to 4
seconds at 12 MHz.

The Dual Data Pointers structure speeds access to external
memory by providing two identical 16-bit data pointers with
a fast switching mechanism. This overcomes a traditional
S051 limitation of only a single data pointer and can

connection.

mance of t such as block transfers by
consult the Software

plastic DIP and 44-
52T2/SOC32T2, the
nal supply connec­
atly improve noise

a single Vee and Vss

SIMPLIFIED BLOCK DIAGRAM

FREQUENCY
REFERENCE COUNTERS

.----· --- -- ---- ---------------,

OSCILLATOR
&

TIMING

IN'TERAUPTS

Publication # Rev. ~
09136 c /0

Issue Date: October 1989

ROM
SK BYTES

(800521 only)
18KBYTES

(800641 only)

CONTROL

RAM
256 BYTES

PARALLEL PORTS
ADDRESS DATA BUS

ANDl.OPINS

80C521/80C321/80C541

lW016-BIT
TIMER/EVENT
COUNTERS

PROGRAfJMABlE
SERIAL PORT
• FULL DUPLEX

UART
• SYNCHRONOUS

SHIFTER

SERIAL SERIAL
IN OUT

WATCHDOG
TIMER

80007216

8-1

8-2

' '"" --,
I

"'n
~ I

I
I
I
I
I
I

DETAILED BLOCK DIAGRAM

/------------------+rt-+-++++ --HH+++-H--------------------- - -

SCON TMOD TCON

80C521 /80C321 /80C541

PROGRAM ADDA
REGISTER

BUFFER

PC
NCAEJ.ENTER

PROGRAM
COUNTER

DPTRO

OPTR1

' \

I

I
I
I
I
I
I
I
I
I
I
I _____________ ,,,,

80004097

i'
I

P1.0
P1.I

Pl.I

Pl.a

Pl.4

PU

P1.I

P1.7

lllT

llXD Pl.O

TXD Pl.I
Ima Pl.a

111'1', Pl.a

To Pl.4

r 1 Pa.e

Wll Pl.I
1111 Pl.7

XTAL1

XTAl.1
y ..

DIPs

*
~

CONNECTION DIAGRAMS
Top View

Yee

PO.a Alla
PG.1 AD,

PO.I Alla
PO.ll Alls

P0.4 ADo

PO.I Alls

PO.I Alie

Pa.7 AO,.

IA
ALI

llllrl
Pl.7 A11

Pl.I A14

Pl.I A11

Pl.4 A11

Pl.I A11

Pl.I A1a

Pl.I Ae
Pl.a Ae

CD005554

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

Yu Yee ll8T

lCTAL,

l:]

XTALa

Ill

iiiiN

ALI

1r-1 Txo-1111',-I ~= i r,-
iii-
e-

80C521/80C321/80C541

PLCC

CD009444

1/~)i
ii
=• 1-1 i ~I

LS001324

8-3

8-4

:
ORDERING INFORMATION

·Commodity Products

AMO commodity producis are available In several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of: a. Temperature Range

b. Package Type
c. Device Number
d. Speed Option
e. Optional Procaealng

L= e. OPTIONAL PROCESSING
Blank • Standard processing

d. SPEED OPTION
Blank• 0.1 to 12 MHz

-1•0.1 to 18 MHz

'---------'----- c. DEVICE NUMBER/DESCRIPTION
800521/80C321/80C541
CMOS Single-Chip Mlcrocontroller

'-----------------~~PACKAGE TYPE .
P • 40-Pln Plastic DIP (PD 040)
N • 44-Pln Plastic Leaded Chip Carrier (PL 044)

'----------------~----a. TEMPERATURE RANGE

P, N
IP, IN

Valid Combinations
800521

800521-1

80C3i!1

80C321-1

800541

80C541-1

Blank • Commercial (0 to + 70°C)
I • Industrial (-40 to +85'C)

Valid Combinations

Valid Combinations list configurations planned to be
supported In volume for this device. Consult the local AMO
sales office to confirm availability of specific valid
combinations, to check on newly released valid combinations,
and to obtain additional data on AMO's standard military
grade products.

80C521/80C321/80C541

1~

I'

PIN DESCRIPTION

Port O (Bldlrectlonal, Open Drain)
Port O is an open-drain bidirectional 1/0 port. Port O pins that
have 1 s written to them float, and in that state can be used
as· high-impedance inputs.

Port o is also the multiplexed Low-order address and data
bus during accesses to external Program and Data Memory.
In this application It uses strong internal pullups when
emitting 1 s. Port O also outputs the code bytes during
program verification in the 80C521. External pullups are
required during program verification.

Port 1 (Bldlrectlonal)
Port 1 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 1 output buffers can sink/source four LSTTL
inputs. Port 1 pins that have 1 s written to them are pulled
High by the internal pullups and can be used as inputs while
in this state. As inputs, Port 1 pins that are externally being
pulled Low will source current (ltL on the data sheet)
because of the internal pullups.

Port 1 also receives the Low-order address bytes during
program verification.

Port 2 (Bldlrectional)
Port 2 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 2 output buffers can sink/source four LSTTL
inputs. Port 2 pins having 1 s written to them are pulled High
by the internal pullups and can be used as inputs while in
this state, As inputs, Port 2 pins externally being pulled Low
will source current (ltd because of the internal pullups.

Port 2 emits the High-order address byte .during fetches
from external Program Memory and during accesses to
external Data Memory that use 16-bit addresses (MOVX
@DPTR). In this application it uses strong internal pullups
when emitting 1 s. During accesses to external data memory
that use 8-bit addresses (MOVX @Ri), Port 2 emits the
contents of the P2 Special Function Register. Port 2 also
receives the High-order address bits during ROM
verification.

Port 3 (Bldlrectlonal)
Port 3 is an 8-bit bidirectional 1/0 port with internal pullups.
The Port 3 output buffers can sink/source four LSTIL
inputs. Port 3 pins that have 1 s written to them are pulled
High by the internal pullups and can be used as inputs while
in this state. As inputs, Port 3 pins externally being pulled
Low will source current (ltd because of the pullups.

Port 3 also serves the functions of various special features
as listed below:

Port Pin Alternate Function

P3.o RxD (serial input port)

P3,1 TxD (serial output port)

P3.2 INTo (external interrupt OJ

P3,3 INT 1 (external interrupt 1)

P3,4 To (Timer O external input)

P3,5 T 1 (Timer 1 external input)

P3.6 Wl'i (external Data Memory write strobe)

P3,7 RCi (external Data Memory read strobe)

RST Reset (Input/Output, Active High)
A High on this pin (for two machine cycles while the
oscillator is running) resets the device. An internal diffused
resistor to Vss permits power-on reset, using only an
external capacitor to V CC·

Immediately prior to a Watchdog Reset or Software Reset,
this pin is pulled High for one state time. The internal pull-up
can be overdriven by an external driver capable of sinking/
sourcing 2.5 mA (see Figure 6 for possible circuit
configurations).

ALE Address Latch Enable (Output, Active High)
Address Latch Enable is the output pulse for latching the
Low byte of the address during accesses to external
memory.

In normal operation ALE is emitted at a constant rate of 1 /6
the oscillator frequency, allowing use for external timing or
clocking purposes. Note, however, that one ALE pulse is
skipped during each access to external Data Memory.

PSEN Program Store Enable (Output, Active Low)
PSEN is the read strobe to external Program Memory. When
the 80C521 is executing code from external program
memory, PSEN is activated twice each machine cycle,
except that two PSrn activations are skipped during each
access to external Data Memory. PSrn is not activated
during fetches from internal Program Memory.

EA External Access Enable (Input, Active Low)
EA must be externally held Low to enable the device to
fetch code from external Program Memory locations OOOOH
to 1 FFFH. If EA is held High, the device executes from
internal Program Memory unless the program counter
contains an address greater than 1 FFFH.

The 80C521 internally latches the value of the EA pin at the
falling edge of the reset pulse on the AST pin during a
Hardware or Power-on Reset. Once latched, the EA value
cannot be changed except 'by a Hardware reset.

XTAL1 Crystal (Input)
Input to the inverting-oscillator amplifier, and input to the
internal clock-generator circuits.

XTAL2 Crystal (Output)
Output from the inverting-oscillator amplifier.

Vee Power Supply
Supply voltage during normal, idle, and power-down
operations.

Vss Circuit Ground

80C521/80C321/80C541 8-.5

FUNCTIONAL DESCRIPTION

Program Memory
The BOC521 has 64K bytes of Program Memory space. The
lower BK bytes (addresses OOOOH to 1 FFF) may reside on­
chip. lnstruciions residing at addresses beyond 1 FFF will
always be fetched externally. When the External Access (EA)
pin is held Low, all code-fetch operations take piace externally
to the BOC521.

Data Memory
The BOC521 can address 64K bytes of Data Memory external
to the chip. The MOVX instructions are used to access the
external Data Memory.

The internal data memory comprises three physically distinct
memory spaces. They are the lower 12B bytes of RAM, the

upper 12B bytes of RAM, and the 126-byte Special Function
Register (SFR) space. The lower 12B bytes of RAM can be
accessed through direct addressing (i.e., MOV addr, data), or
indirect addressing (i.e., MOV@ Ai). The upper 12B bytes.of
RAM (locations BOH through FFH) can be accessed only
through indirect addressing modes. The Special Function
Register space, while physically distinct from the upper 12B
bytes of RAM, shares addresses with the upper 12B bytes of
RAM. The SFR space may be accessed through direct
addressing modes only.

The first 32 bytes of RAM contain four register banks, each of
which contains eight general-purpose registers. The next 16
bytes (locations 20H through 2FH) contain 12B directly ad­
dressable bit locations. The stack may be located anywhere in
the internal RAM space and may be up to 256 bytes in length.

SPECIAL FUNCTION REGISTER MAP

Addr Default After
,(HEX) Symbol Name Power-On Reset

•.BO PO Port 0 11111111
B1 SP Stack Pointer 00000111
B2 DPL Data Pointer Low 00000000
B3 DPH Data Pointer High 00000000

+B4 DPL1 Data Pointer Low 1 00000000
+B5 DPH1 Data Pointer High 1 00000000
+B6 DPS Data Pointer Selection 00000000

B7 PCON Power Control oxxxoooo
• BB TCON Timer/Counter Control 00000000

B9 TMOD Timer/Counter Mode Control 00000000
BA TLO Timer/Counter O Low Byte 00000000
BB TL1 Timer/Counter 1 Low Byte 00000000
BC THO Timer/Counter o High Syte 00000000
BD TH1 Timer/Counter 1 High Byte 00000000

• 90 P1 Port 1 11111111
• 9B SCON Serial Control 00000000

99 SBUF Serial Data Buffer Indeterminate
• AO P2 Port 2 11111111
• AB IE Interrupt Enable Control oxxooooo
+A9 WDS Watchdog Selection 00000000
+AA WDK Watchdog Key 00000000
• BO P3 Port 3 11111111
* BB IP Interrupt Priority Control xxxooooo
• DO PSW Program Status Word 00000000
* EO ACC Accumulator 00000000
• FO B B Register 00000000

• Bit Addressable
• New SFRs defined on the BOC521 /BOC321

80C521/80C321 /80C541

Basic Timing Definitions
Instructions in the 8051 family execute in either one, two, or
four machine cycles. A machine cycle comprises six state
times with each state made up of two clock cycles; thus, a
machine cycle lasts 12 clock cycles. With an external oscilla­
tor running at 12 MHz, a machine cycle lasts 1 µs. At 16 MHz,
a machine cycle lasts 750 ns.

Reset Operation
The 80C521 /80C321 may be reset by four different methods:
(1) Power-On Reset, (2) Hardware Reset, (3) Watchdog Reset,
and (4) Software Reset.

1. Power-On Reset occurs when the AST pin is wired to Vee
using an external capacitor, and Vee is activated.

2. Hardware Reset occurs when the oscillator is running and
the AST pin is held High for two or more machine cycles.

3. Watchdog Reset occurs when the count value of the
Watchdog Timer is allowed to exceed the programmed value,
resulting in an overflow signal that resets the chip in two
machine cycles.

4. Software Reset occurs when the software writes a keyed
sequence to the key register of the Watchdog Timer. This
causes a Watchdog Reset to be immediately generated.

After Power-On Reset, the SFRs have the values indicated in
the Special Function Register Map Section, and the contents
of the internal RAM are undefined. Hardware Reset is the
same as Power-On Reset except that the contents of the
internal RAM are preserved. A Hardware Reset has priority
over a Watchdog Reset or a Software Reset. The Watchdog
Reset puts the 80C521 into the same state as the Hardware
Reset except that the Reset Cause (RC) bit in the Watchdog
Selection (WOS) register is set to a 1 . The Software Reset is
functionally equivalent to the Watchdog Reset.

Watchdog Timer
The Watchdog Timer (WOT) is a specially designed timer unit
that will reset the chip upon reaching a pre-programmed time
interval. It operates independently of the two general purpose
timer/counters and is dedicated specifically to the watchdog
function. The Watchdog Timer allows safe recovery from
problems resulting from unexpected input conditions, external
events, or programming anomalies.

The WOT is disabled following any reset. While disabled, the
WOT time interval may be programmed. The WOT is enabled
by a sequence of two write operations.

Once enabled, the WOT cannot be stopped (i.e., disabled)
except by one of the four Reset types described in the last
section. Furthermore, while the WOT is enabled, the WOT time
interval cannot be modified. The WOT, however, may be
cleared by software at any time with the same sequence of
two write operations. The clearing operation causes the
present count of the WOT to be set to zero, but it does not
stop the WOT from incrementing.

If the count in the WOT ever reaches the pre-programmed
value, the WOT will overflow, resetting the chip in two machine
cycles. This is a Watchdog Reset. Additionally, if a system
error condition is discovered, software may intentionally gen­
erate an immediate reset via the WOT, using a special
sequence of write operations. This is a Software Reset.

A Watchdog Reset or Software Reset will set a special
"cause" bit, allowing differentiation between these two Reset
types and the Hardware or Power-On Reset types. Neither
Watchdog Reset nor the Software Reset modify the contents
of the internal RAM. The Watchdog Reset will cause the AST
pin to be pulled High during S2P1 and S2P2 of the first cycle of
the two-cycle reset, providing a hardware indication that a
reset is imminent.

Two 8-bit Special Function Registers are associated with the
WOT. They are as follows:

Watchdog Selection (WOS) -Address: A9 (Hex)

Watchdog Key (WOK) - Address: AA (Hex)

Watchdog Selection (WDS) - Address: A9H

The Watchdog Selection register allows the time interval of
the WOT to be programmed and retains the cause of the most
recent reset. This register is Read/Write, but its contents
cannot be changed once the WOT has been enabled. Its
default value after a Hardware or Power-On Reset = OOH. Its
default value after a Watchdog Reset or Software Re­
set= SOH. This is the only register on the 80C521 whose
initialization value differs between the two reset groups.

(MSB) (LSB)

- I PT3 I PT2 I PT1 I PTO I
7 6 5 4 3 2 0

Bits 3 - 0 - Programmed Time (PT3 - PTO)

The value contained in these bits at the time the Watchdog
Timer is enabled determines the time interval of the WOT. The
time interval is a multiple of the input clock period. The times
are decoded in the following table.

Programmable Watchdog Timing Intervals

PT3-PTO 12 MHz 16 MHz Clock Divide Ratio
0 0000 128 µs 96 µs 1536
1 0001 256 µs 192 µs 3072
2 0010 512 µs 384 µs 6144
3 0011 1.024 ms 768 µs 12288
4 0100 2.048 ms 1.536 ms 24576
5 0101 4.096 ms 3.072 ms 49152
6 0110 8.192 ms 6.144 ms 98304
7 0111 16.384 ms 12.288 ms 196608
8 1000 32.768 ms 24.576 ms 393216
9 1001 65.536 ms 49.152 ms 786432
A 1010 131.072 ms 98.304 ms 1572864
B 1011 262.144 ms 196.608 ms 3145728
c 1100 524.288 ms 393.216 ms 6291456
D 1101 1.049 sec 786.432 ms 12582912
E 1110 2.097 sec 1.573 sec 25165824
F 1111 4.194 sec 3.146 sec 50331648

80C521/80C321/80C541 8-7

If the Programmed Time bits. are read while the WDT is
disabled, they will show the last value written. Once the WDT
is enabled, these bits will show the programmed time of the
WDT and cannot be modified.

Bit 4

Reserved. Will return an unidentified value when read.

Bit 5 - Timer Verification (TV)

This bit reflects Bit 11 of the internal counter within the
Watchdog Timer. It will toggle every 4.096 ms at 12 MHz. This
bit is Read-only.

Bit 6

Reserved. Will return an unidentified value when read.

Bit 7 - Reset Cause (RC)

The Reset Cause bit indicates the cause of the last reset of
the 80C521. If a Power-On or Hardware Reset occurs, the bit
is set to a 0 by the reset circuitry. If a Watchdog or Software
Reset occurs, the bit is set to a 1 by the reset circuitry. Like the
Programmed Time bits, this bit may not be modified once the
WDT is enabled. Writing this bit does not affect any chip
function.

Watchdog Key (WOK) - Address: AAH

This register controls the enabling and clearing of the Watch­
dog Timer. The writing of an A5H followed by the writing of a
5AH to this register enables the WDT to begin incrementing.
It is not a requirement that the writes be on consecutive
instructions, thus interrupts do not have to be disabled. Once
the WDT is enabled, it may be cleared at any time by the
writing of the same sequence. The clearing operation causes
the present count of the WDT to be cleared, but does not stop
the WDT from incrementing.

This is a Write-only register. Read operations are not defined
and will not affect the WDT circuitry.

(MSB) (LSB)

I I I I
6 4 2 0

The enabling/clearing operation of the Watchdog Timer is
accomplished by writing a keyed sequence of values to the
WDK register. The Keyed Sequence is composed of two
stages (see Figure 1).

80007220

Figure 1. WOT Keyed Sequence Flowchart

The Keyed Sequence is in Stage 1 after all forms of reset, or
following any Watchdog enable or clear operation. In Stage 1
all values written to the WDK register are ignored except A5H.
An A5H causes the Keyed Sequence to enter Stage 2.

Once Stage 2 is entered, the next write to the WDK register
prompts one of the following actions: (1) If the nex1 write is
again an A5H, the Keyed Sequence remains in Stage 2; (2) If
the next write is a 5AH, the WDT is enabled/cleared, and the
Keyed Sequence reenters Stage 1; or, (3) If the next write is
any other value, a Software Reset via the WDT is generated.

Example of Write Operations to WOK:
Write

1st 2nd Action Taken After Second Write

11 18 No action taken, Keyed Sequence
still in Stage 1

A5 A5 Keyed Sequence enters Stage 2 and
remains there

A5 SA WDT is enabled/cleared, Sequence
reenters Stage 1

AS 11 Software Reset occurs via the WDT

The two-stage feature, together with the Software Reset,
greatly reduces the chance of an instruction sequence acci­
dentally clearing the Watchdog Timer. Furthermore, while still
allowing a Software Reset to be initiated, the two-stage
feature reduces the chance of unintentionally generating a
Software Reset.

8-8 80C521/80C321 /80C541

1:1
I

I

1·

Software Reset
A Software Reset may be accomplished through the Watch­
dog Timer. If an A5H is written to the Watchdog Key (WOK)
register, followed by the write of a value other than A5H or
5AH, a Software Reset will be generated. This software­
generated Watchdog Reset occurs regardless of whether or
not the Watchdog Timer was previously enabled.

After the second value is written to the WOK register, program
execution continues for one machine cycle before the reset
operation begins. During S2P1 and S2P2 of this last machine
cycle, the RST pin is pulled High (see Figure 6). The reset
operation lasts two machine cycles and does not modify the
contents of the internal RAM.

The Software Reset is functionally equivalent to the Watchdog
Reset. For instance, the Reset Cause bit in WDS will be set to
1, indicating a Watchdog Reset occurred (see the Watchdog
Timer section for more details).

The following code may be used to generate a Software
Reset.

MOV WOK,# A5H ; Write A5 (Hex) to WOK

MOV WOK,# 11 H ; Write 11 (Hex) to WOK
Software Reset generated via WOT

Dual Data Pointers
The Dual Data Pointer structure is the means by which the
80C521 family may specify the address of an external Data
Memory location. The Dual Data Pointer structure consists of
two 16-bit registers that address external memory, and a
single 8-bit register that allows the program code to selectively
switch between them. They are located in the Special Func­
tion Register space at the following addresses:

82H Data Pointer Low

83H Data Pointer High

-(DPL) l
-(DPH) Data Pointer 0 (DPTRO)

84H Data Pointer Low 1

85H Data Pointer High 1

86H Data Pointer Selection

-(DPL1) l
-(DPH1) Data Pointer 1 (DPTR1)

-(DPS)

Data Pointer O (DPTRO) is the original data pointer on the
standard 80C51 (formerly referred to as DPTR). Data Pointer 1
(DPTR1) is an additional data pointer with identical character­
istics. Instructions that refer to DPTR refer to the data pointer
that is currently selected in the Data Pointer Selection (DPS)
register. The six instructions that reference DPTR are as
follows:

INC DPTR

MOV DPTR,
#data16

MOVC A,
@A+DPTR

MOVX A, @DPTR

; Increments the data pointer by 1

; Loads DPTR with a
16-bit constant

; Move code byte relative to DPTR
to Ace

; Move external RAM (16-bit
address) to Ace

MOVX @DPTR, A ; Move Ace to external RAM
(16-bit address)

JMP @A+ DPTR ;Jump indirect relative to DPTR

It is also possible to access each data pointer on a byte-by­
byte basis by specifying its low or high byte in an instruction
that accesses the Special Function Registers. These instruc­
tions can be executed at any time regardless of which of the

two data pointers is currently selected. Three examples are as
follows:

MOV DPH,R3

MOV A,DPL1

PUSH DPH1

; Move the contents of Register 3 into
DPH

; Move the contents of DPL 1 into the
Ace

;Push the contents of DPH1 onto the
stack

The Dual Data Pointer structure saves both time and code
space by eliminating the need for frequent loading and
unloading of a single data pointer. For instance, block move
operations in external memory can be more efficiently imple­
mented by using DPTRO as the source address, and DPTR1
as the destination address. The Dual Data Pointer structure
enhances this operation considerably.

Data Pointer Selection (DPS) - Address: 86H

This register determines which of the two data pointers is
currently selected. Once a data pointer is selected, the six
DPTR instructions refer only and always to that data pointer
until another data pointer is selected. Upon reset, the default
data pointer (DPTRO) will be selected, thus retaining compati­
bility with existing 8051-family devices. The switch between
data pointers may be accomplished with a single cycle
instruction (such as: INC DPS or MOV DPS,A). The default
value at reset = OOH. This is a Read/Write register.

(MSB) (LSB)

I o I o 0 0 0 0 o lsELo I
7 6 5 4 3 2 0

Bit 0 - Select 0 (SELO)

If this bit is 0, the original data pointer, DPTRO, is selected. If
this bit is 1, DPTR1 is selected. This bit may be written by
software at any time. When read, its current value is
presented.

Bits 7-1

Reserved. Will return 0 when read.

Data Pointer Low (DPL) - Address: 82H

DPL is a Read/Write register that contains the low byte of
Data Pointer 0. It may be accessed at any time with an
instruction that specifies a direct byte as a source of destina­
tion. However, SELO in the DPS register must be set to 0
before any of the six explicit DPTR instructions will access this
register. The default at reset= OOH.

(MSB) (LSB)

I I I I
7 6 5 4 3 0

Data Pointer High (DPH) - Address: 83H

DPH is a Read/Write register that contains the high byte of
Data Pointer 0. It may be accessed at any time with an
instruction that specifies a direct byte as a source or destina­
tion. However, SELO in the DPS register must be set to 0
before any of the six explicit DPTR instructions will access this
register. The default at reset = OOH.

(MSB) (LSB)

I I I I
7 6 5 4 3 2 0

80C521/80C321/80C541 8-9

Data Pointer Low 1 (DPL 1)-Address: 84H

DPL 1 is a Read/Write register that contains the low byte of
Data Pointer 1. It may be accessed at any time with an
instruction that specifies a direct byte as a source or destina­
tion. However, SELO in the DPS register must be set to 1
before any of the six explicit DPTR instructions will access this
register. The default at reset= OOH.

(MSB) (LSB)

I I I I
7 6 5 4 3 2 0

Data Pointer High 1 (DPH1)-Address: 85H

DPH1 is a Read/Write register that contains the high byte of
Data Pointer 1 . It may be accessed at any time with an
instruction that specifies a direct byte as a source or destina­
tion. However, SELO in the DPS register must be set to 1
before any of the six explicit DPTR instructions will access this
register. The default at reset = OOH.

(MSB)

I I
7 6 5 4 3 2

Dual Data Pointer Example

To load both data pointers after reset:

Method 1:

(LSB)

I I
0

MOV DPL , # data8 ; load low byte of DPTRO
MOV DPH ,#data8 ; load high byte of DPTRO
MOV DPL 1, # data8 ; load low byte of DPTR 1
MOV DPH1,#data8 ;load high byte of DPTR1

(Data Pointer 0 is still selected.)

Method 2:
MOV
DPTR,#data16
INC DPS
MOV
DPTR,#data16

; load DPTRO with 16-bit const.

; switch data pointers
;load DPTR1 with 16-bit const.

(Data Pointer 1 is now selected.)

Oscillator Characteristics
XTAL1 and XTAL2 are the input and output, respectively, of an
inverting amplifier which is configured for use as an on-chip
oscillator (see Figure 2). Either a quartz crystal or ceramic
resonator may be used.

To drive the device from an external clock source, XTAL1
should be driven while XTAL2 is left unconnected (see Figure
3). There are no requirements on the duty cycle of the external
clock signal since the input to the internal clocking circuitry is
through a divide-by-two flip-flop, but minimum and maximum
High and Low times specified on the data sheet must be
observed.

XTAL2

D
XTAL1

TC003411

Figure 2. Crystal Oscillator

NC

EXTERNAL
OSCILLATOR ------------1XTAL1
SIGNAL

Vgg

TC003392

Note: Different from NMOS 8051

Figure 3. External Drive Configuration

Idle and Power-Down Operation
Figure 4 shows the internal operation of the Idle and Power­
Down circuitry. Power-Down operation disconnects the clock
source from all internal chip circuitry. Idle mode operation
allows the interrupt, serial port, timers, and watchdog circuitry
to continue to function while the CPU is stopped. If the
Watchdog Timer is enabled, Power-Down operation is not
possible.

These special modes are activated by software via the Special
Function Register, PCON (Table 1). Its hardware address is
87H; PCON is not bit-addressable.

If 1s are written to PD and IDL at the same time, PD takes
precedence. The reset value of PCON is OXXXOOOO.

~~~ 
XTALz XTAL1 

ii5 WDTEN 

TC003382 

Figure 4. Idle and Power-Down Hardware 

8-10 80C521 /80C321 /80C541 

1,1 

i 



TABLE 1. PCON (Power Control Register} 
Power-Down Mode 

The instruction that sets PCON.1 is the last executed prior to 
(MSB) (LSB) going into Power-Down. Once in Power-Down, the oscillator is 

lsMoDI I I I GF1 I GFO I PD I IDL I 
stopped. The contents of the on-chip RAM are preserved. The 

- - - Special Function Registers are saved until a Hardware Reset 
is generated. A hardware reset is the only way of exiting the 

Symbol Position Name and Description Power-Down mode. 

SMOD PCON.7 Double-baud-rate bit. When set to a Power-Down mode cannot be entered while the Watchdog 
1, the baud rate is doubled when Timer is enabled. If a write of the value 1 is attempted into the 
the serial port is being used in PD bit of the PCON register, its value will remain 0, and no 
either modes 1. 2, or 3. Power-Down operation will take place. To enter Power-Down 

- PCON.6 (Reserved) mode, the Watchdog Timer must first be disabled via a 

- PCON.5 (Reserved) 
Hardware Reset, Software Reset, or Watchdog Reset. After 
reset, the Watchdog Timer is disabled, allowing Power-Down 

- PCON.4 (Reserved) mode to be entered. 

GF1 PCON.3 General-purpose flag bit In the Power-Down mode, Vee may be lowered to minimize 

GFO PCON.2 General-purpose flag bit 
circuit power consumption. Care must be taken to ensure the 
voltage is not reduced until the Power-Down mode is entered, 

PD PCON.1 Power-Down bit. Setting this bit and that the voltage is restored before the Hardware Reset is 
activates power-down operation. applied. Hardware Reset frees the oscillator and should not be 

IDL PCON.O Idle-mode bit. Setting this bit released until the oscillator has restarted and stabilized. 
activates idle-mode operation. Table 2 describes the status of the external pins while in the 

Idle Mode 
Power-Down mode. It should be noted that if the Power-Down 
mode is activated while in external program memory, the port 

The instruction that sets PCON.O is the last instruction data that is held in the Special Function Register P2 is 
executed in the normal operating mode before the Idle mode restored to Port 2. If the data is a 1, the port pin is held High 

is activated. Once in the Idle mode, the CPU status is during the Power-Down mode by the strong pull up, P1, shown 
preserved in its entirety: the Stack Pointer, Program Counter, in Figure 5. 
Program Status Word, Accumulator, RAM, and all other 

80C521 1/0 Ports registers in the SOC521 maintain their data during Idle. Table 2 
describes the status of the external pins during Idle mode. The 1/0 port drive of the 80C521 is similar to the 8051. The 

There are three possible ways to terminate the Idle mode. 1/0 buffers for Ports 1, 2, and 3 are implemented as shown in 

Activation of any enabled interrupt will cause PCON.O to be Figure 5. 

cleared by hardware, terminating the Idle mode. The interrupt When the port latch contains a 0, all pFETS in Figure 5 are off 
is serviced, and following RETI, the next instruction to be while the nFET is turned on. When the port latch makes a 0-to-
executed will be the one following the instruction that wrote a 1 transition, the nFET turns off. The strong pull up pFET, P1, 
1 to PCON.O. turns on for two oscillator periods, pulling the output High very 

The flag bits GFO and GF1 may be used to determine whether rapidly. As the output line is drawn High, pFET P3 turns on 

the interrupt was received during normal execution or during through the inverter to supply the loH source current. This 

the Idle mode. For example, the instruction that writes to inverter and P3 form a latch that holds the 1 and is supported 

PCON.O can also set or clear one or both flag bits. When Idle by P2. 

mode is terminated by an enabled interrupt, the service routine When Port 2 is used as an address port, for access to external 
can examine the status of the flag bits. program or data memory, any address bit that contains a 1 will 

The second way of terminating the Idle mode is with a have its strong pullup turned on for the entire duration of the 

Hardware Reset. external memory access. 

The third way of terminating the Idle mode is with the When an 1/0 pin on Ports 1, 2, or 3 is used as an input, the 

Watchdog Timer. If the WOT is not enabled, then it has no user should be aware that the external circuit must sink 

effect on subsequent Idle mode operations. If the WOT is current during the logical 1-to-O transition. The maximum sink 

enabled before Idle mode is entered, it will continue to current is specified as ITL under the D.C. specifications. When 

increment in the normal fashion. If the WOT overflows, the the input goes below approximately 2 V, P3 turns off to save 

80C521 will experience a Watchdog Reset and Idle mode will Ice current. Note, when returning to a logical 1, P2 is the only 

be terminated. If Idle mode is terminated by any method other internal pullup that is on. This will result in a slow rise time if 

than a reset, the Watchdog Timer will continue to run. the user's circuit does not force the input line High. 

TABLE 2. STATUS OF THE EXTERNAL PINS DURING IDLE AND POWER-DOWN MODES 

Mode Program Memory ALE PSEN PORTO PORT1 PORT2 PORT3 

Idle Internal 1 1 Port Data Port Data Port Data Port Data 

Idle Ex1ernal 1 1 Floating Port Data Address Port Data 

Power-Down Internal 0 0 Port Data Port Data Port Data Port Data 

Power-Down External 0 0 Fioating Port Data Port Data Port Data 

80C521/80C321/80C541 8-11 



ii 
FROM PORT 

LATCH 

Yee 

TC003401 

Figure 5. 1/0 Buffers in the 80C521 (Ports 1, 2, 3) 

10 µF 

8.3 kn 
(optional) 

Vee 

80C525 

t--------1 AST 

r--------1 Vss 

Standard (80C51) Reset Circuit 

Neither a Watchdog nor a Software Reset will affect the 
Standard reset circuitry, nor can they be sensed by the 
Standard (80e51) reset circuitry. 

10µF 

50kfl 

Vee 

80C525 

1---------1 Vss 

TC004320 

Watchdog Reset Circuit 

The reset circuit shown above may be used to sense a 
Watchdog or Software Reset. For Vee= 5 V, the driver 
output must be able to source/sink 2.5 mA. 

Figure 6. RESET Configurations 

8-12 80C521/80C321/80C541 



ABSOLUTE MAXIMUM RATINGS OPERATING RANGES 

Storage Temperature ......................... -65°C to + 150°C Commercial (C) Devices 

Voltage on Any Temperature (TA) .................................. O to + 70°C 

Pin to Vss ............................... -0.5 v to Vee +0.5 v Supply Voltage (Vee) ................... +4.5 V to +5.5 V 

Voltage on Vee to Vss ....................... -0.5 V to 6.5 V Ground (Vss) .................................................. o V 

Power Dissipation .......................................... 200 mW Industrial (I) Devices 

Stresses above those listed under ABSOLUTE MAXIMUM Temperature (TA) ............................... -40 to +85°C 

RA TINGS may cause permanent device failure. Functionality Supply Voltage (Vee) ................... + 4.5 V to + 5.5 V 

at or above these limits is not implied. Exposure to absolute Ground (Vss) .................................................. o V 

maximum ratings for extended periods may affect device Operating ranges define those limits between which the 
reliability. functionality of the device is guaranteed. 

DC CHARACTERISTICS over operating range 

Parameter Parameter 
Symbol Description Test Conditions Min. Max. Unit 

V1L Input Low Voltage (Except Eli) -0.5 0.2 Vee-0.1 v 

V1L1 Input Low Voltage (Eli) -0.5 0.2 Vee-o.3 v 

V1H Input High Voltage (Except XTAL1, AST) 0.2 Vee+ o.9 Vee+ o.5 v 

V1H1 Input High Voltage (XTAL1 AST) 0.1 Vee Vee+ o.5 v 

VOL Output Low Voltage (Ports 1, 2, 3) loL • 1.6 mA (Note 1) 0.45 v 

VoLt Output Low Voltage (Port 0, ALE, 15Srn) loL • 3.2 mA (Note 1) 0.45 v 

loH - -eo µA, Vee - 5 v± 10% 2.4 v 

VoH Output High Voltage (Ports 1, 2, 3) IQH • -25 µA o.75 Vee v 

loH •-10 µA o.9 Vee v 

loH - -soo µA, Vee· 5 v± 10% 2.4 v 

VQH1 
Output High Voltage (Port 0 in 
External Bus Mode, ALE 15Srn) IQH •-300 µA o.75 Vee v 

loH • -BO µA (Note 2) o.9 Vee v 

l1L Logical o Input Current (Ports 1, 2, 3) V1N • 0.45 V -50 µA 

ITL Logical 1 to O Transition Current (Ports 1, 2, 3) V1N •2 V -650 µA 

lu Input Leakage Current (Port 0, Eli) 0.45 < V1N < Vee ±10 µA 

RAST Reset Pulldown Resistor 50 150 kO 
CIO Pin Capacitance Test Freq. • 1 MHz, TA • 25°C 10 pF 

lpo Power·Down Current Vee • 2 to e v (Note 3) 50 µA 

MAXIMUM Ice (mA) 

Operating (Note 4) Idle (Note 5) 

Freq. Vee 4.5 v 5V 5.5 v 4.5 v 5 v 5.5 v 
0.1 MHz 2.2 3.1 3.8 0.7 0.9 1.4 
3.5 MHz 6 8 10 1.5 2 3 
8.0 MHz 11 14 18 2.5 3.5 5 
12 MHz 15 20 25 3.5 5 8 
16 MHz 19 25 32 4.5 6.5 8.5 

Notes: 1. Capacitive loading on ports may cause spurious noise pulses to be superimposed on the VoLS of ALE and other ports. 
The noise is due to external bus capacitance discharging into the port pins when these pins make 1-to-O transitions 
during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 
0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt-
Trigger STROBE input. This note pertains to dual-in-line packages only. The additional Vee and Vss connections on the 

2. 
PLCC package from AMD removes this design consideration. 
Capacitive loading on ports may cause the VoH on ALE and i5SE1i! to momentarily fall below the 0.9 Vee specification 
when the address bits are stabilizing. This note pertains to dual-in-line packages only. The additional Vee and Vss 
connections on the PLCC package from AMD remove this design consideration. 

3. Power-Down Ice is measured with all output pins disconnected: ~•Port O •Vee; XTAL2 NC; AST• V55. 
4. Ice is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL • 5 ns, V1L • Vss + 0.5 V, 

V1H •Vee- 0.5 V; XTAL2 NC; ~•AST• Port o •Vee. Typical values are approximately 50% lower. 
Ice would be slightly higher if a crystal oscillator was used. 

5. Idle Ice is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, V1L • Vss + 0.5 V, 
V1H •Vee- 0.5 V; XTAL2 NC; Port o •Vee; ~•AST• Vss. and the Watchdog Timer disabled. 

80C521/80C321/80C541 8-13 



SWITCHING CHARACTERISTICS over operating range (CL for Port 0, ALE and J5Sm Outputs= 100 pF; 
CL for All Other Outputs = 80 pF) 

16-MHz Osc. 12-MHz Osc. Variable Osclllator 
Parameter Parameter 

Symbol Description Min. Max. Min. Max. Min. Max. Unit 

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS 

1/TCLCL Oscillator Frequency 0.1 16 MHz 

TLHLL ALE Pulse Width 85 127 2TCLCL-40 ns 

TAVLL Address Valid to ALE Low 7 28 TCLCL-55 ns 

TL LAX Address Hold After ALE Low 27 48 TCLCL-35 ns 

TLLIV ALE Low to Valid Instr. In 150 234 4TCLCL-100 ns 

.TLLPL ALE Low to ~ Low 22 43 TCLCL-40 ns 

TPLPH ~ Pulse Width 142 205 3TCLCL-45 ns 

TPLIV J5SElil Low to Valid Instr. In 83 145 3TCLCL-105 ns 

TPXIX Input Instr. Hold After J5Srn 0 0 0 ns 

TPXIZ Input Instr. Float After J5Srn 38 59 TCLCL-25 ns 

TAVIV Address 10 Valid Instr. In 208 312 5TCLCL-105 ns 

TPLAZ J5SElil Low to Address Float 10 10 10 ns 

TA LAH l'fC) Pulse Width 275 400 6TCLCL-100 ns 

TWLWH WR" Pulse Width 275 400 6TCLCL-100 ns 

TALDV l'fC) Low to Valid Data In 148 252 5TCLCL-165 ns 

TAHDX Data Hold After l'fC) 0 0 0 ns 

TAHDZ Data Float After J'fCj 55 97 2TCLCL-70 ns 

TLLDV ALE Low to Valid Data In 350 517 8TCLCL-150 ns 

TAVDV Address to Valid Data In 398 585 9TCLCL-165 ns 

TLLWL ALE Low to l'fC) or WR" Low 137 238 200 300 3TCLCL-50 3TCLCL + 50 ns 

TAVWL Address Valid to Read or Write Low 120 203 4TCLCL-130 ns 

TQVWX Data Valid to WR" Transition 2 23 TCLCL-60 ns 

TQVWH Valid Data to Write High 287 433 ?TCLCL-150 ns 

TWHQX Data Hold After WR" 12 33 TCLCL-50 ns 

TALAZ l'fC) Low to Address Float 0 0 0 ns 

TWHLH l'fC) or WR° High to ALE High 22 103 43 123 TCLCL-40 TCLCL + 40 ns 

8-14 80C521 /80C321 /80C541 



ALE 

PORTO 

PORT2 

ALE 

TAVLL 

PORTO 

PORT2 

SWITCHING WAVEFORMS 

-TAVLL- TLLPL -TPLPH ---

TLLIV 

TLLAX - TPLAZ 

TPXIZ1-­

TPXIX- -

INSTR 
IN 

External Program Memory Read Cycle 

1-----TLLDV----1 

-TLLWL- ---TRLRH-t----1 

P2.0-P2.7 OR Ae-A15 FROM DPH 

External Data Memory Read Cycle 

80C521/80C321/80C541 

WF021962 

Ae-A15 FROM PCH 

WF020962 

8-15 



8-16 

ALE 

PORT 0 

PORT 2 

INSTRUCTION 

CLOCK 

TAVLL 

SWITCHING WAVEFORMS (continued) 

-TLLWL- ---- TWLWH ---

TQVWX 

.i.. TWHQX 

1--+--TQVWH----- .J_ 

DATA OUT 

P2.0-P2.7 OR A9-A15 FROM DPH 

External Data Memory Write Cycle 

f-TXLXL..j ------. 
TOVXHl---J !--TXHOX 

A9-A15 FROM PCH 

WF020932 

OUTPUT DATA----- ____ _,/ 

TXHDVl--.i-l !-- TXHDX 

t 
SET n ~ 

WRITE TO SBUF 

INPUTOATA~-------'~v_A_Ll_,D~_.,,.,v_A_LID""-"''V-A-LID""--"''--""--"''--"''--""V-AL-ID""--""V-AL-ID""--'"'--" 

• t 
SET N 

CLEAR RI 

WF020951 

Shift Register Timing Waveforms 

80C521 /80C321 /80C541 



EXTERNAL CLOCK DRIVE 

Parameter Parameter 
Symbol Description Min. Max. Unit 

1/TCLCL Oscillator Frequency 0.1 16 MHz 

TCHCX High Time 20 ns 

TCLCX Low Time 20 ns 

TCLCH Rise Time 20 ns 

TCHCL Fall Time 20 ns 

vcc-o.5 -----

""~~ J '~ 0.45 v 0.2 Vcc-0.1 f-TCHCX 

-~TCLCX-~TCLCH 
TCHCL r TCLCL 

WF020911 
External Clock Drive Waveform 

SERIAL PORT TIMING-SHIFT REGISTER MODE 
Test Conditions: TA= 0°C to 70°C; Vee= 5 V ±10%; Vss = o V; Load Capacitance= 80 pF 

16-MHz Osc. Variable Oscillator 
Parameter Parameter 

Symbol Description Min. Max. Min. Max. Unit 

TXLXL Serial Port Clock Cycle Time 750 12TCLCL ns 

TQVXH Output Data Setup to Clock Rising Edge 492 1 OTCLCL - 133 ns 

TXHQX Output Data Hold After Clock Rising Edge 8 2TCLCL-117 ns 

TXHDX Input Data Hold After Clock Rising Edge 0 0 ns 

TXHDV Clock Rising Edge to Input Data Valid 492 1 OTCLCL - 133 ns 

AC Testing 

Vcc-o.5 0.2 vcc+o.s VLoAo+0.1 v ~VoH-0.1 V 
VLOAD TIMING REFERENCE 

0.2 Vcc-0.1 POINTS 
0.45 v VLoAo-0.1 v VOL +0.1 V 

WF020901 WF020941 

AC inputs during testing are driven at Vee - 0.5 for a logic 1 and 0.45 V for a For timing purposes a port pin is no longer floating when a 100 mV change 
logic O. Timing measurements are made at V1H min. for a logic 1 and V1L from load voltage occurs, and begins to float when a 1 00 mV change from 
max. for a logic 0. the loaded VoHIVOL level occurs. loLlloH ~ ± 20 mA. 

Input/Output Waveform Float Waveform 

80C521/80C321/80C541 8-17 



INTERNAL 
CLOCK 

XTAL 2 

ALE 

CLOCK WAVEFORMS 

I STATE 41 STATE 51 STATE 61 STATE 11 STATE 21.STATE 31 STATE 41 STATE 51 
~IN ~IN ~IN ~IN ~IN ~IN ~IN ~IN 

EXTERNAL PROGRAM MEMORY FETCH 

P5EN ___J 

PCL OUT 

A5-A15 
READ CYCLE 

RD 

-----' lt>DICATES ADDRESS TRANSITIONS 

A5-A15 

WRITE CYCLE 

OPL OR 
RI OUT 

PCL OUT (IS PROGRAM 
MEMORY IS EXTERNAL) 

\ 

~ \L !'----------~SAMPLE~D ____ _. 

""'---------FLOAT---..-----ti.il 

WR -------------. 
.._ _________ __. 

PCL OUT (EVEN IF PROGRAM 
MEMORY IS INTERNAL) 

-----DATA OUT ---••+.i: ..... l.il t L 

PORT OPERATION 
MOV PORT, SAC 

MOV DEST, P1 

OPL OR RI 
OUT 

PCL OUT (IF PROGRAM 
r-----------------.MEMORY IS EXTERNAL) 

OLD DATA I NEW DATA 

(INCLUDES INTO, INT1, TO, T1) ~ 

SERIAL PORT SHIFT CLOCK P1 PIN SAMPLED 

~~gDE 0) --------~"""I~ RXD SAMPLED 

WF020923 

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins,· however, ranges 
from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loadi~Propagation also varies 
from output to output and component to component. Typically though (TA= 25°C, fully loaded), RD and WR propagation delays are 
approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications. 

8-18 80C521/80C321/80C541 



TABLE 3. 80C521/80C321/80C541 INSTRUCTION SET 

Instructions That Affect Flag Setting* Interrupt Re$ponse Time: To finish execution of current 
instruction, respond to the interrupt request and push the PC; 

Instruction Flag Instruction Flag to vector to the first instruction of the interrupt service program 

c ov AC c ov AC requires 38 to 81 oscillator periods (2.25 to 5.25 µs at 16 

ADD x x x CLR C 0 MHz). 

ADDC x x x CPL C x 
SUBB x x x ANL C, bit x 
MUL 0 x ANL C,/bit x 
DIV 0 x ORL C, bit x 
DA x ORL C,/bit x *Note that operations on SFR byte address DOH or bit 
RRC x MOV C, bit x addresses DO - D7H (i.e., the PSW or bits in the PSW) will also 
RLC x CJNE x affect flag settings. 
SETB C 1 

DATA TRANSFER LOGIC (Continued) 

Mnemonic Description Byte Cyc Mnemonic Description Byte Cyc 

MOV A,Rn Move register to Accumulator 1 1 ANL direct, #data AND immediate data to direct byte 3 2 
MOV A, direct Move direct byte to Accumulator 2 1 ORL A,Rn OR register to Accumulator 1 1 
MOV A,@Ri Move Indirect RAM to Accumulator 1 1 ORL A.direct OR direct byte to Accumulator 2 1 
MOV A,#data Move immediate data to Accumulator 2 1 ORL A,@Ri OR Indirect RAM to Accumulator 1 1 
MOV An.A Move Accumulator to register 1 1 ORL A,#data OR immediate data to Accumulator 2 1 
MOV Rn,direct Move direct byte to register 2 2 ORL direct, A OR Accumulator to direct byte 2 1 
MOV Rn,#data Move immediate data to register 2 1 ORL direct,# data OR immediate data to direct byte 3 2 
MOV direct, A Move Accumulator to direct byte 2 1 XRL A,Rn Exclusive-OR register to Accumulator 1 1 
MOV direct,Rn Move register to direct byte 2 2 XRL A, direct Exclusive-OR direct byte to Accumulator 2 1 
MOV direct, direct Move direct byte to direct byte 3 2 XRL A,@Ri Exclusive-OR indirect RAM to 1 1 
MOV direct,@Ri Move indirect RAM to direct byte 2 2 Accumulator 
MOV direct,# data Move immediate data to direct byte 3 2 XRL A,#data Exclusive-OR immediate data to 2 1 
MOV @Ri,A Move Accumulator to indirect RAM 1 1 Accumulator 
MOV @Ri,direct Mode direct byte to Indirect RAM 2 2 XRL direct, A Exclusive-OR Accumulator to direct byte 2 1 
MOV @Ri,#data Move immediate data to indirect RAM 2 1 XRL direct,# data Exclusive-OR Immediate data to direct 3 2 
MOV DPTR,#data16 Move 16-blt constant to Data Pointer 3 2 CLR A Clear Accumulator 1 1 
MOVC A,@A+DPTR Move Code byte relative to DPTR to 1 2 CPL A Complement Accumulator 1 1 

Accumulator AL A Rotate Accumulator Left 1 1 
MOVC A,@A+PC Move Cod& byte relative to PC to 1 2 RLC A Rotate Accumulator Left through Carry 1 1 

Accumulator Flag 
MOVX A,@RI Move External RAM (8-bit address) to 1 2 RR A Rotate Accumulator Right 1 1 

Accumulator ARC A Rotate Accumulator Right through Carry 1 1 
MOVX A,@OPTR Move External RAM (16-bit address) to 1 2 Flag 

Accumulator SWAP A Exchange nibbles within the 1 1 
MOVX @Ri,A Move Accumulator to External RAM 1 2 Accumulator 

(8-bit address) 
MOVX @OPTR,A Move Accumulator to External RAM 

(16-bit address) 
1 2 ARITHMETIC 

PUSH direct Push direct byte onto stack 2 2 Mnemonic Description Byte Cyc 
POP direct Pop direct byte off of stack 2 2 
XCH A,Rn Exchange register with Accumulator 1 1 ADD A,Rn Add register to Accumulator 1 1 
XCH A, direct Exchange direct byte with Accumulator 2 1 ADO A, direct Add direct byte to Accumulator 2 1 
XCH A,@Ri Exchange indirect RAM with 1 1 ADD A,@Ri Add indirect RAM to Accumulator 1 1 

Accumulator ADD A,#data Add Immediate data to Accumulator 2 1 
XCHD A,@Ri Exchange indirect RAM's least sig 1 1 AODC A,Rn Add register to Accumulator with carry 1 1 

nibble with A's LSN ADDC A, direct Add direct byte to Accumulator with 2 1 
Carry Flag 

BOOLEAN VARIABLE MANIPULATION 
ADOC A,@RI Add indirect RAM and Carry Flag to 1 1 

Accumulator 

Mnemonic Description Byte Cyc 
ADDC A,#data Add Immediate data and Carry Flag to 2 1 

Accumutator 
SUBB A,Rn Subtract register from Accumulator with 1 1 

CLR c Clear Carry Flag 1 1 Borrow 
CLR bit Clear direct bit 2 1 SUBB A,direct Subtract direct byte from Accumulator 2 1 
SETB c Set Carry Flag 1 1 with Borrow 
SETB bit Set direct bit 2 1 SUBB A,@RI Subtract indirect RAM from Accumulator 1 1 
CPL c Complement Carry Flag 1 1 with Borrow 
CPL bit Complement direct bit 2 1 SUBB A,#data Subtract immediate data from 2 1 
ANL C,bit AND direct bit to Carry Flag 2 2 Accumulator with Borrow 
ANL C,/bit AND complement of direct bit to Carry 2 2 INC A Increment Accumulator 1 1 
ORL C,blt OR direct bit to Carry Flag 2 2 INC Rn Increment register 1 1 
ORL C,/blt OR complement of direct bit to Carry 2 2 INC direct Increment direct byte 2 1 
MOV C,blt Move direct bit to Garry Flag 2 1 INC @Ai Increment indirect RAM 1 1 
MOV bit,C Move Carry flag to direct bit 2 2 OEC A Decrement Accumulator 1 1 

DEC Rn Decrement register 1 1 
DEC direct Decrement direct byte 2 1 

LOGIC DEC @Ai Decrement indirect RAM 1 1 
INC DPTR Increment Data Pointer 1 2 

Mnemonic Description Byte Cyc MUL AB Multiply Accumulator times B 1 4 
DIV AB Divide Accumulator by B 1 4 

ANL A,Rn AND register to Accumulator 1 1 
DA A Decimal Adjust Accumulator 1 1 

ANL A,direct AND direct byte to Accumulator 2 1 
ANL A,@Ri AND indirect RAM to Accumulator 1 1 
ANL A,#data AND immediate data to Accumulator 2 1 
ANL direct.A AND Accumulator to direct byte 2 1 

80C521/80C321/80C541 8-19 



OTHER CONTROL TRANSFER (SUBROUTINE) 

Mnemonic Description Byte Cyc Mnemonic Description Byte eye 

NOP No Operation 1 1 ACALL addr11 Absolute Subroutine Call 2 2 
LCALL addr16 Long Subroutine Call 3 2 

CONTROL TRANSFER (BRANCH) RET Return from Subroutine Call 1 2 
RETI Return from Interrupt Call 1 2 

Mnemonic Description Byte eye 
Notes on Data Addressing Modes: 

AJMP addr11 Absolute Jump 2 2 
WMP addr16 Long Jump 3 2 Rn -Working register RO-R7 of the currently selected 
SJMP rel Short Jump (relative addr) 2 2 Register bank. 
JMP @A+DPTR Jump indirect relative to the DPTR 1 2 direct -128 internal RAM locations, any 110 port, control, or 
JZ rel Jump tt Accumulator is zero 2 2 Special Function Registers. 
JNZ rel Jump if Accumulator is not zero 2 2 @Ri -Indirect internal RAM location addressed by register 
JC rel Jump if Carry Flag is set 2 2 RO or R1. 
JNC rel Jump if carry is not set 2 2 #data -8-bit constant included in instruction. 
JB blt,rel Jump relative if direct bit is set 3 2 

#data16 -16-bit constant included as bytes 2 and 3 of JNB bit, rel Jump relative if direct bit is not set 3 2 
JBC bit.rel Jump relative if direct bit is set, 3 2 instruction. 

then clear bit bit -128 software flags, any 110 piri', control, or status bit. 
CJNE A,direct,rel Compare direct byte to 3 2 Notes on Program Addressing Modes: 

Accumulator and Jump ii not Equal 
CJNE A,#data,rel Compare immediate to Accumulator 3 2 

addr16 -Destination address for LCALL and LJMP may be and Jump if not Equal 
CJNE Rn, #data.rel Compare immediate to reg and 3 2 anywhere within the 64-kilobyte program memory 

Jump if not Equal address space. 
CJNE @Ai, #data.rel Compare immediate to indirect 3 2 addr11 -Destination address for ACALL and AJMP will be 

RAM and Jump if not Equal within the same 2-kilobyte page of program memory 
DJNZ Rn.rel Decrement register and Jump if not 2 2 as the first byte of the following instruction. 

zero rel -SJMP and all conditional jumps include as 8-bit 
DJNZ direct.rel Decrement direct byte and Jump if 3 2 offset by Range is +127, -128 bytes relative to first 

not zero 
byte of the following instruction. 

TABLE 4. INSTRUCTION OPCODES IN HEXADECIMAL ORDER 

Hex Code Bytes Mnemonic Operands Hex Code Bytes Mnemonic Operands 

00 1 NOP 29 1 ADD A,R1 
01 2 AJMP Code addr 2A 1 ADD A,R2 
02 3 WMP Code addr 28 1 ADD A,R3 
03 1 RR A 2C 1 ADD A,R4 
04 1 INC A 2D 1 ADD A,A5 · 
05 2 INC Data addr 2E 1 ADD A,R6 
06 1 INC @RO 2F 1 ADD A,R7 
07 1 INC @R1 30 3 JNB Bit addr,code addr 
08 1 INC RO 31 2 A CALL Code addr 
09 1 INC R1 32 1 RETI 
OA 1 INC R2 33 1 RLC A 
OB 1 INC R3 34 2 ADDC A,#data 
OC 1 INC R4 35 2 ADDC A,data addr 
OD 1 INC RS 36 1 ADDC A,®RO 
OE 1 INC R6 37 1 ADDC A,®A1 
OF 1 INC R7 38 1 ADDC A,RO 
10 3 JBC Bit addr,code addr 39 1 ADDC A,A1 
11 2 ACALL Code addr 3A 1 ADDC A,R2 
12 3 LCALL Code addr 38 1 ADDC A,R3 
13 1 ARC A 3C 1 ADDC A,R4 
14 1 DEC A 3D 1 ADDC A,R5 
15 2 DEC Data addr 3E 1 ADDC A,R6 
16 1 DEC ®RO 3F 1 ADDC A,R7 
17 1 DEC ®R1 40 2 JC Code addr 
18 1 DEC RO 41 2 AJMP Code addr 
19 1 DEC R1 42 2 ORL Data addr,A 
1A 1 DEC R2 43 3 OAL Data addr, #data 
1B 1 DEC R3 44 2 ORL A,#data 
IC 1 DEC R4 45 2 OAL A,data addr 
1D 1 DEC RS 46 1 ORL A,@AO 
1E 1 DEC RS 47 1 ORL A,®At 
1F 1 DEC R7 48 1 ORL A,AO 
20 3 JB Bit addr,code addr 49 1 ORL A,R1 
21 2 AJMP Code addr 4A 1 OAL A,R2 
22 1 AET 48 1 ORL A,A3 
23 1 RL A 4C 1 OAL A,R4 
24 2 ADD A,#data 4D 1 ORL A,R5 
25 2 ADD A,data addr 4E 1 ORL A,R6 
26 1 ADD A,@AO 4F 1 ORL A,R7 
27 1 ADD A,®R1 50 2 JNC Code addr 
28 1 ADD A,RO 51 2 A CALL Code addr 

8-20 80C521 /80C321 /80C541 



Hex Code Bytes Mnemonic Operands Hex Code Bytes Mnemonic Operands 

52 2 ANL Data addr,A AA 2 MOV R2,data addr 
53 3 ANL Data addr, #data AB 2 MOV R3,data addr 
54 2 ANL A,#data AC 2 MOV R4,data addr 
5S 2 ANL A,data addr AD 2 MOV R5,data addr 
56 1 ANL A,@RO AE 2 MOV R6,data addr 
S7 1 ANL A,@R1 AF 2 MOV R7,data addr 
SB 1 ANL A,RO BO 2 ANL C,/bit addr 
59 1 ANL A,R1 81 2 ACALL Code addr 
5A 1 ANL A,R2 82 2 CPL Bit addr 
5B 1 ANL A,R3 83 1 CPL c 
5C 1 ANL A,R4 B4 3 CJNE A,# data, code addr 
5D 1 ANL A,R5 B5 3 CJNE A,data addr,code addr 
5E 1 ANL A,R6 86 3 CJNE @RO,# data.code 
5F 1 ANL A,R7 addr 
60 2 JZ Code addr B7 3 CJNE @ R 1, #data, code 
61 2 AJMP Code addr addr 
62 2 XRL Data addr,A 88 3 CJNE RO,#data,code addr 
63 3 XRL Data addr, #data B9 3 CJNE R 1, #data, code addr 
64 2 XRL A,#data BA 3 CJNE R2,#data,code addr 
6S 2 XRL A,data addr BB 3 CJNE R3, #data, code addr 
66 1 XRL A,@RO BC 3 CJNE R4, #data, code addr 
67 1 XRL A,@R1 BD 3 CJNE R5,#data,code addr 
68 1 XRL A,RO BE 3 CJNE R6, #data, code addr 
69 1 XRL A,R1 BF 3 CJNE R7,#data,code addr 
6A 1 XRL A,R2 co 2 PUSH Data addr 
6B 1 XRL A,R3 C1 2 AJMP Code addr 
6C 1 XRL A,R4 C2 2 CLR Bit addr 
6D 1 XRL A,RS C3 1 CLR c 
6E 1 XRL A,R6 C4 1 SWAP A 
6F 1 XRL A,R7 cs 2 XCH A,data addr 
70 2 JNZ Code addr C6 1 XCH A,@RO 
71 2 ACALL Code addr C7 1 XCH A,@R1 
72 2 ORL C,bit addr CB 1 XCH A,RO 
73 1 JMP @A +DPTR C9 1 XCH A,R1 
74 2 MOV A,#data CA 1 XCH A,R2 
7S 3 MOV Data addr, #data CB 1 XCH A,R3 
76 2 MOV @RO,#data cc 1 XCH A,R4 
77 2 MOV @R1,#data CD 1 XCH A,RS 
78 2 MOV RO,#data CE 1 XCH A,R6 
79 2 MOV R1,#data CF 1 XCH A,R7 
7A 2 MOV R2,#data DO 2 POP Data addr 
78 2 MOV R3,#data D1 2 ACALL Code addr 
7C 2 MOV R4,#data D2 2 SETS Bit addr 
7D 2 MOV R5,#data D3 1 SETS c 
7E 2 MOV R6,#data D4 1 DA A 
7F 2 MOV R7,#data DS 3 DJNZ Data addr,code addr 
80 2 SJMP Code addr D6 1 XCHD A,@RO 
S1 2 AJMP Code addr D7 1 XCHD A,@R1 
S2 2 ANL C,bit addr DB 2 DJNZ RO,code addr 
S3 1 MOVC A,@A +PC D9 2 DJNZ R1,code addr 
04 1 DIV AB DA 2 DJNZ R2,code addr 
85 3 MOV Data addr,data addr DB 2 DJNZ R3,code addr 
se 2 MOV Data addr,@ RO DC 2 DJNZ R4,code addr 
S7 2 MOV Data addr,@R1 DD 2 DJNZ RS,code addr 
88 2 MOV Data addr,RO DE 2 DJNZ R6,code addr 
69 2 MOV Data addr,R 1 DF 2 DJNZ R7,code addr 
SA 2 MOV Data addr,R2 EO 1 MOVX A,@DPTR 
SB 2 MOV Data addr,R3 E1 2 AJMP Code addr 
ac 2 MOV Data addr,R4 E2 1 MOVX A,@RO 
BD 2 MOV Data addr,RS E3 1 MOVX A,@R1 
SE 2 MOV Data addr,R6 E4 1 CLR A 
BF 2 MOV Data addr,R7 ES 2 MOV A,data addr 
90 3 MOV DPTR,#data ES 1 MOV A,@RO 
91 2 A CALL Code addr E7 1 MOV A,@R1 
92 2 MOV Bit addr,C ES 1 MOV A,RO 
93 1 MOVC A,@A + DPTR E9 1 MOV A,R1 
94 2 SUBS A,#data EA 1 MOV A,R2 
95 2 SUBS A,data addr EB 1 MOV A,R3 
96 1 SUBB A,@RO EC 1 MOV A,R4 
97 1 SUBS A,@R1 ED 1 MOV A,RS 
98 1 SUBS A,RO EE 1 MOV A,R6 
99 1 SUBS A,R1 EF 1 MOV A,R7 
9A 1 SUBS A,R2 FO 1 MOVX @DPTR,A 
98 1 SUBS A,R3 F1 2 ACALL Code addr 
9C 1 SUBS A,R4 F2 1 MOVX @RO,A 
9D 1 SUBS A,RS F3 1 MOVX @R1,A 
9E 1 SUBB A,R6 F4 1 CPL A 
9F 1 SUBB A,R7 F5 2 MOY Data addr,A 
AO 2 ORL C,/bit addr F6 1 MOV @RO,A 
A1 2 AJMP Code addr F7 1 MOV @R1,A 
A2 2 MOV C,bit addr FB 1 MOV RO,A 
A3 1 INC DPTR F9 1 MOY R1,A 
A4 1 MUL AB FA 1 MOV R2,A 
AS Reserved FB 1 MOV R3,A 
A6 2 MOV @ RO,data addr FC 1 MOV R4,A 
A7 2 MOV @R1,data addr FD 1 MOV R5,A 
AS 2 MOV RO,data addr FE 1 MOV R6,A 
A9 2 MOV R1 ,data addr FF 1 MOV R7,A 

80C521/80C321/80C541 8-21 



8-22 

87C521/87C541 
CMOS Single-Chip Microcontrollers 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

• Software and pin-compatible with BOC51, 
BOC521, and BOC541 

• Beneficial for prototyping and initial production 
• All 80C521 and 80C541 features retained 
• Flashrite TM EPROM programming 
• Two-level Program Memory Lock 
• 32-Byte Encryption Array 
• In-Circuit Test Mode facilitates testing 

RAM 
(bytes) 

87C521 
87C541 

87C521 = User programmable 80C521 
87C541 = User programmable BOC541 

256 
256 

EPROM 
(bytes) 

BK 
16K 

GENERAL DESCRIPTION 

The 87C521 and 87C541 are CMOS EPROM versions of 
the BOC521 and BOC541, respectively. The 87C521 in­
cludes BK bytes of on-chip EPROM, and the 87C541 
includes 16K bytes of EPROM. 

These user-programmable products are software- and pin­
compatible with their ROM-based counterparts. All of the 
80C521 and 80C541 featu · 
robust Watchdog Timer 
Reset. For more infer 
Datasheet (order #091 

FREQUENCY 
REFERENCE 

OSCILLATOR • TIMING 

INTERRUPTS 

INTERRUPTS 

EPAOM 
8Kl16KBYTES 

64KBYTEBUS 
EXPANSION 
CONTROL 

CONTROL 

The EPROM features on the 87C51 and 87C52T2 have 
also been retained. A two-level programmable lock struc­
ture prevents externally fetched code from accessing 
internal Program Memory and can disable EPROM verifica­
tion and programming. A 32-byte Encryption Array can be 
used to encode the program code bytes during EPROM 
verification. A Flashrite programming algorithm allows the 

RAM 
2S&BYTES 

PARALLEL PORTS, 
ADDRESS DATA BUS, 

ANO LO PINS 

COUNTERS 

SERIAL SERIAL 
IN OIJT 

1 to be programmed 
respectively. 

80007750 

Publication # Rev. Amendment 
09744 B /0 

Issue Date: October 1989 87C521/87C541 



P1.0 

PU 

P1.Z 

P1.3 

P1.4 

PU 
P1.I 

P1.7 

RST 

RXD P3.0 

TXD PU 
llill'o P3.2 
ili'I', P3.2 

To PM 
T1 P3.I 

'\Vii PU 
liO Pl.7 

XTAL1 

XTAL1 

V19 

DIP 

P1J5 

Pl.I 

P1.7 

RST 

P3.D 

NC 

P3.1 

P3.2 

P3.3 

P3.4 

P3.I 

CONNECTION DIAGRAMS 
Top View 

LCC 

~ "! "! q ?? 0 

0:: 0:: 0:: 0:: 0:: d 
Yee Q, 

PO.O Alla 
P0.1 AD, 

P1.5 

P0.2 "°" 
P0.3 "°" P1.6 

P0.4 AD4 P1.7 
PO.& AD& 

PO.I Alie 
AST 

P0.7 AO, P3.0 

EA/Ypp NC 
AWPRDCI 

1116 P3.1 

Pl.7 "11 P3.2 

Pl.I A14 P3.3 
PU A13 

P3.4 PU A12 

P2.3 A11 P3.5 
PU -'10 
Plt.1 "' co .... 
Plt.O Ae ~"' ( "' $ ~ ~ ~ ~ ~ 

CD005552 

PLCC 

"': "I ., 
i 

q 
~~i i! i ~ t t t t 

PD.4 

PD.I 

PD.I 

P0.7 

EA/Vpp 

Vss 
ALE/PROG 

iliilN 
P2.7 

P2.I 

P2.S 

18 18 20 21 22 23 24 215 28 27 28 

i t N - = fA 
q 

~ r ~ ~ ~ ~ > > t 

CD009442 

Note: Pin 1 is marked for orientation. 

87C521/87C541 

- "' ... 
f f f 

P0.4 

P0.5 

P0.6 

P0.7 

EANpp 

\Ss 
ALE/PROO 

~ 

P2.7 

P2.6 

P2.5 

"' "! ~ .,; 
~ Q, 

CD010872 

8-23 



8-24 87C521/87C541 



ORDERING INFORMATION 

Commodity Products 

AMO commodity products are available in several packages and operating ranges. The order number (Valid Combination) is 
formed by a combination of: a. Temperature Range 

b. Package Type 
c. Device Number 
d. Speed Option 
e. Optional Processing 

B7C521 

T I ·~·--Blank - Standard processing 

d. SPEED OPTION 
Blank - 3.5 to 12 MHz 

-1 -3.5 to 16 MHz 

'--------------- c. DEVICE NUMBER/DESCRIPTION 
87C521 /87C541 
CMOS Single-Chip Microcontroller 

~------------------ b. PACKAGE TYPE 
D - 40-Pin Ceramic DIP (CDV 040) 
R - 44-Pin Leadless Chip Carrier (CLV 044) 
P - 40-Pin Plastic DIP (PD 040) 
N - 44-Pin Plastic Leaded Chip Carrier (PL 044) 

'-------------------------&.TEMPERATURE RANGE 

Valid Combinations 

D, R, P, N 
ID, IA, IP, IN 

87C521 

87C521-1 

B7C541 

87C541-1 

Blank - Commercial (0 to + 70°C) 
I - Industrial (-40 to + 85°C) 

Valid Combinations 

Valid Combinations list configurations planned to be 
supported in volume for this device. Consult the local AMO 
sales office to confirm availability of specific valid 
combinations, to check on newly released valid combinations, 
and to obtain additional data on AMO's standard military 
grade products. 

87C521/87C541 8-25 



PIN DESCRIPTION 

Port o (Bidirectional; Open Drain) 
Port 0 is an open-drain 1/0 port. Port 0 pins that have 1 s 
written to them float, and in that state can be used as high­
impedance inputs. 

Port 0 is also the multiplexed low-order address and data 
bus during accesses to external Program and Data Memory. 
In this application it uses strong internal pullups when 
emitting 1 s. Port 0 also outputs the code bytes during 
program verification in the 87C521 /87C541. External 
pullups are required during program verification. 

Port 1 (Bidlrectional) 
Port 1 is an 8-bit bidirectional 1/0 port with internal pullups. 
The Port 1 output buffers can sink/ source four LS TIL 
inputs. Port 1 pins that have 1 s written to them are pulled 
High by the internal pullups and-while in this state-<:an be 
used as inputs. As inputs, Port 1 pins that are externally 
being pulled Low will source current (11 L on the data sheet) 
because of the internal pullups. 

Port 1 also receives the low-order address bytes during 
program verification. 

Port 2 (Bidirectional) 
Port 2 is an 8-bit bidirectional 1/0 port with internal pullups. 
The Port 2 output buffers can sink/source four LS TIL 
inputs. Port 2 pins having 1 s written to them are pulled High 
by the internal pullups and-while in this state-<:an be used 
as inputs. As inputs, Port 2 pins externally being pulled Low 
will source current (l1L.l because of internal pullups. 

Port 2 emits the high-order address byte during fetches from 
external Program Memory and during accesses to external 
Data Memory that use 16-bit addresses (MOVX @DPTR). In 
this application it uses strong internal pullups when emitting 
1 s. During accesses to external Data Memory that use 8-bit 
addresses (MOVX @Ri). Port 2 emits the contents of the P2 
Special Function register. 

Port 2 also receives the high-order address bits during the 
programming of the EPROM and during program verification 
of the EPROM, as well as some control signals. 

Port 3 (Bldlrectlonal) 
Port 3 is an 8-bit bidirectional 1/0 port with internal pullups. 
The Port 3 output buffers can sink/source four LS TIL 
inputs. Port 3 pins having 1 s written to them are pulled High 
by the internal pullups and-while in this state-<:an be used 
as inputs. As inputs, Port 3 pins externally being pulled Low 
will source current (l1L.) because of the pullups. Port 3 also 
receives some control signals for EPROM programming and 
program verification. 

Port 3 also serves the functions of various special features 
as listed below: 

Port Pin Alternate Function 

P3.o RxD (Serial Input Port) 

P3.1 TxD (Serial Output Port) 

P3.2 INT o (External Interrupt 0) 

P3.3 INT1 (External Interrupt 1) 

P3,4 To (Timer 0 External Input) 

P3,5 T 1 (Timer 1 External Input) 

P3.6 WR (External Data Memory Write Strobe) 

p3.7 RD (External Data Memory Read Strobe) 

RST Reset (Input; Active High) 
This pin is used to reset the device when held High for two 
machine cycles while the oscillator is running. A small 
internal resistor permits power-on reset using only a 
capacitor connected to V CC· 

Immediately prior to a Watchdog Reset or Software Reset, 
this pin is pulled High for one state time. The internal pullup 
can be overdriven by an external driver capable of sinking/ 
sourcing 2.5 mA. (See Figure 6 of the 80C521 Datasheet, 
order # 09136C/O, for possible circuit configurations.) 

ALE/PROG Address Latch Enable/Program Pulse 
(Input/Output) 

Address Latch Enable output pulse for latching the low byte 
of the address during accesses to external memory. ALE 
can drive eight LS TIL inputs. 

In normal operation ALE is emitted at a constant rate of 1 /6 
the oscillator frequency, allowing use for external-timing or 
clocking purposes. Note, however, that one ALE pulse is 
skipped during each access to external Data Memory. This 
pin also accepts the program pulse input (PROG) when 
programming the EPROM. 

PSEN Program Store Enable (Output; Active Low) 
PSEN is the read strobe to external Program Memory. PSEN 
can drive eight LS TIL inputs. When the device is executing 
code from an external program memory, PSEN is activated 
twice each machine cycle-except that two PSEN 
activations are skipped during each access to external Data 
Memory. PSEN is not activated during fetches from internal 
Program Memory. 

EA/Vpp ;Ex~t~e-rn-a~l-Arc_c_e_ss~E~n-a~b~le/Programmlng 

Voltage (Input; Active Low) 
EA must be externally held Low to enable the device to 
fetch code from external Program Memory locations OOOOH 
to 1 FFFH for the 87C521 and 3FFFH for the 87C541. If EA 
is held High, the 87C521 /87C541 executes from internal 
Program Memory unless the program counter exceeds 
1 FFFH and 3FFFH respectively. 

This pin also receives the 12.75-V programming supply 
voltage during programming of the EPROM. 

XTAL1 Crystal (Input) 
Input to the inverting-oscillator amplifier, and input to the 
internal clock-generator circuits. 

XT AL2 Crystal (Output) 
Output of the inverting-oscillator amplifier. 

Vee Power Supply 
Power supply during normal, idle, and power-down 
operations. 

Vss Circuit Ground 

8-26 87C521/87C541 

! 



PROGRAMMING To program the EPROM, either the internal or external 

The 87C521 /87C541 can be programmed with the Flashrite 
oscillator must be running between 4 and 6 MHz, since the 
internal bus is used to transfer address and program data to 

algorithm. It differs from other methods in the value used for the appropriate internal registers. Table 1 shows the various 
Vpp (programming supply voltage) and in the width and EPROM programming modes. 
number of the ALE/PROO pulses. 

Table 1. EPROM Programming Modes for the 87C521/87C541 

Mode RST PSEN ALE/MOG EA/Vpp P2.7 P2.6 P3.7 P3.6 

Program Code H L L* Vpp H L H H 

Verify Code H L H Vppx L L H H 

Pgm Encryption Table H L L* Vpp H L H L 

Pgm Lock Bit 1 H L L • Vpp H H H H 

Pgm Lock Bit 2 H L L* Vpp H H L L 

Read Silicon Signature H L H H L L L L 

Key: H = Logic High for that pin 
L = Logic Low for that pin 
Vpp = 12.75 v ±0.25 v 
Vee = 5 V ± 10% during programming and verification 
2.0 V < Vppx < 13.0 V 

*ALE/PROO receives 25 programming pulses while Vpp is held at 12.75 V. Each programming pulse is Low 
for 100 µ.s (±10% µ.s) and High for a minimum of 10 µ.s. 

Programming indicated in Figure 1, ALE/PROO is pulsed Low 25 times, as 
shown in Figure 2. 

The programming configuration for the 87C521 is shown in The maximum voltage applied to the EA/Vpp pin must not 
Figure 1. The address of the EPROM location to be pro- exceed 13 V at any time as specified for Vpp. Even a slight 
grammed is applied to Ports 1 and 2 as shown in the figure. spike can cause permanent damage to the device. The Vpp 
The programming configuration of the 87C541 is identical source should thus be well-regulated and glitch-free. 
except that P2.5 is also used as an address input. The code 

When programming, a 0.1-µ.F capacitor is required across Vpp byle to be programmed into that location is applied to Port O. 
Once AST, ~. Port 2, and Port 3 are held to the levels and ground to suppress spurious transients that may damage 

the device. 

+5V 

~=u:g 
Vee 

P1 

~MDATA OOOOH-OFFFH Po 
A - P2.o-Pu 

VIH Pa.e 87C51 c Pa.7 
ALE (-PR00(25 100·1'1 pulHotoGND) 

VIL Pu 

VIH p2.7 

4-8MHz 6 i 
XTAL2 e;. (-Vpp •12.75V 

-=t_ 
XTAL1 i.--vlH1 1RST 

r--- Vss 
PSeN n_ 

-:::;;:-

Te004691 

Figure 1. 87C521 Programming Configuration 

87C521187C541 8-27 



1 
I'" . 25 PULSES •1 

Al.fA>RoG:lllll-----lJWJJ 
1
\__ 10~MIN.1 I'" :~: •j 

M..EiPRCiG: --J · n IL 
WF025700 

Figure 2. PROG Waveforms 

Program Verification 

The 87C521/87C541 provides a method of reaqing the 
programmed code bytes in the EPROM 11rray for pmgram 
verification. This function is possible as long as Lock Bit 2 has 
not been programmed. 

For program verification, the address of the Program Memory 
location to be read is applied to Ports 1 and 2 as shown 1n 

ACOR 

OOOOH·1FFFH 
P1 

P2.o-P2.4 

Pu 

p3.7 

Pu 

p2.7 

XTAL2 

XTAL1 

Vss 

Figure 3. Verification of the 87C541 is identical except that 
P2.5 is also used as an address input. Once RST, PSEN, Port 
2, and Port 3 are held to the levels indicated, the contents of 
the addressed location will be emitted on Port 0. External 
pullups arerequired on Port O for this operation. The EPROM 
programming and verification waveforms provide further 
details. 

+SY 

Vee 
READ 

Po 
DATA 
(USE 10K 
PULL UPS) 

87C521 

Al.fA>ROO 

EANpp Vppx 
2.0V< Vppx <13.0V 

RST VIH1 

PsEN 

TC004673 

Figure 3. 87C521 Program Verification 

8-28 870521/870541 



Program Encryption Table To program the Encryption Table, programming Is set up as 

The 87C521 /87C541 features a 32-byte Encryption Array. It 
usual, except that P3.6 is held Low, as shown in Table 1. The 
25-pulse programming sequence is applied to each address, 

can be programmed by the customer, thus encrypting the 00 through 1 FH. The programming of these bytes does not 
program code bytes read during EPROM verification. The affect the standard 4K-byte EPROM array. When the Encryp-
EPROM verification procedure is performed as usual except tion Table is programmed, the Program Verify operation will 
that each code byte comes out logically X-NORed with one of produce only encrypted data. 
the 32 key bytes. 

The key byte used is the one whose address corresponds to 
The Encryption Table cannot be directly read. The program-

the lower 5 bits of the EPROM verification address. Thus, 
ming of Lock Bit 1 will disable further Encryption Table 

when the EPROM is verified starting with address OOOOH, all 
programming. 

32 keys in their correct sequence must be known. Unpro- Security Lock Bits 
grammed bytes have the value FFH. Thus, if the Encryption 
Table is left unprogrammed, no encryption will be performed, The 87C521 /87C541 contains two Lock Bits that can be 
since any byte X-NORed with FFH leaves that byte un- programmed to obtain additional security features. 
changed. P - Programmed and U • Unprogrammed. 

Lock Bit 1 Lock Bit 2 Reau It 

u u Normal Operation 

p u • Externally fetched code cannot access internal Program Memory 
• All further Programming disabled (except Lock Bit 2) 

u p Reserved 

p p • Externally fetched code cannot access internal Program Memory 
• All further Programming disabled 
• Program Verification disabled 

To program the Lock Bits, a 100 pulse programming sequence 1. Pulling ALE Low while AST is held High and PSEN is High. 
is required using the levels shown in Table 1. After Lock Bit 1 

2. Holding ALE Low as AST is deactivated. is programmed, further programming of the Code Memory and 
Encryption Table is disabled. However, Lock Bit 2 may still be While the device is in In-Circuit Test Mode, the Port O pins go 
programmed, providing the highest level of security available into a float state, and the other port pins and ALE and ~ 
on the 87C521 /87C541. are weakly pulled High. The oscillator circuit remains active. 

Slllcon Signature Verification While the 87C521 /87C541 is in this mode, an emulator or test 

AMO supports silicon signature verification for the 87C521 / 
CPU can be used to drive the circuit. Normal operation is 

87C541. The manufacturer code and part code can be read 
restored wheh a Hardware Reset is applied. 

from the device before any programming is done to enable the Erasure Characteristics 
EPROM Programmer to recognize the device. 

Light and other forms of electromagnetic radiation can lead to 
To read the silicon signature, the external pins are set up as erasure of the EPROM when exposed for extended periods 
shown in Figure 4. This procedure is the same as a normal of time. 
verification except that P3.6 and P3.7 are. pulled to a logic 
Low. The values returned are: Wavelengths of light shorter than 4000 angstroms, such as 

sunlight or indoor fluorescent lighting, can eventually cause 
Manufacturer Code Address: 0030H Code: 01H inadvertent erasure and, therefore, should not be allowed to 

Part Code: 87C521 Address: 0031 H Code: 32H 
expose the EPROM for lengthy durations (approximately one 
week in sunlight or three years in room-level fluorescent 

Part Code: 87C541 Address: 0031H Code: 32H lighting). It is suggested that the window be covered with an 
opaque label if an application is likely to subject the device to 

Code 01 H indicates AMO as the manufacturer. Code 32H this type of radiation. 

indicates that the device type is the 87C521 or 87C541. It is recommended that ultraviolet light (of 2537 angstroms) be 

In-Circuit Test Mode used at a dose of at least 15 W-sec/cm2 when erasing the 

The In-Circuit Test Mode facilitates testing and debugging of 
EPROM. An ultraviolet lamp rated at 12,000 µW/cm2 held one 

systems using the 87C521 /87C541 without the device having 
inch away for 20-30 minutes should be sufficient. 

to be removed from the circuit. The In-Circuit Test Mode is EPROM erasure leaves the Program Memory in an "all ones" 
invoked by: state. 

87C521/87C541 8-29 



+SV 

Vee AOOR P1 READ 
OOOOH-0001 H 

Po DATA 
(USE 10Kll 

P2.o·P2.3 PULL UPS) 

VIL P3.6 87C521 

Vil p3.7 
or 

87C641 ALEJPR----00 VIH 

VIL P2.8 

ENAei:E~vlL P2.7 

XTAL2 EANpp Vppx 

2.0V cVppx< 13.0V 

XTAL1 AST V1H1 

Vss mN (Addre11 0030) = Manufacture Cade 
= 01H = AMO 

(Addreas 0091) = Part Code 
= 32H = B7C521 

- - = 32H = 87C641 

TC004684 

Figure 4. 81'C521/87C541 Silicon Signature Verification Configuration 

Osclllator Characteristics 

XT AL 1 and XTAL2 are the Input and output, respectively, of an 
inverting amplifier that is configured for use as an on-chip 
oscillator {see Figure 5). Either a quartz crystal or ceramic 
resonator may be used. 

To drive the device from an external clock source, XTAL1 
should be driven while XTAL2 is left unconnected {see Fig­
ure 6). There are no requirements on the duty cycle of ihe 
external clock signal since the input' to the. Internal clocking 
circuitry Is through a divide-by-two flip-flop; but minimum and 
maximum High and Low times specified on the data sheet 
must be observed. 

8-30 

TC004710 

Figure 5. Crystal Osclllator 

NC XTALz 

EXTeRNAL 
OSCl'=----------l XTAL 1 

TC004700 

Figure 6. External Drive Configuration 

87C521/87C541 



ABSOLUTE MAXIMUM RATINGS 
Storage Temperature ............................ -65 to + 150°C 
Voltage on °EAIVpp Pin to Vss ............. -0.5 to +13.0 V 
Voltage on Vee to Vss ........................ -0.5 to + 6.5 V 
Voltage on Any Other Pin to Vss ........... -0.5 to + 6.5 V 
Power Dissipation .......................................... 200 mW 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above thase limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating ranges 

Parameter 
Symbol Parameter Description 

Input Low Voltage (Except EA) 

Input Low Voltage (£A) 

V1H Input High Voltege (Except XTAL1, AST) 

V1H1 Input High Voltege to XTAL1, AST 

VoL Output Low Voltage (Ports 1, 2, 3) 

VoL1 Output Low Voltage (Port 0, ALE, l5S£1ii) 

VoH 

VOH1 

l1L 

lu 

Ice 

RAST 

Power Supply Cu t 
Active Mode @ 12 MHz (Note 4) 
Idle Mode @ 12 MHz (Note 4) 
Power-Down Mode 

Reset Pulldown Resistor 

Pin Capacitence 

OPERATING RANGES 
Commercial (C) Devices 

Ambient Temperature (T Al ...................... o to + 10°c 
Supply Voltage (Vee) ....................... +4.5 to +5.5 V 
Ground (Vss) .................................................. o V 

Industrial (I) Devices 
Ambient Temperature (TA) ................... -40 to +85°C 
Supply Voltage (Vee) ....................... +4.5 to +5.5 V 
Ground (Vss>·································:················o v 

Operating ranges define those limits between which the 
functionality of the device is guaranteed. 

Test Conditions 

(Note 5) 

Test Freq • 1 MHz. 
TA •25°C 

Min. 
-0.5 

0.9 Vee 

2.4 

0.9 Vee 

50 

Max. Unit 
0.2 Vcc-0.1 v 
0.2 Vcc-0.3 v 

Vee+ 0.5 v 
Vee+ 0.5 v 

0.45 v 
0.45 v 

v 

v 

-50 µA 

-650 µA 

±10 µA 

Note 4 

Note 4 
mA 

50 µA 

300 k.U 

10 pF 

Notes: 1. Cepacitive loading on Ports O and 2 may cause spurious noise pulses to be superimposed on the VoLs of ALE and Ports 1 and 3. The noise 
is due to external bus capacitance discharging into the Port O and Port 2 pins when these pins make 1-to-O transitions during bus operations. 
In the worst ceses {capacitive loading > 100 pF}, the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to 
qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. 

2. Capacitive loading on Ports O and 2 may cause the VoH on ALE and l5S£lil to momentarily fall below the 0.9 Vee specification when the 
address bits are stabilizing. 

3. Pins of Ports 1, 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition currant reaches its 
maximum value when V1N is approximately 2 V. 

4. iCCMAX at other frequencies is given by: 
Active Mode: Ice TYPICAL - 0.94 x Freq+ 13.71 lccMAX - 1.38 x Freq + 20.4 
Idle Mode: Ice TYPICAL - 0.38 x Freq + 5.4 lccMAX - 0.38 x Freq + 11.9 

where Freq is the external oscillator frequency in MHz. lccMAX Is given in mA. 
5. Active Mode Ice is messured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL - 5 ns, V1L • Vss + 0.5 V, 

V1H=Vcc-0.5 V; XTAL2 NC; £A=RST=Port O=Vcc. 
Idle Mode Ice is measured with all output .l!!!!s disconnected; XTAL1 driven with TCLCH, TCHCL • 5 ns, V1L • Vss + 0.5 V, 
V1H=Vcc-0.5 V; XTAL2=NC; Port O=Vcc; EA=RST=Vss. 
Power-Down Mode Ice is messured with all output pins disconnected; £A• Port 0 •Vee; XTAL2 NC; AST• Vs& 

87C521 /87C541 8-31 



SWITCHING CHARACTERISTICS over operating ranges 
(Load Capacitance for Port 0, ALE, and PSEN -100 pF, Load Capacitance for All Other Outputs= 80 pF) 

16 MHz Oac. .12 MHz Oac. Varlable OSCiiiator 
Parameter Parameter 

Symbol Description Min. Max. Min. Max. Min. Max. Unit 
1/TCLCL Oscillator Frequency 3.5 16 MHz 

TLHLL ALE Pulse Width 85 127 ~L-40 ns 

TAVLL Address Valid to ALE Low 7 28 .-&~55 ns 

TLLAX Address Hold After ALE Low 27 48 <I 1llllillt 35 ns 

TLLIV ALE Low to Valid Instr. In 

-
... .:I.. 4TCLCL-100 ns 

TLLPL ALE Low to~ Low 22 ~TCl..(ll!!!:.40 ns 

TPLPH ll!lEJil Pulse Width 142 :ii 3TCLCL-45 ns 

TPLIV ~Low to Valid Instr. In ~ 3TCLCL-105 ns 

TPXIX Input Instr. Hold After PSEN 0 0 ns 

TPXIZ Input Instr. Float After~ -'Ill!. 9 TCLCL-25 ns 

TAVIV Address to Valid Instr. In fi ~_:11 ,.-. 312 5TCLCL-105 ns 
TPLAZ ll!lElil Low to Address Float ... ..!A.. .. ~ 10 10 ns 

TRLRH ~Pulse Width ~W7• 400 6TCLCL-100 ns 

TWLWH ~Pulse Width ..:ii_ ~ 400 STCLCL-100 ns 

TRLDV RD Low to Vall~"lil ~ 148 252 5TCLCL-165 ns 

TRHDX Data Hold After A ' 0 0 0 ns 

TRHDZ Data Roat After RD_I "" 55 97 2TCLCL-70 ns 

TLLDV ALE Low to Valid Datllb 350 517 8TCLCL-150 ns 
TAVDV Address to Valid Data In 398 585 9TCLCL-165 ns 

TLLWL ALE Low to RD or~ Low 137 238 200 300 3TCLCL-50 3TCLCL+50 ns 

TAVWL Address Valid to~ or WR Low 120 203 4TCLCL-130 ns 

TQVWX Data Valid to WR Transition 2 23 TCLCL-60 ns 

TQVWH Data Valid to~ High 287 433 7TCLCL-150 ns 

TWHQX Data Hold After~ 12 33 TCLCL-50 ns 

TRLAZ ~Low to Address Float 0 0 0 ns 

TWHLH ~or WR High to ALE High 22 103 43 123 TCLCL-40 TCLCL+40 ns 

SWITCHING WAVEFORMS 

KEY TO SWITCHING WAVEFORMS 

WAVEFORM INPUTS OUTPUTS 

--- MUST BE WILL BE 
STIADY STIADY ---

\\\\\\. MAYCHANGi WILL BE 
FAOMHTOL CHANGING 

FROMM TOL 

l/JJJJ MAYCHANQE WILL BE 
CHANGING FROML TOH FAOML TOH 

"Jllf§._ DON'TCARE: CHANGING: 
ANYCHANGI STATE 
PERlllTTED UNKNOWN 

:ffi--ffi: 
CINTER 

DOES NOT LIN! ISHIOH 
APPLY IMPEDANCE 

''OFF" STATE 

KS000010 

8-32 87C521/87C541 



ALE 

PORTO 

POAT2 

ALE 

PORTO 

PORT2 

SWITCHING WAVEFORMS 

-TAVLL- '"fi:L:iiL-TPLPH -

TL.UV 

TPLAZ 

TPXIZ1-

TPXIX- -

INSTR 
IN 

External Program Memory Read Cycle 

TWHLH 

TLLWL-----TRLRH1-+-----i 

P2.0-P2.7 OR Aa-A1s FROM DPH 

External Data Memory Read Cycle 

87CS21/87C541 

WF021962 

Aa-"1& FROM PCH 

WF020963 

8-33 



SWITCHING WAVEFORMS (continued) 

TWHLH 

ALE 

TUWL TWLWH 

WR 

TQVWX 11 
TWHQX 

TQVWH 

PORT 0 DATA OUT I' 

PORT 2 P2.0-P2.7 OR Aa-"1s FROM DPH Aa-A,s FROM PCH 

WF020934 

External Data Memory Write Cycle 

INSTRUCTION 

j.-TXLXL-1 
CLOa< -----.. 

TQVXH 1-11--TXHQX 

OUTPUT DATA u:::::x 
TXHDV~ ~ j.-Tx~x t 

SET n ........., 
WRITE TO SBUF 

l-.PUTDATA ______ ""'v&..,.D,,__,.~vAUO....,,,__,.~v-ALD_,,_,,,,.v_&_D,,_..J,v_AU_D"-..J'-..J'~""-""'"""""--" 

t t 
SET N 

Cl.EAR RI 

WF020951 

Shift Register Timing Waveforms 

8-34 87C521/87C541 



EXTERNAL CLOCK DRIVE 

Parameter 
Symbol 

1/TCLCL 

TCHCX 

TCLCX 

TCLCH 

TCHCL 

Parameter 
Description Min. 

External Clock Drive Waveform 

SERIAL PORT TIMING - SHIFT REGISTER MODE 

Max. 
18 

20 

20 

WF020910 

(Test Conditions: TA - o to + 70°C; Vee - 5 v ±.10%; Vss • o V; Load Capacitance= BO pF) 

Parameter 
Symbol 

TXLXL 

TQVXH 

TXHQX 

TXHDX 

TXHDV 

Parameter 
Description 

AC Testing 

WF020900 

18 MHz 
Oac. 

Min. Max. 

Varlable Oaclllator 

Min. Max. 

1 OTCLCL-133 

linlt 
MHz 

ns 

ns 

ns 

ns 

Unit 

na 
ns 

ns 

ns 

ns 

AC Inputs during testing are driven at Vee -0.5 for a logic 1 and 0.45 V for 
a loglc o. Timing measurements are made at V1H min. for a logic 1 and V1L 
max. tor a logic o. 

For timing purposes a port pin is no longer floating when a 1 OO·mV change 
from k>ad voltage occurs, and begins to float when a 100-mV change from 
the loaded VOHIVOL level occurs. IOLllOH?: ±20 rnA. 

Input/Output Waveform Float Waveform 

87C521/87C541 8-35 



EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS 
CTA,;, +21 to +27°C) 

Parameter 
,Symbol 

Parameter 
Description Min. 

Vpp Programming SupPly Voltage 12.5 

lpp Programming Supply Currant ... ~ 

Max. Unit 
13,0 v 
50 mA 

6 MHz 1/TCLCL Oscillator Frequency ~ ~ 
TAVGL Address Setup to~ :.: .... .4111. 
TGHAX Address Hold After ~ jl_]l '\i. :;,,:.:~~-=--=--=-~~-=--=--=--=--=--=--=--=--=--=--=-~~-=--=--=--=--=--=--=--=-~-! 
TDVGL Data Setup to~ :i_ ~ L 

8-36 

TGHDX Data Hold After~ I]l :I IT 48TCLCL 
48TCLCL 

110 

TAVQV ~ddress to Data Valid 48TCLCL 

TELQV ~ to Data Valid 48TCLCL 

TEHQZ Data Float After EmiBl:E 0 48TCLCL 

TGHGL PROO High to PROO Low 10 

EPROM PROGRAMMING AND VERIFICATION WAVEFORMS 

PROGRAMMING VERIFICATION 

ADDRESS 

--+ 14-TAVQV 

POl!To----+~ DATA IN DATA OUT 

TDVGL~ 14'- ~ l+-t-TGHDX 

TAVGLf+-- 25 P~LSES 14-TGHAX 

·f\-7rJ----
TSHGLf+--P-' ~ ~TGHGL 

.... j+-TGLGH ~ TGHSL 

EANpp y 
__/ \ 

LOGIC1 LOGIC1 

---+---------~~------~-----~----ifum,__J loi-TEHSH TELQV ~ 14- ~ 14-TEHQZ 

For Programming conditions, see Figures 1 and 2. 
For Verification conditions, see Figure 3. 

87C521/87C541 

WF025692 

µs 

µs 

µs 

µs 

1~ 
I 

I: 

i 



CHAPTERS 
80C521 Famlly 

Software Routines 

DUAL DATA POINTER ROUTINES 

The Dual Data Pointer feature enhances the manipula-

The following registers are associated with the Dual Data 
Pointers. 

tion of external memory by providing an easy way to use Data Pointer Low 
(DPL)} two separate 16-bit pointers with external memory and to 

selectively switch between them. This can increase 
DPTRO (Original 

execution speed of many functions considerably while at Data Pointer High 
the same time reducing the number of required instruc-

Data Pointer) 
(DPH) 

tions. For instance, in block-move operations in external Data Pointer Low 1 
(DPL1)} RAM, Dual Data Pointers can show more than 100% 

speed improvement using less than 65% of the original 
DPTR1 (New 

code space. Data Pointer High 1 
Data Pointer) 

(DPH1) 

Data Pointer Selection (DPS) 

The six instructions that refer to "DPTR" now refer to the 
data pointer that is currently enabled, either DPTRO or 
DPTR1. DPS is used to selectively enable the data 
pointers. 

INC DPTR Increment Data Pointer 

MOV DPTR,ltdata16 Loads DPTR with 16-bit constant 

MOVC 

MOVX 

A,@A+DPTR 

A,@DPTR 

Move code byte relative to DPTR to Ace 

Move external RAM to Ace 

MOVX @DPTR,A Move Ace to external RAM 

JMP @A + DPTR Jump indirect relative to DPTR 

For complete information on the Dual Data Pointer fea­
ture, consult the 80C521/80C321 Data Sheet. 

Block Move in External RAM 

Data Pointers are used extensively in the 8051 Family 
when a block of data is moved from a source area to a 
destination area in external RAM. The following ex­
amples illustrate the speed improvement and code 
space efficiency gained by using the Dual Data Pointer 
feature. 

The first example shows a 32-byte block move executed 
by a traditional, single data pointer 8051 Family member. 
Contrastthis with the second example which shows a 32-
byte block move executed using the Dual Data Pointers. 

With Dual Data Pointers, one data pointer can be as­
signed to the source address and the other to the desti­
nation address. The code then switches between the two 
data pointers without having to save and restore a data 
pointer. The speed improvement of this 32-byte block 
move is 115% and uses less than 57% of the original 
code space. 

8-37 



CHAPTERS 
80C521 Family 

32-Byte Block Move with a Single Data Pointer 

SH and SL are the High and Low source addresses 
DH and DL are the High and Low destination addresses 
Register RS contains the number of bytes to be moved 

Bytes/Cycles 

MOV RS,#32 2 1 - 32 bytes to move 
MOV DPTR,#SHSL 3 2 - Source address 
MOV Rl,#SL 2 1 - Initialize source address 
MOV R2,#SH 2 1 
MOV R3,#DL 2 1 - Initialize dest. address 
MOV R4,#DH 2 1 

LOOP: MOVX A,@DPTR l 2 - Read byte from source 
MOV Rl,DPL 2 2 - Save source pointer 
MOV R2,DPH 2 2 
MOV DPL,R3 2 2 - Load dest. pointer 
MOV DPH,R4 2 2 
MOVX @DPTR,A 1 2 - Write byte to dest. 
INC DPTR 1 2 - Next dest. pointer 
MOV R3,DPL 2 2 - Save dest. pointer 
MOV R4,DPH 2 2 
MOV DPL,Rl 2 2 - Load source pointer 
MOV DPH,R2 2 2 
INC DPTR 1 2 - Next source pointer 
DJNZ RS, LOOP 2 2 - Loop till RS=O 

32-Byte Block Move with Dual Data Pointers 

SH and SL are the High and Low Source addresses 
DH and DL are the High and Low Destination addresses 
Register RS contains the number of bytes to move 
DPS = 01 at start (DPTRl selected) 

Bytes/Cycles 

MOV RS, #32 2 l - 32 bytes to move 
MOV DPTR,#DHDL 3 2 - DPTRl =Dest. address 
INC DPS 2 1 - Switch to DPTRO 
MOV DPTR,#SHSL 3 2 - DPTRO = Source address 

LOOP: MOVX A,@DPTR 1 2 - Read byte from source 
INC DPS 2 1 - Switch to DPTRl 
MOVX @DPTR,A l 2 - Write byte to dest. 
INC DPTR 1 2 - Next dest. pointer 
INC DPS 2 l - Switch to DPTRO 
INC DPTR 'l 2 - Next source pointer 
DJNZ RS,LOOP 2 2 - Loop till RS=O 

Suggestion: The fastest way to switch data pointers is to increment the DPS register. Since Bits 7-1 of this register 
are defined to be zero, the increment (or decrement) operation simply alternates the contents of DPS between OOH 
and 01H. 

8-38 

!# 

I• 



32-Byte Block Move Efficiency 
Single Dual 

CHAPTERS 
80C521 Famlly 

Data Pointer Data Pointers 

Higher Performance Interrupt Routines 

When a· frequently occurring interrupt uses a data 
pointer, the overhead required to store and reload it from 
the main program can be significant. The performance of 
interrupt-driven systems can be improved by using the 
Dual Data Pointer feature to assign a data pointer to a 
frequently called, time-critical interrupt routine. 

Instructions 
Bytes 
Cycles 
Time (µs) @16 MHz 

19 11 
35 20 
839 390 
629.25 292.5 

~yte Block Move Efficiency (Where N < 256) 
Single Dual 
Data Pointer Data Pointers 

In the following code, the Main routine uses only DPTRO. 
The Interrupt routine stores a byte from the Serial Port 
into an external RAM buffer for later processing. DPTR1 
is dedicated for its use. 

19 11 
35 20 

Instructions 
Bytes 
Cycles 26N+6 12N+6 
Time (µs)@16 MHz 0.75 (Cycles) 0.75 (Cycles) 

RESET: SJMP START 

START: MOV DPTR,#MAIN Main routine data pointer 
INC DPS Switch to DPTRl 
MOV DPTR,#INT Interrupt data pointer 

initialization 
INC DPS Switch back to DPTRO 
MOV IE,#90H Enable Serial Port Int. 

Main routine is using DPTRO 

----->>> Interrupt occurs 
Program continue 

Interrupt routine begins at the Serial Port Vector Address 

VECTOR: INC DPS Switch to DPTRl 
MOV A,SBUF Read from Serial Port 
MOVX @DPTR,A Store byte in RAM Buffer 
INC DPTR Next Dest. Address 
INC DPS Switch to DPTRO 
RETI Return from Interrupt 

8-39 



CHAPTERS 
80C521 Family 

Full Duplex Transmit/Receive Buffering 

Full Duplex Serial Port operation involves simultane­
ously transmitting and receiving data. Typically a sepa­
rate transmit buffer and a receive buffer are assigned in 
the external memory. When a receive interrupt occurs, 
the data received in the serial port receive register is 

saved in the external receive buffer. When data is ready 
to be transmitted, the data from the external transmit 
buffer is loaded into the transmit register of the serial port. 
With two data pointers available, one can be assigned to 
the transmit buffer and the other to the receive buffer. 
Thus, the interrupt overhead can be reduced. 

Initialize 
MOV 
MOV 
INC 
MOV 

DPS,itOOH 
DPTR,itXMTBUF 
DPS 
DPTR,itRCVBUF 

; Serial Port Interrupt Routine 

INT_BEGIN: JB 
JB 
SJMP 

TRANSMIT: CLR 

RECEIVE: 

ERROR: 

MOV 
MOVX 
MOV 
CPL 
MOV 
MOV 
INC 
RETI 

CLR 
MOV 
JNB 
ANL 
MOV 
MOVX 
INC 
RETI 

RETI 

RI,RECEIVE 
TI, TRANSMIT 
ERROR 

TI 
DPS,itOOH 
A,@DPTR 
C,P 
c 
A. 7,C 
SBUF,A 
DPTR 

RI 
A,SBUF 
P,ERROR 
A, *7FH 
DPS,itOlH 
@DPTR,A 
DPTR 

Tree Structure Manipulation 

Select DPTRO 
Transmit RAM buffer address 
Switch Data Pointers 
Receive RAM buffer address 

Receive a Byte 
Transmit a Byte 
Error - neither bit set 

Clear Flag 
Select DPTRO 
Load data from memory 
Move Parity bit to carry bit 
Set ODD Parity 
Append to bit 7 in Ace 
Load data to transmit 
Next Byte 

Clear Flag 
Load received byte to Ace 
Jump if Parity error 
Mask off Parity bit 
Select DPTRl 
Store byte in memory 
Next byte 

Error Handler 

The Dual Data Pointers can be useful in applications 
involving data structures containing pointer references, 
such as trees. For instance in atree search algorithm, the 
node currently being searched and its parent may have 
their addresses stored in the Dual Data Pointers. Even 
though other required pointers will necessarily be 
pushed onto the stack, most operations will involve only 

the two most recently used data pointers. Thus the 
search algorithm will execute more quickly. 

In Figure 8-1, note that DPTR1 can be used to step 
through another link at node "Dave", as soon as DPTRO 
is through accessing all of the links in leaf-node "Jim". 
The pointer for node "Randy" is located on the stack at 
this point. 

8-40 



/N~ 
/T~ ROBERT 

BEN JIM I.AURIE 

DPTR1~----" 

DPTRO~----' 

CHAPTERS 
80C521 Family 

09757A 

Figura 8-1. Tree Structure In External Memory 

ROM Table Access 

Use of the Dual Data Pointers need not be limited to 
manipulations in external RAM. For instance, one or both 
data pointers can be assigned to ROM tables in program 
memory space. Table access is then performed with the 
MOVC instruction. In this way, the base address of a 
ROM table can reside in one of the data pointers, improv­
ing the effective access time. 

Creating an External Stack 

For applications that require large amounts of data to be 
stored on a stack, the internal RAM space may not be 

sufficient to contain it. This is especially true if the internal 
RAM is already being used extensively. 

With Dual Data Pointers, one data pointer can be as­
signed specifically to an external stack space in external 
RAM. The following code provides Push and Pop subrou­
tines using DPTR1 as a stack pointer. Two examples are 
shown. In the first example the external stack may be up 
to 64K bytes in length. The second example executes 
more quickly, but the external stack is limited to 256 
bytes. 

8-41 



CHAPTERS 
80C521 Family 

Example 1 - 64K byte External Stack Space 

; Both Routines Push/Pop bytes from/to the Accumulator 

PUSH: INC DPS 
INC DPTR 
MOV @DPTR,A 
INC DPS 
RET 

POP: INC DPS 
MOV A,@DPTR 
CJNE DPLl,#OOH,LOW 
DEC DPHl 

LOW: DEC DPLl 
INC DPS 
RET 

Example 2 - 256 Byte External Stack Space 

PUSH: INC DPS 
INC DPLl 
MOV @DPTR,A 
INC DPS 
RET 

POP: INC DPS 
MOV A,@DPTR 
DEC DPLl 
INC DPS 
RET 

WATCHDOG TIMER ROUTINES 

Switch to DPTRl 
Increment DPTRl 
Move Accumulator to Stack 
Switch back to DPTRO 

Switch to DPTRl 
Move Stack byte to Ace 

Decrement DPTRl 
Switch back to DPTRO 

Switch to DPTRl 
Increment DPTRl 
Move Accumulator to Stack 
Switch back to DPTRO 

Switch to DPTRl 
Move Stack byte to Ace 
Decrement DPTRl 
Switch back to DPTRO 

The Watchdog Timer (WOT) is a specially designed timer 
that will reset the chip upon reaching a pre-programmed 
time interval. Once started it cannot be disabled, except 
by a reset. It allows safe recovery from problems result­
ing from electrostatic discharge, external noise, unex­
pected input conditions or external events, and program­
ming anomalies. Two registers are associated with the 
Watchdog Timer: 

Software Reset versus a Hardware or Power-on Reset. 
Sixteen time intervals are programmable varying from 
128 µs to 4 s (at 12 MHz). 

WOK is used to enable the Watchdog Timer as well as 
clear it. When the Watchdog Timer is cleared, its present 
count is set to zero, but it continues to increment. For 
complete information on the Watchdog Timer, consult 
the BOC521/BOC321 Data Sheet. 

WDT Enable, Clear, and Reset Cause 
Watchdog Selection (WOS) 
Watchdog Key (WOK) 

WOS is used to set up the programmed time intervals and 
indicates the cause of the last reset - a Watchdog or 

The following example shows a method of setting up the 
Watchdog time value to 16.384 ms assuming a 12 MHz 
clock. The Watchdog Timer is then enabled. 

; Enable Watchdog Timer 

8-42 

MOV WDS,il07H 

MOV 
MOV 

WDK, #ASH 
WDK,il5AH 

Set up 16.384 msec 

Write first key value 
Write second key value 
Watchdog timer is 'enabled' 



Once the Watchdog Timer is enabled, a "clear" sequence 
should be performed at intervals not exceeding the 

; Clear Watchdog Timer 

CHAPTERS 
80C521 Family 

16.384 ms time value. The enabling sequence may be 
used to clear the Watchdog Timer. 

MOV WDK,*ASH 
MOV WJ)K,*SAH 

Write first key value 
Write second key value 
Watchdog Timer is 'cleared' 
but continues to increment. 

To test whether the last reset was caused by a Watchdog 
or Software Reset the following code may be used. If the 

; Reset Cause Identification 

Reset Cause bit is set, then a Watchdog or Software 
Reset has occurred. 

MOV A,WDS 
JB A.7,WDRST 

Read Watchdog Selection reg. 
Jump if Reset Cause bit is 
set, else continue 

WDRST: Notify external circuitry 

The security of the Watchdog Timer is not adversely 
affected by interrupts that may occur in between the 
writing of the 'AS' and 'SA' values to the WOK Register. 
Thus, if necessary, the user may include clear operations 
within both a main routine and the interrupt routines. 
Furthermore, the user need not disable interrupts during 
the enable/clear operations. 

Once the 'AS' is written to WOK, the interrupt routine can 
only affect the WatchdogTimerinthreeways: 1) it can go 
ahead and enable/clear the Watchdog Timer with a 'SA'. 
(The subsequent 'SA' written by the main routine will then 
have no effect); 2) it can write another 'AS'. This affects 
neither the Watchdog Timer nor the main routine; or 3) it 
can cause a Software Reset by writing a value other than 
'AS' or 'SA'. Any routine, though, can be written to 
generate the Software Reset. 

Power-Down Operation 

While the Watchdog Timer is enabled, the Power-Down 
mode is disabled. The user's code may still attempt to 
enable the power-down operation (by writing a value 1 to 
the PD bit in the PCON register), however, the PD bit will 
remain at 0, and the power-down operation will not take 
place. If the WOT has not been enabled, the power-down 
operation can proceed normally. 

To enter Power-Down mode when the WOT is enabled, 
the WOT must first be disabled via a Hardware Reset, 
Software Reset, or Watchdog Reset. The easiest is the 
Software Reset. This can be accomplished by writing an 
'AS' to the Watchdog Key (WOK) register followed by a 
value other than 'AS' or 'SA'. This generates an immedi­
ate reset, equivalent to a Hardware Reset except that the 
Reset-Cause bit is set. 

8-43 



CHAPTERS 
80C521 Famlly 

The code below uses the Reset-Cause bit and the 
Internal RAM (which is not modified by a reset). If the 
Reset-Cause bit is set, and a special Power-Down-

Status byte in internal RAM contains '88H', then the 
Power-Down mode will be entered by the program code. 

, WDS = 7 sets up a Watchdog time of 16.384 msec @ 12 MHz. 
'AS' followed by 'SA' written to WDK enables the WDT. 

RAM location SCH is Power Down Status 

RESET: 

WDRST: 

MAIN: 

00 implies Power-Down has not been requested. 
88 implies Power-Down has been requested. 

MOV A,WDS Read Reset cause bit in WDS 
JB A. 7,WDRST Jump if reset caused by WDT 
LJMP MAIN Go on to the Main Routine 

MOV RO,*SOH Address Power Down Status 
CJNE @R0,*88H,MAIN If Power-Down was not 

requested, then jump and 
continue normally 

MOV PCON,*02H else enter Power-Down Mode 

MOV SOH,*OOH Clear Power Down Status 
MOV WDS,*07H Set up time value for WDT 
MOV WDK,*ASH Write first key value 
MOV WDK,*SAH Write second key value 

WDT is now enabled. 

Main Routine Continues .. 

In Main Routine whenever Power-Down is required, execute: 

8-44 

MOV 
MOV 
MOV 
NOP 

SOH,*BBH 
WDK, *ASH 
WDK, *11H 

Request Power Down operation 
Write first key value 
Software Reset generated -
Execution begins at RESET 
in 3 machine cycles. 



Testing the Watchdog Timer 

CHAPTERS 
80C521 Famlly 

Two methods can be used to verify that the WOT is 
enabled after the enabling sequence has been written 
(rather than simply waiting for the WOTto reset to occur). 
Method I can be used as a precautionary measure after 

the enabling sequence or at various points within the 
code. It may also be used to confirm the time interval 
programmed into the WOT for applications that occa· 
sionally use different Watchdog time intervals. Method 
II can be used as a debugging test during program 
development. 

Method/ 
MOV 

MOV 
MOV 

MOV 

MOV 
CJNE 

ERROR: 

Method/I 
MOV 

MOV 
MOV 

WAIT: MOV 
JNB 

WOS,lt07H 

WOK,ltASH 
WOK,lt5AH 

WOS,ltOOH 

A,WOS 
A,#07,ERROR 

WOS,#"07H 

WOK,#"ASH 
WOK,#5AH 

A,WOS 
A.5,WAIT 

Set the Watchdog time to 
16.384 ms @12 MHz 
Write first key value 
Write second key value 
WOT should now be enabled 
Attempt to rewrite contents 
of the WOS Programmed Time 
Read contents of WOS into Ace 
If contents are not 07, then 
jump to ERROR. 
The WOT is enabled and the 
ACC now holds the programmed 
time value that the WOT is 
currently using. 

Watchdog Timer never received 
the correct 'A5-5A' sequence 

Set the Watchdog time to 
16.384 ms @12 MHz 
Write first key value 
Write second key value 
WOT should now be enabled 

Wait 4.096 ms for the TV bit 
to be set 
WOT enabled and incrementing 

Using the Watchdog Timer as a Standard 
Timer 

Reset occurs clearing the TV bit. When the WOT is 
cleared, the TV bit is cleared, but begins toggling again 
atthe same rate. If bits PT3-PTO are setto '0101 'or less, 
then a WOT Reset will occur before the TV bit toggles. The Timer Verification (TV) bit in the WOS register can be 

used to implement certain types of timer functions 
through polling. Once the WOT is enabled, the TV bit will 
toggle every 4.096 ms (at 12 MHz) until either the WOT 
overflows, or the WOT is cleared. (The TV bit is initially 
a O after any reset.) When the WOT overflows, a WOT 

The following code uses the MAIN polling loop of an 
application to watch for the TV bit to toggle. It uses the TV 
bit to output a 25% duty-cycle pulse on Port Pin 1. 7 with 
a period of 1.049 s at 12 MHz. 

8-45 



CHAPTERS 
80C521 Family 

R6 If O, then Pulse is Low 
If 1, then Pulse is High 

LTIME Low Time, the number of 4.096 ms units equaling 
786 ms = 192 

HTIME High Time, the number of 4.096 ms units equaling 
262 ms = 64 

OLD_TV = A Direct RAM byte whose bit 0 location contains 
the last read value of TV 

R7 Contains number of TV toggles left to go before Pl.7 
switches 

INIT: 

MAIN: 

CONTINUE: 

TOGGLE: 

GO_LOW: 

8-46 

MOV 

CLR 
MOV 
MOV 
MOV 
MOV 

MOV 
MOV 
MOV 

MOV 
MOV 
MOV 
ADDC 

JB 

INC 

DJNZ 

CPL 
MOV 
MOV 
CJNE 

MOV 
INC 
SJMP 

MOV 
DEC 
SJMP 

WDS,itOFH 

Pl. 7 
R6,00H 
R7,LTIME 
WDK,itASH 

· WDK, it5AH 

R6,00H 
R7,LTIME 
OLD_TV,itOOH 

A,WDS 
C,A.5 
A,OLD_TV 
A,itOO 

A.0,TOGGLE 

OLD TV 

R7,CONTINUE 

Pl. 7 
WDK,itASH 
WDK,itSAH 
R6,it00,GO_LOW 

R7,HTIME 
R6 
CONTINUE 

R7,LTIME 
R6 
CONTINUE 

Set the Watchdog time to 4 S 
at 12 MHz (safest value) 
Set Port Pin to 0 
Pulse is Low 
Load Low Time 

WDT is now enabled. TV begins 
toggling 
Pulse is Low 
Load Low Time 
Old TV bit equals 0 (TV's 
reset value) 

Move TV bit to Carry 
Move Old TV bit to ACC.O 
Add TV bit (in Carry) to Old 
TV bit 
If A.0 = 1, then the TV bit 
has toggled 

Toggle Old TV bit in OLD_TV 
byte 
If R7 is not 0, then it is 
not time to toggle Pl.7 yet 
Toggle Port Pin 

Clear WDT, TV starts again 
If R6 is'o, then load HTIME 
else load LTIME 
Load High Time 
Pulse is High now 

Load Low Time 
Pulse is Low now 



262ms 
HIGH TIME 
i------; 

09757A 

Figure 8-2. P1 .7 Output - 25% Duty Cycle 

SOFTWARE RESET ROUTINES 

A Software Reset may be accomplished through the 
Watchdog Timer. This "software generated" Watchdog 
Reset occurs regardless of whether or not the Watchdog 

CLR 

MOV 
MOV 
MOV 

NOP 

EA 

FLAG,#88H 
WDK,#ASH 
WDK,#llH 

If the Watchdog Timer is cleared within an interrupt 
routine, that interrupt should be disabled before execut­
ing a Software Reset sequence. If the interrupt occurs 
between the two writes to WOK, and then clears the 
Watchdog Timer, a Software Reset will not be generated. 

To distinguish between a Watchdog Reset and a Soft­
ware Reset (or separate causes of a Software Reset), a 
flag value may be written to internal RAM. This flag can 
be used in combination with the Reset-Cause bit to 
distinguish between the reset types. An example of this 

CHAPTERS 
80C521 Famlly 

Timer was previously enabled. If the Watchdog Timer 
was enabled, it will be disabled following the reset. The 
Software Reset is functionally equivalent to the Watch­
dog Reset. 

Two write operations are required to initiate a Software 
Reset to greatly reduce the chance of unintentional 
Software Reset generation. More information is avail­
able in the BOC521/BOC321 Data Sheet. 

Using Software Reset 

Whether or not the Watchdog Timer is being used, the 
Software Reset feature of the Watchdog Timer may be 
used to increase the reliability of the program code. For 
instance, the detection of an unusual hardware error can 
be followed by a jump to the following code which will 
always cause a Software Reset. 

Disable all interrupts. 
Optional 
Optional 
Write first key value 
Write a non-AS, non-SA value. 
Software Reset has now been 
generated via the WDT. 
Optional 

method is shown in the "Power Down Operation" soft­
ware routine. 

After the value '11 H' is written to WOK, execution begins 
at OOOOH in three machine cycles. One machine cycle of 
normal execution takes place after the '11 H' is written. 
Thus, the NOP can be included for safety. Since all 
registers are initialized during reset, and all external 
operations take two machine cycles, the only operation 
that could possibly affect operation after the Software 
Reset would be a one-cycle write to internal RAM. 

8-47 



CHAPTERS 
80C521 Family 

Improving Reliability with Software Reset 

For additional reliability, the following instruction se­
quence may be placed in any unused ROM program 
space: 

NOP First unused ROM location 
NOP 

MOV 
MOV 
NOP 
NOP 

MOV 
MOV 
NOP 
NOP 

SOFTRESET: MOV 
MOV 
NOP 
NOP 
SJMP 

WDK,ltASH 
WDK,ltOOH 

WDK,ltASH 
WDK,ltOOH 

WDK,ltASH 
WDK,ltOOH 

SOFTRESET 

Software Reset generated 

Software Reset generated 

Continue repeating the 4-instruction 
sequence 

Software Reset generated 

; Last unused ROM location 

If the program counter branches to any byte of this code 
(other than the second byte of the SJMP instruction), a 
Software Reset will be quickly generated. The NOP 

instructions are used to force the program counter to 
adjust itself to an instruction boundary. 

8-48 



CHAPTER 9 

80C324 CMOS Single-Chip Mlcrocontroller 

BOC324 Data Sheet 9-1 





M§:i.!jiM(.li,,j,liM 

80C324 
CMOS Single-Chip Microcontroller 

DISTINCTIVE CHARACTERISTICS 
• Software and pin-compatible with 80C321 and 

Industry standard BOC31 

• Port Expansion Mode added to 80C321 

-Capability for up to 15 8-bit 1/0 ports 

-Software identical to on-chip 1/0 ports 

-Simple external hardware construction 

-Multiplexed through Port 1 
-EA/PXS pin used for strobe timings 

GENERAL DESCRIPTION 
The 80C324 is a superset of the 80C321 and industry 
standard 80C31 architectures. The 80C324 provides an 
expansion capability for adding additional external 1/0 
ports to the microcontroller. · 
performance 1/0 ports ca 
CPU without sacrificing an 

PORT EXPANSION 
Port Expansion Mode (PEM) 
to 15 full speed 1/0 ports. Fourteen additional 1/0 ports 
can be constructed externally by multiplexing through 
Port 1 and using EA/PXS for strobe timing. Port 3 oper­
ates as normal; however, all other ports, including Port O 
and Port 2, which normally are sacrificed for a multi­
plexed data/address bus, are reconstructed. 

The new ports are accessed by software exactly as if 
they existed on-chip. The entire 8051 instruction set is 
available for these additional ports. Traditional memory­
mapped 1/0 ports allow only four instructions to be used, 
vastly reducing their effectiveness. 

This document contains Information on a product under development at Advanced Micro 
Devices, Inc. The Information Is Intended to help you to evaluate this produa. AMO reserves the 
right to change or discontinue work on this proposed product without notice. 

• All 80C321 features retained 

.-256 bytes RAM 

-Dedicated Watchdog Timer 

~ 
Advanced 

Micro 
Devices 

-Robust: Immune to software disables 
-Flexible: User programmable from 128 µs to 

4 seconds @ 12 MHz 
-Dual Data Pointers 

-Faster external memory access 
-Software Reset 

This product retains all of the features of a 80C321, in­
cluding a programmable Watchdog Timer and Dual 
Data Pointers to enhance reliability and improve per­
o · these features see the 

gic, latches, and buffers 
exist externally, the 80C324 behaves as if these ports 
were mapped into the internal SFR (Special Function 
Register) space. The SFR address locations for the ex­
panded external ports are shown in Table 1. 

When Port Expansion Mode is enabled, Port 1 pins 
become the Port Expansion Bus, which contains the 
information necessary to build ports externally. Port 1 
may not be used as a standard port in Port Expansion 
Mode; however, it may be rebuilt externally, if desired. 
Port 3 always exists on-chip and is not affected by Port 
Expansion Mode. The total number of possible ports, 
including those on- and off-chip, is 15. 

Publication# 12837 Rev. A Amendment IO 

IB1U9 Date: October 1989 

80C324 9-1 



Table 1. Reserved Set of SFR Addresses In PEM 

Address: 

*90H 
91H 
92H 
93H 
94H 
95H 
96H 
97H 

*COH 
*DSH 
*ESH 
*FSH 
*SOH 
*AOH 

14 

15 

Name.: 

Port 1 (P1) 

Port 7 (P7) 
Port 6 (PS) 
Port 4 (P4) 
Port 5 (PS) 
Port 0 (PO) 
Port 2 (P2) 

(Port 3 on-chip) 

Total 

Port Expansion mode feature is only available in 8031 
mode (that is, 'EA is Low) 
*Bit-Addressable Port (only Bit-Addressable Ports are given 
formal names) 

The instructions that can operate on the external ports 
during Port Expansion Mode include all instructions that 
access direct addresses or bit addresses. Table 2 
shows these instructions and the type of access that 
is performed on the direct or bit address-Read-only, 
Write-only, or Read/Write. Consult the 8051 Family 
Instruction Set tor f1.1ll details. The MOVX instructions 
(and therefore the Dual Data Pointers) are no longer 
needed to access external ports, saving both time and 
code space. 

Table 2. Instructions Referencing Direct or Bit Addresses 

Direct Information Type of Access 

ADD A,direct Read 
ADDC A,direct Read 
SUBB A,direct Read 

INC direct Read/Write 
DEC direct Read/Write 
ANL A, direct Read 
ANL direct.A Read/Write 
ANL direct,#data Read/Write 
ORL A.direct Read 
ORL direct.A Read/Write 
ORL direct,#data Read/Write 
XRL A, direct Read 
XRL direct.A Read/Write 
XRL direct,#data Read/Write 

MOV A, direct Read 
MOV Rn.direct Read 
MOV direct, A Write 
MOV direct, Rn Write 

+MOV direct.direct Read/Write 
MOV direct,@Ri Write 
MOV direct,#data Write 
MOV @Ai, direct Read 

PUSH direct Read 
POP direct Write 
XCH A,direct Read/Write 

CJNE A,direct,rel Read 
DJNZ direct, rel Read/Write 

*This instruction reads the bit twice. 
+This instruction normally reads from one address and writes to another. 

9·2 80C324 

Bit Instruction 

CLR bit 
SETB bit 

CPL bit 
ANL C,bit 
ANL C,/bit 
ORL C,bit 
ORL C,/bit 
MOV C,bit 
MOV bit,C 

JB bit, rel 
JNB bit, rel 

*JBC bit,rel 

Type of Access 

Read/Write 
Read/Write 
Read/Write 
Read 
Read 
Read 
Read 
Read 
Read.Write 
Read 
Read 
Read/Write 



Enabling/Disabling Port Expansion Mode 
If Port Expansion Mode (PEM) is not enabled, the archi­
tecture and operation of the 80C324 ports is identical to 
that of the 80C31. Port Expansion Mode can be enabled 
by either hardware or software. These two options are 
termed Hardwired PEM and Software PEM. They offer 
different methods of entering/existing PEM, but behave 
identically in every other respect. 

Hardwired PEM 

Hardwired PEM is enabled by placing 80C324 pins into 
specific states before the falling edge of the reset pulse 
on the AST pin. These values are latched internally on 
the falling edge of the reset pulse during a Hardware or 
Power-on Reset. After the reset pulse the port pins 
should be driven to their initialization values by the user. 
The drivers for ALE and PSEN should be three-stated by 
the user at the falling edge of reset. 

Hardwired PEM Enabling Requirements: 

@ Falling AST @ Falling AST + 450 ns 

*ALE Low 
*PSEN Low 
**P2.7 High 

P2.6 Low 

High 
High 
Don't Care 
Don't Care 

*ALE and PSEN have weak internal pullups that will pull 
these pins High within 450 ns if they are not externally 
driven Low by the user. 

** During a reset sequence, this pin will be pulled High 
internally and remain High, unless externally driven 
Low by the user. 

Once Hardwired PEM is enabled, it operates uninter­
rupted until a Hardware Reset (the Software and Watch­
dog Reset types do not disable Hardwired PEM). During 
Hardware Reset, the defined values must again be 
present on ALE, PSEN, P2.7, and P2.6 at the falling 
edge of the pulse on the AST pin, or Hardwired PEM will 
be disabled after reset. Hardwired PEM has priority over 
Software PEM. 

Software PEM 
Software PEM is enabled through the Output Function 
Enable (OFE) register. This register is Read/Write. If 
Hardwired PEM is enabled, modifying this register will 
not affect Port Expansion Mode. Its default value after 
any reset is OOH. 

Output Function Enable-(OFE) 
Address: AC (Hex) 

(MSB) 

I 0 I 0 0 0 

7 6 5 4 3 

Bits 1-0 
Reserved. Will return 0 when read. 

2 

Bit 2-Port Expansion Mode Enable (PEME) 

<Lsel 

0 

If this bit is set to a 1, Software PEM will be enabled. If 
this bit is 0, Software PEM will be disabled. The default 
value of PEME after any reset is 0 (the state of this bit 
may be modified by the user during Hardwired PEM, but 
it will not affect any chip operation). Since OFE is not bit­
addressable, this bit must be set with a direct instruction. 

Bits 7-3 
Reserved. Will return 0 when read. 

Port Expansion Bus 

Port 1 pins on the 80C324 are used to carry information 
required to build ports external to the device. An addi­
tional control signal, Port Expansion Strobe (PXS), is 
provided that decreases the amount of external~ ex­
pansion logic required. PXS is an output of the EA pin. 
(The EA value is latched at every Hardware or Power-on 
Reset, freeing this pin for the PXS function.) 

When PEM is enabled, Port 1 changes state on every 
Phi 2 transition of the clock, except when three-stated 
(Figure 1). PXS and ALE decode various strobes that 
are needed by the external logic, as shown in Table 3. 

Table 3. Port Expansion Bus Control Logic 

ALE 

High 

High 

Low 

Low 

PXS 

Low to High 

High to Low 

Low to High 

High to Low 

Function 

Address Strobe 

Read Strobe 

Write Strobe 

No Information 

80C324 

Description 

External Port Address should be latched from Port 1 

Read Data from the most recently latched address 
should be driven onto Port 1 

Write Data should be latched from Port 1 into the 
most recently latched external port address 

Switches state of PXS without affecting PEM 

9-3 



A) Read/Write (1 Cycle) 
t.IC COH (CO it ?7) 
where COH contains 44H 

{Increment direct address) 

BJ Write-Only {1 Cycle) 
MOV COH,A 
whore ACC contains 46H 

(Move Accurn.ilator to direct) 

C) Read-Only (1 Cycle) 
MOV A,COH 
where CO contains 49H 

(Move direct to Accurrulator) 

9-4 

.. .. .. 
,,,., 

""' 
.... 

"""" (OVTPUT FROM IOC021) 

""" 
EX~AL P7 91.FFEA 

(POAT 1 NVT) 

...,, 
I 
I 
I 
I 
I 

' I 
"""' OPCOO< """'"""' 

""' 
""" AOCRf.SS 

f!Of\TI OPCOOE 
1--~·~~-+~..J'-~-J-~J~~-t~~~~~ ..... 

""' I 
I 
I 

.. " 

POAT DATA 

"""'° 'MilfTl 

Figure 1. Three Examples of Pon Expansion Bus Operation 

80C324 

.. 

OP<OOI 

"" IHfO 

WF025511 

i'~ 
! 

I-

I, 
1; 



It is convenient to describe the operation of the Port Ex­
pansion Bus from the standpoint of the various BOS 1 in­
structions that may be executed by the user on the 
80C324. 

If the instruction being executed does not reference a di­
rect or bit address, Port 1 may switch, but PXS will stay 
Low (that is, inactive). 

If the instruction references a direct or bit address within 
the Reserved Set of PEM addresses (see Table 1 ), Port 
1 and PXS will switch as shown in Figure 1. In examples 
1aand1 c, Port 1 is three-stated during SS in order to al­
low the read data to be driven back onto the Port Expan­
sion Bus. Read data will be internally latched by the 
BOC324 from the Port Expansion Bus at the beginning 
of SSP2 (State S Phi 2). In example 1 b, read data is not 
required. 

If the instruction references a direct or bit address that is 
not within the Reserved Set, both PXS and Port 1 will 
still switch as shown in Figure 1, except that Port 1 will 
neverbe three-stated during SS. Thus, it is required that 
the user fully decode the address of each external port 
to avoid contention on the Port Expansion Bus when 
Read Data is required (Note: There are certain configu­
rations where only the upper S bits of the address are re­
quired. See Tier 1.) 

If a bit instruction is executed, the bit address, rather 
than the port address, will be provided on Port 1. When a 
bit address is provided, the entire port byte to which it 
belongs must be supplied as Read Data. The port ad­
dress to be supplied is easily decoded from the bit ad­
dress, as it is simply the upper S bits of the direct ad­
dress (e.g., bit address FBH implies port address FBH). 
The Write Data provided by the bit instruction forms the 
entire byte that should be written to the port. 

Table 4 gives examples of the preceding cases. The 
"SJMP label" instruction does not involve a direct ad-

dress. The "INC direct" instruction performs a read of 
the direct address, followed by a write of the incre­
mented value. The "SETB bit" instruction reads the di­
rect byte associated with the bit address, sets the bit lo­
cation within that direct byte, and rewrites the modified 
direct byte. 

For Hardwired PEM, the Port Expansion Bus operates 
continuously, except during reset. For Software PEM 
the Port Expansion Bus operates starting at S3P1 of the 
instruction following the one that set the PEME bit in the 
OFE register. If Software PEM is turned off, the Port Ex­
pansion Bus goes back to normal behavior, starting at 
S3P1 of the instruction following the one that cleared the 
PEMEbit. 

Entry into Idle Mode is possible during PEM. Both Port 1 
and PXS will be internally pulled High during Idle. PEM 
will remain enabled if Idle Mode is exited via an interrupt. 

Entry into Power-Down Mode is possible during PEM. 
Both Port 1 and PXS will be internally pulled High during 
Power-Down. The Hardware Reset that follows will dis­
able both Hardwired and Software PEM; thus PEM must 
be re-enabled after a Power-Down, if desired. 

External Logic Implementation 

Two tiers of implementation are possible. With just PXS 
and address decode logic, most of the capabilities of on­
chip ports can be provided externally. These capabilities 
are described in Tier 1. To exploit every possible capa­
bility, however, additional external logic must be pro­
vided to decode the opcodes of instructions as they are 
executing on the 80C324. These capabilities are de­
scribed in Tier 2. The two tiers differ in external logic im­
plementation only; the 80C324 operates identically in 
both cases. Tier 1 is a lower-cost solution and is prob­
ably sufficient for most applications. 

Table 4. Examples of Port Expansion Bus Operation 

Inst Description Port 1 and PXS Comments 

SJMP label Shon Jump to label PXS stays Low, Port 1 switches Does not reference a direct address 

INC COH Increment direct Operates as in Figure 1 The direct address for Port 7 is within 
the reserved set of PEM addresses 

INCC3H Increment direct PXS switches, Port 1 swnches Since direct address C3H is not in the 
reserved set, Port 1 is not three-stated 
during S5. PXS still switches as in 
Figure 1 

SETBC3H Set direct bn Same as Figure 1 except the Since bit address C3H is bit 3 of Port 7 
Port Address is C3H (COH), Port 1 is three-stated during S5. 

80C324 9-S 



The Simple Approach-Tier 1 
ner 1 consists of using Port 1 pins, Port Expansion 
Strobe (PXS), and ALE. In Tier 1 the following capabili­
ties are possible. 

The user may build up to 14 External Ports, with 5 being 
Bit Addressable; or up to 6 External Ports, with all 6 be­
ing Bit Addessable. As shown in Table 1, Port locations 
AO, CO, DB, EB, and FBH are Bit Addressable. If a sixth 
Bit Addressable port is needed, Port 1 (address 90H) 
can be made Bit Addressable if addresses 91-97H are 
not implemented as external port addresses by the user 
and never referenced as such, but reserved by the user 
as the bit addresses of Port 1. 

Ports AO, CO, DB, EB, and FBH each have the next 7 se­
quential addresses reserved in the 80C324, and are 
therefore Bit Addressable in Tier 1 (e.g., if address DAH 
is latched, the external logic can assume that it is refer­
ring to bit 2 of Port DSH, since no use for direct address 
DBH exists on-chip). 

All instructions can reference the new external ports ex­
cept "JBC bit.label." Unlike other 8051 instructions, this 
instruction is implemented with two consecutive "read" 
operations. The PXS, ALE combination is not sufficient 
to decode this case. The "JBC bit.label" instruction, 
however, will still work as defined for any on-chip ports 
while PEM is enabled. (Also, the JBC instruction can be 
replaced with a "JB bit,label"followed by a "SETB bit" in­
struction at the branch address. If the bit was already 
cleared, no time is added. If the bit was set, one machine 
cycle is added.) 

Read/Modify/Write (RMW) instructions are a subset of 
the Read/Write instructions listed in Table 2. For the on­
chip ports, the RMW instructions read the port LATCH 
(output) ratherthan the Port PINS (input) (i.e., they read 
what was last written rather than what is currently pre­
sent on the input pins). No such distinction can be imple­
mented with external ports in Tier 1, since PXS fur­
nishes only one type of Read Data strobe. The RMW 
instructions, of course, may be freely used on the exter­
nal ports; however, the user should be aware that they 
may not operate identically to the on-chip ports in all 
designs. 

For example, if an on-chip port pin is directly driving the 
base of a transistor, the internal latch may contain a logi­
cal 1, while the actual voltage level on the pin is only 0. 7 
V. Thus, a RMW instruction would supply the value 1, 
while an instruction that reads the pins would supply a 
logical 0. For an external port, the Read Data strobe is 
used to enable the external read buffer, always resulting 
in a logical O being sent to the 80C324. For most applica­
tions, however, this distinction in operation will not be 
seen. 

The RMW instructions will still work in the customary 
manner for any on-chip ports, whether or not PEM is en­
abled. All Read/Write instructions are shown in Table 5. 

Table 5. Read/Write Instructions 

Read/Modify/Write Other R/W Instructions 
Instructions 

Read the On-chip Read the On-chip 
Port Latch Port Pins 

CLR bit XCH A,direct 

SETB bit MOV direct.direct 

CPL bit 

INC direct 

DEC direct 
ANL direct.A 

ANL direct,#data 

MOV bit,C 

ORL direct.A 

ORL direct,#data 

JBC bit, rel 

XRL direct,A 

XRL direct,#data 

DJNZ direct.rel 

Tier 1 for the 80C324: Port O is not Bit Addressable in 
Tier 1. Port 2 is Bit Addressable. 

Tier 1 Example 
Figure 2 outlines the necessary blocks needed to imple­
ment Tier 1 Port Expansion Mode. This example builds 
three external ports. 

Port-X allows execution of all possible PEM instructions 
(see Table 1) except "JBC bit, label," as previously 
noted. It requires both an output latch and an input 
buffer. Port-Y is provided as a Write-only port and re­
quires just an output latch. Thus, instructions accessing 
this port address must be limited to those that are Write­
only (see Table 1). Port-Z is a Read-only port and re­
quires just an input buffer. Thus, instructions accessing 
this port address must be limited to those that are Read­
only. 

The external 2K-ohm resistor allows PXS to be sensed 
by the external logic. 

PXS and ALE are used to decode the Address, Read 
and Write Strobes for the decode logic, buffers, and 
latches respectively. 

The bit addressability of the ports is determined by the 
addresses assigned to the ports and whether or not read 
operations are externally implemented. Since all bit 
instructions require read operations, the Write-only 
Port-Y is excluded from bit addressability. Port-X and 
Port-Z can become Bit Addressable if assigned to ad­
dresses such as DB and ESH. Bit-Addressable instruc­
tions used with Port-Z, however, would be limited to 

9-6 80C324 



those which are Read-only. Write operations to Port-Z 
are disregarded. 

The choice of addresses CO, DB, EB, and FBH as port 
addresses (whether or not Bit Addressability is needed) 
is advantageous from a decoding standpoint. Since the 
next seven consecutive addresses beyond each of 

80C324 2 kohm 
EAIPXS 

= 
Address Strobe 

Strobe Read Strobe 
Generation 

ALE 
Write Strobe 

Port 1 

Address 
Decode 

and 
Latch 

Address Strobe 

these locations are not defined in the 80C324, the ad­
dress decoding may simply take place on the upper five 
bits of these addresses. The decoding is identical, 
whether or not Bit Addressability is desired. 

The description of the Tier 1 example is independent of 
the choice of Hardwired or Software PEM. 

Latch 

Port-X 
ReadtWrite 

LO 
Write Strobe 
Port-X Enable 

Read Strobe 
Port-X Enable 

Latch 

Port-Y 
Write-Only 

Port-X 
LO Enable 

Port-Y Write Strobe 

Enable Port-Y Enable 

Port-Z 
Enable 

Port-Z 
Read-Only 

Read Strobe 
Port-Z Enable 

12837-002A 

Figure 2. Tier 1 Logic Diagram 

80C324 9-7 



A Complete Approach-Tier 2 

Tier 2 operation uses more than just PXS for decoding 
operations. It involves decoding the opcode of the in­
struction executing through synchronization with ALE 
and an external clock. The following capabilities are 
possible. 

The user may build up to 14 External Ports with 7 being 
Bit Addressable. Bit addresses and byte addresses can 
be distinguished In the 91-97H range since the opcode 
is externally decoded. Port 1 can then be implemented 
as Bit Addressable without sacrificing port addresses 
91-97H. This is the main difference between Tier 2 and 
Tier 1. 

All instructions are now possible, if special attention is 
given to "JBC bit.label." 

Read/Modify/Write implementation is possible if the 
RMW instructions are decoded as such and additional 
external logic is provided to read from eitherthe external 
latch (output) or external buffer (input). 

Tier 2 Example 

Figure 3 outlines the blocks necessary to implement 
Tier2 Port Expansion Mode. The Opcode-Decode block 
is shown, adding full Read/Modify/Write capability to the 
external ports, and allowing Port Oto be Bit Addressable 
while still providing the additional ports 91 and 92H. 

80C324 2kohm 

Clock EAIPXS 1----'"M.----, 

XTAL, 

An external clock to the 80C324 is assumed, allowing 
a mechanism for latching the opcode. The first rising 
edge of ALE after reset indicates the beginning of in­
struction execution. The opcode is latched from Port 1 
one clock cycle later (see Figure 1). The next opcode will 
appear either 12, 24, or 48 clocks later, as defined by the 
current opcode (four-cycle instructions "MUL" and "DIV" 
execute In 48 clocks). The PXS, ALE combination can 
still be used in Tier 1 to decode the Address, Read, and 
Write strobes. 

If required, the "JBC bit.label" instruction may be imple­
mented with the first read strobe coming from PXS, and 
tile second read strobe coming from the Opcode De-
code block 12 clocks later. · 

Tier 2 is very powerful. The user can actually implement 
his own custom operations based on correct decoding 
of the opcode and address data. For instance, the "MOV 
direct.A" instruction directed at Port Address F8H, for 
example, could be defined to broadcast the contents of 
the Accumulator to several external ports at once. Simi­
larly, an "ORL direct.A" instruction, operating on a given 
port, could be defined to send its result to another exter­
nal port. If the contents of the Accumulator were OOH be­
fore this operation was performed, a one-cycle •move" 
would result, increasing speed over the two-cycle "MOV 
direct.direct" instruction. 

The description of the Tier 2 example is independent of 
the choice of Hardwired or Software PEM. 

Strobe 
Generation 

Address Strobe 

Read Strobe 

ALE---
Write Strobe 

Port 1 

Port90 
Port 91 

Clock Address Port92 
Opcode Read_Buffer Decode 

Port CO 
ALE Decode and 

and Latch Port DB 
AST Latch Read_Latch 

Port ES 
BIT/BYTE Port FS 

Address Strobe 

12837-000A 

Figure 3. Tier 2 Diagram 

9-8 80C324 

1~ 



ABSOLUTE MAXIMUM RATINGS 
Storage temperature ............ -65°C to + 150°C 

Voltage on any Pin to Vss . . . . . -0.5 V to Vee +0.5 V 

Voltage on Vee to Vss . . . . . . . . . . . . -0.5 V to 6.5 V 

Power dissipation ..................... 200 mW 

Stresses above those listed under ABSOLUTE MAXIMUM 
RA TINGS may cause permanent device failure. Functionality 
at or above these limits is not implied. Exposure to absolute 
maximum ratings for extended periods may affect device 
reliability. 

DC CHARACTERISTICS over operating range 

Parameter Parameter 

OPERATING RANGES 
Commercial (C) Devices 

Temperature (TA) ................ Oto +70°C 

Supply Voltage (Vee) . . . . . . . . . +4.5 V to +5.5 V 

Ground (Vss) . . . . . . . . . . . . . . . . . . . . . . . . . 0 V 

Operating ranges define those limits between which the func­
tionality of the device is guaranteed. 

Symbol Description Test Conditions Min. Max. Unit 

V1L Input Low Voltage (except EA) -0.5 0.2 Vcc-0.1 v 
V1L1 Input Low Voltage (t:A°) 0.2 Vcc-0.3 v 
v,. Input High Voltage 

(except XTAL,, RST) Vcc+0.5 v 
v,., Input High Voltage (XTAL,, RST) Vcc+0.5 v 

VoL Output Low Voltage (Ports 1, 2, 3) 0.45 v 
VoL1 Output Low Voltage (Port 0, ALE 

JSSm) 0.45 v 

VOH Output High Voltage (Ports 1, 2, 3) 2.4 
0.75 v,,,, v 
0.9 Vee 

VoH1 2.4 v 
0.75 Voe v 

lo.=-80 µA (Note 2) 0.9 Voe v 
Vp0.45 V -50 µA 

-650 µA 

lu ±10 µA 

RAST 50 150 kohm 

CIO Pin Capacitance TestFreq.•1 MHz, T.=25°C 10 pF 

Power-Down Current Voe•2 to 6 V (Note 3) 50 µA 

80C324 9-9 



M~lmum Ice (mA) 

Operating (Note 4) Idle (Note 5) 

Notes: 1. Capacitive loading on ports may cause spurious noise pulses to be superimposed on the Voi.S of ALE and oth1r 
ports. Thi noise is due to external bus capacitance discharging into the port pins when these pins make 1-to-O transi­
tions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line l)"lay 
exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a 
Schmitt-Trigger STROBE input. This note pertains to dual-in-line packages only. The additiona' Vee and Vas connec-
tions on the PLCC package from AMO removes this design consideration. · · 

2. Capacitive loading on ports may cause the VOH on ALE and l5SEFl to momentarily fC!lll below the 0.9 Vee specification 
when the address bits are stabilizing. This note pertains to dual-in-line PilCkages only. The additional Vee and Vas 
connections on the PLCC package from AMO removes this design consideration. 

3. Power-Down Ice is measured with all output pins disconnected: EA=Port O=Vcc; XTAL. NC; RST-Vas. 

4. .Ice is me!ISured with all output pins disconnected; XTAL, driven with TCLCH, TCHCL~5 ns, V1L=Vas+ 0.5 V, 
VoH•Vcc-0.S V; XTAL. NC; EA=RST -Port O• Vcc. Typical values are approximately 50% lower. Ice would be 
slightly higher if a crystal oscillator was used. 

5. Idle Ice is measured with all output pins disconnected; XTAL, driven with TCLCH, TCHCL-5 ns, VoL= Vas+0.5 V, 
Vo"•Vcc-0.5 V; XTAL. NC; Port O•Vcc; EA·RST =Vas, and the Watchdog Timer disabled. 



Port Expansion Mode AC Timing 

PXS _____ .,, 

2 
5 

Port 1 Port Address 

Port Expansion Timing 

Parameter Parameter 
Symbol Description Min. It 

1/TCLCL Oscillator Frequency 

TAHPH ALE High TO PXS High ns 

2 TAVPH Address Valid to PXS High ns 

3 TPPW PXS Pulse Width ns 

4 TPLRD ns 

5 TCLCL-25 ns 

6 0 TCLCL-10 ns 

7 TCLCL-50 ns 

8 PXS High to Write Data Not Valid TCLCL-25 ns 

9 PXS High to ALE High TCLCL-30 ns 

10 TALPL ALE Low to PXS Low TCLCL-35 ns 

80C324 9-11 



SWITCHING CHARACTERISTICS over operating range (CL for Port 01 ALE and PSEN Out­
puts= 100 pF; CL for all other Outputs= 80 pF) 

Parameter Parameter 12-MHz Osc. Varlable Osclllator 
i--~--~-+-~~~~~.....-~~~~~~ 

Symbol Description Min. Max. Min. Max. Unit 

EXTERNAL PROGRAM AND DATA MEMORY CHARACTERISTICS 

1/TCLCL 0.1 12 _ ,j"'MHz Oscillator Frequency 

TLHLL ALE Pulse Width. 127 2TCLCL-40 ~ --C~ ns 

TAVLL Address Valid to ALE Low 28 TCLCL-55 ~ ns 

TLLAX Address Hold After ALE Low 48 TCLCL -35 ~ ._ ns 

TLLIV ALE Low to Valid Instr. In 234 All ~CL-100 ns 

TLLPL ALE Low to~ Low 43 TCLCL-A~ ns 

TPLPH PSEi'l Pulse Width 205 3TC~ ns 

--TP-L-IV~--+-P-S_E_N_Lo_w~ro-v_a_lid_l_ns-tr~·~ln.....-~--+~~+-1~~~~·~-·~-+--3-l_C_L_C_L-_1_0_5~+--n-s~~~ TPXIX Input Instr. Hold After l5S9'l o _.. _ ns 

TPXIZ Input Instr. Float After PSEN 59~ .... , TCLCL-25 ns 

TAVIV Address to Valid Instr. In ~12 5TCLCL-105 ns 

TPLAZ l5Sm Low ro Address Float ~ '41'> 10 ns 

TRLRH RD" Pulse Width llA] STCLCL-100 ns 

TWLWH WR Pulse Width ~Ir!..!() 6TCLCL-100 ns 

TRLDV RD Low to Valid Data In ~ T(1i. 252 5TCLCL-165 ns 

TRHDX Data Hold After RD"~ 0 0 ns 

TRHDZ Data Float Aftfil!D~ 97 2TCLCL-70 ns 
TLLDV ALElowroV~,:llllllll•n~~~+-~-1--51-7-+~~~~~+--8-l-C-LC-L---1-5-0~~-n-s~~~ 

TAVDV Address to ValidTata In 585 9TCLCL-165 ns 

TLLWL ALE Low to RD or WR Low 200 300 3TCLCL-50 3TCLCL+50 ns 

TAVWL Address Valid ro Read or Write Low 203 4TCLCL-130 ns 

TQVWX Data Valid to WR Transition 23 TCLCL-60 ns 

TOVWH Valid Data to Write High 433 ?TCLCL-150 ns 

TWHQX Data Hold After ViiR 33 TCLCL-50 ns 

TRLAZ RD" Low to Address Float O 0 ns 

TWHLH RD or WR High to ALE High 43 123 TCLCL-40 TCLCL+40 ns 

9·12 80C324 

I· 



CHAPTER 10 

Third-Party Support Products 
Vendor/Product Listings 
Hewlett-Packard Development System 
Metalink Development System 
American Automation Development System 

Huntsville Microsystems Development System 
Micro Computer Control 8051 C Compiler 
Archimedes C-8051 Compiler 
Data 1/0 Programmers 

10-1 
10-3 
10-8 
·10-13 

10-14 
10-15 
10-20 
10-24 

Advanced Micro Devices does not support, maintain, or guarantee the performance of third-party products described in this 
chapter. 



1~ 
I 
', 

I. 
I 
I 



Chapter 10 
Third-Party Support Products 

INTRODUCTION 

A number of support products are available for the 8051 
microcontroller family. The following pages present 
product descriptions of emulators, assemblers, compil­
ers, and programmers from various manufacturers. The 
material is intended to present a collection of what is 

available for AM D-manufactured 8051 Family microcon­
trollers, but is not necessarily a complete, up-to-date 
listing of all available products. Further information may 
be obtained from the individual companies listed and the 
many other vendors that support 8051 Family products. 
AMO does not guarantee the specifications of any of the 
products listed. 

Third-Party Support Products 

Vendor 

Hewlett-Packard 
1501 Page Mill Road 
Palo Alto, CA 94304 
(Contact local sales office) 

Metalink Corporation 
PO Box 1329 
Chandler, AZ. 85244-1329 
(602)926-0797 or (800) 638-2423 

American Automation 

Primary 8051 Family Products 

Development System 

Development System 

2651 Dow Avenue Development System 
Tustin, CA 92680 
(714)731-1661 

Huntsville Microsystems 
4040 S. Memorial Parkway Development System 
PO Box 12415 
Huntsville, AL 35802 
(205)881-6005 

Applied Microsystems Corp. 
5020 148th Ave. N.E. Development System 
PO Box 97002 
Redmond, WA 98073-9702 
(206)882-2000 or (800)426-3925 (U.S.) 
44-(0)-296-625462 (U.K.) 

Kontron Electronics 
D-8057 Eching/Munich Development System 
Oskar-von-Miller-Str. 1 
West Germany 
Phone: (O 81 65) 77-0 

Nohau Corporation 
51 E. Campbell Ave. Development System 
Su~e 107E 
Campbell, CA 95008 
(408)866-1820 

Signum Systems 
1820 14th Street Development System 
Suite203 
Santa Monica, CA 90404 
(213)450-6096 

Description 

Company provided, page 10-3 

Company provided, page 10-8 

Company provided, page 10-13 

Company provided, page 10-14 

Call vendor for details 

Call vendor for details 

Call vendor for details 

Call vendor for details 

10-1 



CHAPTER 10 
Thlrd·Pany Suppon Products 

Third-Party Support Products (continued) 

Vendor . Primary 8051 Family Products Description 

Sophia Systems 
NS Bldg 2-4-1 Development System Call vendor for details 

Nishishinjuku, Shinjuku-ku 
Tokyo 160, Japan 
03-348-7000 

Zax Corporation If 
2572 White Road Development System Call vendor for details 
Irving, CA 92714 
(714)474-1170 or (800)421-0982 

1·· 
Franklin Software, Inc. 
888 Saratoga Avenue #2 C Compiler, Assembler Call vendor for details 
San Jose, CA 95159 
(408)296-8051 

Micro Computer Control 
PO Box 275 C Compiler, Assembler Company provided, page 10-15 
Hopewell, NJ 08525 
(609)466-1751 

Archimedes Software 
2159 Union Street C Compiler, Assembler Company provided, page 10-20 
San Francisco, CA 94123 
(415)567-4010 

Scientific Engineering Labs 
255 Beacon St., Sune 3D Pascal Compiler Call vendor for details 
Somerville, MA 02143 
(617)625-0288 

Boston Systems Office 
128 Technology Center PUM Compiler, Assembler Call vendor for details 
Waltham, MA 02254-9164 
(617)894-7800 

Sysoft SA 
6926 Montagnola PUM Compiler, Assembler Call vendor for details 
swnzerland 
(091 )543195 

Cybernetic Micro Systems 
Box3000 Simulator, Debugger Call vendor for details 
San Gregorio, CA 94074 
(415)726-3000 

Microtek Research 
Box 60337 Simulator, Assembler Call vendor for details 
Sunnyvale, CA 94088 
(408)733-2919 

Data VO 
Contact local sales office EPROM-version Programmer Company provided, page 10-24 
or call: (800)247-5700 Dept 401 

Stag Microsystems 
1600 Wyatt Drive EPROM-version Programmer Call vendor for details 
Santa Clara, CA 95054 
(408)988-1118 or (800)227-8836 

10-2 



HEWLETT-PACKARD 
DEVELOPMENT SYSTEM 

Emulators 
Hewlett-Packard offers a wide selection of emulators to 
support microprocessor and microcontroller-based 
product development. These emulators provide the 
essential link between software development and hard­
ware/software integration. Code developed on the HP 
64000 system or compatible host computers is executed 
on the emulation subsystem and user's target system, If 
available, for real-time debugging and logic analysis. 

Hewlett-Packard emulators are part of an integrated set 
of design and development tools that include Teamwork/ 
SA/RT/SD for structured analysis and design; cross 
compilers and assemblers/linkers for programming at 
the most efficient level; directed-syntax softkeys and an 
easy-to-use, responsive editor to streamline software 
development and documentation; and analysis subsys­
tems which provide powerful measurements to investi­
gate program execution, timing relationships, system 
performance, and processor activity. 

Universal Development System 

HP 64000 products comprise a universal development 
system that provides development support that includes 
the 8051 Family of microcontrollers. When additional 
emulators are introduced to support popular new proces­
sors, they are easily integrated with existing HP 64000 
real-time analysis tools. This flexibility protects the capi­
tal investment in instrumentation, since new projects and 
goals can be accommodated with low-cost add-ons 
rather than total replacement of development systems 
and tools. 

System Environment 

Hewlett-Packard supports the universal development 
system with two system platforms; a general-purpose, 
multiuser computer and a dedicated, stand-alone work­
station. 

The HP 64000-UX Microprocessor Development Envi­
ronment is based on the HP 9000 Series 300 general­
purpose computer, running the HP-UX* operating sys­
tem. This workstation platform is common to the design 
engineering tools of HP Design Center. The multiuser 
capability of the Series 300 allows for shared hardware 
and software resources among system users. Multiple 
window capability allows integration and debug tasks to 
be viewed simultaneously, for convenient observation of 
interactive debug information. The HP-UX operating 

CHAPTER10 
Thlrd·Pany Support Products 

environment supports user-programmable command 
files for repetitive and complex test routines. HP 64000-
UX systems can be easily connected to other host 
computers or system resources. 

The HP 64000-UX environment is compatible with the 
dedicated, stand-alone HP 64100A and 64110A Logic 
Development Stations. The same emulation and analy­
siscard sets for most subsystems are used in both the HP 
64000-UX Microprocessor Development Environment. 
In addition, these hardware platforms can be networked 
via high-speed link or RS-232 for maximum productivity. 

Features 

• Real-time emulation for evaluating target system 
performance and critical timing relationships 

• Multiple emulation capabilities for multiprocessor 
product designs 

• Display and modify memory, registers, and 1/0 ports 
• Disassembly of microprocessor instruction set 
• Source-line referencing 
• Symbolic debugging for emulation and analysis 

operations 

• Compatible and interactive high-performance logic 
analyzers for hardware, software, and software 
performance analysis 

• Run control, single stepping, run from, arid run until 
• HP 64000 system resources (disc files, printer, de­

velopment station keyboard, display, and RS-232 
port) can be used to simulate target system 110 

• Emulation memory available from 32 Kbytes to 64 
Kbytes 

• Memory assigned by blocks to target system or 
emulation memory over the microprocessor's entire 
address space; designated as ROM, RAM, or illegal 
address space. 

• User-definable emulator kit for custom emulation 
support 

Measurement System Configuration 

An HP 64000 emulation subsystem consists of an emu­
lation control card, emulation pod, and operating soft­
ware. An emulation bus analyzer is used for tracing 
activity on the emulation bus in real-time. Trace lists 
generated by the analyzer may be displayed in the 
mnemonics of the target processor. Inverse assembler 
software is included in the emulation software. HP 
64856A User Definable Inverse Assembly software 
package may be used to generate mnemonics for the 
User Definable Emulator (UDE) and User Definable 
Preprocessor. Cross assemblers/linkers are available. 

'HP-UX is Hewlett-Packard's implementation of the UNIX operating system. 

10-3 



CHAPTER10 
Third-Party Support Products 

The analyticalfunctionsof the emulator can be expanded 
with Model 64310A Software Performance Analyzer. 
Input data from the HP 6431 OA analyzer is collected from 
activity on the emulation bus. The performance analyzer 
provides the'macro overview measurements needed for 
optimizing and modifying code for more efficient software 
performance. 

When complex, detailed logic state analysis is required, 
the powerful HP 64620S Logic State/Software Analyzer 
can be integrated directly into the emulator subsystem 
via HP 64304A Emulation Bus Preprocessor. The added 
power of software analysis provides traces converted to 
high-level language source code as well as assembly 
language or numeric code lists. 

For hardware debugging, the powerful HP 6461 OS High­
speed Timing/State Analyzer checks timing relation­
ships, locates glitches, and identifies marginal signals. 
For high-speed logic designs, the analyzer functions as 
a 125-MHz state analyzer. 

' 
' 
' 
:~""---"""-~ 

A new dimension of analysis power can be added with the 
Intermodule Bus (IMB) which links analyzers and emula­
tors. The IMB communicates with the emulator through 
the HP 64302A Emulation Bus Analyzer. Other analysis 
subsystems that can be added to the IMB are the HP 
~620S Logic State/software Analyzer, HP 6431 OA 
Software Performance Analyzer, HP 64610S High­
speed Timing/State Analyzer, and HP 64340 Real-time 
High-level Software Analyzer. Cross triggering between 
analyzers enables the designer to make coordinated 
measurements that help solve complex hardware/soft­
ware integration problems. 

System Architecture 

All emulators of the HP 64000 system use a multiple-bus 
architecture, thus allowing interactive emulation and 
analysis. The development station host processor com­
municates with all installed subsystems using the HP 
64000 system bus. A separate high-speed emulation bus 

: High-Speed 
, Timing/State 
i Analyzer 

Software 
Performance 

Analyzer 

Emulation 
Bus 

Analyzer 

Emulation 
Memory 

Emulation 
Memory 
Control 

Emulation 
Contrbl 

' ' 
' ' 

: J 
' ,,. 
i (Q ~ 
:?-::::· j .:::::::::: ~· :::::::::::-.::::::::::·.:::::::::::::::::::~-------------------------------------------------------
• St!, I 

' .. ' 

i : 
: : 

! .... ~; .............. : ............. ~~---······! 
Figure 10-1. System Architecture 

10-4 

Emulation 
Pod 

1~ 



carries all transactions required for emulation. Independ­
ent operation frees the emulation system from the host 
system overhead. The intermodule bus controls sophis­
ticated, interactive cross measurements for emulation, 
state, timing, and performance analysis. Major advan­
tages of the multiple-bus architecture are real-time, 
transparent emulation and analysis that free the target 
system for unrestricted execution. 

8051/8751/8031/8053/8753 
Model 642645 

Model 64264S Emulation Subsystem consists of a con­
trol board, pod, and software. Connection to the target 
system is made with a 305 mm (12 in.) cable that 
terminates in a 40-pin, low-profile probe. A typical 8051/ 
8751/8053/8753 emulation system includes HP 64264S 
Emulation Subsystem, HP 64156S Emulation Memory 
System, and HP 64302A Emulation Bus Analyzer. 

Software development support is provided by Model 
64855 Cross Assembler/Linker. 

Features 

• Real-time execution up to 12 MHz independent of 
emulator/target system memory assignment 

• Nonintrusive, real-time traces of 8051 activity for 
basic analysis and evaluation including access to 

- Program memory 
- Internal and external data memory 
- Accumulator and special-function registers 
- 1/0 ports 0, 1, 2, and 3 

• Disassembly of 8051 instruction set 
• Program and external data memory mapped in 

256-byte blocks to emulation or target system 
memory 

• Expanded measurements capabilities through inter-
active operations with other HP 64000 subsystems: 

Another 8051 emulator or any other HP 64000 
emulator 

HP 64620S Logic State/Software Analyzer 
HP 64610S High-speed Timing/State Analyzer 
HP 64310A Software Performance Analyzer 

Electrical Specifications 

Maximum clock speed: 12 MHz 

Inputs: all inputs meet AM D specifications plus approxi­
mately 40 pF capacitance; Port 0, low-level input, 0.45 
mA; Port 1, Port 2, and Reset, low-level input, 0.1 mA; 
and EA, low-level input, 0.5 mA. 

Power: 20 mA drawn from the target system; all other 
power supplies by the development station or card cage. 

CHAPTER10 
Third-Party Support Products 

8051 Cross Assembler/Linker 

The HP 64855 Cross Assembler/Linker provides assem­
bly language software development support for the 8051 
Family of Microcontrollers. The Model 64855AF is 
hosted on the HP 641 OOA/6411 OA development sta­
tions. Model 64855S and the appropriate option provide 
a cross assembler/linker which executes on both the HP 
64100A/64110A development stations and on an HP 
9000 series 300 HP-UX or a VAX/VMS host computer 
system. 

Regardless of the host computer execution environment, 
the cross assembler/linkers produce identical relocat­
able and absolute code for a given source program. The 
assembler uses the instruction mnemonics for the 8051 
series and generates code for all the defined 8051 
instructions. However, due to differences in some 
pseudo instruction mnemonics and assembler syntax 
conventions, source programs written for the 
manufacturer's assembler generally require some modi­
fication prior to use with the HP 64855 Cross Assembler/ 
Linker. 

Both assemblers/linkers generate the necessary infor­
mation for symbolic debug in emulation. Programmers 
can troubleshoot the code using source program line 
numbers and global symbols, eliminating the task of 
looking up addresses. 

Assembler Directive 

"8051" causes the cross assembler/linker to recognize 
the instruction set of the 8051 Family of Microcontrollers. 

Reference Information 

Addressing/Operand Field Conventions 

8051 Registers - The 8051 microprocessor contains 
128 bytes of on-chip RAM (expandable to 65,536 bytes 
with external RAM chips). Addresses OOH to 1 FH in RAM 
are reserved for 32 general purpose registers arranged 
in lour register blanks; RO-R7 indicate the eight working 
registers; these registers are called the current active 
bank. The current active bank can be changed to any of 
the other register banks by specifying the register bank 
select bits RSO and RS1 in the program status word. 

The stack is also located in the on-chip RAM and the 
Stack Register points to the top of the stack. On RESET, 
the stack pointer is set to 07H. The Stack Register cannot 
exceed 127 (7FH in hex). 

There are additional hardware registers for the 8051 
which are located on an external RAM chip. The registers 
and their addresses in external RAM are shown on the 
following page. 

10-5 



CHAPTER 10 
Third-Party Support Products 

External RAM Registers and Addresses 

ACC Accumulator OEOH 

B Multiplication OFOH 

DPH/DPL Data Pointer High/low 83H/82H 

IE Interrupt Enable OASH 

IP Interrupt Priority OBDH 

P0-3 Ports 0-3 80H,90H,OAOH,OBOH 

PSW Program Status Word ODOH 

SBUF/SCON Serial Buffer/Control 99H/98H 

SP Stack Pointer 81H 

TCON/TMOD Timer Control/Mode 88H/89H 

THO/TLO Timer O High/low-Byte SCH/SAH 

TH1/Tl 1 Timer 1 High/low Byte SDA/SBH 

The HP 64855 Cross Assembler/linker supports all five 
addressing modes of the 8051 microprocessor: lmmedi· 
ate, Data, Indirect, Bit, and Code Addressing. The ad­
dressing modes are as follows: 

Immediate Addressing - Any number, symbol, or 
expression may be specified as an operand by immedi· 
ately preceding it with a pound (#) symbol. Examples: 

#number, #symbol, #expression, #"ASCII char" 

Data Addressing - Data can be obtained from any of 
the 128 on-chip RAM addresses or a hardware register 
address. (External RAM data must be obtained by indi· 
reel addressing.) The symbol or numeric expression 
must be of either no segment type or type DSEG (ie., 
previously defined to be within the data segment). Data 
addresses from 0-127 are in RAM and addresses from 
128-255 are in hardware registers. 

MOV A,76H ;Move contents of address 76H to 
accumulator. 

Indirect Addressing - The address of the operand is 
pointed to by register RO or R1 in the active register bank 
if the indirect address is in on-chip RAM. External code or 
data memory is addressed by the MOVC or MOVX 
instructions by using the Data Pointer Register (DPTR). 
The address within RO or R 1 must be between 0-127. The 
indirect mode is specified by preceding the register with 
a (@). For example: 

ADD A,@RO ; Add contents of the on-chip RAM 
; Address in RO to accumulator. 

MOVC RO,@DPTR; If DPTR contains 1000H, then 
; move the data at address 1 OOOH 
; to register RO. 

Bit Addressing - The processor can access any bit in 
the on-chip RAM and other hardware registers. The byte 
which contains the bit must be defined, followed by the bit 

10-6 

selector (.) and the bit identifier (O· 7). Opcodes using a bit 
address must be defined as type BSEG or no segment 
type. For example: 

SETB SCH.3 ;Set bit 3 at address SCH. 

Code Addressing - The instruction specifies a new 
location to jump to in the program code. 

Pseudo Instructions 

The HP 64855 Assembler/Linker recognizes most of the 
basic ASM51 Assembler pseudo instructions as have 
equivalents for many of the others. The following lists the 
pseudo instructions that are similar to the HP assembler 
pseudos. 

ASM 51 Assembler HP 6400 Equivalent 
Pseudos Assembler Pseudos 

EJECT SKIP 

END END 

EQU EQU 

IF .. ELSE..ENDIF IF .. ELSE .. ENDIF 

MACRO .. ENDM MACRO .. MEND 

ORG ORG 

The HP 64855 Cross Assembler/Linker also supports 
several additional pseudo instructions for the 8051 proc­
essor which differ from the general HP 64000 assembler 
pseudos. 

BIT 

BSEG 

BIT assigns a bit address to a symbol. 
This allows the assembler to refer to a 
specific bit. 

This selects all data to be in the bit 
address segment. The locations in the 
bit address segment must be within the 
range from 0-255. 



CHAPTER 10 
Thlrd-Pany Suppon Products 

CSEG CSEG invokes the program relocatable SET The SET pseudo is the same as the HP 
64000 pseudo; however, the HP 64855 
assembler also uses SET to assign a 
name to one of the 8051's registers. 

counter. (This is default when the as­
sembler is invoked.) The counter can 
range from 0-65,535. 

DATA DATAassignsanon-chipaddresstothe XDATA XDATA assigns an off-chip data ad­
dress to a symbol and makes the sym­
bol type XSEG. 

DB 

OBIT 

OS 

DSEG 

ow 

Special Note: 

symbol. The symbol is defined as type 
DSEG. 

Stores data by types in consecutive 
memory locations within the code seg­
ments starting at the current setting of 
the program counter. 

OBIT reserves bit address space. 

This reserves or defines a block of 
space by types in any segment in 
memory. 

DSEG selects the on-chip data address 
segment. Addresses range from 0-255. 

Stores data by words in memory. DW is 
only valid within the CSEG or code 
segment. 

Hewlett-Packard has just announced a brand new 
series of low-cost, host-independent emulators. The 
new HP 64700 Series emulators can be connected to 

XSEG XSEG selects the external data address 
segment. The values in the location 
counter range from 0-65,535. 

The HP 64855 Cross Assembler/Linker does not support 
the following HP 64000 pseudo instruction; the alternate 
pseudo must be used instead. 

DATA Use XSEG or DSEG instead. 
DEC Use DECIMAL instead. 

a variety of hosts including the HP 9000 Series 300 and 
the PC. Please contact your Hewlett-Packard Sales 
Representative for an up-to-date list of supported 
processors. 

10-7 



CHAPTER10 
Third-Party Support Products 

METALINK DEVELOPMENT SYSTEM 

The Metalink Emulator, What is it? 

An In-Circuit Emulator is a tool for use in designing 
systems incorporating microcontrollers. Using this tool, 
the system designer can interactively control and exam­
ine the state of the system at any chosen time. This is 
essential for speeding up the debugging process and 
enhancing the system designer's productivity. The tool is 
easy to use; simply replace the system microcontroller 
with the emulator probe, which then becomes the in­
circuit microcontroller. When the probe is connected 
to the host computer, the system can be completely 
controlled. 

The emulator provides not only the capabilities of the 
target processor, but a set of debugging capabilities to 
facilitate and shorten the debugging process. Why is this 
important? It is not enough for the emulator to simply 
behave like the target processor, it must also provide 
read/write access to all signals and all data to which the 
microcontroller has access. This includes information 
which resides inside the microcontroller. Without this 
access, the engineer may not be able to completely 
control and debug the system. 

The many uses of the emulator can be easily visualized 
after examining a typical system design cycle. 

PHASE 

Concepti~ 

~ 
Architecture f 

t 
Logic 

Software 

Hardware Prototype 

The first use of an emulator in the design cycle is in the 
software-development phase. The emulator executes 
the program exactly as the target system would, in real 
time, and it provides all of the interactive debugging 
capabilities. Software, developed using the emulator, 
can be completely debugged, except for the 
hardware interface, before it is integrated with the system 
hardware. 

The second and major use of an emulator in the design 
cycle is in the integration of the target software and the 
system hardware. Even when the hardware and software 
have each been individually debugged, new problems 
can surface when they are joined together. The emulator 
is used, in this case, to solve these potential problems. 

After a prototype has been completely debugged, the 
emulator can then be used to test the specs of the 
system. Worst case parametric tests can be developed 
and tested on the prototype. This provides the designer 
with valuable information about the limitations of the 
system. It also provides test programs which can be used 
in the manufacturing process (see below). 

The third use of an emulator is in the product-manufac­
turing phase. The same test routines, used to develop 
and debug the prototype, or even more comprehensive 
test routines, can be used to test the finished products. 
Any non-functioning units can be easily debugged using 
the emulator's full range of debugging capabilities. 

TOOLS USED 

ar.-1 RTL Simulator 

~1 Logic Simulator 

...... 1 Emulator/Simulator 

CAD/CAM Tools 

~--+JL __ E_m_ul_at_o_r _ _. 

iv 
Manufacturing Testing i--.--lll>'l_E_m_u_la_to_r_IT_e_st_er _ _. 

Field Testing ---l~lll<'I Emulator/Tester 
'-------''----" 

Figure 10-2. Design Cycle 

10-8 



The fourth use of an emulator is in the field-service 
phase. The Metalink emulator can run on any IBM PC 
or 100% PC-compatible host computer including the PC­
compatible portables. Check the end of this description 
for other operating systems and host computers compat­
ible with the Metalink emulator. If the field location al­
ready has a host computer, the field service team need 
only carry the emulator module,which easily fits in a 
briefcase, and some floppy disks. If a host computer is 
not available, a portable host can be used. 

Metalink MetalCE or MicrolCE Emulator 

The MetalCE or MicrolCE emulator is a PC-based in­
circuit emulator, designed for use in developing, testing 
and debugging designs based on the 8051 Family of 
single-chip microcontrollers. Using the MetalCE or Mi­
crolCE emulator, hardware and software designs can be 
developed simultaneously. The MetalCE or MicrolCE 
emulator assists in the following phases: software devel­
opment, integration of target software and system hard­
ware, manufacturing and field service. 

The MetalCE or MicrolCE emulator may be used with 
several third-party software cross-assemblers and com­
pilers in the development phase that in the integration 
phase can also provide symbolic debug capability. 
These are: 

• Cross-Assemblers - Metalink's, IAR Systems, 
Enertec, Microtec Research and Intel. 

• Compilers - Archimedes Software, IAR Systems 
and Intel. 

Significant features of the MetalCE or MicrolCE 
emulators: 

• Serially linked to IBM PC or compatible hosts 

• Advanced menu-driven human interface 

• Real-time and transparent emulation up to 16 MHz 

• Disassembler and single-line assembler 

• Examine/modify memory capabilities 

• 16 break and trace-trigger conditions 

• High Level Language Support 

CHAPTER10 
Third-Party Support Products 

• Supports both modes: 

- Microprocessor 
- Microcomputer 

• 9 probe clips 
- 7 External events 
- 1 External trigger input 
- 1 External trigger output 

• Up to 128,000 break and trace triggers 

• Emulation Memory: 

- 64K Program 
- 64K External data 

• Full symbolic debug capability 

• Opcode class editor 

• Up to 64K pass counts 

• Separate program and data-memory mapping in 
16-byte blocks 

• Experiment editor/compiler 

• Trace with 4K frames (MetalCE) 
Trace with 2K frames (MicrolCE) 

- Start, end and center triggers 

Emulator Functions 

Various MetalCE or MicrolCE emulators can support 
different versions of the 8051 Family of microcontrollers. 
See Table 10-1. They will support NMOS and CMOS 
versions of the devices, up-to a clock rate of 16 MHz, 
where appropriate. The MetalCEorMicrolCE emulator is 
totally transparent to the users target system and will 
function at the clock rate specified by the user. 

The MetalCE or MicrolCE emulator functions from an 
IBM PC or compatible computer and is controlled by the 
serial-interface board of the system. The serial-interface 
operation rate is controlled by the user and the target­
system clock rate; 9600 bps is the maximum transfer 
rate.The user interacts with the keyboard and the PC 
screen, while the PC's RAM memory provides the resi­
dent home for the MetalCE or MicrolCE application 
system and user target program. 

Table 10-1. MetalCE or MlcrolCE Emulator Part/Model Number Listing 

Part Number Model Number AMO Devices Supported 

MC-8031 MicrolCE-8031 8031 & 80C31 
MC-8052 MicrolCE-8052 8031,8751,8753,8051,8053, 

80C31 & 80C51 
Ml-80515 MetalCE-80515 80515,80535 
Ml-80C521 MetalCE-80C521 80C521, 80C321 & 80C541 
MC-80C321 MicrolCE-80C321 80C321 & 80C31 
Ml-80535 MetalCE-80535 80535 

10-9 



CHAPTER10 
Third-Party Support Products 

User Interface 

The MetalCE or MicrolCE system uses a menu driven 
screen format for commands; a menu is structured as 
follows: 

Command1 Command2 Command3 
Quick help description of Command1 

MENU NAME 

Errors, warnings or messages 

The first line of the screen contains a list of the command 
options available for that menu. The second line contains 
a one-line description of the highlighted command (see 
below). The middle of the screen contains the menu's 
name. The line at the bottom of the screen contains any 
errors, warnings or messages encountered during a 
command execution. 

User Abilities 

The MetalCE or MicrolCE emulator can perform the 
following functions and call the following sub-functions: 

• Load program code memory from disk files 
• Upload program code memory from user target 

system board 

• Download user board external data memory from 
disk files 

• Call the system-configuration menu 
• Restore a previously saved system and status 
• Store the system and status in a disk file 
• Create or execute a macro command file 
• Call the interrogate menu 
• Call the Help menu 
• Terminate a session 
• Escape out to and return from the resident operat-

ing system 

User Interface Selection 

The user selection specifies the baud rate used and the 
communications port (1 or 2) used for communication 
between the MetalCE or MicrolCE emulator module and 
the host computer. It also includes the mode of operation 
and the configuration of the external data bus. Most 
Meta ICE or MicrolCE emulator models give the user the 
option to select betweer:i External Address Bus Mode 
(ROM less) and Single-Device Mode (ROM) with various 
external program/data memory addresses and all or 
some of the 1/0 ports. 

Interrogation Selection 

The Interrogate portion of the MetalCE or MicrolCE 
emulator allows the user to run emulation experiments 
against the target system, to examine the status of the 

10-10 

system, to set break and trace triggers and to examine/ 
modify data, using the following capabilities: 

• Running an emulation experiment 

• Single stepping the target 
• Resetting the target 

• Setting a phantom breakpoint then running an 
emulation 

• Setting up to 16 simple breakpoint/trace triggers or 
ranges 

• Setting the repetition counter 

• Setting the trace-trigger type (Start, Center or End) 

• Calling the Help menu 

• Examination and modification of SFRs and 
registers 

• Examination and modification of internal data 
memory 

• Examination and modification of external data 
memory 

• Examination and modification of code memory 

• Viewing the 2K or 4K trace buffer 

• Examination and modification of the emulation 
experiment 

• Selecting the 7 probe clips for trace 

• Setting up to 16 increment pass-count addresses or 
ranges 

• Escape out to and return from the resident operat-
ing system 

• Viewing the ND conversion data 

• Turn Trace Trigger ON/OFF (MicrolCE) 

Experiment Selection 

An experiment is the specification of where breakpoints, 
trace triggers or counts are to occur. It can be described 
in high-level language, called the Experiment Language, 
using the MetalCE or MicrolCE emulator software. An 
experiment.then, is simply the Experiment Language 
text that describes where the breakpoints are to occur. 
Up to 128,000 complex hardware breakpoints, trace 
triggers or counts can be set in the Metal CE or MicrolCE 
emulator. 

An experiment can be created outside the MetalCE or 
Micro ICE environment by using any available text editor 
to create an experiment text file. This file can then be 
read into the MetalCE or MicrolCE system and then 
interacts with the user program to cause those break­
points, trace-triggers and counts to occur.The experi­
ment uses the If-then condition statement as its basic 
construct. Experiment statements will be of the form: 

if (condition) then (action). 



The condition represents a breakpoint or trace-trigger 
specification. Breakpoints or trace-triggers can be speci­
fied by any of the following methods: 

A PC address 
A PC address range 

An opcode value 

An opcode class 

A direct byte address 

A direct byte address range 

A direct bit address 

A direct bit address range 

An immediate operand value 

A read or write to bit or direct address 

An external data address 

An external data address range 

Logical AND or OR of the above 

Pass count overflow 

External Input 

The action represents the type of event that will occur 
after the condition has been encountered. The type of 
action can be specified by any of the following: 

A break 

An enable/trace 

A count 

A counVoutput trigger 

In addition, an Examine/Modify Experiment Editor exists 
that can be used to examine and modify an experiment 
specification. In this editor, the user can: 

Edit an experiment 

Compile an experiment to set the breakpoints 

Load an experiment from a disk file 

Store an experiment in a disk file 

Reset the current experiment 

Delete the current experiment 

Call the Opcode Class experiment 

Examine/Modify Memory 

Using the MetalCE or MicrolCE emulator, the user can 
examine and modify the five memory spaces of the 8051 
Family of devices. This examination/modification of 
memory spaces is broken down into two areas: Program­
Code memory and Data memory. 

Using the Examine/Modify Program Code Memory is 
used to examine and modify the contents of the Metal CE 
or Micro ICE emulator code memory and provide for the 
following functions: 

CHAPTER 10 
Third-Party Support Products 

Disassembly of the program code (hex or symbolic 
data) 

Single-line assembly of the program code 

Examination and modification of raw program-code 
memory data 

Examination and modification of program-code mem­
ory mapping 

Selective mapping of the 64K program-code memory 
to the emulator 

Selective mapping of the 64K program-code memory 
to the user 

The Examine/Modify Memory Data is used to examine 
and modify the contents of the MetalCE or MicrolCE 
emulator internal-data memory, the external-data mem­
ory and the MetalCE or Micro ICE emulator table mem­
ory. It allows: 

Dumping a block of memory content 

Scanning and modifying each memory, a byte at a time 

Filling a memory block with data 

Moving a block of memory content from one location to 
another 

Searching each memory for a data pattern 

Verifying and comparing one block of memory data 
with another 

Examining and modifying the directly addressable bits, 
which are mapped to the internal-data memory space 

Selective mapping of the 64K external-data memory to 
the emulator system 

Selective mapping of the 64K external-data memory to 
the user system 

Macro Capabilities 

The Macro is used to create and execute macro com­
mand files. A macro command file contains groupings of 
MetalCE or MicrolCE commands which, when executed 
together, perform a macro function. These macro func­
tions are typically repetitious tasks that are performed 
over and over again in one or many debugging sessions. 
Using the macro-command facility, the designer can 
define the macro-command file once and then execute it 
anytime later in the same or even another debugging 
session. 

Symbolic Debug 

The MetalCE or MicrolCE emulator supports user and 
pre-defined symbols. The use of a name and not an 
address can alter the content of bits, bytes and code. In 
addition, five different object-file formats are accepted: 
standard Intel hex-file format; Intel absolute-object­
module format; Microtek Research absolute-output-ob-

10-11 



CHAPTER10 
Third-Party Support Products 

ject modules; IAR, Enertec, Archimedes object modules 
and Meta link absolute-object-file format. Standard Intel 
hex-files can be created by assembling the user's pro­
gram code with most of the currently available MCS-51 
cross assemblers. Intel object-module files can be cre­
ated by linking/locating modules with Intel's RL51 pro­
gram. These source modules can be either assembled 
ASM51 object modules or compiled PLM object mod­
ules. Metalink absolute object files are created by the 
Metalink ASM51 Macro Cross Assembler. 

System Requirements 
Hardware Requirements 

- IBM PC or a compatible PC 

- Two 5-1/4 in. double-sided/double-density floppy 
disk drive 

- 640K bytes of memory 

- RS232C interface board 

10-12 

- RS232 cable with a male connector at the emu­
lator end. 

- Emulator power supply 

1.5 A + 5 VDC ± 5% (MicrolCE) 
1.0 A + 23 voe± 5% (MetalCE) 

Software Requirements 

- PC DOS version 2.0 or later 

High Level Language Support 

The MetalCE or MicrolCE emulator supports PLM and 
'C' language compilers with advanced line number and 
multi-module capabilities. Line numbers, procedures 
and multi-module labels may be used for a number of 
emulator operations including: trace triggers, disassem­
bly, fit, pass counts, etc. Using the Metal CE or Micro ICE 
emulator, the user has the ability to single-step by ma­
chine instruction, procedure, line number in the current 
module, or line-number access all modules. 



AMERICAN AUTOMATION 
DEVELOPMENT SYSTEM 

EZ-PRO 2.1 Development System 

American Automation's EZ-PRO 2.1 Development Sys­
tem is a complete development environment for micro­
processor-based systems. Supporting the 8031/8051 
family of microcontrollers (and over 70 other micropro­
cessor models), EZ-PRO's integrated tools help to imple­
ment and debug microcontroller designs. The system 
includes the following: 

Cross-assemblers with programmable macro 
expressions 

Relocating linkers with user-library support 

K&R standardized C-language cross-compilers 

Exceptional symbolic debuggers 

Fast in-circuit emulators 

EPROM programming utilities 

Flexible EPROM programming hardware 

File conversion utilities 

American Automation's in-circuit emulators and associ­
ated symbolic debuggers form the heart of the EZ-PRO 
system. The emulators feature transparent, non-inva­
sive emulation with no wait states. Integrated break­
pointing and bus-tracing tools pinpoint problems while 
the interactive assembly/ disassembly facility helps to 
examine and modify the code under test. Using a 
flexible memory-mapping scheme, software may be 
tested in any combination of target system and emulator 
memory; software may also be tested without any target 
system attached. 

The powerful development hardware is backed by an 
equally powerful suite of software development tools: 
C-language cross-compilers, macro cross-assemblers, 
relocating linkers, and the symbolic debugging package. 
Each package contains several exceptional features. 

The C cross-compliers feature rapid compilation 
and generate light, fast code. Extensions to the basic 
C-compiler support the 8051 's special features, and 
8051-series users may select from one of four memory­
saving models, designed to fit generated code into 
even the tightest of spaces. Assembly-language 
modules may be intermixed with C modules for even 
greater speed and compactness. 

CHAPTER10 
Third-Party Support Products 

The EZ-PRO Macro Relocatable Cross-Assemblers 
feature not only a powerful "macro expression lan­
guage", but also support a wide range of pseudo-opera­
tions. Each assembler conforms exactly to the 
manufacturer's standard mnemonics. 

aaLINK, the EZ·PRO Relocating Linker, assembles 
output modules from several sources - including the 
EZ-PRO assemblers and C cross-compilers - into a 
final executable module. The final output file may be 
easily modified by changing a command file. 

Finally, the tested software may be placed into an 
8751-series microcontroller or 27XX-series EPROM 
using the integrated EPROM programming tools. This, 
the EZ-PRO system provides a complete development 
environment. 

The emulators connect to a host computer through an 
RS-232C link. Their modular design permits upgrades 
both to support new microprocessors and to add new 
features and extended memory. The 8051-emulator 
features are listed below. 

• A complete symbolic debugging facility 

• Advanced breakpointing features 

• Fast menu-driven system 

• Operates at full clock speed with no wait states 

• Fully transparent emulation - all resources 
available to target system 

• 4K Deep Trace (tm) includes trace management 

• Complex triggering features include ranging, 
pass counts, and sequential breakpoints 

• Performance analysis tools 

• Memory-conserving C cross-compiler 

• Macro relocatable cross-assembler 

• EPROM programmer supports 8751 series 

• Supports NMOS, CMOS, and EPROM versions 

• TeleService extended service and 
TelePresence remote diagnostics available 

• Host systems include the IBM PC and IBM-PS/2 
series, Sun 3 Workstations and Macintosh 
development software and systems 

• 5-year warranty 

American Automation backs each EZ-PRO system with 
superior customer support. This support includes a 5-
year warranty, telephone support, software updates, and 
the TeleService extended service plan. 

10-13 



CHAPTER10 
Third-Party Support Products 

HUNTSVILLE MICROSYSTEMS 
DEVELOPMENT SYSTEM 

Huntsville Microsystems has two low-cost in-circuit 
emulators that support the 8051 family of microcon­
trollers, the SBE-51 and the SBE-31. Both emulators 
support 16 MHz real-time emulation from either an inter­
nal (emulator) clock or an external (target system) clock 
or crystal. They also contain a real-time trace, five hard­
ware breakpoints, an in-line assembler and a disassem­
bler; either emulator can be run from a host computer or 
a dumb terminal. A Relocatable Macro-Cross Assembler 
and a Symbolic Debugger are available for the IBM PC 
family computers and compatibles. See Table 10-2 for 
available emulator packages. 

The SBE-51 supports the internal or on-chip program 
memory versions of the microcontroller such as the 8051 , 
8751 H, 8753H and 8053. It is a true on-chip program­
memory emulation and does not require the use of any of 
the four 1/0 ports. Thus, the user has exclusive control of 
all four of these ports. The SBE-51 is a non-intrusive in­
circuit emulator and does not use or restrict any of the 
microcontroller's functions. The unit contains 16K bytes 
of on-chip program memory (much larger than the 4K 
bytes of the 8051 or the 8K bytes of the 8053) providing 
the user with the capability to download much larger 
programs during the development cycle. The SBE-51 
also supports the CMOS version including functions 
such as idle and power-down mode. 

The SBE-31 supports the external or off-chip program 
memory version of the 8051 family microcontrollers, 
such as the 8031AH and 80C31BH. The unit contains 
64K bytes of emulation memory that may be used for 

external program or external data memory. The user's 
target-system memory may be added to the emulator's 
memory to complete the 128K byte address space (64K 
byte program memory, 64K byte data memory). The 
SBE-31 will also support CMOS designs and CMOS 
functions. 

Features 

• Real-time emulation up to 16 MHz with five hardware 
breakpoints and single step. 

• 500 cycles of real-time trace history. 

• 16K bytes of program memory (SBE-51) 

• 64K bytes of memory, mappable in 2K blocks between 
program and data memory (SBE-31) 

• RS232C interface can operate with a terminal or can 
be slaved to a host computer. 

• Examine/modify memory, registers, flags, timer/ 
counters, 1/0 ports, stacks and program counter. 

• In-line assembler and disassembler. 

• Uses internal oscillator or external oscillator or crystal. 

• Upload or download Intel hexadecimal files. 

• Complete software and hardware debugging facilities. 

• Powerful command set includes fill-memory block, 
move-memory block, compare-memory blocks and 
test-memory blocks. 

• Relocatable Macro-Cross Assembler and Symbolic 
Debugger for the IBM-PC, XT, AT and compatibles 
and all CP/M systems. 

• Symbolic debugger for PUM51 and assembly 
language. 

Table 10-2. Emulator Packages 

Microcontrollers 
Supported 

8051AH, 8751H, 
8053,80C51BH,8753H 

8031AH, 
80C31BH 

ALL ABOVE 

10-14 

Description of Emulator Package 

Complete development package for IBM PC 
family computers (includes all five items described below): 

1. 16 MHz Single Board Emulator for 8051 family on-chip 
internal program memory microcontrollers 

2. Relocatable macro Cross Assembler for IBM PC family computers 

3. Symbolic Debugger Communications package for IBM PC 
lam ily computer 

4. Power supply for Single-Board Emulator 

5. Computer-to-Emulator interface cable 
(RS232 - Specify if other than male/female cable) 

Complete development package for IBM PC family computers 
(includes item 6 below and items 2-4 above) 

6. 16 MHz Single Board Emulator for 8031 off-chip 
external program memory microcontrollers. 

HMl-200 Series Advanced In-Circuit Emulator for the 8051/8031 
family. "C" and PUM51.source level debugger available. 

Part 

IDP·51 

SBE-51 

HMA-51R 

SBE-LS51 

SBE-PS1 

SBE-IC6 

IDP-31 

SBE-31 

HMl-200-8051 



MICRO COMPUTER CONTROL 
8051 C COMPILER 

General Description 

MICRO/C-51 is an MS-DOS based C-like language 
cross-compiler for the 8051 family of single-chip micro­
controllers, including the 80C521 and 80515. It is de­
signed to provide access to all hardware resources of 
memory maps, interrupts, all on-chip peripherals, and 
the Boolean processor directly from C. 

MICRO/C-51 supports a number of important features 
that provide direct access to the 8051 architecture: 

• Assignment of variables to any of the five 8051 
memory maps. 

• C-pointer support for all 8051 memory maps. 

• Direct C-source access to all special-function regis­
ters by name. 

• C-source-level handling of 16 hardware-interrupt 
sources. 

• Fast-interrupt context switching to any one of four 
register banks. 

Chip Features Supported 

Object Memory Maps 

b-map - on-chip bit addressable (128 bits) 

d-map-on-chip direct access (128 bytes) 

i-map - on-chip indirect access (128/256 bytes) 

p-map - external page zero (256 bytes) 

e-map - external data (64K bytes) 

c-map - external code (64K bytes) 

Special Function Registers 

Direct C access to all special-function registers by 
name. 

Boolean Processor 

Direct C access to on-chip bit map and all bit-address­
able special-function registers by name. 

Interrupts 

Drive any C function directly from any interrupt 
source. 

Fast interrupt context switching to any one-of-four 
register banks. 

Run-time Features Supported 

Math and memory-map exception handling. 

Expandable pointer access to external memory­
mapped hardware devices. 

CHAPTER 10 
Third-Party Support Products 

Compile Time Options 

Default object-memory map selection 

Listing control options 

Debug support 

Function trace 

Stack monitor 

Statement labels 

Compiler Output 

Assembly-language source file compatible with MICRO/ 
ASM-51 relocatable macro assembler. Linkable with 
user generated assembly or PUM-51 source files. 

C Language Features Supported 

MICRO/C-51 V1 .0 is a subset implementation of the 
C language as documented in "The C Programming 
Language" by Kernighan and Ritchie. Processor 
specific extensions have been added to support micro­
controller hardware resources. 

Comments (r .. .* /) 

Identifier names (8 characters) 

Constants 

Integer (decimal, octal, hex) 

Character ('x') 

Escape (\a,\b,\f ,\n,\r,\t,\v,\\,\' ,\* ,\",\ddd) 

String ("string") 

Declared-object types 

bit - 1-bit unsigned (K&R Extension) 

char - 8-bit signed 

int - 16-bit signed 

ptr - 24-bit unsigned pointer to char or integer 

array - single dimensioned char or integer array 

func ( ) - function return value 

Options: 

Interrupt driven 

Using specified register bank 

Storage Classes 

extern - reference to externally declared object 

global - objects defined outside a function 

local - objects defined within a compound statement 

static - restrict global object scope. 

10-15 



CHAPTER 10 
Third-Party Support Products 

Statements 

compound 
if, if-else 
while 
do-while 
for 
switch 

Operators 

expression 

Unary (•, &, -, !, -. ++, - -) 

Multiplicative (•, I, %) 

Additive (+, - ) 

Shift(«,») 

Relational(<,>,<=.>=) 

Equality (= =, ! =) 

Bitwise (&, A, I) 

Logical (&&, 11 ) 

Conditional ( ?: ) 

Assignment(=) 

Comma(,) 

Preprocessors 

case 
default 
break 
continue 
return 
null 

Conditions! (#if-#endif up to 16 nested levels) 

Include Files (#include up to 8 nested levels) 

Macro Definition (#define text replacement) 

Separate Compilation and Linkage 

Library Functions 

getchar, putchar, printf, etc. 

Special run-time debug functions supporting debug 
operation via the on-chip serial port. 

main() 

I 
I* setup serial port (1200 

Compiler Operation 

Input/Output 

MICRO/C-51 accepts, as input, a C source file created 
with a standard text editor. This file must have the 
extension (.c). Assembly-language source output is 
sent to "filename.src". Listing and error messages are 
sent to the MSDOS standard output file, normally the 
console. Full path name is provided for both source and 
include files. 

Command Line 

MICRO/C-51 has a built-in command-line processor 
that permits various options (switches) to control the 
compilation process. The format of the command line is 
as follows. 

mcc51 filename.c (/switch ... ] 

Optional switches 

c - include C source in assembly source output file 

de - set default memory map (c = b,d,i,p,e) 

f - enable function trace 

In - C source listing control (n = 1,2) 

m - enable stack monitor 

p - define processor descriptor file 

wn - set warning report level (n = 0, 1,2) 

t - generate statement labels 

Sample command line: mc51 test.c /de/11/wO 

Sample Program 

The following MICRO/C-51 program initializes the 8051 
serial-port and baud-rate-control registers and repeat­
edly calls on the C-library function "printf" to write the 
specified text string to the serial port. 

BAUD @ 6 MHz) */ 
scon Ox52; /* set serial port control register *I 

10-16 

tmod Ox20; /* set timer mode register *I 
tcon Ox69; I* set timer control register *I 
thl Oxf3; I* set timer count */ 

while (1) /* loop forever */ 
printf("hello, world\n"); /*write to serial port*/ 
I 



C module 1 

C module 2 

C module 3 

Assembly coded module(s) 

MICRO/ 
ASM-51 MICRO/ 

RL-51 

CHAPTER 10 
Third-Party Support Products 

Executable 
Object 

Program 

MC51.LIB Run-Time Library --------------.i 

OBJECT TO HEX 

HEX File 

09757A 5-1 
Figure 10-3. Modular Programming Model 

Modular Programs 

MICRO/C-51 works with C-source modules (files) that 
contain either a complete program or part of a program. 
Individual program modules can be compiled or as­
sembled separately to create relocatable object files. 
The Run-Time Library consists of a series of object 
modules organized into a library module. Once all the 
object modules are available, the linker/locatorcombines 
the object modules into a single executable program. 

Assembler Relocation & Linkage 
Package 

Assembler 

• Gives symbolic access to powerful 8051 hardware 
features. 

• Provides software support for many addressing and 
data allocation capabilities. 

• Provides symbol table, cross-reference table, 
macro capabilities, and conditional assembly. 

• Produces object files that can be linked 
together and located at absolute addresses. 

Relocation & Linkage Package 

• Links modules generated by the assembler and 
PUM51. 

• Locates linked object modules at absolute 
addresses. 

• Creates libraries of object modules and has facili­
ties for adding and deleting modules. 

• Permits modules to be selectively linked from 
libraries. 

• Converts 8051 objects into symbolic hexadecimal 
format to facilitate file-loading by symbolic hexadeci­
mal loaders (such as non-Intel PROM programmers). 

The Assembler Relocation & Linkage Package is a 
complete package for writing assembly-language pro­
grams to run on the powerful 8051 Family of microcon­
trollers. It includes the assembler, plus a relocation and 
linkage package that also contains a librarian, and an 
object-to-hex converter. 

The assembler is a powerful assembly language that pro­
vides complete control over any microcontroller in the 
8051 Family, enabling production of the most efficient 
code possible. With the assembler, the user can refer 
symbolically to many of the useful addressing features of 
the 8051. For example, symbolic references can be used 
for bit and byte locations, for 4-bit BCD arithmetic opera­
tions, for hardware registers, for 1/0 ports, for control bits, 
and for RAM addresses. 

In addition, the assembler user can break up code into 
separately assembled modules, provide conditional­
assembly capabilities, and support macros to automate 
frequently used code sequences. 

The relocation and linkage package is used to prepare 
the program for running. The linker and relocator pro­
vides the facilities for combining program modules and 
assigning absolute addresses. The librarian gathers 
modules into a library where they can be accessed 
individually by the linker. The hex converter converts 
8051 object modules into hexadecimal form in prepa­
ration for loading into ROM. 

10-17 



CHAPTER 10 
Third-Party Support Products 

C Tools Tackle µC Software Bottlenecks 
by Ed Thompson, Software Engineer 

Micro Computer Control Inc., Hopewell NJ 

Designing applications based on a single-chip micro­
computer requires both hardware and software engi­
neering skills. But the balance of these skills is changing 
as chip makers improve on-chip hardware capabilities at 
the expense of increased software complexity. 

This change in the development environment has cre­
ated a vigorous demand for alternatives to the time­
honored assembly language coding method. Now, new 
development tools, based on C, promise to tackle this 
software bottleneck. 

To the delight of many a hardware engineer, a wide 
variety of complex semiconductor devices is finding a 
welcome home on single-chip microcomputers. These 
include AID converters, DMA controllers, intelligent 
communication receiver/transmitters, pulse-width 
modulators and event capture circuitry. This steadily 
growing engineers' wish list of on-chip resources is 
pushing single-chip microcomputer application in prod­
ucts that only a year ago would have required a boardful 
of chips. 

Accelerating Demands 

With this increased integration, however, comes a need 
for complex interfacing and control programming. De­
mands on software to control memory, interrupts and 
sophisticated peripheral devices are outpacing past 
design methods and leading to the adoption of program­
ming methods once found solely inthe realm of micropro­
cessor-based designs. 

A key area that is receiving a great deal of interest is the 
use of high-level languages for single-chip microcom­
puter program development. Although most of today's 
microprocessor-based projects use a high-level lan­
guage as the primary coding language, this considera­
tion has only recently been adopted on single-chip proj­
ects. 

In the past, the limited size and complexity of the function 
to be coded and the lack of efficient high-level language 
compilers have restricted their consideration. But today 
the high cost of both software development and mainte­
nance and the availability of efficient PC-based high­
level language cross-compilers are quickly changing 
the way single-chip microcomputer programs are being 
developed. 

Over the past five years, the C language, developed by 
AT&T for coding the Unix operating system, has gained 
an immense following in a broad range of applications. 
WhetherC is best suited for all these diverse applications 
is another question. 

However, since C was designed as an extensible, struc­
tured system-building language, it can support both high­
level programming structures and low-level hardware 
interfaces. This capability, combined with some chip 
support extensions and an efficient code-generating 
implementation, make C worthy of consideration in 
single-chip microcomputer applications. One such im­
plementation is Micro Computer Control's Micro/C-51 C 
compiler for the 8051 family of single-chip computers. 

C comes with a long list of high-level statements and 
operators used to create structured programs that are 
quick to develop and easy to understand and maintain. 
But since C was not designed to cope with the special 
problems presented by single-chip microcomputers, a 
few well-chosen extensions are needed to make C a 
natural for this type of application. Three such exten­
sions, implemented in Micro/C-51, are direct C support 
for memory maps, interrupts and access to on-chip 
peripherals. 

The architecture of most single-chip microcomputers 
uses several memory maps. The 8051, being no excep­
tion, has no less than three on-chip and three off-chip 
memory maps. Memory size and access speed differ for 
each map. A problem arises in controlling the place­
ment of variables in these various memory maps. One 
way to cope with this problem is to permit each 
declared C variable to be assigned to any map, thus 
providing easy adaptation to various target system 
memory configurations. 

In addition to memory maps, interrupts also play an 
important role in most single-chip microcomputer appli­
cations. These interrupts are generated by internal or 
external peripheral devices, and indicate need for serv­
icing by the processor. In some cases, up to a dozen or 
more interrupt sources must be serviced quickly. Sup­
port for interrupts could take the form of enabling a 
developer to assign any C function as the target of any 
interrupt source. 

© 1987 by CMP Publications, Inc., 600 Community Drive, Manhasset, NY 11030 
Reprinted with permission of Electronic Engineering Times Issue 425, Monday, March 16, 1987 

10-18 



Access to peripheral devices presents a problem in any 
high-level language. Because single-chip microcompu­
ters are used primarily in control applications, they espe­
cially demand a convenient and efficient access method 
to the increasing variety of on-chip peripherals. Here, a 
solution is to be able simply to use the name of a 
peripheral in a C expression to directly access the speci­
fied device. With such a simple yet powerful technique, 
even low-level device drivers become candidates for 
coding in C. 

Software Debugging 

With their integrated form of processor, memory and 
peripherals, single-chip microcomputers typically pres­
ent a challenge to debugging efforts. Programming in a 
high-level language not only can reduce the entry of bugs 
in a program, but also can help in tracking them down. 

CHAPTER10 
Third-Party Support Products 

The introduction of programming errors is reduced in 
several ways. Most reasonably, the fewer lines of high­
level code needed to program a function simply reduces 
the chance of typographical errors that could go unno­
ticed. The procedural programming structure offered by 
C also helps in organizing the programming effort. 

Nevertheless, the likelihood of creating a bug-free pro­
gram is low. To help find the bugs, C debugging options 
can open the on-chip resources to inspection. 

Single-chip microcomputers have proven to be an impor­
tant product, and undoubtedly a host of new capabilities 
and architectures will soon emerge. As with micropro­
cessors in the past, programming in a high-level Ian­
gauge will help protect a company's investment in soft­
ware when the time comes to exploit these new chips. 

10-19 



CHAPTER 10 
Third-Party Support Products 

ARCHIMEDES C-8051 COMPILER 

The Archimedes Microcontroller C-8051 Cross Compiler 
Kit supports software development for any chip based on 
the 8-bit 8051 microcontroller instruction set, e.g. 8051, 
80C521, 80515 and other proliferation chips. 

The C-8051 Kit consists of several pieces. The ANSI­
standard C-compiler gives all the traditional high-level 
language advantages - faster coding, debugging and 
code maintenance resulting in more reliable code. The 
macroassembler is useful in optimizing any time-critical 
sections of code. It also preserves assembly code invest­
ment by reassembling existing source code with the 
Archimedes assembler (which is linkable with C code). 
The assembler is highly compatible with other 8051 as­
semblers. A librarian creates and maintains libraries. The 
linker combines C and assembly modules and places 
code and data at the right locations. The linker's numerous 
output formats make it quick and easy to support standard 
PROM programmers and emulators. (See Figure 10-4.) 

Archimedes Microcontroller C-8051 is available on most 
popular software development hosts: IBM PC and com­
patibles, MicroVAX and VAX systems running either VMS 
or UNIX (Ultrix or Berkeley). All versions are fully compat­
ible, e.g. compile module 1 on a PC, module 2 on a 
MicroVAX/Ultrix system and link them on a VAX/VMS 
system. 

Several Memory Models 

The Archimedes Microcontroller C-8051 Kit has several 
memory models to best meet the requirements of different 
microcontroller designs, similar to (3086 small and large 
models. Memory models range from a small model using 

only the internal RAM (128/256bytes) of an 8051 Family 
chip to a bankswitching model supporting up to 8 
Mbytesofcode. Thedifferent C-51 memory models are: 

Small (single-chip) memory model: Supports 8051 
configurations using internal RAM only. C variables 
and the run-time stack reside within internal RAM (128 
or 256 bytes). 

Medium (expanded) memory model: Supports 
microcontroller applications with a combined total of 
64K code and data. Requires that the Program Status 
ENable signal (PSEN) is AND-ed together with the 
Read Data signal (RD), to create a uniform 64K 
address space. C variables and the run-time stack 
reside in external data memory. 

Large (expanded) memory model: Supports micro­
controller applications with 64K of code and 64K of 
data. C variables and the run-time stack reside in 
external data memory. 

Banked memory model: Supports microcontroller 
applications with 64K of data and up to 8. Mbytes of 
code. C variables and the run-time stack reside in 
external data memory. 

All memory models offers two approaches on how to 
allocate variables - reentrant or static. In the reentrant 
modes, all local "auto variables" are allocated and 
deallocated dynamically, i.e. they reside on a stack 
required to support recursive or reentrant functions. In 
the static modes , all function-level variables are forced 
into static memory with the exception of function argu­
ments which are always on the stack. 

ANSI C ----- LIBRARIAN ----- MACROASM 

LINKER 

Simulator Emulator Pr~~~~er Target System 

Figure 10-4. C Kit 

10-20 

i, 



CHAPTER 10 
Third-Party Support Products 

Table 10-3. Overview of Memory Models 

Memory Banked Banked Expanded Expanded Small Small 
Model Reentrant Static Reentrant Static Reentrant Static 

Typical chip 8031 8031 8031 8031 8051 8051 

External RAM Yes Yes Yes Yes No No 

Code Area >1M >1M 64K 64K 64K 64K 

Recursion Yes No Yes No Yes No 

C Interrupt Yes Limited Yes Limited Yes Limited 
Routines 

C Variable Ext. RAM Ext. RAM Ext. RAM Ext. RAM Int.RAM Int. RAM 
Area (64K) (64K) (64K) (64K) (256) (256) 

Relative Speed Low Low Low Medium Medium High 

Relative Code Medium Medium Medium Medium Medium High 
Compactness 

PROMable Code 

PROMable code is a must for microcontroller applica­
tions. Archimedes supports PROMable code fully, in­
cluding statically initialized data and static data without 
explicit initializers set to zero. The compiler has a simple 
invocation at compile time (-P) to automatically generate 
PROMable code. 

C-Libraries 

CHARACTER HANDLING <Ctype.h> 
isalnum, isalpha, iscntrl, isdigit, islower, isprint, 
ispunct, isspace, isupper, tolower, toupper 

NON-LOGICAL JUMPS <Setjmp.h> 
longjmp, setjmp 

FORMATTED INPUT/OUTPUT <Stdio.h> 
getchar, printf, putchar, sprintf, _formatted_write 

GENERAL UTILITIES <Stdlib.h> 
exit, calloc, free, malloc, realloc 

STRING HANDLING <String.h> 
strcat, strcmp, strcpy, strlen, strncat, strncmp, strncpy 

MATHEMATICS <math.h> 
atan, atan2, cos, exp, log, log10,pow, sin, sqrt, tan 

Archimedes C-8051 Compiler provides the most impor­
tant C-library functions for stand alone "embedded mi­
crocontroller applications". "printf" can be used to make 
debugging easier or as the starting point for writing 
applications-specific display device drivers. Advanced 
math routines speed up number-intensive applications. 

In addition, the C system contains C run-time libraries 
that are divided into 100+ small modules. By design, only 
those routines required by a particular program are 
called in at link-time to minimize run-time requirements 
(minimum 500 bytes; 2-3 kbytes for a typical application). 
All library routines are reentrant. 

Fast Compilation 

Single pass compilation, without any unnecessary as­
sembly step, compiles 7000 lines of C source code in less 
than 30 seconds on a Compaq 386 system. 

Fast Testing 

ANSI-standard C makes it possible to compile "generic" 
C source code with different ANSI-standard C-compilers. 
Host-resident tools like Microsoft's C-86 compiler and 
Code View debugger speed up testing of generic C-8051 
code. (See Figure 10-5.) 

ANSI-Standard Power and Features 

ANSI-standard C has some extra features over and 
above the traditional K&R C language definition. Func­
tion prototyping allows function declarations a la Pascal 
with the conversion conventions of C. This speeds up 
software development and produces more efficient code, 
by avoiding some of the default conversions to "int" that 
is typically required in older C compilers. "Structure" and 
"union" assign and "enum" types give the same facilities 
enjoyed by Pascal users. Flexible "auto" initialized ag­
gregates like arrays, structures and unions provide one 
more option to keep vital data local to a function rather 
than making everything global. 

10-21 



CHAPTER10 
Third-Party Support Products 

(4) 

(3) 

09757A11-3.2 

Figure 10·5. Testing using Host Tools 
like Microsoft C-86 

All the Standard ANSI Data Types 

Archimedes C-8051 compiler supports ail the basic ANSI 
C elements. Object sizes in bytes: 

char short int long float pointer/addr 
1 112 2 4 4 2 

"Float" is implemented in the IEEE 32-bit single-preci­
sion format. 

LINT-type Feature 

The software has a built-in advanced type-checking 
scheme to eliminate difficult to find '1yping errors" and to 
speed up integrating different modules. The C compiler 
checks a module, where as the linker checks consistency 
of inter-module declarations (down to the last bit of a 
complex structure). This facilitates interfacing of librar­
ies, or other routines only available in object format, 
as well as integrating modules written by different 
programmers. 

10-22 

Error Message System 

To speed up error searching the C compiler has a state­
of-the-art built-in error message system (invoked by the · 
-V switch). The system indicates the exact source code 
location and a message describes the error detected: 

if (i)) j++ 
__ A 

"main. c", 870 Error (110): ')' unexpected 

C Language Extensions and Other Specials 

The Archimedes C-8051 kit has special C language 
extensions, or built-in in-line functions, to better take 
advantage of a chip's special features and speed up 
development. "input" and "output" provide access to 
internal RAM/special function registers. Functions like 
"set bit" and "clear bit" are available to support bit manipu­
lation. Also, functions are available to read blocks of code 
and data. 

The C compiler has several special listing options. It can 
for instance generate a pure assembly source file (-A 
option), which can be hand-optimized and then reas­
sembled with the macroassembler. A list file with 
mixed C source and native assembly code speeds up 
debugging. The C compiler supports symbols with up to 
255 significant characters. 

Linker 

The linker combines C and assembly modules and 
automatically links in the necessary C run-time libraries 
(including the C start-up routine). The flexible linker 
locates memory segments at absolute or relocatable 
addresses. The linker's many output options provide fast 
and easy interfacing with most PROM-programmers and 
emulators. The Archimedes kit generates symbolic de­
bug information for global and local static variables as 
well as line numbers. The linker also generates load 
maps and module/symbol cross-reference listings to 
make debugging faster. 

C - the Right Choice for the Right Project 

Why spend months of extra development time to save 
some money on memory chips? Constantly lower 
memory prices have reduced the need to save on every 
byte of memory. Typically, only in high-volume applica­
tions, do the cost savings in memory chips from assem­
bly programming justify the extra costs in development 
time. (See Figure 10-6.) 

In low and medium volume applications, C is the right 
choice. Development time and costs are cut by at least 
50% and the product goes out the door faster-all for 
minimal extra memory costs per system. 



C is also the right choice for projects on a tight time 
schedule and for any products requiring complex soft­
ware development. Assembly programming might be 
best if most code is very time-critical. 

Archimedes Microcontroller C-8051 Kit comes with both 
a C compiler and a macro assembler to provide optimal 
flexibility. C speeds up software development and the 
macro assembler can be used to optimize time-critical 
sections of code, where necessary. 

HIGH 
(>10,000) 

Annual 
volume of 

micro­
controller 

based 
product 

LOW 
(<10,000) 

CHAPTER 10 
Third-Party Support Products 

SHORT LONG 
..,.,.,,_., Development Time,-----

Figure 10-6. C • Right Tool for the Right Project 

10-23 



CHAPTER10 
Third Party Support Products 

DATA 1/0 PROGRAMMERS 

How Programmers Work 

Programmers apply very specific voltages to device pins 
to "blow" a fuse and thereby record a value, either 
memory or logical. Programming waveforms are gener­
ated from raw programmer power supplies using regula­
tors controlled by the programmer's microprocessor. 
The specific power, rise and fall, etc. of the charge are 
specified by device-specific algorithms recorded within 
the programmer. 

Values for programming variables, including pinouts, 
voltage levels and timing, are stored in firmware or floppy 
tables. When a particular device is chosen, the program­
mer uses information stored in these tables to assemble 
a device-specific programming routine in scratch RAM. 
Device pinout variations are handled by different device 
sockets, cartridges or modules on the programmer or 
pak. Newer programmers such as Data I/O's UniSite can 
program any device up to 40 pins on one socket. To 
maximize control speed during programming, the pro­
grammer and pak make extensive use of addressable 
latches for control signals. 

Programmers range in price from under $500 to over 
$15,000. Along with basic capability, part of the price 
differential is the result of more established programmer 
manufacturers establishing a system of seeking semi­
conductor manufacturers' approvals for device support. 
Data 1/0 works closely with the device makers to support 
a new device before silicon is available. When samples 
are available the device maker approves device support. 

Programmer Controls 

Data 1/0 programmers can obtain data from three 
sources; a master device, a serial port/disk drive, or from 
the keyboard. Master devices are first copied into the 
programmer RAM where the code can be edited at the bit 
level or copied onto other media. Code can be edited 
using the integral keyboard or by loading it into a PC and 
editing it onscreen. On most Data 1/0 programmers, a 
standard terminal will also enable the code to be edited 
on screen. 

PROMlink is Data I/O's optional PC-based control soft­
ware for all of Data I/O's programmers. It enables the 
user to control any programmer from a simple menu 
system, storing data and configuration files on hard or 
floppy disk. It allows simple bit-editing functions in ASCII 
or Hex and will convert from one to the other. It also has 
a simple device labeling function using a standard 
PC printer. 

10-24 

Programmers can be networked and assigned a node 
identification on most workstation networks, such as PC, 
UNIX or VAX. This allows centralized device data stor­
age for both engineering and testing groups and facili­
tates data transfer. An engineer can develop a design at 
a PC or workstation node and download to a remote 
programmer. 

Device files are generally kept on disk or on master 
devices. Programmers require updates to be able to 
program the most current devices and these updates are 
also provided on firmware, i.e. programmed devices, or 
floppy disks. Data 1/0 offers annual update services 
which automatically keep a programmer at the most 
current revision. 

All data transfer or verification operations take place 
between the programmer's internal RAM and the device 
or between the RAM and serial port or floppy drive in the 
programmer. Because the operation procedure to trans­
fer data via a serial port varies from programmer to 
programmer, we will describe data transfer with the most 
widely used system. All of these functions can occur from 
the programmer front panel or from a remote terminal. 

Typical Programmer Operation Steps 

• Load RAM with data from a master device. 

• Press COPY and the programmer will prompt 
COPY DATA FROM. 

• Select DEVICE and the programmer prompts 
DEV "ADDA/SIZE TO. 

• Select RAM and the programmer prompts 
CO DEV>RAM " ADDA. 

• Press START and the programmer will lead 
through the device selection process to identify 
master device type. 

• Place the master device in the main programmer 
socket and press ST ART to load data into RAM. 
From RAM it can be programmed into a device 
different from the master or stored on floppy disk. 

• Verify RAM against the master device. 

• Program a new device with RAM data. 

Data editing is possible while data is in RAM. The 
programmer allows simple bit editing on the internal LED 
command line screen or on a remote terminal or PC. 
Using PROMlink for full screen editing on a PC allows 
editing/input in ASCII or Hex and automatic conversion 
from one to the other. 



Set programming allows the downloading of an entire 
data file into RAM (up to a maximum of 512K bytes on 
most programmers with 1 Mbyte coming soon) in one 
operation. The data is automatically split according to 
word width into as many devices as required, which are 
then programmed sequentially. 

Programmer Types and Technology 

An "Engineering" programmer is generally a stand-alone 
one-device-at-a-time programmer. Models are available 
that do memory only, logic only or memory and logic. 

Inexpensive memory-only programmers are often ap­
propriate for the first-time user. They are usually in the 
$1,000 range for a name brand and generally support 
MOS/CMOS EPROMs and EEPROMs up to 512K bits. 
The better ones support 8-, 16- and 32-bit-wide words 
and may be run from the front panel keyboard or by an 
optional PC interface. 

Universal logic and memory programmers are the "work­
horse" engineering programmers. Most engineers prefer 
them for their flexibility and adaptability to future device 
needs. They generally consist of a mainframe unit con­
taining the power supply, primary microprocessor, 
memory, keypad and control functions. Modules or paks 
are then added to characterize the mainframe for mem­
ory, multiple memory or logic (see page 10-26). The most 
popular units translate data from 29 or more popular 
formats and have up to 1 Mbyte of internal RAM. 

Functional Specifications tor the Data 110 298 
System: 

• General Architecture: Microprocessor controlled 

• Data RAM: 256 x 8 standard, upgrades available 
to 1 Mbyte 

• Pr~gramming Support: GangPak, LogicPak, 
UrnPak 28, MOSPak, and programming modules 

• Keyboard: 16-key hexadecimal and 9-key func­
tional 

• Functional keys: 
Copy: Used to move a block of data to or from a 
serial port, RAM, or device. Works in conjunction 
with source/destination keys. 

Verify: Used to make a byte-by-byte comparison 
of a block of data. Used with source/destination 
keys. 

Select: Prepares the programmer to accept 
codes for select functions. 

Edit: Allows viewing and changing of data at 
individually selected RAM address locations 

CHAPTER10 
Third Party Support Products 

• Display: 16-character alphanumeric 

• Input/Output: Serial RS-232C and 20mA current 
loop 

• Baud Rates: 50 75, 110, 134.5, 150 300 600 
1200, 1800,2000,2400,3600,4800'. 720b,96bO 

• Remote Control: PROMlink (MS-DOS) optional 
Computer Remote Control (CRC) 

Terminal Remote Control (SAC) 

• Translation Formats: 29 available 

• Ha~dler Capa~ilit_y: Optional handler port is 
available for binning and control signals 

Pin-driver technology programmers are the newest pro­
gramming technology. They use a dedicated voltage 
driver for each pin, enabling each programming socket 
pin to be configured by software to execute device­
specific information including voltage, current, logic 
level, ground and Vee outputs. 

Gang programmers or gang programming paks have a 
master socket and usually seven slave sockets. They 
are useful in the engineering environment or limited 
production runs, to run small batches of identical parts or 
to do set programming. In the set-programming mode, 
most gang programmers allow several sets to be pro­
grammed at once. 

Production programmers are high-throughput program­
ming and test fixtures intended for the production floor. 
For devices that program rapidly, the most common 
method is serial programming, whereby a single-socket 
programmer is connected to an automatic device handler 
that runs chips individually by a programming/lest head. 
Most memory devices program most efficiently on a 
parallel programmer whereby . 10 or 20 devices are 
loaded into individual programming/test sockets and are 
programmed at once. More recently designed models 
such as Data I/O's Series 1000 have "rails" whereby the 
device sockets are aligned end to end and entire tubes 
can be smoothly loaded, programmed and unloaded. 
Sophisticated production programmers such as Data 
I/O's Series 1000 can also serialize devices in specified 
areas of device memory, label devices and provide 
simple code-editing capability. 

The programming pass also includes tests for continuity, 
incorrectly inserted devices and a data comparison with 
RAM. On programmers like the Series 1000, full pro­
gramming pass/fail statistical data is accumulated by 
time of day, socket and device. Calibration is automatic 
and production statistics can be stored on disk. 

10-25 



CHAPTER10 
Third Party Support Products 

In-circuit programming entails programming a device or 
devices already mounted on a board. The program­
mable devices are soldered in place and programmed 
through a specially designed edge-connector. Boards 
must be designed from the beginning to accommodate 
the technology and to protect microprocessors from 
higher voltages. For certain types of applications the 
additional effort can be worth it. Typical reasons for 
adopting an in-circuit design include the elimination of 
additional device handling and increased board reliabil­
ity. Specific reasons for avoiding individual device pro­
gramming include the following: 

• High device count per board statistically in­
creases the chance of physically damaged 
devices during handling. 

Programmer Systems Overviews 

Unisite 40 supports every microcontroller, PROM, 
EPROM, EEPROM, PLD, IFL and FPLA thatfits in its 40-
pin DIP socket. The optional ChipSite module adds a 
single site for PLCCs, LCCs and SOI Cs. Unisite 40 uses 
universal pin drivers to drive each pin to any state needed 
to program and test a programmable device. The system 
provides 128K bytes of RAM and two disk drives as 
standard; 1 Mbyte of internal memory is available on 
order. Updates are provided on 3 1/2" floppy disks. 

The 298 System provides a universal system for pro­
gramming, testing and verifying a variety of memory and 
logic devices. The 298 can be tailored to specific pro­
gramming needs by selecting the appropriate program­
ming pak, shown below, and simply plugging it into the 
298. 

Programming Paks 

• Unipak 28 programs more than 1200 devices, 
including MOS and CMOS EPROMs and 
EEPROMs, fuse link, AIM and DEAP bipolar 
PROMs. Simple pinout cartridges are available 
for 40-pin microcomputers and parts with non­
standard pinouts and unique package types 
(LCC, PLCC). 

• LoglcPak combined with appropriate plug-in 
adapters, allows you to design, program and 
functionally test more than 440 different logic 
devices. 

10-26 

• Frequently updated code, requiring excess 
removal, aowntime or additional ooards to control 
the board float. 

• Surface-mount devices particularly defy modifica­
tions if they are not in-circuit programmable. 

• Soldered-in designs, especially military design 
specs which often require soldered-in devices, 
are difficult or impossible to remove. 

Data 110 supports the full line of programmable products 
from AMD including the 87C51, 87C52T2, 87C521, 
87C541, 8751 H and 8753H microcontrollers. 



CHAPTER 11 

Package Outlines 

Plastic Dual-in-Line Package 
Ceramic Hermetic Dual-in-Line Packages 
Plastic Leaded Chip Carriers 
Ceramic Leadless Chip Carriers 

11-1 
11-2 
11-3 
11-4 





CHAPTER 11 

Package Outlines 
PHYSICAL DIMENSIONS* 

Plastic Dual-In-Line Package (PD) 

PD040 

2.040 
--~~~~~~~-2.oao~~~~~~~--

.530 

.580 

.140 I E~::: .225 _1_ 

.125 T 

.160 

-II- .014 
.023 

• For reference only. 

r---·~--i I .--.620-----,_ I 

PID#06823B 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

11-1 



CHAPTER 11 
Package Outlines 

Ceramic Hermetic Dual-In-Line Packages (CD/CDV) 

CD040 

.. , __ .098 

MAX ........................................................................... =-=-,:t 
.§§§ 
.605 

~~............................................. J_ 
.100 
BSC 

~~ 
.005 
MIN 

.590 

.615 

~:: .160 ~ i 
.220 

.125 + 

.160 

t ---11.-- .Q15 
.022 

06824C 

CDV040 

2.000 "I _ .090 L 2.035 

I MAX ,.............. .......................................................................................... , 
.565 
.605 

-,....,...,.................., .............................. .....,.._....._.._. ............... -- _j_ 

.100 
BSC 

~~ 
.005 
MIN 

.16~~ .22~ 
.125 
.160 t . ---II.- .015 

.015 

.060 _+ 
f 

.022 

i---.700 ---1 
MAX 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

11-2 

.150 
MIN 

07880C 

]' 

I' 



1 
.685 
.695 

.042 

.048 -

Plastic Leaded Chip Carriers (PL) 

PL044 

.050 
REF. 

.090 

.120 

.042 

.056 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 

CHAPTER 11 
Package Outlines 

.009 

.015 

.165 

.175 

f 
.590 
.630 

11-3 



CHAPTER 11 
Patkage Outlines 

11-4 

.045 

.055 

Ceramic Leadless Chip Carrier (CLV) 
CLV044 

N 

! ! 
l~.080 

. J4ci 

~ 
.088 

1ITI 0 ~ ~ 
~ .660 

~_J-_J_J 
PID<I09703C 

NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4. 



llli'·li!!i§ll 
North American _________ _ 
ALABAMA .............................................................. (205) 882-9122 
ARIZONA ............................................................... (602) 242-4400 
CALIFORNIA, 

Culver City ........................................................ (213) 645-1524 
Newport Beach ................................................ !714! 752-6262 
Rosev!lle ........................................................... 916 786-6700 
San Diego ......................................................... 619 560-7030 
San Jose ..... , ..................................................... (408) 452-0500 
Woodland Hills ................................................. (818) 992-4155 

CANADA, Ontario, 

~~17~~~aia·::::::::::::::::::::::::::::::::::::::::::::::::::::::::!:l~! m:g~~g 
COLORADO .......................................................... (303) 741-2900 
CONNECTICUT .................................................... (203) 264-7800 
FLORIDA, 

Clearwater ........................................................ (813) 530-9971 
Ft. Lauderdale .................................................. (305) 776-2001 
Orlando (Casselberry) .................................... (407) 830-8.100 

GEORGIA .............................................................. (404) 449-7920 
ILLINOIS, 

Chicago (Itasca) .............................................. (312) 773-4422 
Naperville .......................................................... (312) 505-9517 

KANSAS ................................................................. (913! 451-3115 
MARYLAND ........................................................... (301 796-9310 
MASSACHUSETTS .............................................. (617 273-3970 
MICHIGAN ............................................................. (313) 347-1522 
MINNESOTA ......................................................... (612) 938-0001 
NEW JERSEY, 

Cher.ry Hill ......................................................... (609) 662-2900 
Pars1ppany ....................................................... (201) 299-0002 

NEW YORK, 
Liverpool·····:····················································· (315) 457-5400 
Poughkeepsie .................................................. (914) 471-8180 
Rochester ....... , ................................................. (716) 272-9020 

NORTH CAROLINA .............................................. (919) 878-8111 
OHIO, 

Columbus (Westerville) .................................. (614) 891-6455 
Dayton ............................................................... (513) 439-0470 

OREGON ............................................................... !503! 245-0080 
PENNSYLVANIA ................................................... 215 398-8006 
SOUTH CAROLINA .............................................. 803 772-6760 
TEXAS, . 

~~~~~ :: ::::::::::::::: :::::::::::: :::::::::::::::::::::::::::::: ::::: rn i ~! m:~~~g 
Houston ... (713) 785-9001

International __________ _
BELGIUM, Bruxelles TEL (02) 771-91-42

FAX (02) 762-37-12
TLX 846-61028

FRANCE, Paris TEL (1) 49-75-10-10
FAX (1) 49-75-10-13
TLX .. 263282F

WEST GERMANY,
Hannover area TEL (0511) 736085

FAX (0511) 721254
TLX ... 922850

MOnchen TEL (089) 4114-0
FAX (089) 406490
TLX ... 523883

Stuttgart TEL (0711) 62 33 77
FAX (0711) 625187
TLX ... 721882

HONG KONG, TEL 852-5-8654525
Wanchai FAX 852-5-8654335

TLX 67955AMDAPHX
ITALY, Milan TEL (02) 3390541

.............. ·················· (022 3533241
FAX (02 3498000
TLX 8 3-315286

JAPAN,

Kanagawa n~ ::::::::::::::::::::::::::::::::::~~::~:m~
Tokyo··························· TEL ·······························s03) 345-8241

FAX 03) 342-5196
TLX J24 64AMDTKOJ

Osaka TEL 06-243-3250
FAX 06-243-3253

International (Continued) _______ _
KOREA, Seoul TEL 822-784-0030

FAX 822-784-8014
LATIN AMERICA,

Ft. Lauderdale TEL (305) 484-8600
FAX (305) 485-9736
TLX 5109554261 AMDFTL

NORWAY, Hovik TEL (03) 010156
FAX (02) 591959
TLX 79079HBCN

SINGAPORE TEL 65-3481188
FAX 65-3480161
TLX 55650 AMDMMI

SWEDEN,
Stockholm TEL (08) 733 03 50
(Sundbyberg) FAX (08) 733 22 85

TLX ... 11602
TAIWAN TEL 886-2-7213393

FAX 886-2-7723422
TLX 886-2-7122066

UNITED KINGDOM,
Manchester area TEL (0925) 828008
(Warrington) FAX (0925) 827693

TLX 851-628524
London area TEL (0483) 740440
(Woking) FAX (0483) 756196

TLX 851-859103

North American Representatives--­
cANADA
Burnaby, B.C.

DAVETEK MARKETING (604) 430-3680
Calgary, Alberta

DAVETEK MARKETING (403) 291-4984
Kanata, Ontario

VITEL ELECTRONICS (613) 592-0060
Mississauga, Ontario

VITEL ELECTRONICS (416) 676-9720
Lachine, Quebec

VITEL ELECTRONICS (514) 636-5951
IDAHO

INTERMOUNTAIN TECH MKTG, INC (208) 888-6071
ILLINOIS

HEARTLAND TECH MKTG, INC (312) 577-9222
IN DIANA

Huntin3ton - ELECTRONIC MARKETING
CONS LTANTS, INC (317) 921-3450
Indianapolis - ELECTRONIC MARKETING
CONSULTANTS, INC (317) 921-3450

IOWA
LORENZ SALES .. (319) 377-4666

KANSAS
Merriam -LORENZ SALES (913) 384-6556
Wichita -LORENZ SALES (316) 721-0500

KENTUCKY
ELECTRONIC MARKETING
CONSULTANTS, INC (317) 921-3452

MICHIGAN
Birmingham - MIKE RAICK ASSOCIATES .. (313) 644-5040
Holland -COM-TEK SALES, INC (616) 399-7273
Novi -COM-TEK SALES, INC (313) 344-1409

MISSOURI
LORENZ SALES .. (314) 997-4558

NEBRASKA
LORENZ SALES .. (402) 475-4660

NEW MEXICO
THORSON DESERT STATES (505) 293-8555

NEW YORK
East Syracuse - NYCOM, INC (315) 437-8343
Woodbury-COMPONENT
CONSULTANTS, INC (516) 364-8020

OHIO
Centerville - DOLFUSS ROOT & CO (513) 433-6776
Columbus -DOLFUSS ROOT & CO (614) 885-4844
Strongsville - DOLFUSS ROOT & CO (216) 238-0300

PENNSYLVANIA
DOLFUSS ROOT & CO (412) 221-4420

PUERTO RICO
COMP REP ASSOC, INC (809) 746-6550

UTAH, R2 MARKETING (801) 595-0631
WASHINGTON

ELECTRA TECHNICAL SALES (206) 821-7442
WISCONSIN

HEARTLAND TECH MKTG, INC (414) 792-0920
Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details,
contact your local AMO sales representative. The company assumes no responsibility for the use of any circuits described herein.

Advanced Micro Devices, Inc. 901 Thompson Place, P.O. Box 3453, Sunnyvale, CA 94088, USA
Tel: (408) 732-2400 •TWX: 910-339-9280 •TELEX: 34-6306 •TOLL FREE: (800) 538-8450
APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323 • (408) 749-5703

© 1989 Advanced Micro Devices, Inc.
819189

Printed In USA

Notes

!'·

