

THE
PORTABLE EXECUTABLE FORMAT

Original version: Micheal J. O'Leary (Microsoft)

Contents

1. Overview

2. PE Header

3. Section Table

4. Image Pages

5. Exports
l 5.1 Export Directory Table
l 5.2 Export Address Table
l 5.3 Export Name Table Pointers
l 5.4 Export Ordinal Table
l 5.5 Export Name Table

6. Imports
l 6.1 Import Directory Table
l 6.2 Import Lookup Table
l 6.3 Hint-Name Table
l 6.4 Import Address Table

7. Thread Local Storage
l 7.1 Thread Local Storage Directory Table
l 7.2 Thread Local Storage CallBack Table

8. Resources
l 8.1 Resource Directory Table
l 8.2 Resource Example

9. Fixup Table
l 9.1 Fixup Block

10. Debug Information
l 10.1 Debug Directory

Page 1 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

1. Overview

Figure 1. A typical 32-bit Portable EXE File Layout

2. PE Header

DOS 2 Compatible EXE Header

DOS 2.0 Section
(for DOS compatability only)

Unused
OEM Identifier
OEM Info
Offset to PE Header
DOS 2.0 Stub Program & Reloc. Table
Unused
PE Header Aligned on 8 byte boundary
Section Table
Image Pages
l Import info
l Export info
l Fixup info
l Resouce info
l Debug info

0 SIGNATURE BYTES CPU TYPE SECTIONS
8 TIME/DATE STAMP RESERVED
16 RESERVED PE/NT HDR SIZE FLAGS
24 RESEVED LMAJOR LMINOR RESERVED
32 RESERVED RESERVED
40 ENTRY POINT RVA RESERVED
48 RESERVED IMAGE BASE
56 SECTION ALIGN FILE ALIGN
64 OS MAJOR OS MINOR USER MAJOR USER MINOR

72 SUBSYS
MAJOR SUBSYS MINOR RESERVED

80 IMAGE SIZE HEADER SIZE
88 FILE CHECKSUM SUBSYSTEM DLL FLAGS
96 STACK RESERVE SIZE STACK COMMIT SIZE

104 HEAP RESERVE SIZE HEAP COMMIT SIZE
112 RESERVED # INTERESTING RVA/SIZES
120 EXPORT TABLE RVA TOTAL EXPORT DATA SIZE
128 IMPORT TABLE RVA TOTAL IMPORT DATA SIZE

Page 2 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

Figure 2. PE Header

Notes:

A VA is a virtual address that is already biased by the Image Base found in the PE Header. A
RVA is a virtual address that is relative to the Image Base.

An RVA in the PE Header which has a value of zero indicates the field isn't used.

Image pages are aligned and zero padded to a File Align boundary. The bases of all other
tables and structures must be aligned on DWORD (4 byte) boundary. Thus, all VA's and
RVA's must be on a 32 bit boundary. All table and structure fields must be aligned on their
"natural" boundaries, with the possible exception of the Debug Info.

SIGNATURE BYTES = DB * 4.
Current value is "PE/0/0". Thats PE followed by two zeros (nulls).

CPU TYPE = DW CPU Type.
This field specifies the type of CPU compatibility required by this
image to run. The values are:

l 0000h __unknown
l 014Ch __80386
l 014Dh __80486
l 014Eh __80586
l 0162h __MIPS Mark I (R2000, R3000)
l 0163h __MIPS Mark II (R6000)
l 0166h __MIPS Mark III (R4000)

SECTIONS = DW Number of section entries.
This field specifies the number of entries in the Section Table.

TIME/DATE STAMP = DD Used to store the time and date the file was
created or modified by the linker.

NT HDR SIZE = DW This is the number of remaining bytes in the NT
header that follow the FLAGS field.

FLAGS = DW Flag bits for the image.
The flag bits have the following definitons:

136 RESOURCE TABLE RVA TOTAL RESOURCE DATA SIZE
144 EXCEPTION TABLE RVA TOTAL EXCEPTION DATA SIZE
152 SECURITY TABLE RVA TOTAL SECURITY DATA SIZE
160 FIXUP TABLE RVA TOTAL FIXUP DATA SIZE
168 DEBUG TABLE RVA TOTAL DEBUG DATA SIZE
176 IMAGE DESCRTIPTION RVA TOTAL DECRIPTION SIZE
184 MACHINE SPECIFIC RVA MACHINE SPECIFIC SIZE
192 THREAD LOCAL STORAGE RVA TOTAL TLS SIZE

Page 3 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

l 0000h __Program image.
l 0002h __Image is executable.
If this bit isn't set, then it indicates that either errors where detected at link time or that the
image is being incrementally linked and therefore can't be loaded.
l 0200h __Fixed.
Indicates that if the image can't be loaded at the Image Base, then don't load it.
l 2000h __Library image.

LMAJOR/LMINOR = DB Linker major/minor version number.

ENTRYPOINT RVA = DD Entrypoint relative virtual address.
The address is relative to the Image Base. The address is the starting address for program
images and the library initialization and library termination address for library images.

IMAGE BASE = DD The virtual base of the image.
This will be the virtual address of the first byte of the file (Dos Header). This must be a
multiple of 64K.

SECTION ALIGN = DD The alignment of the sections. This must be a power of 2 between
512 and 256M inclusive. The default is 64K.

FILE ALIGN = DD Alignment factor used to align image pages. The alignment factor (in
bytes) used to align the base of the image pages and to determine the granularity of per-
section trailing zero pad. Larger alignment factors will cost more file space; smaller
alignment factors will impact demand load performance, perhaps significantly. Of the two,
wasting file space is preferable. This value should be a power of 2 between 512 and 64K
inclusive.

OS MAJOR/MINOR = DW OS version number required to run this image.

USER MAJOR/MINOR # = DW User major/minor version number.
This is useful for differentiating between revisions of images/dynamic linked libraries. The
values are specified at link time by the user.

SUBSYS MAJOR/MINOR # = DW Subsystem major/minor version number.

IMAGE SIZE = DD The virtual size (in bytes) of the image.
This includes all headers. The total image size must be a multiple of Section Align.

HEADER SIZE = DD Total header size.
The combined size of the Dos Header, PE Header and Section Table.

FILE CHECKSUM = DD Checksum for entire file. Set to 0 by the linker.

SUBSYSTEM = DW NT Subsystem required to run this image.
The values are:

l 0000h __Unknown
l 0001h __Native
l 0002h __Windows GUI
l 0003h __Windows Character
l 0005h __OS/2 Character
l 0007h __Posix Character

Page 4 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

DLL FLAGS = DW Indicates special loader requirements.
This flag has the following bit values:

l 0001h __Per-Process Library Initialization.
l 0002h __Per-Process Library Termination.
l 0004h __Per-Thread Library Initialization.
l 0008h __Per-Thread Library Termination.

All other bits are reserved for future use and should be set to zero.

STACK RESERVE SIZE = DD Stack size needed for image.
The memory is reserved, but only the STACK COMMIT SIZE is committed. The next page
of the stack is a 'guarded page'. When the application hits the guarded page, the guarded page
becomes valid, and the next page becomes the guarded page. This continues until the
RESERVE SIZE is reached.

STACK COMMIT SIZE = DD Stack commit size.

HEAP RESERVE SIZE = DD Size of local heap to reserve.

HEAP COMMIT SIZE = DD Amount to commit in local heap.

INTERESTING VA/SIZES = DD Indicates the size of the VA/SIZE array that follows.

EXPORT TABLE RVA = DD Relative Virtual Address of the Export Table.
This address is relative to the Image Base.

IMPORT TABLE RVA = DD Relative Virtual Address of the Import Table.
This address is relative to the Image Base.

RESOURCE TABLE RVA = DD Relative Virtual Address of the Resource
Table. This address is relative to the Image Base.

EXCEPTION TABLE RVA = DD Relative Virtual Address of the Exception
Table. This address is relative to the Image Base.

SECURITY TABLE RVA = DD Relative Virtual Address of the Security Table. This
address is relative to the Image Base.

FIXUP TABLE RVA = DD Relative Virtual Address of the Fixup Table.
This address is relative to the Image Base.

DEBUG TABLE RVA = DD Relative Virtual Address of the Debug Table.
This address is relative to the Image Base.

IMAGE DESCRIPTION RVA = DD Relative Virtual Address of the description string
specified in the module definiton file.

MACHINE SPECIFIC RVA = DD Relative Virtual Address of a machine specific value.
This address is relative to the Image Base.

TOTAL EXPORT DATA SIZE = DD Total size of the export data.

TOTAL IMPORT DATA SIZE = DD Total size of the import data.

Page 5 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

TOTAL RESOURCE DATA SIZE = DD Total size of the resource data.

TOTAL EXCEPTION DATA SIZE = DD Total size of the exception data.

TOTAL SECURITY DATA SIZE = DD Total size of the security data.

TOTAL FIXUP DATA SIZE = DD Total size of the fixup data.

TOTAL DEBUG DIRECTORIES = DD Total number of debug directories.

TOTAL DESCRIPTION SIZE = DD Total size of the description data.

MACHINE SPECIFIC SIZE = DD A machine specific value.

3. Section Table

The number of entries in the Section Table is given by the # Sections field in the PE Header.
Entries in the Section Table are numbered starting from one. The section table immediately
follows the PE Header. The code and data memory sections entries are in the order chosen by
the linker. The virtual addresses for sections must be assigned by the linker such that they are
in ascending order and adjacent, and must be a multiple of Section Align in the PE header.

Each Section Table entry has the following format:

Figure 3. Section Table

SECTION NAME = DB * 8 Section name. This is an eight-byte null-padded ASCII string
representing the section name.

VIRTUAL SIZE = DD Virtual memory size. The size of the section that will be allocated
when the section is loaded. Any difference between PHYSICAL SIZE and VIRTUAL SIZE
is zero filled.

RVA = DD Relative Virtual Address. The virtual address the section is currently relocated
to, relative to the Image Base. Each Section's virtual address space consumes a multiple of
Section Align (power of 2 between 512 and 256M inclusive. Default is 64K), and
immediately follows the previous Section in the virtual address space (the virtual address
space for a image must be dense).

PHYSICAL SIZE = DD Physical file size of initialized data. The size of the initialized data
in the file for the Section. The physical size must be a multiple of the File Align field in the

SECTION NAME
VIRTUAL SIZE RVA

PHYSICAL SIZE PHYSICAL OFFSET
RESERVED RESEVED
RESEVED SECTION FLAGS

Page 6 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

PE Header, and must be less than or equal to the Virtual Size.

PHYSICAL OFFSET = DD Physical offset for section's first page. This offset is relative to
beginning of the EXE file, and is aligned on a multiple of the File Align field in the PE
Header. The offset is used as a seek value.

SECTION FLAGS = DD Flag bits for the section. The section flag bits have the following
definitions:

l 000000020h __Code section.
l 000000040h __Initialized data section.
l 000000080h __Uninitialized data section.
l 040000000h __Section must not be cached.
l 080000000h __Section is not pageable.
l 100000000h __Section is shared.
l 200000000h __Executable section.
l 400000000h __Readable section.
l 800000000h __Writeable section.

All other bits are reserved for future use and should be set to zero.

4. Image Pages

The Image Pages section contains all initialized data for all sections. The seek offset for the
first page in each section is specified in the section table and is aligned on a File Align
boundary. The sections are ordered by the RVA. Every section begins on a multiple of
Section Align.

5. Exports

A typical file layout for the export information follows:

Figure 4. Export File Layout

5.1 Export Directory Table

DIRECTORY TABLE
ADDRESS TABLE
NAME PTR TABLE
ORDINAL TABLE
NAME STRINGS

Page 7 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

The export information begins with the Export Directory Table which describes the
remainder of the export information. The Export Directory Table contains address
information that is used to resolve fixup references to the entry points within this image.

Figure 5. Export Directory Table Entry

EXPORT FLAGS = DD Currently set to zero.

TIME/DATE STAMP = DD Time/Date the export data was created.

MAJOR/MINOR VERSION = DW A user settable major/minor version number.

NAME RVA = DD Relative Virtual Address of the Dll asciiz Name. This is the address
relative to the Image Base.

ORDINAL BASE = DD First valid exported ordinal. This field specifies the starting ordinal
number for the export address table for this image. Normally set to 1.

EAT ENTRIES = DD Indicates number of entries in the Export Address Table.

NAME PTRS = DD This indicates the number of entries in the Name Ptr Table (and
parallel Ordinal Table).

ADDRESS TABLE RVA = DD Relative Virtual Address of the Export Address Table.
This address is relative to the Image Base.

NAME TABLE RVA = DD Relative Virtual Address of the Export Name Table Pointers.
This address is relative to the beginning of the Image Base. This table is an array of RVA's
with # NAMES entries.

ORDINAL TABLE RVA = DD Relative Virtual Address of Export Ordinals Table Entry.
This address is relative to the beginning of the Image Base.

5.2 Export Address Table

The Export Address Table contains the address of exported entrypoints and exported data
and absolutes. An ordinal number is used to index the Export Address Table. The ORDINAL
BASE must be subracted from the ordinal number before indexing into this table.

EXPORT FLAGS
TIME/DATA STAMP

MAJOR VERSION MINOR VERSION
NAME RVA

ORDINAL BASE
EAT ENTRIES
NAME PTRS

ADDRESS TABLE RVA
NAME PTR TABLE RVA
ORDINAL TABLE RVA

Page 8 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

Export Address Table entry formats are described below:

Figure 6. Export Address Table Entry

EXPORTED RVA = DD Export address.
This field contains the relative virtual address of the exported entry (relative to the Image
Base).

5.3 Export Name Table Pointers

The export name table pointers array contains address into the Export Name Table. The
pointers are 32-bits each, and are relative to the Image Base. The pointers are ordered
lexically to allow binary searches.

5.4 Export Ordinal Table

The Export Name Table Pointers and the Export Ordinal Table form two parallel arrays,
separated to allow natural field alignment. The export ordinal table array contains the Export
Address Table ordinal numbers associated with the named export referenced by
corresponding Export Name Table Pointers.

The ordinals are 16-bits each, and already include the Ordinal Base stored in the Export
Directory Table.

5.5 Export Name Table

The export name table contains optional ASCII names for exported entries in the image.
These tables are used with the array of Export Name Table Pointers and the array of Export
Ordinals to translate a procedure name string into an ordinal number by searching for a
matching name string. The ordinal number is used to locate the entry point information in the
export address table.

Import references by name require the Export Name Table Pointers table to be binary
searched to find the matching name, then the corresponding Export Ordinal Table is known
to contain the entry point ordinal number. Import references by ordinal number provide the
fastest lookup since searching the name table is not required.

Each name table entry has the following format:

Figure 7. Export Name Table Entry

ASCII STRING = DB ASCII String.
The string is case sensitive and is terminated by a null byte.

6. Imports

EXPORTED RVA

ASCII STRING ::: :::::::: '\0'

Page 9 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

A typical file layout for the import information follows:

Figure 8. Import File Layout

6.1 Import Directory Table

The import information begins with the Import Directory Table which describes the
remainder of the import information. The Import Directory Table contains address
information that is used to resolve fixup references to the entry points within a DLL image.
The import directory table consists of an array of Import Directory Entries, one entry for
each DLL this image references. The last directory entry is empty (NULL) which indicates
the end of the directory table.

An Import Directory Entry has the following format:

DIRECTORY TABLE
NULL DIR ENTRY

DLL1 LOOKUP TABLE
NULL

DLL2 LOOKUP TABLE
NULL

DLL3 LOOKUP TABLE
NULL

HINT-NAME TABLE

DLL1 ADDRESS TABLE
NULL

DLL2 ADDRESS TABLE
NULL

DLL3 ADDRESS TABLE
NULL

0 IMPORT FLAGS
4 TIME/DATA STAMP
8 MAJOR VERSION MINOR VERSION
12 NAME RVA
16 IMPORT LOOKUP TABLE RVA
20 IMPORT ADDRESS TABLE RVA

Page 10 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

Figure 9. Import Directory Entry

IMPORT FLAGS = DD Currently set to zero.

TIME/DATE STAMP = DD Time/Date the import data was pre-snapped or zero if not pre-
snapped.

MAJOR/MINOR VERSION = DW The major/minor version number of the dll being
referenced.

NAME RVA = DD Relative Virtual Address of the Dll asciiz Name. This is the address
relative to the Image Base.

IMPORT LOOKUP TABLE RVA
= DD This field contains the address of the start of the import lookup table for this image.
The address is relative to the beginning of the Image Base.

IMPORT ADDRESS TABLE RVA = DD This field contains the address of the start of the
import addresses for this image. The address is relative to the beginning of the Image Base.

6.2 Import Lookup Table

The Import Lookup Table is an array of ordinal or hint/name RVA's for each DLL. The last
entry is empty (NULL) which indicates the end of the table.

The last element is empty.

Figure 10. Import Address Table Format

ORDINAL/HINT-NAME TABLE RVA = 31-bits (mask = 7fffffffh) Ordinal Number or
Name Table RVA. If the import is by ordinal, this field contains a 31 bit ordinal number. If
the import is by name, this field contains a 31 bit address relative to the Image Base to the
Hint-Name Table.

O = 1-bit (mask = 80000000h) Import by ordinal flag.
l 00000000h __Import by name.
l 80000000h __Import by ordinal.

6.3 Hint-Name Table

The Hint-Name Table format follows:

The PAD field is optional.

ORDINAL#/HINT-NAME
TABLE RVA

HINT ASCII STRING
xxxxx '\0' PAD

Page 11 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

Figure 11. Import Hint-Name Table

HINT = DW Hint into Export Name Table Pointers. The hint value is used to index the
Export Name Table Pointers array, allowing faster by-name imports. If the hint is incorrect,
then a binary search is performed on the Export Name Ptr Table.

ASCII STRING = DB ASCII String. The string is case sensitive and is terminated by a null
byte.

PAD = DB Zero pad byte. A trailing zero pad byte appears after the trailing null byte if
necessary to align the next entry on an even boundary.

The loader overwrites the import address table when loading the image with the 32-bit
address of the import.

6.4 Import Address Table

The Import Address Table is an array of addresses of the imported routines for each DLL.
The last entry is empty (NULL) which indicates the end of the table.

7. Thread Local Storage

Thread local storage is a special contiguous block of data. Each thread will gets its own
block upon creation of the thread.

The file layout for thread local storage follows:

Figure 12. Thread Local Storage Layout

7.1 Thread Local Storage Directory Table

The Thread Local Storage Directory Table contains address information that is used to
describe the rest of TLS.

The Thread Local Storage Directory Table has the following format:

DIRECTORY TABLE

TLS DATA

INDEX VARIABLE

CALLBACK ADDRESSES

START DATA BLOCK VA
END DATA BLOCK VA

Page 12 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

Figure 13. Thread Local Storage Directory Table

START DATA BLOCK VA = DD Virtual Address of the start of the thread local storage
data block.

END DATA BLOCK VA = DD Virtual Address of the end of the thread local storage data
block.

INDEX VA = DD Virtual Address of the index variable used to access the thread local
storage data block.

CALLBACK TABLE VA = DD Virtual Address of the callback table.

7.2 Thread Local Storage CallBack Table

The Thread
Local Storage Callbacks is an array of Virtual Address of functions to be called by the loader
after thread creation and thread termination. The last entry is empty (NULL) which indicates
the end of the table.

The Thread Local Storage CallBack Table has the following format:

Figure 14. Thread Local Storage CallBack Table

8. Resources

Resources are indexed by a multiple level binary-sorted tree structure. The overall design can
incorporate 2**31 levels, however, NT uses only three: the highest is TYPE, then NAME,
then LANGUAGE.

A typical file layout for the resource information follows:

Figure 15. Resource File Layout

The Resource directory is made up of the following tables:

INDEX VA
CALLBACK TABLE VA

FUNCTION1 VA
FUNCTION2 VA

NULL

RESOURCE DIRECTORY
RESOURCE DATA

Page 13 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

8.1 Resource Directory Table

Figure 16. Resource Table Entry

RESOURCE FLAGS = DD Currently set to zero.

TIME/DATE STAMP = DD Time/Date the resource data was created by the resource
compiler.

MAJOR/MINOR VERSION = DW A user settable major/minor version number.

NAME ENTRY = DW The number of name entries.
This field contains the number of entries at the beginning of the array of directory entries
which have actual string names associated with them.

ID ENTRY = DW The number of ID integer entries.
This field contains the number of 32-bit integer IDs as their names in the array of directory
entries.

The resource directory is followed by a variable length array of directory entries. # NAME
ENTRY is the number of entries at the beginning of the array that have actual names
associated with each entry. The entires are in ascending order, case insensitive strings. # ID
ENTRY identifies the number of entries that have 32-bit integer IDs as their name. These
entries are also sorted in ascending order.

This structure allows fast lookup by either name or number, but for any given resource entry
only one form of lookup is supported, not both. This is consistent with the syntax of the .RC
file and the .RES file.

The array of directory entries have the following format:

Figure 17. Resource Directory Entry

INTERGER ID = DD ID.
This field contains a integer ID field to identify a resource.

RESOURCE FLAGS
TIME/DATE STAMP

MAJOR VERSION MINOR VERSION
#NAME ENTRY #ID ENTRY

RESOURCE DIR ENTRIES

NAME RVA/INTEGER ID
DATA ENTRY

RVA/SUBDIR RVA

Page 14 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

NAME RVA = DD Name RVA address.
This field contains a 31-bit address relative to the beginning of the Image Base to a Resource
Directory String Entry.

E = 1-bit (mask 80000000h) Unescape bit.
This bit is zero for unescaped Resource Data Entries.

DATA RVA = 31-bits (mask 7fffffffh) Data entry address.
This field contains a 31-bit address relative to the beginning of the Image Base to a Resource
Data Entry.

E = 1-bit (mask 80000000h) Escape bit.
This bit is 1 for escaped Subdirectory Entry.

DATA RVA = 31-bits (mask 7fffffffh) Directory entries.
This field contains a 31-bit address relative to the beginning of the Image Base to
Subdirectory Entry.

Each resource directory string entry has the following format:

Figure 18. Resource Directory String Entry

LENGTH = DW Length of string.

UNICODE STRING = DW UNICODE String.

All of these string sections are stored together after the last resource directory entry and
before the first resource data section. This minimizes the impact of these variable length
sections on the alignment of the fixed size directory entry sections. The length needs to be
word aligned.

Each Resource Data Entry has the following format:

Figure 19. Resource Data Entry

DATA RVA = DD Address of Resource Data.
This field contains 32-bit virtaul address of the resource data (relative to the Image Base).

LENGTH UNICODE STRING

DATA RVA
SIZE

CODEPAGE
RESERVED

Page 15 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

SIZE = DD Size of Resource Data.
This field contains the size of the resource data for this resource.

CODEPAGE = DD Codepage.

RESERVED = DD Reserved - must be zero.

Each resource data entry describes a leaf node in the resource directory tree. It contains an
address which is relative to the beginning of Image Base, a size field that gives the number
of bytes of data at that address, a CodePage that should be used when decoding code point
values within the resource data. Typically for new applications the code page would be the
unicode code page.

8.2 Resource Example

The following is an example for an app. which wants to use the following data as resources:

Then the Resource Directory in the Portable format looks like:

TypeId# NameId# Language Id Resource Data
00000001 00000001 0 00010001
00000001 00000001 1 10010001
00000001 00000002 0 00010002
00000001 00000003 0 00010003
00000002 00000001 0 00020001
00000002 00000002 0 00020002
00000002 00000003 0 00020003
00000002 00000004 0 00020004
00000009 00000001 0 00090009
00000009 00000001 0 00090009
00000009 00000001 1 10090009
00000009 00000001 2 20090009

Offset Data
0000: 00000000 00000000 00000000 00030000 (3 entries in this directory)
0010: 00000001 80000028
 (TypeId #1, Subdirectory at offset 0x28)
0018: 00000002 80000050 (TypeId #2, Subdirectory at offset 0x50)
0020: 00000009 80000080 (TypeId #9, Subdirectory at offset 0x80)
0028: 00000000 00000000 00000000 00030000 (3 entries in this directory)
0038: 00000001 800000A0 (NameId #1, Subdirectory at offset 0xA0)
0040: 00000002 00000108 (NameId #2, data desc at offset 0x108)
0048: 00000003 00000118 (NameId #3, data desc at offset 0x118)
0050: 00000000 00000000 0000000000040000 (4 entries in this directory)
0060: 00000001 00000128 (NameId #1, data desc at offset 0x128)
0068: 00000002 00000138 (NameId #2, data desc at offset 0x138)
0070: 00000003 00000148 (NameId #3, data desc at offset 0x148)
0078: 00000004 00000158 (NameId #4, data desc at offset 0x158)

Page 16 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

And the data for the resources will look like:

0080: 00000000 00000000 00000000 00020000 (2 entries in this directory)
0090: 00000001 00000168 (NameId #1, data desc at offset 0x168)
0098: 00000009 800000C0 (NameId #9, Subdirectory at offset 0xC0)
00A0: 00000000 00000000 00000000 00020000 (2 entries in this directory)
00B0: 00000000 000000E8 (Language ID 0, data desc at offset 0xE8
00B8: 00000001 000000F8 (Language ID 1, data desc at offset 0xF8
00C0: 00000000 00000000 00000000 00030000 (3 entries in this directory)
00D0: 00000001 00000178 (Language ID 0, data desc at offset 0x178
00D8: 00000001 00000188 (Language ID 1, data desc at offset 0x188
00E0: 00000001 00000198 (Language ID 2, data desc at offset 0x198

00E8: 000001A8 (At offset 0x1A8, for TypeId #1, NameId #1, Language id #0
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
00F8: 000001AC (At offset 0x1AC, for TypeId #1, NameId #1, Language id #1
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0108: 000001B0 (At offset 0x1B0, for TypeId #1, NameId #2,
 00000004 (4 bytes of data)
 00000000 (codepage)

 00000000 (reserved)
0118: 000001B4 (At offset 0x1B4, for TypeId #1, NameId #3,
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0128: 000001B8 (At offset 0x1B8, for TypeId #2, NameId #1,
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0138: 000001BC (At offset 0x1BC, for TypeId #2, NameId #2,
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved) 0
148: 000001C0 (At offset 0x1C0, for TypeId #2, NameId #3,
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0158: 000001C4 (At offset 0x1C4, for TypeId #2, NameId #4,
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0168: 000001C8 (At offset 0x1C8, for TypeId #9, NameId #1,
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0178: 000001CC (At offset 0x1CC, for TypeId #9, NameId #9, Language id #0
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0188: 000001D0 (At offset 0x1D0, for TypeId #9, NameId #9, Language id #1
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)
0198: 000001D4 (At offset 0x1D4, for TypeId #9, NameId #9, Language id #2
 00000004 (4 bytes of data)
 00000000 (codepage)
 00000000 (reserved)

Page 17 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

9. Fixup Table

The Fixup Table contains entries for all fixups in the image. The Total Fixup Data Size in the
PE Header is the number of bytes in the fixup table. The fixup table is broken into blocks of
fixups. Each block represents the fixups for a 4K page.

Fixups that are resolved by the linker do not need to be processed by the loader, unless the
load image can't be loaded at the Image Base specified in the PE Header.

9.1 Fixup Block

Fixup blocks have the following format:

Figure 20. Fixup Block Format

To apply a fixup, a delta needs to be calculated. The 32-bit delta is the difference between
the preferred base, and the base where the image is actually loaded. If the image is loaded at
its preferred base, the delta would be zero, and thus the fixups would not have to be applied.
Each block must start on a DWORD boundary. The ABSOLUTE fixup type can be used to
pad a block.

PAGE RVA = DD Page RVA. The image base plus the page rva is added to each offset to
create the virtual address of where the fixup needs to be applied.

BLOCK SIZE = DD Number of bytes in the fixup block. This includes the PAGE RVA and
SIZE fields.

TYPE/OFFSET is defined as:

Figure 21. Fixup Record Format

TYPE = 4-bit fixup type. This value has the following definitions:

01A8: 00010001
01AC: 10010001
01B0: 00010002
01B4: 00010003
01B8: 00020001
01BC: 00020002
01C0: 00020003
01C4: 00020004
01C8: 00090001
01CC: 00090009
01D0: 10090009
01D4: 20090009

PAGE RVA
BLOCK SIZE

TYPE/OFFSET TYPE/OFFSET
TYPE/OFFSET ...

TYPE
OFFSET

Page 18 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

o 0h __ABSOLUTE. This is a NOP. The fixup is skipped.
o 1h __HIGH. Add the high 16-bits of the delta to the 16-bit field at Offset. The 16-bit field
represents the high value of a 32- bit word.
o 2h __LOW. Add the low 16-bits of the delta to the 16-bit field at Offset. The 16-bit field
represents the low half value of a 32-bit word. This fixup will only be emitted for a RISC
machine when the image Section Align isn't the default of 64K.
o 3h __HIGHLOW. Apply the 32-bit delta to the 32-bit field at Offset.
o 4h __HIGHADJUST. This fixup requires a full 32-bit value. The high 16-bits is located at
Offset, and the low 16-bits is located in the next Offset array element (this array element is
included in the SIZE field). The two need to be combined into a signed variable. Add the 32-
bit delta. Then a dd 0x8000 and store the high 16-bits of the signed variable to the 16-bit
field at Offset.
o 5h __MIPSJMPADDR.
All other values are reserved.

10. Debug Information

The debug information is defined by the debugger and is not controlled by the portable EXE
format or linker. The only data defined by the portable EXE format is the Debug Directory
Table.

10.1 Debug Directory

The debug directory table consists of one or more entries that have the following format:

Figure 22. Debug Directory Entry

DEBUG FLAGS = DD Set to zero for now.

TIME/DATE STAMP = DD Time/Date the debug data was created.

MAJOR/MINOR VERSION = DW Version stamp. This stamp can be used to determine the
version of the debug data.

DEBUG TYPE = DD Format type. To support multiple debuggers, this field determines the
format of the debug information. This value has the following definitions:

o 0001h __Image contains COFF symbolics.
o 0001h __Image contains CodeView symbolics.
o 0001h __Image contains FPO symbolics.

DATA SIZE = DD The number of bytes in the debug data. This is the size of the actual

DEBUG FLAGS
TIME/DATA STAMP

MAJOR VERSION MINOR VERSION
DEBUG TYPE

DATA SIZE
DATA RVA
DATA SEEK

Page 19 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

debug data and does not include the debug directory.

DATA RVA = DD The relative virtual address of the debug data. This address is relative to
the beginning of the Image Base.

DATA SEEK = DD The seek value from the beginning of the file to the debug data.

If the image contains more than one type of debug information, then the next debug directory
will immediately follow the first debug directory.

Related topics

Peering Inside the PE: A Tour of the Win32 Portable Executable File Format
By Matt Pietrek

ProcDump homepage

Dumper/PE Editor

Page 20 of 20PORTABLE EXECUTABLE FORMAT

2005-11-22http://www.nikse.dk/petxt.html

http://www.nikse.dk/petxt.html

