X10G ML

X-10 Ceneral Interface Mddal Language | dea

K0GIMLT

Documentation
and
Reference Guide

Language Concept and Design by
Adam Lane

Copyright & 2001

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

2 X10GIMLI

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

TABLE OF CONTENTS

INTRODUGCTION. ...ttt e et e e e e s eeb b e e e e e e e s sea b b aeeeaaeesaasbbaeeeseeesaasabbaseesaessaassbreeeaeesesassraeeeeaaeesn 7
XIOGIMLI BACKGROUNDuuuuuuuiuunnnnnnnnnnnnnnnnnnnnannnsnnnsnnsnnnnnnnnnsnnnnsnnnnnnnnnnsnnnnnen 7
(GETTING STARTEDcetttttttttteeeeeeeseeeeeeeeeeesessessnsnnns 8

WWHO NEEAS XIOGIMII? ..ottt et e e e e ettt e e e e e e e e e bbb e e e e e eeesaabbbaeeeeeeesaassrbaeeeeeeessansbbreeeeanenan 8
What is Needed t0 RUN XTOGIMIIT? ..ottt ettt e e e s et e e e e e e s ettt a e e e e e e s seaabbaeeeseeessansbbaeeeeaeenan 8

SYSTEM USAGE ..ottt ettt e e e e e e e ettt e e e e e e e ee bbb aeeeeeeesaaabbbaeeesaeessasbbaeeesaeessassbaneesasessansees 11

SYSTEM CONFIGURATION ...eetttitteeseeseeeeeseesssessessnnns 11
XLOGIMLI PrOPEITIES. ... uteeitie ettt ettt ettt et e ettt sate et e e e abe e e be e e eaee e sabe e sabe e eabeeebe e e abeeesmbeesabeesabeeenbneeanneas 11
(e L1 TSSOSO 12
(oo =TSSP RTSUSRTRI 13
S 010N] = TSSO PR RRPOP 13

RUNNING XTOGIMLI....cccieeeeeeee e, 14
S = 1 1 oo [P SUPUPUTR U RROT 14
(a0 Y U OU R RURRP 15
S 0] o] 011 oo F PSSRSO 16

CREATING SOURCE FILES.....ceettttttttttttetteeeeeeeeeeeseeseeseseeseessessessnnnns 17
(7= 0= = I o 1 1= | SO PSRN PP 17
FOECITIC PIECES ... ettt ettt b et bttt e st et e b et e ehee e s abe e eabe e e be e e eabe e sabeesnbeeebaeeaaneas 18

DESIGNING SIMPLE CONTROL PROGRAMccciiiiiiiiee e 19

LANGUAGE OVERVIEW. ...ttt ettt e e sttt e e e e e s s ettt e e e e e e e e e s e bbb b e e e e e e e s satbbaeeeeaeessanssbaeeess 23

LANGUAGE DEFINITIONciiiicee e 23
X10GIiMli Grammar DEfINITIONvveeeiiee it e e e e e s et e e e e e e e e s eabbbeeeeeeessasasbseeeeaesssannees 23
Tokenizer Data TYPES QN0 FOIMMALSeeiiiiiieieie ettt et sa et be e be e e sbe e e saee e sateesabeeabeeesbaeesaneas 25
TOKENIZEr LA DESTITPIIONS ...ttt ettt ettt ettt ettt ettt rbe e e sat e e s abe e s be e e be e e sbee e sabeesabeeenbeeenbaeeanneas 25

SY STEM A RCHITECTUREeetttttttteteeeeeeesssssssessssseessnnns 27
Y= 1011V [PSPPSR 28
EXPaNded ENVIFONIMENToiiiiiii ittt ettt ettt be e sab e e st e e st e e et ee e sabe e sabeesabeeeabeeesaeeesnbeean 29
(ST TSl = 01V o] 100 7= o OO PR 29
T 0o A\ =g o< TSP O PP UPPP 30
(B2 14111 Lo o WSSO 31
[0 10 10 o DO OSSPSR PR 31
LI o L= SO OTRRT 32
1Y/ oo [T OSSPSR PR 32
(0] 511 o IR OO PSR PP 33
11T (o o IO OSSR PP 33
PACKELttt e e e e e e e e e e et e b ——— e e e e e e e e e —————etaaeeaaaabrareaaaeesaaabrrrraaaeeeaannrrraeeas 34

STANDARD DATA TYPES....eiitttitiitiiiiteetteeeeeeeeeeeeeeeeeeeere—————e—————.———eesssnnns 36
(5700 1= o DRSO PR PR 37
(000]110/0.1°= 1210 FURE OO RRTRRP PP 37
DAl 38
[TSR OURTRURR 39
o L= o | SO PP 39
[ES OSSR PR 40
1Y/ o011 o OO PR PR 40
[[0 0g o= SO RRRRRP PO 41

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

4 X10GIMLI

S T 0o P PSR PUTPUTRRT 41

B 12 = TSSO PO PRI 42
D6 O LSRR PO PURTRRRIR 42
STANDARD LANGUAGE STATEMENT S ..euuuiiiiiittieeeeeeettt e eeeettaaeeeseetta e aeseestan e aaessnaaaasesstanaaaasesstnnsaaessnnnseesesssnnn 43
(B 1B F= 1= 1< | TR OO RRRRP PR 44
NEW SALEMENL 45
[dentifier ASSINMENT SLALEIMENTeiiiiieiii ettt ettt sae e sabe e sabe e e be e e abee e saeeesnbeesnbeeenees 46
BEJIN/ENG BIOCKeeiitiieittee ettt ettt ettt ettt ettt h ettt ettt e b e e e s abe e s st e e et e e e bee e shbe e smbeesabeeebeeesneeesnnean 47
AL (S AR U= 117< 0| OO 48

[SR 1= 11/ 0| ST SO O P RRRRPOR 49

LA TR =1 0= 107 o SRR OO 49
REIUIN SALEMENT ... 50
MOEION COMIMANG........uutiiiiiei it e et e e e e e e et eeeeeeeseebbaeeeeeeeesaasbbbaeeeaesesaassbbaeeseasssaassbreeesaeessnnssrenness 51
Lo o (= GO0 1 110711 o I USSR 53
[0 10w 110 o N 0= IO USROS 53
ERROR CODES.......ccc oo 55
LANGUAGE COMPONENTS.ttt ettt e e e s e et e e e e e e s s ettt e e e e e e e e s saabbaeeeaeeessaabbrseseasessasrbaeeess 57
EXTERNALLY DEFINED USER FUNCTIONS TUTORIALcceeiieeeeeee e 57
USER FUNCTIONS 60
ACTIVATE .ottt ettt e e e e e e ettt e e e e e s et b b e e e e e e e e e sa bbb aeeeaaeessasabbbeesaaeessassbbbeeeeaeesaasbbrneeeaeasan 60
CHANGEMODE ...ttt ettt e e e e e et e e e e e e e e ettt e e eeeeeesasabbseesaaessaassbbaeeeaeessaassbbaeeseeeesassrreness 60
DEACTIVATE ...ttt ettt e e e e e e e et e e e e e e e e et b b eeeeeeeesaasbbbaeeeaaeesaassbbaeeeeasesaassbbaeeeeaeessassrrnness 61

[] I OO PR PR 61
INTERFACEttt e e e e ettt e e e e e e et b b e e e e e e e e e e e bbb aeeeaeeesaaasbbbeeesaeessaasbbeeseaeesaansbaeeesaaeann 61

[[OOSR PR 62

[O [= ISR PR 62
SEND PACKET ...ttt e et et e e e e e e ettt e e e e e e e s etb b b e eeeeeesaaabbbreeeeaessassbbaeeeaeesaaassbbeeeseeessassrraness 63
SENDPACKETANDWIAIT ..ottt ettt e e e ettt e e e e e e s e et a e e e e e e e s seabbreeeeeeesaaasbbaeeeaeessaassbbeeeeaesssanssrreness 64

S 010 1| 5 OO PRSP 64
TOCONTROL. ... utttiiiie e e ettt e e e e ettt e e e s s et b aeeeeeessaaabareeeaaeesaasbaseesaasssaassbbaeesaasssaassbaseesaesssasssbsanesaesssansses 65
TOCONTROLSWITCHuttiiiiiie ittt e e ettt e e e s et e e e e e et ee b b aaeeeeeessasabbbaeeaaasssaassbbaeeeaessaasssbseneeeesssansses 65
TOGGLE.......c oottt e e e e e et e e e e e e s ettt e e e e e e e e s eaabaaeeeeeeeaaaabbbaeeaeaeeiaaabbraeeaaeeeaanarbrareeaeeeaaare 65
TOSMITCH ...ttt ettt e e e e e et b e e e e e e e s saaabaaeeeeaeesaaabbaaeeaaeeesaassbbaeesaesssassbbaeesaesssanssbsaneeaesssansses 66
KXIOADDRESS.ctteiiie ettt e ettt e e e e e ettt e e e e e e e s aaatbbeeeeeaeesaasbbaaeesaeeesaabbbaeeeaaeeaaaabbbaeeaeaeeaaaabbraeeeaeeeaannre 66
XIOCOMMANDeeiiieeeiictte et e e e e e e e e e b e e e e e e st aetbreeeeeaeesaassbaaeesaeessaassbbaeesaasssasssbsseesaesssassssseneeaasssansses 67
KIOSWMITCH ...ttt et e e e e e et e e e e e e e s et bbb e e e e e e e e s aeabbaaeeseeeesaassbbaeeaeasssassbbaeesaesssassbseneeaesssansses 67
REAL-TIME EXTERNAL VARIABLES TUTORIAL ..ccceiieeieeeeeeeeee et e e e e e e e e e e e e e 68
REAL-TIME EXTERNAL VARIABLES.......cceii i 70
ADDRESS e e e e e et e — e e et e e e e i e —————etaeeeaaaabbr—etaaaeeaanbbrrraeaaeeaanarrraraaaaenan 70
COMMANDttieeiiee ettt ettt e e e et et b et e e e e s s etabbreeeeeeesaasbbaaeeaaeesaasabbseeseaeesaassbbseesaeessanssbbaneseeeesanssrrnness 70

(D AN I OSSR OO 71
[N OSSR PR 71
DEVICE ... ettt ettt e ettt e e e e e e et b a e e e e e e e s s e b b aeeeaaeeesaasbbbaeeeeaeesaasabbaeeeeaeesaaabbreeeeaeeeaanrrraeeas 71
INPUTPACKET ..ottt e ettt e e e e e ettt et e e e e e e ee bbb aeeeaaeesaa st baeeeaaeesaassbbaeeesaeessaasbbeeseeesssastbreneeaneann 72

1Y/ (@)\ L = ISR PR 72
SOURCEttt ettt e e e e s ettt a et e e e e e s ettt b e eeeeeesaaabbaeeeeaeesaaabbreeeeaeesaaabbbaeeeaeeeaaaaabbareeeeeeaanaarraeeas 72
THIMIE . .ttt ettt et e e e e e e bbb e e e e e e e e s eaa bbb e eeeeaeeaaaaabaeeeeeeeeaaabbrareeaeeeiaabbrareaaeeeaanrbrareaaaeeaanare 73

B I =SSO PO PURTRRRIR 73
[/ GATEWAY TUTORIALceiiiuutteeeeeeeesieittreeeeeessaaattaeesseesssaasstsaeesaasssaastsaessaasssaasbsseeesasssaasssbaeeesessssasssrrseesansean 73
GATEWAY S..eeeeeeteeeeeeeeeeeteeeeeeeeae e e eeeseesasasesesses s s e sesassssasessesssssessesssssssessesssesssssssesasssssssssssssssssssssssssssssssssssnsssnsnnnnnnns 75
(OB OO RRRRP PP 75

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

[) TPV PP R PTROT 77
IMIRZBA..... et h e bt e e E e h et e s r e e e e e nre e 77
I PP STV TU PP 78
LI TSPV PT PP 79
UDNPP ..ttt e e E et s e e s r e e e e ae e nre e e 79
WINPT et e e h et b e E e h e r e 80
INDEEX ettt h b E e E e e e R R ea e s e R e R e s e e s r e e e r e e e a e nare e e 82

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Introduction

X10GIMLI Background

The X-10 General Interface Modal Language |dea (X10Gimli) came about while searching for a good
software package for controlling home automation devices, principally X-10 devices. The systems | had
seen did not provide the functionality | desired for controlling home automation devices. | had severa
specific wishes for a home automation system. It would need to:

1. Allow multiple control modes for a single house code so that one remote control can
command different types of things depending on the current control mode.

2. Enhance the functionality and configurability of motion detectors by intercepting their

commands before sending them to devices.

Toggle controls to respond to or ignore commands.

Add computer and internet functionality as responses to X10 commands.

Allow triggered responses based on different kinds of timed events and X10 events.

Handle simple macro definition for complex responses to system events.

Implement different system modes that have different event triggers, control modes,

and operating conditions.

No oA~

With those goals in mind, | designed a simple language that could handle the needs that | initially
specified. The preliminary system worked fairly well, but | soon discovered that there were other features
that | desired, and | began to expand the capabilities of the language to handle:

X10Gimli specific data types and arithmetic rules and operations between them.

Standard packet style used for al data coming into the system.

User defined functions that can return values, instead of macros.

Conventions for utilizing user created Java classes in the language.

Support for common and necessary language constructs, such as if/else, loops, variable
definitions.

File import capabilities for system extensions and modularized structuring within modes.

7. Distribution of system components and interfaces over a network.

agkrowpdE

o

At this point the language has evolved to have the necessary functionality to handle al of my home
automation wants and needs. A set of design conventions allows for new input gateways, external function
cals, and external variables to be created without much difficulty. By following the conventions defined
for adding new language functionality, external functions, variables, and gateways become automatically
available within the language. So, the language itself has all of the functionality that |1 need, though new
external functions and gateways still need to be created and always will.

| still have desire for more functionality within the language, but most of it is syntactic sugar that can

already be achieved with the available syntax. The most important functionality is aready there, so, I've
determined that X10Gimli may be useful for othersin my plight, and I'm preparing it for distribution.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

8 X10GIMLI

Getting Started

Before anyone can take full advantage of the X10Gimli system, som minima qualifications can be
considered. Information regarding actually using X10Gimli can be found in the System Usage portion of
this document.

Who Needs X10Gimli?

X10Gimli is intended to allow the technical complexity and ease of implementation that programming
languages allow. With that in mind, technically minded individuals probably stand to benefit the most
from a home automation programming language. At any rate, people who could use X10Gimli include:

People who are not satisfied with the many home automation products.

Those who are seeking a cross platform solution to home automation.

Individuals interesting in afully distributed home automation system.

Anyone who is not afraid to try new ideas that can be easily integrated into alarge system.
Persons with a

Certainly, there are many other reasons to use X10Gimli, but all are related to the expansive control that
is possible with this system.

What is Needed to Run X10Gimli?

The X10Gimli language interpreter is written completely in Java and none of the inner workings of the
system require any native libraries or features. With that, any system with a valid Java Runtime
Environment should be able to make use of X10Gimli. That does not mean that all existing external
gateways, functions, and identifiers will allow the same cross platform functionality.

Many externally created functions, gateways, and identifiers will be implemented with hardware and
software dependancies that vary between platforms. This is unavoidable. However, the level of
abstraction provided to implement such interfaces allows the platform dependant portions to ported with a
minimal amount of other modifications.

Of cource the actual X10Gimli software is required before it can be used. At present, the distribution of
the X10Gimli system is undetermined.

So, smply put, to minimally run X10Gimli, one only needs:

A computer with avalid JRE installed.
The X10Gimli distribution JAR file.

That minimal setup would allow X10Gimli to be launched, networked, and serve as the hub of a
distributed home automation system.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

For enhanced functionality, individual class files that act as external functions, identifiers, and gateways
are required. Anyone can develop new class files for these purposes, and distribute them. Each user
defined system component may require that certain packages be already installed, or may require of native
components before becoming fully functional. Such requirements should be described with any new
gateway, function, or rea-time identifier.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

11
System Usage

System Configuration

X10GIMLI Properties

The X10Gimli system uses a set of properties from a. X10G M.I file to prepare the system to load, log,

and execute an X10Gimli program. The properties file contains information regarding the following
system parameters:

primary source file to execute
search path to load files

log filesto use

which logs are active

These attributes can be configured individually in the properties file using any text editor. The properties
fileisthe same as any Java properties files. Hereisasamplefilewith all of the available attributes.

#X10d MLl startup properties
#Mon Aug 27 11:10: 14 MDT 2001
MASTER_LOG FI LE=naster. | og
NUM_PATHS=1

PATH1=. .\ \ sanpl es\\ nedi acontr ol
SYSTEM LOG FI LE=system | og
EXECUTI ON_LOG _FI LE=exec. | og
EXECUTI ON_LOG=FALSE

USER _LOG FI LE=user. | og

ERROR LOG Fl LE=error. |l og
ERROR_LOG=TRUE

SYSTEM LOG=TRUE

USER_LOG=TRUE

SOURCE=. . \\ sanpl es\\ nedi acontrol \\ Medi aControl . G M

All programs that are executed in X10Gimli require an associated properties file. Properties files can be
editted manually using any text editor. Each log file has a file name associated with it, and another value
that determines whether or not the log is active. The individual search path entries are numbered
properties, and the number of search paths is also contained in the file. The most important property for
executing any program is the source file, which is a so specified in the propertiesfile.

Although the properties can be editted manually, a GUI properties editor is also available.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

12 X10GIMLI

&3 X10GIMLI Launcher o]

Source

%1 0Gimli.GIM |

Bath Master Log
| [masterlag |
o

Es E System Log Active [v]
| [systern.og |
Execution Log Active [
| [execiog |
User Output Log Active [
| [usering |
Error Log Active [
| [erroriog |
Log Viewer Browse

The properties editor allows al of the load, log, and execution properties to be configured quickly and
easily. It also insures the properties file format is correct and that no properties are missing from the file.
It isthe preferred way to handle configuration of the system before launching it. After the properties have
been set, the “Exectue” button causes the system to run, using the properties specified. The log viewer can
also be started before beginning execution. Accessing the GUI launcher is covered in the Running
X10Gimli section.

Paths

X10Gimli uses alist of search paths to handle loading source files. The search paths are used to find the
primary source file, and all imported files. The paths can be specified with or without a terminating
directory symbol. When attempting to resolve file locations using the search path, file names are
appended to search paths and checked to see if files with such names exist.

The order the paths are search is the order that they fall in the properties list. The first path that
successfully allows a filename to be resolved is the path that will be used to load the file. If thereis more
than one valid file, only the first file found will be loaded.

Files can be specified with absolutes paths that do not require path resolution. However, that requires
hard coded absolute paths in individual source files, which will force certain directory structures to any
program. It is preferred to specifiy file names and have them resolved using the specified available search
paths. The current active directory does not need to be specified. It will always be searched before any
specified paths. Also, relative paths can be specified an will be resolved relative to all search paths.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Log Files

13

X10Gimli provides four unique log files, and a master log that are maintained during system execution.

System Log - This log receives all of the information regarding the state of the system model.
For example, al input received, all connections, interface initialization, thread intialization,
mode changes, and such will berecorded in thislog. In general thislog should be enabled at all
times. It does not incur much overhead, but it does allow a substantial amount of information to
be tracked, and potentially backtracked under special circumstances.

User Log - Thel og command provided with the language alows user entries to be specifically
added to the user log. In this way, users can have specific information logged whenever user
code is being executed. For example, one might want to log the number of times a particular
motion detector was triggered during the day. Basically anything can be logged at the user’s
discretion.

Execution Log - This is the most comprehensize of all the log files. It logs the execution of
every single X10Gimli command. With this log, execution can be traced to individual function
cals and command statements to determine code problems and determine points of failure.
Generally, this log is intended for debugging purposes. It adds a great deal of overhead to the
execution of the system, and can have a noticable effect on performance.

Error Log - Since X10Gimli handles errors on the fly and attempts to recover from them. Many
errors could occur that are not noticed. The error log records al illegal operations, interface
faillures, and other problems that can occur during system execution. In conjuntion with the
other logs, errors and their causes can be backtracked.

Master Log - All log active log output will always be combined into the master log as well as the
individual logs. The master log alows all of the different log events to be viewed in the context
of the other types of log events. Only the active logs will appear in the master log.

Each log can be individually enabled or disabled. Some performance enhancement can be gained by
disabling logs, particularly the execution log. So al of these logs can be specified in the system

configuration file, or configured in the GUI launcher.

Source File

The program that X10Gimli executes is specified in the properties file. The source file is resolved using
the provided paths, as described earlier. The source file becomes the primary system mode that is used

during execution. All imported files must occur starting in the source file.

When execution begins, the source file loads, along with al imports, and the startup commands for all

filesis executed. At that point, the system is ready for normal operation.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

14 X10GIMLI

Running X10Gimli

Starting

There are a few ways to start the X10Gimli system, and execute a given properties file. All startup and
execution is handled by the X10G ml i Launch program.

In Windows, with a valid Java Runtime Environment installed, double clicking on the X10Gimli.jar file
will cause the GUI launcher to load using def aul t . X10G M.I as the properties file for editing and
execution. Thisis the simplest method to begin executing a program. The drawback is that no different
properties file can be specified in thisway. So, input parameters must be passed to the launch program.

The launch program usage is given below:

Usage:
X10G miLaunch [-g] [-I] [{fil enane}]
Parameters:
-g starts the GUI launch system
-l starts and attaches the log viewer
filename name of propertiesfileto use
-? provides this usage list

If the GUI launcher is not started, the properties file will begin execution immediately. Note also that if
no parameters are specified, then the default properties file will be loaded in the GUI launcher as
previously described. Also, if the specified properties file does not exist, it will be created in the GUI
properties editor.

Here are some examples of launching X10Gimli from the command line:

java -jar X10G mi.jar -g x10gi m i chat

java —-cp X10@ mi.jar X10G mi.X10G miLaunch - honecontr ol
java —-jar X10G mi.jar control program X103 M.I

java —-cp X10G@ mMi.jar X10G mi.X10G m i Launch -I automate -g

As is shown, there are many ways to launch the system from the command line. Notice that the startup
parameters can be specified in any order. Notice also that the properties file can be specified with or
without the extention. If an invalid extension is specified, the . X10G M.l extention will be appended.
Remember that other Java parameters can be specified, and depending on the individua Java
configuration, different classpath and run-time parameters may be desired or required.

To simplfy startups, the example command line parameters could easily be placed in a script, . BAT file,
or Windows shortcut, to name a few.

When the system begins execution, the following startup sequence is followed:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

15

load startup properties

initialize log files

read sourcefiles

start trigger check tread

start model input handler thread

run initialization commands for the system model

After that, the system should be running and ready to respond to input.

Log Viewer

The log viewer alows log output to be viewed in real time. Every time a log event is output to the log
files, the event is also packeted and sent out through the system model ’s output gateways. This allows log
output to view viewed remotely by anything connected to the system’s output gateways. The log viewer
has a two operational modes:

local
remote

In ‘local” mode, the log viewer is connected to the same Debug output class that the modd is using to
generate and send the log output. In other words, the log viewer is being run in the same virtual machine
as the actual system model. This mode can not monitor all outgoing packets, because it is attached to the
log generator, and not to the system model. So, only log packets will be received.

In ‘remote’ mode, the log viewer connects to the system model by way of the TCP gateway. The log
viewer provides a connection panel to specify the connection port and address. When this type of
connection is established, the log viewer receives all outgoing packets from the system model, and not
only thelog packets. This allows lower level debugging of the output connections. An image of a remote
log viewer is shown:

E‘%Log\fiewer ;|g|5|
Stop X10GIMLI |
¥10GIMLI [Master | System |{Error | User |Execution [Packets |
Master
Port 5879 G/30/2001 7:21:01 [168] = DESCRIEE = (DESCRIBE + wariable dia
G/30/2001 7:21:01 [1l69] = DESCRIEE = (DESCRIBE + if statemej |
I 5/30/2001 7:21:01 [170] : LOGTEST(TEST, NAME, DESCRIEE)
G/30/2001 7:21:01 [171] = begin
M 5/30/2001 7:2l:0l [172] : end
G/30/2001 7:21:01 [173] = TOSWITCH | {TOSWITCHTEST})
G/30/2001 7:21:01 [174] : "Forwarding input to switch {TOSWITCH]
G/30/2001 7:21:01 [175] : "Handling TESTCONTROL switch TOSWITCH]
5/30/2001 7:21:01 [176] : define TOSWITCHVAR = 1 |
/302001 7:21:01 [177] : if (TOSWITCHVAR == 1) m
G/30/2001 7:21:01 [178] = TESTSUCCEED (TEST, NAME)
G/30/2001 7:21:01 [179] = begin
G/30/2001 7:21:01 [l807] = TESTCOUNT = (TESTCOUNT + 1)
G/30/2001 7:21:01 [181] = TESTCORRECT = (TESTCORRECT +
5/30/2001 7:21:01 [182] : LOG{{{{({Test { + TEST) + :) +
5/30/2001 7:21:01 [183] : Test (6:Toswitch) succeeded.
G/30/2001 7:21:01 [154] : end
5/30/2001 7:21l:01 [185] : define TEST = 7
5/30/2001 7:21:01 [l8a6] : define NAME = Tocontrolswitch |
ﬂ‘?n Nl 7:21:01 [1A71 define DESCETRE = Confirm rhat :vl
Connection View

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

16 X10GIMLI

As can be seen in the image, all of the different logs are viewable from the log viewer. The viewer also
will display all incoming packets.

The log viewer is intended to provide the simplest implementation of a remote system monitoring
application. It allows all system events to be monitored remotely, or localy and works well to debug
X10Gimli programs. Future modifications to the log viewer will allow different log output to be enabled
and disabled during execution, but this had not been implemented.

Stopping

Since X10Gimli is intended to execute in the background and be invisible to users under normal
circumstances, and since there is no direct way to control the system, shutting down the system must be
done by a connection.

X10Gimli is signalled to shut down when it received a packet of type “X10GIMLI” with a COMMAND
tag that contains “SHUTDOWN”. When X10Gimli receives the command to shutdown, it immediately
begins executing the system model’s finish commands. After that, the master log is written to with the
shutdown natification, and system will exit.

Any connected process can issue the shutdown command and from any location. However, the log viewer
is the only thing provided that will send the shutdown command to the system model. The button at the
top of the log viewer, labled “Stop X10GIMLI” will send the command to shutdown the execution model.
To prevent an accidental shutdown of the system, a confirmation dialog will be issued: The shutdown
must always before confirmed before actually sending the command.

[Eishutdown x10GIMLI? x|

Do you want to terminate the X10GIMLI execution process?

] o

After confirming the shutdown, the packet will be sent, and X10Gimli shutdown should proceed as
described.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

17

Creating Source Files

General Format

X10Gimli source files follow aformat that is defined by the language grammar. Simplified, all X10Gimli
files must fit the following template:

x10gi M i programare;

i mports
“i mport 1. gi m;
“i mport 2. gi m;

definitions
defl 1;
def 2 2;

functions
funcl() begin end
func2() begin end

triggers
triggerl (true) do begin end
trigger2 (true) do begin end

start
begi n
end

control <CONTROL1>
[1] begin end
[2] begin end

control <CONTROL2>
[1] begin end
[2] begin end

finish
begi n
end

node nodel

i nports
definitions
functions
triggers
start

begi n

end
control <CONTROL1>
control <CONTROL2>
finish

begi n

end

node node2
i nports
definitions
functions
triggers

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

18

start

begi n

end
control <CONTROL1>
control <CONTROL2>
finish

begi n

end

end x10gimi .

X10GIMLI

The source code template shows the order that all X10Gimli source files must follow to define the major
system components. The bolded text represents keywords in the language, but not all keywords are

shown.

When creating an X10Gimli program, any of the declaration sections can be left blank, or entirely
ommited. The order that any declaration occur must still be followed, but things can be skipped. This

means that the most simple valid X10Gimli program that can be written is as follows:

x10gi M i program end x10gimi .

Specific Pieces

As was seen, there are several declaration sections that correspons to the major components of the system

mode and individual modes. The main system components are described as follows:

Imports - Individual X10Gimli source programs and controls can be linked into any other
execution environment by adding the file to the imports sections of the system model, or mode.
Imported files act as an extension of the individual environments and allow imported functions,

definitions, and controls to be available from within other source files.

Definitions - Variables can be declared at system, and mode levels of visiblity at the beginning of
a program. Definition can aso be added during system execution, but knowing the visibility of

such variables is more complicated when done later.

Functions - Within any X10Gimli program, functions can be declared that use input parameters
and can possibly return values. All user defined functions must be found in this section of source
code. Individual modes can have functions declared that are only accessible within each mode,

or override functionality of functions from the system model.

Triggers - Permanent triggers can be defined in this portion of the source code. Triggers can be
named or anonymous. Other triggers can also be defined in source code, but they are temporary
and will only fire once. Triggers defined in this section are permanent and can fire an unlimited
number of times. If the triggers are named, they can aso have their functionality changed during

run-time, but they remain permanent.

Start Command - When beginning execution of an X10Gimli program, or when changing
control modes, the start command for the model or mode is executed. This allows certain
preparatory things to be done before entering a mode, or beginning the system. For example, all
input and output gateways should be initialized in the start command of the system model.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

19

Controls - Controls are the most import part of the language because they allow responses to be
defined for individual inputs. Each control should have a list of switches that define which
individual inputs will be handled. Controls have an identification that defines what types of
inputs they will respond to. Controls can be overridden between different modes, which allows
unique modes to respond to the same input in different manners.

Finish Command - Just as the start command is executed when beginning a program or entering
amode, the finish command is executed when exiting a mode, or shutting down the system. This
allows anything to be resolved before changing modes. For example, state consistency can be
maintained between modes using the start and finish commands.

Modes - Individual modes can be defined that have their own variables, functions, imports, and
controls. When a mode is active, the data from other modes is inaccessible. So, modes allow
exclusive functionality in that way.

Note that although modes follow the same pattern as the system model, new modes cannot be defined
within modes. More detailed information regarding the individual system pieces can be found in the
System Ar chitectur e section of this document.

Designing Simple Control Program

To assist usersin getting started, this section will go through the process of creating a multi-mode “Hello,
World” control program. This will demonstrate the important pieces of an X10Gimli program — different
modes, controls, switches, functions, definitions, triggers, imports, and input and output gateways.
Throughout this example, bolded text will represent the portions of the program that are added for each
step of the creation progress.

Initialy, the previously given template can be used to prepare the new program.

x10gi M i Hell oWorl d;
end x10gim i .

Before we define any of our controls, we should define the modes we want to use. In this case, we will
have two modes. One modeis for “Hello,world!”, the other is for “Goodbye, world!”:

x10gimi Hell oWorl d;

node Hel l o
node Goodbye

end x10gim i .

In any X10gimli program, the input controls need to be defined. For this case, we will use X10 control
input. So, we add X 10 controls for both modes:

x10gi M i Hell oWorl d;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

20 X10GIMLI

node Hell o
control <X10>

node Goodbye
control <X10>

end x10gim i .

We want a function to handle doing the output for this program. Our output will be to the user log file,
and to the text-to-speech gateway:

x10gi M i Hell oWorl d;

functions
out put (text)
begi n
log (text);
speakt ext (text);
end

node Hell o
control <X10>

node Goodbye
control <X10>

end x10gim i .

At this point, we can consider the input responses that we would like. For this, any ON command will be
used to switch to Hello mode, and any OFF command will switchinto Goodbye mode. All other input
commands will be used for doing output. We will do output using the output function we created:

x10gimi Hell oWorl d;

functions
out put (text)
begi n
| og(text);
speakt ext (text);
end

node Hell o
control <X10>
[OFF] changenpde (Goodbye);
[true] output(“Hello, world!”);

node Goodbye
control <X10>
[ON] changenode(Hel | 0);
[true] output(“Goodbye, world!”);

end x10gim i .

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

21

For extra output, we will use a special trigger that fires every minute. To do this, we will also want a
global variable that keeps track of the last minute to fire. That way, we can easily check the next minute.
Every time our trigger fires, we’ll give the current time;

x10gimi Hel |l oWorl d;

definitions
lasttine = tine;

functions
out put (text)
begi n
| og(text);
speakt ext (text);
end

triggers
m nutetrigger (lasttime+l == tinme) do
output(“Hello! The time is “+tine);

node Hell o
control <X10>
[OFF] changenode(Goodbye) ;
[true] output(“Hello, world!”);

node Goodbye
control <X10>
[ON] changenode(Hel | 0);
[true] output(“Goodbye, world!”);

end x10gim i .

And finally, we need to initialize the gateways that will be used in this program. We need an X10 input
gateway and a text-to-speech gateway. The text-to-speechgateway also uses an imported file for the
function speakt ext. We also need to set the active mode at the start of the program. So, we add the
finishing touches to the program.

x10gi M i Hell oWorl d;

i mports
“TTS. A M

definitions
lasttine = tine;

functions
out put (text)
begi n
| og(text);
speakt ext (text);
end

triggers

m nutetrigger (lasttime+l == tinme) do
output(“Hello! The time is “+tine);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

22 X10GIMLI

start
begin
initialize(MR26A, “COML”);
initialize(TTS);
changenode(Hel | 0) ;
end

node Hell o
control <X10>
[OFF] changenode(Goodbye) ;
[true] output(“Hello, world!”);

node Goodbye
control <X10>
[ON] changenode(Hel | 0);
[true] output(“Goodbye, world!”);

end x10gim i .

So, after al that, we have a program that will say “Hello, world!” and “Goodbye, world!” on most X10
inputs. It will change modes with ON and OFF commands. Also, it will say the current time every
minute. This program demonstrates all of the significant components available in X10gimli source code.
The remainder of the documentation explains in detail the functionality of the language constructs and
contains more examples.

This particular example is given to show how a program can be created from scratch. A complex home

control program should be given some thought before its implementation. To launch the example
program, the instructions given in the Running X10Gimli section of this document can be followed.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

23

Language Overview

X10Gimli is an interpreted language designed to allow central handling of multiple input and output devices on a
number of levels. The language is focused on home automation functionality. The language overview provides
descriptive information regarding much of the language definition and internal functionality. The information
provided is intended to offer an in depth look at the intricacies of the language, and to provide a standard that the
language implementation should meet.

Language Definition

The basis of the language functionality stems from the low-level definition of the language. Before the
exact language semantics and features were defined, a general language grammar was developed. As the
internal functionality and aspects of the system were built using the language grammar, the grammar was
revised and enhanced to account for desired functionality and to correct problems. The language
definition includes the individual token descriptions for the grammar primitives. A tokenizer state
machine is also provided that defines the interpretation of input files into tokens.

X10Gimli Grammar Definition

<x10gimli> = x10gimli <ident:new>; <x10gimli-env> <modes> end x10gimli.

<x10gimli-env> ::= <imports> <definitions> <functions> <triggers> <start-block> <controls>
<finish-block>

<imports> = <null> | imports <import-list>

<import-list> = <null> | <import> <import-list>

<import> = <value:string>;

<definitions> = <null> | definitions <definition-list>

<definition-list> = <null> | <definition> <definition-list>

<definition> ii= <ident:new> = <values>;

<functions> = <null> | functions <function-list>

<function-list> = <null> | <function> <function-list>

<function> ::= <ident:new> <idents> <command>

<triggers> = <null> | triggers <trigger-list>

<trigger-list> = <null> | <trigger> <trigger-list>

<trigger> = <ident:new> (<values>) do <command> | (<values>) do <command>

<modes> := <mode-list>

<mode-list> = <null> | <mode> <mode-list>

<mode> = mode <ident:new> <x10gimli-env>

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

24 X10GIMLI

<start-block> = <null> | start <command>
<finish-block> = <null> | finish <command>

<controls> = <control-list>

<control-list> = <null> | <control> <control-list>
<control> := control <<switch-value-list>> <switches>
<switches> = <switch-list>

<switch-list> = <null> | <switch> <switch-list>

<switch> = [<switch-value-list>] <command>

<variable>
<switch-value> | <switch-value>, <switch-value-list>

<switch-value>
<switch-value-list>

<command-list> <null> | <command> <command-list>

<command> ::= <func-command> | <if-command> | <while-command> | <ident-command> |
<trigger-command> | <motion-command> | <begin-command> | <return-
command>

<begin-command> ::= begin <command-list> end

<func-command> ::= <function-call>;

<if-command> ::= if <values> then <command> <else-command>

<else-command> = <null> | else <command>

<while-command> ::= while <values> do <command>

<trigger-command> :=trigger <trigger>

<ident-command> = <variable> = <values>; | <variable>;

<motion-command> ::= motion <variable>; <start-block> <finish-block> | motion <variable>
<variable>; <start-block> <finish-block>

<return-command> :=return <variable>;

<define-command> ::= define <definition>;

<new-command> = new <definition>;

<function-call> ::= <ident:func> <params>

<values> ii= <variable> <value-list>

<value-list> = <null> | <symbol:operator> <values> | <symbol:condition> <values> |

<symbol:logic> <values>

<params> n= (<paramtlist>) | ()

<paramtlist> = <param>, <paramlist> | <param>

<param> ‘= <variable>

<idents> = (<ident-list>) | ()

<ident-list> i:= <ident:new>, <ident-list> | <ident:new>

<variable> ::= <ident:new><variable-item> | <value> | (<values>)<variable-item> |

<ident: predefined><variable-item> | <function-call> |
{<variables>}<variable-item> | <ident: new> < params>
<variables> = <null> | <paramtlist>
<variable-item> = <null> |[<variable>] | .<variable>

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

25

Tokenizer Data Types and Formats

<ident:func> ::= x10switch | toswitch | tocontrolswitch | tocontrol | toggle | log | sound |
x10address | x10command | activate | deactivate | packet

<ident: predefined> time | code | command | address | day | month | date | inputpacket

<ident:new> =SB LB

<symbol:operator> =+ |-|* |/

<symbol:condition> :=>|>=|<|<=|<>|==

<symbol:logic> m=and|or

<value:number> n=[#H]

<value:x10> = SHE | BH | S

<value:string> RE

<value:time> = fHEHHam | #HE M | B

<value:day> = sun | sunday | mon | monday | tue | tuesday | wed | wednesday | thu |
thursday | fri | friday | sat | Satur day

<value: month> =jan |january | feb | february | mar | march | apr | april | may |jun |june]|jul
|july | aug | august | sep | september | oct | october | nov | november | dec |
december

<value:comm> ::= allunitsoff | alllightsoff | alllightson | on | off | dim | bright

<value:date> T T | S

<value:boolean> ‘=true|false

<value:list> ={.,..}

<value:item> = <variable>[<variable>] | <variable>.<variable>

<comment> =rRL>* | *F L [Enter]

Tokenizer State Descriptions

The X10Gimli input files are converted into individual tokens before the parser can handle it. The token
scanner is implemented using the state machine that is described below. Input characters make the
transitions between individual states. Tokens can follow on after another with no white space, as defined
by the scanner.

All undefined transitions preserve the current input character and proceed to a final token state, either
valid or invalid. The valid and invalid states create the actual tokens based on the input. Final states are
designated by a double circle and have an unshown transition to a valid state, while intermediate state
have a transition to an invalid state. The start state also has a transition to an invalid state for unhandled
input. The valid state is only entered from final states and uses the final state as a reference to create the
new token. Theinvalid state creates an error token.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

26

QQQQOQQ

”0

X10GIMLI

gosoxe
DD G DO
@@

(&) (e

®

The numbered states in the diagram represent different token paths as described below. Bold state numbers represent valid input states.

start state for all tokens
comment - ** ..

block comment - *<...
block comment - *<...>

string - “...
string - «..”
string - escape code

x10-$
x10 - $#
x10 - $tHt

$[$#_] | $H{$#] |
$HH[#$]
identifier - <...
identifier - <.’

number - #
number - ##
number - ##H#

time- ## | #

time - ##:# | #:#
time - ### | #:1##
time - ### | ##H#
time - ### | #h#

55

57

59

time - ## |
H#HH

time - ### ##a |
it HHa | |
###a

time - #### #Ham |
#iHhHam | ##:#am |
#.##am

time - ##E#Hp |
it HHp | D |
H#H##Hp

time - ####pm |
H#iihHHpm | #HEHHpm |
#:##pm

date - #4 | #/
date - #414 | #14

date - #4 | #144

date - #48] | #1#4 |
s | #4

dlate - #H#H# | #1414 |
SR |

Clate - #HH1H | #1414
| A |

date - #H 4 |
I | S |
i

67

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

date - #H/#HH#H |
I | B |
i

No*~ 4

e — o~ -

http://www.fineprint.com

System Architecture

The X10Gimli system is structured according to the following diagram (highlighting the main system

classes), which was designed based on the X10Gimli grammar:

||Envi ronment !!4

I Definitions I Functi onsI Triggersl Controls I Statl Finish I Imports I

! SystemM odel |—>
Name | Modes

Name

Value

= @ 3 a3
@
Definition || |Function | Trigger |
Name IVaIue I Name Ildens Command I Case ICommand INaneI ID ISNltches I Commands
7 U ¢
@ @ @
v
" Command Ill I FuncCommand >ii ValueType H ‘I Vaue "
A Command | Params y Value
®—p [fCommand i k@I
Case |C0mmand |Else | M’ Left mm

»| ElseCommand | AssignCommand
Command Ident
- > TriggerCommand
—»| WhileCommand
Trigger
Case Command

I

BeginCommand

Commands

| M otionCommand

0| Time [start [Finish|

N ey

Definition

»| DefineCommand

Definition

@

Each of the highlighted components in the diagram represents an integral part of the system. The actual

component pieces will described further.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

28 X10GIMLI

System Model

The X10Gimli system modd is the control center for input processing and code execution. The system
mode is an extension and enhancement of the expanded environments. The model contains the list of
modes, and does all real-time execution, packet handling, and trigger checking.

Worth noting, and related the system as a whole, is the use of Java reflection to enhance the language.
X10Gimli is intended to be a point of control for many types of devices and software. The language itself
cannot access external resources. However, external resources can be accessed by means of user defined
Java classes and native code. Static variables, functions, and interface gateways can be used within the
language by following some conventions that are defined for the related features. For example, if one
wanted access to real-time temperature information, a pre-defined identifier called TEMPERATURE could
be created. The temperature information could come from the internet, a house sensor, or other location
external to X10Gimli and imported by the user's identifier. Anytime that an identifier is evaluated during
execution, it would return the current temperature.

The modd stores a list of input and output gateways. The input gateways are the source of all input into
the model. For example, the MR26A receives RF X10 input, but cannot transmit. Output gateways
transmit data from the model to different devices or processes, such as the CM11A, which can transmit
X10 signals over the power lines. Gateways, can be both input and output Gateways, like the CM11A.
Interface gateways are activated in source code and can be done within the model °s start command. For
instance:

x10gimi interfaces;

start
begi n
i nterface(UDP, 3423);
interface(CML1A, "COML", "X10A");
i nterface(MR26A, "COW", "X10B");
end

As is shown, when interfaces are activated, they can take an initialization parameter. The parameter can
bealist if necessary. The other interface parameter renames the gateway. Different gateway names can be
useful for distinguishing between input sources as well as specifying specific destinations for output
packets.

All input received by the model is placed in a queue. The queue input is handled in a FIFO fashion by an
input handling thread. That way, no input is lost and things can be processed in order. Input handling is
done by finding all controls that could possibly respond to the input by searching the active mode and
visible environments. The valid controls are then searched in order for a suitable switch for the input. The
first valid switch found is then executed.

A separate thread does trigger checking and all triggers are checked at regular intervals. When a trigger

or group of triggers fires, the execution of those triggers is handled in a new thread. This is done so
regular trigger checking can continue.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

29

Expanded Environment

Full X10Gimli environments possess information beyond what small execution environments provide.
Expanded environments contain user function definitions, permanent trigger lists, X10Gimli contrals,
and temporary triggers. Start and finish commands can be executed when transitioning into and out of an
execution environment. Transitioning is done by the X10Gimli system when changing modes.

The execution environment at this level can also extend through imported environments. When evaluating
identifiers, and checking contrals, triggers, and functions during run-time, imported environments are
checked before parent environments. This allows for imported definitions, functions, controls, and so on.

Here is an example of extending environments within a mode:

nmode Ex
i mports
"defA. G M;
definitions
varB = varA
control <true>
[true] log ("varB = "+varB+" which equals varA. ");

In this example, assume that "defA.GIM" has var A defined to equal 6. When the control switch gets
executed, the output will be:

"varB = 6 which equals varA."

This is because the imported environment is used when evaluating expressions, while is also acts as an
extended portion of the local environment for everything else.

Basic Environment

Small individual environments determine the scope of evaluation for al X10Gimli interpretation. The
execution scope is determined by the tree structure created by the environment ancestors. Each
environment has a list of local variables that are used in evaluating expressions. Every environment also
has a parent environment that is deferred to when a definition is not found. This is done until the root
node is reached.

Also, each environment can return a value to parent environments. In this way, functions can return
values. An example of an environment tree follows:

x10gimi env;

definitions
defa = 1;

node nbdea
definitions

defb = defa;
start
begi n
defa = 2;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

30 X10GIMLI

defc = defb;
begi n
log ("DefC = "+defc+".");
end
end
end x10gi m i .

In the preceding full example, the resulting output will be:
"DefC = 2."

The environment tree at the point of log execution starts at the system modd root, and continues to the
mode, to the begin block of the start statement, and to the inner begin block. The def a variableisin the
visible scope and is reassigned. When def b is evaluated, def a is still in scope, so the value of Def Cis
2.

Import Manager

All files loaded under the X10Gimli system are managed by the import manager. This system component
allows a few important things to happen when handling X10Gimli sourcefiles.

Since the import manager keeps a list a desired input paths, import file names can be automatically
resolved using the given paths. That way, source files can also import other files without having to
explicitly state the import file paths. The default path is the current directory, or afull path.

Managing all loaded files in one location also allows an environment web to be created where more than
one path exists to any variable, function, control, or switch. In that way, common variables can be shared
between X10Gimli environments. For example:

COWDON. G M
x10gi mMi comon;
definitions

var conmon = a;
end x10gi m i .

| MPA. G M

"COMON. G M';
control <I NPUT>

[(varcommon == a)] | og("common == a);
end x10gi m i .

| MPB. G M
x10gi mi i npa;
i mports
"COMMON. G M';
control <I NPUT>
[(varcommon == b)] | og("comopn == b);
end x10gi m i .

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

31

In the example above, the two files "IMPA.GIM" and "IMPB.GIM" access the same common variable.
The variable can be accessed commonly to the two environments because of the way imported files are
managed by the import manager.

Definition

In X10Gimli a definition is synonymous to a variable identifier. A definition uses a text tag to associate
X10Gimli values to identifier names. Definitions can store unevaluated expressions that are only
evaluated during run-time, and literal values.

Unevaluated expressions can be used to allow multiple levels of variable indirection. For example, an
X10Gimli source file could contain the following:

define defl = 5;

define def2 = def1;

defl = 6;

if def2 == 6 then log ("def2 1is wusing unevaluated value

i nformation");

Because the definition def 2 stores the unevaluated expression “defl”, when it comes time to get the
usable value of def 2, its value is 6. That's because defined expressions are only fully evaluated during
runtime. Another way to do unevaluated definitions is using the def i ni ti ons block in an X10Gimli
program, such as:

definitions
def 1l 5;
def 2 def 1;

It isalso possible to do fully evaluated assignments, as in the following example:

define defl = 5;

def2 = def 1;
defl = 6;
if def2 == 5 then log ("def2 1is wusing evaluated value

i nformation");

The functioning of variables in X10Gimli is flexible in that way, and the definitions store the necessary
information.

Function

X10Gimli functions can be defined by users in source files. Such functions can be called during run-time
just like any other function. Users define the parameters that are used in the function and those parameters
are mapped as local identifier definitions in the command block of the function. When parameter
identifiers are evaluated, the local definitions are applied and that's how the passed in parameters get
applied to the local commands. Since afunction isjust an extension of a normal execution environment, it
can return values to parent environments, and it's scope is a continuation of previous environments. For
example:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

32 X10GIMLI

functions
addx(varx) return varx + inx;
func(inx) return addx(10);

Note that in the example, the variable i nx is referenced from within the addx function. This can be done
because addx iscalled from f unc, and, therefore, has that function’s parameters in its scope.

Trigger

Triggers in X10Gimli are checked periodically and when certain inputs occur. Triggers alow resultant
events to occur due to time, date, input received, and the conditional state of the environment.

The X10Gimli modd periodically checks to seeif any triggers can fire. When a trigger fires, its command
statement is executed, and the trigger is reset. Depending on the conditional types in a trigger, individual
triggers can only fire after a certain amount of time has elapsed. The reset delays for triggers that contain
specific types of value comparisonsis given below:

TIME : 1 minute
DAY : 1day
MONTH : 1 day
DATE : 1 day

Other types are immediately available to be triggered again. Note, however, that local triggers defined
with the t ri gger command can only be fired once, and are then lost. Here is an example of an
X10Gimli trigger:

triggers
late (tinme == 11:00pm do turnLightsOif();

This example defines atrigger that will fire at 11:00pm.

Mode

X10Gimli modes contain information regarding separate execution environments. The X10Gimli model
sends inputs to the active mode when it needs to be handled. All modes have names and contain the
environment information necessary to exist separately from other modes. The root environment of all
modes should is the system modd in X10Gimli. Here is an example of mode definitionsin the language:

node MbdeA
control <X10>
[A10] log ("MdeA control");

node MbdeB

control <X10>
[A10] | og(" ModeB control");

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

33

In the example, the X10 input A10 will print a different message depending on the current active mode.
The input doesn't change, but the reaction is different because of different modes.

Control

In X10Gimli a control defined in source code can be compared to a physical remote control. As with
physical remote controls, an X10Gimli control processes input and possibly sends output. Switches within
each control define the input that can be processed, much like how a physical remote control has separate
buttons that can cause different things to happen. Following that idea, X10Gimli controls are defined.

So, in X10Gimli, individual controls are specified to respond to various inputs. Each control isrelated to a
specific type of input and/or condition in the X10Gimli environment. Input types are varied and are
determined by the originating devices and processes, such as X 10 interfaces or RF remotes.

Controls contain all of the switches that processinput. A switch is made up of a set of identification values
and input responses. Controls allow individual switches to be grouped into a single categorized location.
Using X10Gimli source code, controls can be defined as shown:

control <MEDI ACONTRCL, (RF_MODE == RF_W NAMP) >

Note that the control identifier values will be evaluated during runtime, and the evaluated identifiers are
used when checking input. For example, (RF_MODE == RF_W NAMP) will evaluate to true or false.
When the input type matches the control and all conditions are true, then the switches for hat control will
be checked.

Switch

In X10Gimli a switch can be compared to one of the buttons on a physical remote control. When a remote
control button is pressed, resulting action occurs, such as changing the remote's mode to VCR, or sending
an IR signa to change channels. In a similar fashion X10Gimli switches have identification and
commands that can be executed when the switch is triggered. Also, X10Gimli switches can have an
enabled or disabled state. In source code, switches can be defined within controls as shown:

control <MEDI ACONTROL, (RF_MODE == RF_W NAWP) >
["PAUSE", (W NAMP_PAUSE == true)] begin doPlay(); end
["PAUSE", (W NAMP_PAUSE == fal se)] doPause();

Note that the switch identifier expressions will be evaluated during runtime, and the evaluated identifiers

are used when checking input. For example, (W NAMP_PAUSE == t r ue) will evaluate to true or false.
The commands that follow make up the switch's response.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

34 X10GIMLI

Packet

X10Gimli packets are the main structure for passing information to and from the X10Gimli system.
Packet are structured as follows:

X10Gimli header (9 bytes)

flags (1 byte)

reserved [not used] (4 bytes)

ID number (4 bytes)

packet size (2 bytes)

type string (20 bytes)

source string (20 bytes)

destination string (20 bytes)

number of values (1 byte)

list of tags and values (variable size)

Packets have two internal data representations — packed and unpacked — which are tracked and handled by
the packets. The packed data format consists of a byte array. Byte arrays can be easily transmitted over
network sockets, received, and unpacked in other locations or in other processes.

In the X10Gimli system, packets are interpreted as switch input to specified controls. The packet's type
string represents the contral it is intended for. The tagged value list represents switch information. When
a packet is received in the system model, a control identification list is created using the type string. A
switch identification packet is created using all of the tagged values. For example, a packet with the type
string "X10", and tagged values HOUSECODE=A and DEVI CECODE=15, could be handled by any of the
following switches:

control <X10>
[A 15] 1og(""+housecode+devi cecode);
[A] log(""+housecode);
[15] | og(""+devicecode);

Any of the above switches valid since a switch only must find a match for each of its identification values.
However, in this case, only the first switch in the list would be triggered. The example also demonstrates
that tag names in incoming packets become variable identifiers that can be used in expressions.

X10Gimli aso provides a way for packets to be created internally. Internal packet values store type and
tag information, but not network transit data. An internal packet exampleis given:

begi n
vpack = Packet ("X10", {HOUSECODE, DEVI CECODE}, {A, 15});
vpack. HOUSECODE = B;
vpack. DI M5 = 55;
vpack. TYPE = " X10NEW ;
end

As is shown, tagged values can be accessed in internal packets. New tags can also be added by assigning
values to non-existent tag names. The packet type can be changed as well.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

35

Thisisthefirst version of the X10Gimli packet class. Asis shown in the structure description, there are a
few fields that can store data, but are not currently used by the system. Future revisions to the packet will
take advantage of the available bytes.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

36 X10GIMLI

Standard Data Types

The X10Gimli data types make up all of the values within the language. Individual data types each have a unique
set of legal operations that can be performed between them and other data types. The available data types are given
bel ow:

Ident - plain variable identifier

Number - integer number

X10 - X10 housecode/devicecode combination
String - string

Time - timein hours, minutes, and seconds
Day - day of the week

Month - month of the year

Command - X10 command

Date - date

Boolean - boolean

List - list of values

Packet - contains tagged values

The compatible operations between different data types is shown in the chart below. Each row shows which
operations can be performed. The rows represent the left operand, and the columns represent the right operand.
Thereis no current support for unary operators.

Operator Evaluation Chart
I dent Num X10 String Time Day Month Comm Date Bod List
Fy==r
ldent | s=o< |+
<=
!] = == 1 =
Num >z<> | >>ze> >=<> < | >o=e
< <<= <<= << <
T
X10 >=<
<=
Fy==r
sring | + N N o< | s
<=
=
Time +- =<
<
Day szo< szo< g
<= <=
= = e
Month >=<>< =< <> <<
<= <=
= =
Comm o< >= <<
<= -
= = =
Date . szo< | szo< szo<
< <= <
AND
Bool OR ==
List + +*/
No operators can be directly applied to packet values.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

37

Expressions in X10Gimli have no operator precedence. Expressions are evaluated from left to right. The left
operand determines the resultant data type for any evaluation. Normally, the resultant value will be of the type of
the left operand. Any evaluation will proceed as described. For example, to create a string from a number, simply
add the number to a string:

""+423
With that, the string "423" is created due to the order of evaluation. The same does not apply in reverse:

423+""

The second example would generate an evaluation error because a string cannot be added to a number, per the
operator evaluation chart. Some data types have unique operator relationships that are explained in the individual
value descriptions.

Boolean

Boolean data type. Boolean values are returned from any comparison operation. They are the
basis for all conditional expressions. All lookups for controls and switches use a t r ue boolean
value when comparing the evaluated expressions.

Internal Values:
Storesatrue or f al se vaue

Operators Supported:
AND (Boolean)
Performs alogical and operation.
OR (Boolean)
Performs alogical or operation.

Command

X10 command data type. Incoming X10 commands and outgoing commands are represented by
this data type.

Internal Values:
Stores one of the 16 possible X10 function values (listed in numerical order, starting at 0):

allunitsoff - dim
alllightson - bright

on - allightsoff
off - extendedcode

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

38 X10GIMLI

hailrequest - extendeddatatransfer

hailacknowledge - statuson

presetdiml - statusoff

presetdim?2 .+ statusreguest
Operators Supported:

+, - (Command, Number)
Loops circularly through the command list by adding or subtracting a numerical value.

>, <, >=, <=, ==, <> (Command, Number)

Performs a comparison based on the numerical representation of the command value.

Date

Date datatype. Dates can be used to allow special and very specific trigger and switch responses
to date conditions. For example, special things could be made happen on somebody’s birthday by
using the date value.

Internal Values:
Stores a calendar with the day, month, and year.

Operators Supported:

+, - (Number, Day)

Adds or subtracts a certain number to the date.
+, - (Month)

Adds or subtracts a certain number of months.
+, - (Date)

Adds or subtracts all of the date fields.
>, <, >=, <=, ==, <> (Number, Day)

Does a comparison on the date, not comparing month or year.
>, <, >=, <=, ==, <> (Month)

Does a comparison on the month only.
> < >= <= == <> (Date)

Does a comparison on the day, month, and year.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

39

Day

Day data type. Inividual days of the week can be handled with this data type. It is possible that
unique triggered events and controls are desired for different days of the week. For example, if
sprinklers are only wanted on Monday, Wednesday, and Friday, such functionality can be
acheived with this data type.

Internal Values:
Stores a number representing the day of the week, where Sunday is 1.

Operators Supported:
+, - (Number, Day)
Adds or subtracts a certain number to the day in a circular fashion.
>, <, >=, <=, ==, <> (Number, Day)
Does a comparison based on the numerical day of the week value, where Sunday is 1.
> < >= <= == <> (Date)

Does a comparison on the day of the week numerical value.

ldent

Ident data type. All variables in the language are accessed by way of the identifier data type.
The identifier string is used to dereference definitions, and definitions will always be evaluated
before evaluating expressions. However, identifier values that do not map to any existing
definition can have opertations applied directly to them to create new unique identifiers.

Internal Values:
Stores a string identifier.

Operators Supported:
+ (Ident, Number, X10, Day, Month, Command)
Appends the string representation of the value to the identifier.
>, <, >=, <=, ==, <> (Ident)

Does a string comparison on the identifiers.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

40 X10GIMLI

List

List datatype. The list data type functions similar to an array, but has no type or size restrictions.
Arithmetic operators have special functionality with lists. Values can be accessed within lists by
referencing them starting with index value 1. A list can be resized by reassigning the value at
index O.

Internal Values:
Stores alist of values.

Operators Supported:
+ (Ident, Number, X10, Day, Month, Command, Sring, Time, Date, Boolean)
Adds the item to the end of the list.
+ (List)
Appends two lists together to make a new list.
/ (Number)
Deletes an element from the list at the specified index.
* (Number)
Inserts an entry in thelist at the specified index. The value must be set afterwards.

Month

Month datatype. Explicit month of the year values allow for advanced handling. For example, if
someone wanted holiday music automatically loaded into an MP3 player during December, a
month based trigger could be used.

Internal Values:
Stores a numerical month value, where January is 1.

Operators Supported:
+, - (Number, Month)
Adds or subtracts a certain number to the month in acircular fashion.
>, <, >=, <=, ==, <> (Number, Month)
Does a comparison based on the numerical month value, where January is 1.
>, <, >=, <=, ==, <> (Date)

Does a comparison on the month numerical value.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

41

Number

Number datatype. Integer numbers are extremely important in any language. No floating point
support is currently available in the system, but integer numbers allow for sufficient flexibility to
accomplish many useful tasks.

Internal Values:
Stores an integer number.

Operators Supported:
+, -, *, / (Number, Day, Month, Command, X10)

Does an addition, subtraction, multiplication, or division operations between the numerical
representations of these values.

>, <, >=, <=, ==, <> (Number, Day, Month, Command, X10)

Does comparison between the numerical representations of these values.

String

Sring data type. Strings essentially can represent any kind of data. String value representations
can be parsed and used in many ways. X10Gimli alows string arithmetic to be performed, where
any datatypeis converted into avalid X10Gimli string representation.

Internal Values:
Stores alist of values.

Operators Supported:
+ (Ident, Number, X10, Day, Month, Command, Sring, Time, Date, Boolean, List)
Appends the string representation of the value to the existing string.
>, <, >=, <=, ==, <> (3ring)

Does a string comparison between the string values.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

42 X10GIMLI

Time

Time data type. Time values are critical for the functionality of triggers. Motion triggers are
based on time delay. Time based events, such as turning on lights and controlling sprinklers,
require time value comparisons. The time data type alows for a certain degree of precsion for

comparisons, using minutes or seconds. Comparison precision is determined by the amount of
precision used to initially describe the value.

Internal Values:

Stores the time with the hour, minute, and second.

Operators Supported:
+, - (Number)
Adds or subtracts a certain number of seconds to the time.
+, - (Time)
Adds or subtracts a the hours, minutes, and secondsin acircular fashion.
>, <, >=, <=, ==, <> (Time)

Does a comparison on the time.

X10

X10 address datatype. X 10 values can be only a house code, or a house code and device code

combinaiton. Since X10Gimli was initially intended to allow advanced control of X 10 devices, the X10
address data typeis naturally available.

Internal Values:

Stores an X 10 housecode and devicecode.

Operators Supported:
+, - (Number, X10)
Adds or subtracts from the device code number in acircular fashion.
>, <, >=, <=, ==, <> (X10)

Does a comparison on the housecode and devicecode. A devicecode can be greater than or less
than another only when the housecodes are equal. Otherwise, not equal is produced.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Standard Language Statements

43

The language provides several commands structures that define how execution is performed. These commands are

outlined in the language grammar. Each command statement is described in detail below.

ReturnCommal
Value

Environment [« ! SystemM odel " | Mode |
Definitions | Fundionsl Triggersl Controls | Startl Finish | Imports | Name | Modes Name
PR oo l[0 5|
A
| Definition " | Function | Trigger Control
Name | Value | Name | Idents | Command | Case | Command | Namel ID | Switches
v
[L Command |—¢—»{ FuncCommand [Vauerype [vaue |
4 Command | Params y Vaue
|| IfCommand || @I
Case ICommmd IEI$ I Left mm

| E1seCommand

Command

AssignCommand

e

—»| WhileCommand

Case Command

TriggerCommand

Trigger

—p| BeginCommand

Commands

M otionCommand

i0 | 1ime | sart | Fnisn]

J

—ll NewCommand

Definition

Pl DefineCommand

Definition

@

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

44 X10GIMLI

Define Statement

<define-command> ::= define <definition>;

This command is used to handle variable creation at the expanded environment level, and to do
unevaluated expression assignments. The system model and individual modes constitute expanded
environments. If no matching definition is found in visible scope, then a new definition is created at in the
expanded environment, or in other words, at a broad scope level. If a definition aready exists that
matches the desired definition, then its value is reassigned to the one specified by this command. The
value assigned is an unevaluated expression. For example:

begi n
varu
var x

begi n
define vary = varu-10;
define varz = varu;
end
varu = 15;
log (""+varx+", "+vary);
end

The output in this case would be:
"15, 5"
In this example the important effects of this command are illustrated:

Following scope rules, at the last value assigned to var x is the value of vary.
Because var z was not in scope when var y was previously assigned a value, var x is
assigned the identifier var z. Later, var z is defined at a deeper point of scope, but the
def i ne command causes it to be defined at a more global point with an unevaluated
identifier var u. Therefore, when the value of var x is printed, it evaluates through
var z through var u to the current value of var u, which is 15.

The case of printing the value of var y follows the similar pattern. In this case, vary
is defined with an unevaluated expression at a deeper point of scope. When it is finally
evaluated, its value is shown to be the current value of var u minus 10, which is 5.

In general, new definitions should not need to be added outside of the defi niti ons block of an

X10G m i source files, but the capability does exist. It is handy, however, to be able to assign values of
unevaluated expressions and identifiers to other variables.

Usage:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

45

define identifier = expression;

New Statement

<new-command> ::= new <definition>;

This statement creates new variables in the local environment. The new statement differs from the
assignment and def i ne statements because under al circumstances, the new command adds a new
definition to the local environment. For example:

x10gimi test;

functions
| oopfunci()
begi n
| oop = 3;
while (loop > 0) loop = 1loop - 1;
end
| oopfunc?2()
begi n
new | oop = 3;
while (loop > 0) loop = 1loop - 1;
end
start
begi n
| oop = 5;
| oopfunc2();
varx = | oop;
| oopfuncl();
vary = | oop;
log (""+varx+", "+vary);
end
end x10gi m i .

In this case, the output will be:
"5 o
This example demonstrates some of the effects of scopein X10Gimli and how to properly deal with it.

Both of the function calls execute the same code, but the effect is not quite the same. In
| oopf uncl the loop counter is set, but the variable being set is not actually local.
This can cause unexpected side effects if the code is not designed with thisin mind. In
| oopf unc?2 the new statement is used to declare a local variable for the function.
This should be done for most functions using local variables.

So, this command allows unevaluated variable definitions to be created in the local environment space.

Usage:
new i dentifier = expression;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

46 X10GIMLI

|dentifier Assignment Statement

<ident-command> ::= <variable> = <values>; | <variable>;

This statement handles assigning new values to variable definitions. New values can be assigned to
identifiers, packet tags, and list elements. If there is no existing definition for a given identifier, then a
new identifier will be created within the local execution environment and assigned the value. It is aso
important to note that the value being assigned is the full evaluation of an expression. Here is an example
of the assignment command being used in many ways:

5;
{2, 3, 4};
Packet (TEST, {IDA, 1DB}, {a, b});

defi ne varx
define vary
define varz

varx = vary[2];
vary[2] = 7;
vary[0] = 4;
vary[4] = var[3] + 23;
varz.| DA = varz. | DA+3;
varz. |1 DC = c;
begi n
varw = 5;
end
varu = varw,
varw = 7,
varu = varu + 1,
Log ("Variables = "+varx+", "+vary+", "+varz+", "+varu);

In this example, the output would be:

"Variables = 3, {2, 7, 4, 27}, PACKET(TEST, {IDA, IDB, 1DC, {A3,
B, C), 8"

Thisillustrates several important regarding assigning values.

Notice that the value of var x is still 3 after vary[2] has been changed. This is
because the assigned vaue is fully evaluated. The defi ne command assigns
unevaluated expressions to identifiers.

Note that assigning a new number value to the list eement O changes the size of the
list.

Notice that assigning a value to a packet tag that does not exit adds the tag and value to
the packet.

Notice that the var widentifier was assigned a value in a different scope. When var u
is assigned the var wvalue, there is no var widentifier in scope, so var u is assigned
the plain identifier var winstead of an evaluated expression. Another var wis defined
in visible scope afterwards, and when var u adds 1 to itsdlf, it is actually adding oneto
var w, and so the value becomes 8, not 6.

In general, when using assignment statements, it is important to remember that the expression is fully
evaluated before being assigned to the identifier.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

47

Usage:
vari abl e = expression;

Begin/End Block

<begin-command> ::= begin <command-list> end

This command is used to perform the execution of a block of command statements. All pieces of the
X10Gimli system deal with single commands. By encapsulating multiple commands within the begi n
and end keywords, command blocks are created. This command also spawns a new execution
environment and extends the visible scope. Upon completion of the command block, any return value in
the spawned environment isitself returned. Hereis an example of using this command:

begi n
varx = 5;
if (varx == 5) then begin
varx = varx + 2,
vary = 3;
end
if (vary == 3) then varx = 2;
varz = 0;
while (varx > 0) do begin
varx = varx - 1,
vary = vary + varx;
varz = vary;
end
log (""+varz);
end

The output of this example would be:
"VARY7654321"

This example presents command blocks that handle multiple command execution, as well as the effects of
scope, and operator evaluation within the different blocks.

The variable vary is created within a command block, and is only available within
that scope. When the command block steps out, vary is lost. The next statement
attempts to do a comparison between an identifier and a number. Such a comparison is
illegal because the identifier vary does not evaluate to anything but itself. An error
will be posted.

During the while loop, vary will be assigned an unexpected value. Since it is not
defined at the point it isfirst assigned a value, its assigned value will be the result of a
number added to an identifier, which in the first case will be VARY7. The loop will
repeat and continue to append numbers to varx, until the end.

Effectively using these block command statements requires understanding a little about how the scope
functions, but it is otherwise straightforward.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

48 X10GIMLI

Usage:
begi n commandl i st end

If/Then Statement

<if-command> ::= if <values> then <command> <else-command>

X10Gimli i f statements function the same as they would in just about any other language. | f statements
require an expression that evaluates to a boolean value. Expressions that evaluate to true cause the i f
response command to execute. False values cause an optiona el se command to execute. Here is an

example:

begi n
varx = 5;
if varx == 5 then vary = 6;
if vary == 7 then begin end
else if vary == 6 then

log (""+vary);
end

The output from this example will be:
"G
This example demonstrates one important thing to note about the execution responsesto i f conditions. In

this example, vary is created in the response command of the i f statement. This is possible because i f
response commands are executed in the same environment asthe i f evaluation.

Usage:

i f expression then command,

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

49

Else Statement

<else-command> ::= <null> | else <command>

This command simply executes another command when called When an i f statement is evaluated to
fase, the el se command is executed instead. The only thing that happens is that another command is
executed if one exists, asin this example:

begi n
varx = 10;
if (varx == 9) then begin
end else if varx == 11 then begin
end el se
log (""+varx);
end

This example handles the execution of two el se commands. The first command executes another i f
statement, which then causes another el se to execute. The second command displays the output, which
would be:

"10"

The el se command can only be placed after and i f statement.

Usage:
i fstatement el se commmand

While Statement

<while-command> ::= while <values> do <command>

Thisis the only loop command available in the X10Gimli system. Using awhi | e loop, any other kind of
loop can be simulated, so f or loops, and do/ whi | e loops have not been added to the language. The
usage of whi | e loops is straightforward. Each loop requires a condition that determines whether to
continue looping or not. Hereis an example:

begi n
| oop = O;
varx = "";
while loop < 4 do
begi n
varx = varx + vary,
vary = | oop;
| oop = loop + 1;
end
currenttime = tine;
while currenttime == tine do
varz = | oop;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

50 X10GIMLI

if (varz > 0)
log (""+varx);
end

The output in this case will be:
"VARY012"

The provided example shows to special cases of using whi | e loops.

The execution of begi n statements is handled in a special way. Normally begi n
commands create a new environment to execute in, which would mean the
environment would be recreated for every step of the loop. However, the whi | e creates
an environment for the command block to execute in and preserves it until the loop
terminates. So, in the first loop, vary isn't created until after the first assignment
statement. The first addition is "" + VARY. After that, vary has a value and that
value is appended. Under normal circumstance, there should be no need to create local
variables that must exist during the duration of the loop, but the ability is available.
Also, note that single commands executed in a loop are executed in the local
environment. That allows new variables to be declared that remain in scope after the
loop terminates. It is not likely that this adds any benefit, but it is possible.

The most important thing is to always remember is that the loop condition must become false at some
point to terminate the loop. That usually requires incrementing aloop counter from within the loop.

Usage:
whi | e expressi on do command,

Return Statement

<return-command> ::= return <variable>;

This sets the return value for the execution environment. Environment return values are used to return
values from user functions. If the architecture of the language were changed dlightly, then return values
could be received from any command block, and not just user functions. However, there should be no need
to return values from other types of commands. To return values from user functions, the return statement
must occur at the end of multiple command blocks or else the return value will be lost. Here is an

example:

x10gimi test;
functions
funcl(inval) return inval + 3;
func2(inval)
begi n
return 5;
inval = inval + 1,
end
func3(inval)
begi n
begi n

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

51

return 3;
end
begi n
inval = 4;
end
begi n
return 6;
end
end
start
log (""+funcl(5)+", "+func2(4)+", "+func3(2));
end x10gim i .

The output from this example will be:
"8, 5, 6"
The example demonstrates three potential attempts at returning values:

In f unc1l the return statement is performs as expected, and returns the summed value
of the expression to the parent environment.

The second function demonstrates that a return value can be set at any time during the
execution block. The return value is set in the parent environment at the moment the
r et ur n command is executed. The begi n command propagates the return value to
its parent environment.

Finally, f unc3 shows that the return value can be propagated through multiple levels.
Returns can be propagated indefinitely, but are stopped at the termination of user
functions. The second return is necessary because the command block that occurs after
thefirst return causes the return value to be replaced by anull value.

Following the standard way to return values from functions, there should be no problem using this
command.

Usage:
return expression;

Motion Command

<motion-command> ::= motion <variable>; <start-block> <finish-block> | motion <variable>
<variable>; <start-block> <finish-block>

This is a special command unique to X10Gimli. The motion response command essentialy defines a
temporary change of state, for a minimum amount of time. When the not i on command is called, a start
command is executed, and a new named trigger is created that will fire after the specified amount of time
(60 seconds is the default if no time is specified). When the trigger fires, the finish command is executed.
If another motion command is called on the same device or identifier before time has expired, it can be
reset to fire after a new delay. This can be used easily for turning lights on and off, but can be applied to
anything. For example:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

52 X10GIMLI

begi n
define varx = 0;
notion testl;
start varx = 1;
finish varx = 2;
del ay (5000);
l og(varx) ;
notion testl 5;
del ay(6000) ;
| og(varx);
noti on A2 0: 00: 05;
end

The output of this example will be:

nqn
non

The example demonstrates three key pieces of the maotion response command:

Any identifier can be used to name the motion trigger. Individua start and finish
commands can be defined. If either or both of the commands are omitted, then the
default commands are used. The delay can be specified along with the motion trigger.
It is possible to reset the motion trigger before it is fired. By caling the motion
command again with the same identifier, a new time delay can be set. In this case, the
timeis less than what is actually remaining, but it can be more. Since only the trigger
is being reset in this case, the start and finish commands do not need to be specified.
Thetrigger aready has the associated finish command.

Specia handling is done with X10 value identifier for the motion triggers. The default
behavior of the X10 motion handler is to send an 'ON' command to the device with the
specified address. The default behavior to finish it to send an 'OFF command to the
device with the identifier address. So, in the case given, the 'ON' command will be
sent, and five seconds later, the 'OFF command will be sent.

Being able to easily and powerfully implement timed motion detector responses is an integral part of this
system.

Usage:

nmotion idvariable {timevariable}; {start startconmand} {finish
fi ni shconmand}

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

53

Trigger Command

<trigger-command> ::=trigger <trigger>

Local triggers can be created and reassigned with this command. Global triggers can also be reassigned
with this command. Triggers that are created can be anonymous or named. Local triggers can only be
fired once, and then they need to be redefined. The trigger definition follows the normal tri gger
syntax. Hereis an example:

begi n
define currenttinme = tine;
define varx = 0;
define vary = 0;
trigger (currenttime == (tinme - 5)) do varx = 1;
trigger testl (time == (time + 1)) do vary = 1;
del ay(1000) ;

trigger testl (varx == 1) do vary = 1;
del ay(5000) ;
log (""+varx", "+vary);

end
The output from this code will be:
L
The example shows a couple cases of handling triggers:

Anonymous triggers can be created to perform tasks as defined. In the example, the
trigger will fire after five seconds and execute its code.

The named trigger isinitially set to fire with a condition that will always be false. That
same trigger is then reassigned a new condition and result. Since triggers are checked
every second, as soon asvar x receives its new value, the named trigger fires.

Remember that local triggers will only fire once and are then lost. Triggers are especially useful for timed
tasks, but can be applied to any kind of condition.

Usage:
trigger {triggeridentifier} (triggerexpression) do triggerconmand,

Function Call

<ident-command> ::= <variable> = <values>; | <variable>;

This class handles execution of all user functions defined using X10Gimli source code. Parameters are
passed by value and local definitions are created that correspond to the parameter names. So, within the
function, access to all of the parameters is handled the same as with any other identifier. Functions can
execute blocks of commands and return values. The following example illustrates some function call
examples:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

54

X10GIMLI

x10gimi test;
defintions
defa = 1;
functions
funcl() begin define varl = 1; end
func2(defa) begin defa = 2; end
func3(inl, in2) begin defa = 2; return inl + in2; end
start
begi n
funcl();
varz = 1,
func2(varz);
vary = func3(4, defa);
log (""+var1+", "+varz+", "+vary+", "+defa);
end
end x10gi m i .

This example produces the following outpult:

"1, 1, 5, 2"

A few issues about he way user functions and parameter passing is done can be seen in the above example:

Functions do not need parameters. A function with no parameters executes normally. It
can return values and access all variablesin scope.

Parameters are passed by value and new definitions for those parameter values are
created in the function's execution environment. In the example, var z is passed into
f unc2. The parameter is fully evaluated before being passed, so f unc?2 creates a new
definition in the local environment of defa = 1. In the function, the local def a
definition is assigned a new value, so neither var z nor the global def a are affected.
Multiple parameters can be passed in and work as previously described. In the
example, def a gets assigned a new value, but the parameter i n2 was aready assigned
the evaluated def a value, so, thereturn value is based on that.

It is important to remember scope in dealing with user defined functions. Duplicate identifier names

further in scope cannot be accessed. Parameters cannot be passed by reference.

Usage:
functi onnane(paraneterlist);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

55

Error Codes

E100

E101

E102

E103

E104

E200

E201

| NVALI D PARAM COUNT
An invalid number of parameters was passed into a function.

| NCOVPATI BLE TYPE COVPARI SON
A comparison was attempted between two data types that are incompatible.

| NCOWPATI BLE TYPE ARl THMVETI C
An arithmetic operation was attempted between incompatible operands.

| NCOWPATI BLE TYPE PARAMETER
The value passed into the function was of an incorrect type.

NO VALUE
Thereis no value to perform an operation on.

| NCORRECT SYNTAX
Syntax error during parsing.

| NVALI D TOKEN
Anillegal token was scanned during parsing.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

57

Language Components

The actua functionality of X10Gimli is provided by the external language components that allow system resources
to be effectively used. The external language components are defined in Java classes that are automatically made
available within the language. Without the external components, the language can not receive input, cannot send
output, and is essentially dead. The available external language resources are:

Functions
Real-Time ldentifiers
Interface Gateways

Anyone can create new external components by following a set of conventions defined for each type of external
system piece. As new components are created, the power of the language expands and its usefulness increases. A
number of functions, identifiers and gateways are standard and aready available.

This portion of the document contains short tutorials for creating new language components. The standard
components are also listed and described |ater.

Externally Defined User Functions Tutorial

Adding commands with more functionality than what can be achieved within the X10Gimli system can be
done in Java. The FuncCommand class provides the necessary functionality to create a new user defined
function to use in the language. The new functions can be created following a set of conventions for
writing new functions that is described below.

For external user function classes to work in the language, they must:

Follow the naming convention described later on.

Descend from the X10G i i . Command. Func Conmand class.
Becreated in the X10G m i . Conmand. Funct i on package.
Overload the execut e method of the Command class.

Have a default constructor.

To assist with the implementation, the Func Conmand class has helper functions that should be used, and
will be described in more detail later on. For consistent documentation of the usage of new functions, a
JavaDaoc convention can be used. This will al be described shortly. First, here is the source code used by
the changenode function:

package X10G mii.Command. Functi on;

inmport java.util.*;

i mport X10G ml i . Debug;

i mport X10G mli. Token;

i mport X10G mli.Comand. *;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

58 X10GIMLI

import X10G mi.System*;
i mport X10G mi. Val ue. *;

/**
* Changes the system s current node to the one specified by the input
* paraneter. |If the node nane specified does not exist, then the
* systemreturns to normal execution without any active node.
*o<p>
* Usage:
*o<p>
* <bl ockquot e><code>
* changenode</ b>(<i >node</i >);
* </ code></f ont ></ bl ockquot e>
*
* Paraneters:
*o<p>
* <bl ockquot e>
* <ji>ldent</i> mpde - the name of the node to activate

* </ bl ockquot e>
*
* Exanpl e:
*o<p>
* <bl ockquot e><pre>
* changenode(Nl GHTMODE) ; </ pr e>
* </ bl ockquot e>
*/
public class ChangenpdeComrand ext ends FuncConmmand {
/**

* Executes this command as described in the class description. Paraneter
* types and count must be correct. Execution is done in the specified
* envi ronment . <p>

* @ar am env execution environenent
* @eturn null
*/

public Val ueType execute(Environnent Small env){
super . execut e(env);
if (checkNunParanms(1l) && env != null){
Val uel dent ident = getldentParam(0);
Syst emivbdel m = env. get Syst enivbdel () ;
if (m!=null){
Mbde nmode = m findMbde(i dent. getValueString());

if (nmode !'= null){
m changeMde(node) ;
} else {
m changeMbde((Mode) nul 1) ;
}
}
}
return null;

}
}

Here are some steps that can be followed to create a user-defined function that is automatically accessible
to the X10Gimli system.

1. Decide the name by which the function will be known in the language. The naming convention
requires the class exist in the X10G m i . Command. Funct i on package. The name of the
new class dictates the function identifier that the language uses. The class name is the function
name (with only the first letter capitalized) followed by "Command”. For example, if a function
called "sprinkler" were desired in the language, its class name would be " SprinklerCommand".

2. Create the Java skeleton for the function. The following template can be used:

package X10G mii.Command. Functi on;
inmport java.util.*;

i mport X10G ml i . Debug;
import X10G mli.Comand. *;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

59

import X10G mi.System*
i mport X10G mi. Val ue. *;

*

/
Description of the new function goes here

<p>

Usage:

<p>

<bl ockquot e><f ont si ze=5><code>

newf uncti on(<i >paranl</i >, <i>paran</i>)
</ code></ f ont ></ bl ockquot e>

Par amet er s:

<p>

<bl ockquot e>

<i >Par aniType</i > paranil - paraneter description

<i >Par anifype</i > paran - paraneter desripction

</ bl ockquot e>

Exanpl e
<p>
<bl ockquot e><pr e>
newf unction(pl, p2); </ pre>
</ bl ockquot e>

L R R T T

*/
public class NewfunctionCommand extends FuncComand {
/**
* Executes this command as described in the class description. Paraneter
* types and count must be correct. Execution is done in the specified
* envi ronment . <p>
* @ar am env execution environenent
* @eturn null
*/
public Val ueType execute(Environnent Small env){
return null;
}

}

The bolded text in this template should be replaced correctly. The JavaDoc comments should be
written appropriately to represent the function being created. The class name should be changed
to the desired name.

3. With the skeleton code prepared, the execute command needs to be written. The execute
command can be written in any way desired, as long as it is understood how the system will
react to it. Most functions should contain at |east the following:

public Val ueType execute(Environnent Small env){
super . execute(env); // this prepares the input paraneters to be used
if (checkNunmParans(??) &% env != null){ // checks that the correct number of
/] paraneters was passed in
/1 body of function
}

return null;

}

This should all be done to correctly prepare the parameters to be used. Further descriptions of the
functions being used can be found in the description of the Func Contmrand class in the JavaDoc.

4. To write the body of the function using the input parameters, it is good to understand how
X10Gimli values work. Descriptions of the individual value classes and value classes in general
can befound in the X10G il i . Val ue package JavaDoc. Also, keep in mind that in the body of
the new function, it is wise to use Func Command helper functions that retrieve parameters and
doing type checking. This ensures that a certain level of error reporting is done.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

60 X10GIMLI

5. If the function is supposed to return a value, then that can be done as well. To return a value,
create a new instance of the type of value to be returned and set its data. Then return the value
when the function ends.

That's really al that needs to be done to create a new function within the language. It can be called just
like any other function in the language.

User Functions

ACTIVATE

Activates a switch within a specific control to begin handling input responses. The switch that is
activated must be in scope.

Usage:
activate(control, switch);

Parameters:

Ident controal - the identifier corresponds to the control 1D
List switch - thelist of values that allow a switch to be resolved.

Example:
activate(X10, {A5});

CHANGEMODE

Changes the system'’s current mode to the one specified by the input parameter. If the mode name
specified does not exist, then the system returns to normal execution without any active mode.

Usage:

changenode(node) ;

Parameters:

Ident mode - the name of the mode to activate

Example:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

61

changenode(Nl GHTMODE) ;

DEACTIVATE

Deactivates a switch within a specific control to begin handling input responses. The switch that
is deactivated must bein scope. Thisis handy at time when certain input needs to be ignored.

Usage:
deactivate(control, switch);

Parameters:

Ident controal - the identifier corresponds to the control 1D
List switch - thelist of values that allow a switch to be resolved.

Example:
deactivat e(X10, {A5});

DELAY

Suspends execution for a specified number of milliseconds. Actualy sleeps the current thread.
This allows the processor to be freed up during waiting loops.

Usage:

delay(m | liseconds);

Parameters:

Number milliseconds - the amount of time to suspend execution

Example:
del ay(1000);

INTERFACE

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

62 X10GIMLI

Initializes and activates a specified interface and attaches it to the system modd. If no
appropriate interface can be found, or initialization of the interface is unsuccessful, then errors
are posted and nothing is attached to the model. Some gateways require parameters, while others
do not. Passing the parameter ‘NULL' as the initialization parameter will cause no parameter to
be sent to the gateway initialization function.

Usage:

i nterface(interfacenane);
i nterface(interfacenane, initparan;
i nterface(interfacenane, initparam nane);

Parameters:

Ident interfacename - the name of the interface to beinitialized and attached
Value initparam - theinitialization parameter for the interface. This may be alist of parameters.
Ident name - the name that this interface will be known by

Example:
i nt erface(W NVESSAGE) ;
interface(TCP, 4325);
interface(CML1A, "COML", X10I NPUT);

LOG

Writes a user text message to the user log. This command is especialy useful when some
execution log output is desired, but the full execution log is not required.

Usage:

| og(message) ;

Parameters:

Sring message - the user text message

Example:
log("This is a | og nmessage.");

PACKET

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

Creates a packet value with the specified type, fields, and values. If the length of the tag and
value lists is not equal, an error is posted. When creating the packet, the values of the tag list are
all transformed into identifier values if not already so. The values within the value list are fully
evaluated before being placed in the packet.

Usage:
packet (packettype, taglist, valuelist);

Parameters:

Ident packettype - the type of packet to be created
List taglist - thelist of identifier tags for value referencing
List valuelist - thelist of values stored in the packet

Returns:

Packet - the packet value that is constructed from the input parameters

Example:
pPacket = packet (PACK, {TAGL, TA&}, {1, A});

SENDPACKET

Sends a packet to all of the output gateways available from the system model. The packet can
have a specific destination or not.

Usage:

sendpacket (desti nati on, packet);
sendpacket (packet) ;

Parameters:

Sring destination - the destination of the packet
Packet packet - the actual packet data to send

Example:
sendpacket (" GATEWAY2", packet (TEST, {}, {}));
sendpacket (packet val) ;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

X10GIMLI

SENDPACKETANDWAIT

Sends a packet to all of the output gateways available from the system model. The packet can
have a specific destination or not. The function then waits for a response packet so a value can
be returned. If no responseis received within 10 seconds, a null valueis returned.

Usage:

sendpacket (desti nati on, packet);
sendpacket (packet) ;

Parameters:

Sring destination - the destination of the packet
Packet packet - the actual packet data to send

Returns:
Value - the value the comes in the response packet

Example:
sendpacket andwai t (" RESPONSEGATEWAY", packet (TEST, {}, {}));
sendpacket andwai t (packetval) ;

SOUND

Plays a sound file specified by the input string. The X10Gimli import path is searched for the
first occurrence of thefile.

Usage:
sound(fil enane);

Parameters:

Sring filename - the name of the sound file to play

Example:
sound(" FX. WAV") ;

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

65

TOCONTROL

Executes the system mode's current switch in another control. This is done by refreshing the
system's control identification list, while not touching the switch identification list. The new
control/switch is executed in the same way it would be from outside.

Usage:
tocontrol (control);

Parameters:

Ident controal - the identifier corresponds to the control 1D

Example:
tocontrol (X10);

TOCONTROLSWITCH

Executes a specific control/switch within the current mode. This is done by refreshing the
system's control specification list, and also changing switch identification list. The new
control/switch is executed in the same way it would be from outside.

Usage:
tocontrol switch(control, switch);

Parameters:

Ident contral - the identifier corresponds to the control 1D
List switch - thelist of values that allow a switch to be resolved.

Example:
tocontrol switch(X10, {A 1});

TOGGLE

Toggles a switch within a specific control to begin handling input responses. The switch that is
toggled must be in scope.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

66 X10GIMLI

Usage:
toggl e(control, swtch);

Parameters:

Ident controal - the identifier corresponds to the control 1D
List switch - thelist of values that allow a switch to be resolved.

Example:
t oggl e(X10, {A5});

TOSWITCH

Executes another switch in the system modd's current control. This is done by refreshing the
system's switch identification list, while not touching the control specification list. The new
control/switch is executed in the same way it would be from outside.

Usage:
toswi tch(switch);

Parameters:
List switch - thelist of values that alow a switch to be resolved.

Example:
toswitch({A, 10});

X10ADDRESS

Sends out a specific X10 address command.

Usage:
x10addr ess(addr ess);

Parameters:
X10 address - address to be sent out before function command

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

67

Example:
x10addr ess(A5);

X10COMMAND

Sends a specific X10 command to the specified house code with any extra data necessary. The
X10ADDRESS command should be called before this to specify the device to receive the
command.

Usage:

x10command(command, x10);
x10command(command, x10, nunj;

Parameters:

Command command - the X10 command to send
X10 x10 - the full address or housecode to receive the command
Number num - the extra data required for BRIGHT and DIM commands

Example:
x10command(ON, A5);
x10command(DI M A5, 23);

X10SWITCH

Uses the last X10 input received and sends its function and extra data to the switch specified by
the input parameter.

Usage:
x10swi t ch(swi tch);

Parameters:

X10 switch - destination switch to receive X10 command

Example:
x10swi t ch(A5);

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

68 X10GIMLI

Real-time External Variables Tutorial

Adding specialized identifiers to the X10Gimli system that represent real-time changing data can be done
in Java. The Val uel dent class provides the base functionality needed to create a new real-time
identifier value to use in the language. The new identifiers can be created following a set of conventions
for creating new pre-defined identifiers that is described below.

For real-time values to work in the language, they must:

Follow the naming convention described later on.

Descend fromthe X10G mi i . Val ue. Val uel dent package.
Be created in the X10G m i . Val ue. Pr eDef i ned package.
Overload the get Val ue method of the Val ueType class.
Have a default constructor.

Return avalid X10Gimli value.

The Val ue class provides al of the functionality that values must have, so implementation of the real-
time value calculation is the only thing that needs to be written. For consistent documentation of the usage
of new identifiers, a JavaDoc convention can be applied. Also, if any of the time related data types is the
return type, then the r eset Ti me method should be overloaded to return a time with the appropriate
delay described in the Trigger description in the L anguage Overview portion of this document. This will
all be described shortly. First, hereis the source code used by thet i ne real-timeidentifier:

package X10G nii. Val ue. PreDefi ned;

inmport java.util.*;

import X10G mii. Token

i mport X10G mi i . Debug

import X10G mi.System*

i mport X10G mli. Val ue. Val uel dent ;
import X10G mli. Val ue. Val ue

*

/
Represents the current time of day.
<p>

Usage:

<p>

<bl ockquot e><f ont si ze=5><code>
ti ne</ b>

</ code></ f ont ></ bl ockquot e>

Return Type

<p>

<bl ockquot e><code>
<i >Ti ne</i>

</ code></ bl ockquot e>

EE T R T R R I

*/
public class Val ueTi ne extends Val uel dent {
/**
* Returns the value as described in the class description.<p>
* @ar am env execution environenent, |ikely does nothing
* @eturn the value this class represents
*/
public Val ue getVal ue(Envi ronment Smal | env) {

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

69

return new X10G mi i . Val ue. Val ueTi ne(Cal endar . get | nstance());

}

/**

* There is a one mnute delay before a tinme trigger can fire again.<p>
* @ar am env envi ronnent does not hi ng

* @eturn one mnute del ay

*/

public Cal endar resetTi me(Environnent Small env){ Cal endar tenp =
Cal endar . get | nstance(); tenp.add(Cal endar. M NUTE, 1); return tenp; }

}

Here are some steps that can be followed to create a real-time value that is automatically accessible within
the X10Gimli system.

1. Decide the name by which the identifier that will represent the real-time value in the language.
The naming convention requires that the class exist in the X10G i i . Val ue. Pr edef i ned
package. The name of the new class dictates the variable identifier that the language uses. The
class name is the identifier name (with only the first letter capitalized) preceded by "Value'. For
example, if an identifier called "temperature” were desired in the language, its class name would
be "VaueTemperature".

2. Create the Java skeleton for the identifier. The following template can be used:

package X10G mii. Val ue. PreDefi ned;

inmport java.util.*;

i mport X10G mli. Token;

i mport X10G ml i . Debug;

import X10G mi.System*;

i mport X10G mli. Val ue. Val uel dent ;
i mport X10G mli. Val ue. Val ue;

/**
* ldentifier description should go here
*o<p>
* Usage
*o<p>
* <bl ockquot e><code>
* identifiernane
* </ code></ bl ockquot e>
*
* Return Type
*o<p>
* <bl ockquot e><code>
* <i>Val ueType</i>
* </ code></ bl ockquot e>
*/
public class ValueTi me extends Val uel dent {
/**
* Returns the value as described in the class description.<p>
* @ar am env execution environenent, |ikely does nothing
* @eturn the value this class represents
*/
public Val ue getVal ue(Envi ronment Smal | env) {
return new X10G nii . Val ue. Val ueNot hi ng. val ue
}
}

The bolded text in this template should be replaced correctly. The JavaDoc comments should be
written appropriately to describe what the new identifier represents. The class name should be
changed to the desired name.

3. With the skeleton code prepared, the get Val ue method needs to be written. The method can be
written in any way desired, aslong asit returns a non-null X10Gimli value of some kind.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

70 X10GIMLI

4. If the method returns any of the time related data types, then the r eset Ti me method should

also be created and return the appropriate delay as was shown in the t i ne identifier example
above.

That's really all that needs to be done to create a new identifier that returns real-time information within

the language. It can be used the same as any other variable in the language, except it cannot be assigned a
value,

Real-time External Variables

ADDRESS

Represents the last X10 address input to be received into the system moddl.

Usage:
addr ess

Return Type:
X10

COMMAND

Represents the last X10 command input to be received into the system modd.

Usage:
comand

Return Type:
Command

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

DATE

Represents today's date.

Usage:
dat e

Return Type:
Dat e

DAY

Represents the current day of the week.

Usage:
day

Return Type:
Day

DEVICE

Represents the device code of the last X10 address input to be received into the system moddl.

Usage:
devi ce

Return Type:
Number

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

72 X10GIMLI

INPUTPACKET

Represents the current input packet being handled by the system model.

Usage:
i nput packet

Return Type:
Packet

MONTH

Represents the current month of the year.

Usage:
nmont h

Return Type:
Mont h

SOURCE

Represents the source of the current input packet in the system model.

Usage:
source

Return Type:
String

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

/3

TIME

Represents the current time of day.
Usage:

time

Return Type:
Ti me

TYPE

Represents the current type of input packet being handled by the system model.

Usage:
type

Return Type:
| dent

1/0 Gateway Tutorial

Creating new gateways allows all types of input and output devices to communicate with the X10Gimli
system. Three types of gateways can be created:

Input
Output
Input and Output

Individual gateways can beinitialized and linked to the environment using the i nt er f ace command within
the language. Steps for creating new gateways, and a code template is given bel ow.

For new gateways to work in the language, they must:

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

74 X10GIMLI

Follow the naming convention described later on.

Descend fromthe X10G mi i . I nt er f ace. | nput Gat eway,

X10G mi. I nterface. Qut put Gat eway, or

X10G mi.Interface. | nput Qut put Gat eway class.

Becreated inthe X10G m i . I nt er f ace. Gat eway package.

Utilizethe i nput Recei ved method for input gateways, and implement the sendPacket method
for output gateways.

Implement thei ni ti al i ze method of the X10G m i . | nt er f ace. Basi cGat eway class.
Have a default constructor.

Here are some steps that can be followed to create a new gateway that is automatically accessible to the
X10Gimli system.

1. Decide the name by which the gateway will be known in the language. The naming convention
requires the class exist in the X10G nml i . I nt er f ace. Gat eway package. The name of the new
class dictates the identifier that the language uses to access it. The class name is the gateway name
(fully capitalized) followed by "Gateway". For example, if a gateway called "IRlink" were desired in
the language, its class name would be "IRLINK Gateway".

2. Create the Java skeleton for the function. The following template can be used:

package X10G nmi.Interface. Gat eway;

import X10G mi.Interface.?*;

i mport X10G mi i . Debug

import X10G mi. System Packet . *
import X10G mi. Val ue. *;

*

/
| nput/ Qut put </ b> gateway and an expl anati on of the gateway here

<p>
I nput :
<p>
<bl ockquot e>
Description of the input functionality of the gateway. <p>
</ bl ockquot e>

CQut put
<p>
<bl ockquot e>
Description of the output functionality of the gateway. <p>
</ bl ockquot e>

Packet descri ptions:

<p>

<bl ockquot e>

<code>PACKETTYPE</ b></ code> - packet description
<bl ockquot e>
<i >Val ueType</i > <code>TAGNAME</ b></ code> - val ue descri pti on

<i >Val ueType</i > <code>TAGNAME</ b></ code> - val ue descri pti on

</ bl ockquot e>

<code>PACKETTYPE</ b></ code> - packet description
<bl ockquot e>
<i >Val ueType</i > <code>TAGNAME</ b></ code> - val ue descri pti on

<i >Val ueType</i > <code>TAGNAME</ b></ code> - val ue descri pti on

</ bl ockquot e>

</ bl ockquot e>

Initialization Paraneters
<p>
<bl ockquot e>

ok ok ok ok ok ok ok ok 3k %k 3k kR ok 3k ok % ok ok % ok % ok X ok ok % ok Kk k% X

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

75

* <i >Val ueType</i > paramane - paraneter description

* </ bl ockquot e>
*/

public class GATEWAYGat eway extends | nput Qut put Gat eway {

/**

* |Initialization description. <p>

* @ar am parammane par anmeter descirption

* @eturn true if initialization is successful

*/
public boolean initialize(Value paramane){
/1 performchecks and initialization, along with debug out put
// return true if everything succeeds
return fal se;
}

/**
* Send packet description for output packets. <p>
* @ar am packet packet to transnit

*/
protected voi d sendPacket (Packet packet) {
}

}

The bolded text in this template should be replace correctly. The Javadoc comments should be written
appropriately to represent the gateway being created. The class name should be changed to the desired
gateway name. The template should also be modified for the task of creating an input only or output
only gateway.

3. With the skeleton code prepared, the initialize command needs to be written. The initialize command
can written in any way desired, as long as it returns true when the initialization succeeds, so the
system adds the gateway to the internal gateway lists.

4. For output gateways, the sendPacket command needs to be implemented to actually transmit the
packet out the interface in the desired way. Programs desiring to use the gateway will call the
transm t Packet method, which enqueues the packet to be send, and the output handler thread
will pull the packet off the queue and use the sendPacket command to actually transmit it.

5. For input gateways, when input is received, the input packet needs to be stored by calling the
i nput Recei ved method, which will alow the packet to be distributed to listeners. Programs
desiring to receive the input will implement the receivePacket method, which is called when
enqueued input packets are being fired off to the listeners.

Following the outlined steps, a new gateway can be created that is immediately accessible to the language.
Gateways are of critical importance in the operation of the system. By connecting the TCP gateway to the
system, and using it on remote machines, a distributed home automation system can be attained, where all
kinds of interface devices are used by the system to offer complete flexibility and control of the home.

Gateways

CM11A

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

76 X10GIMLI

Input/Output gateway that interfaces with a CM11A X10 serial device. Handles input and
output of X10 data through a CM11A serial port interface. Input is handled for individual
address and function packets. The CM11A is one of the most common X10 computer gateways.
This implementation of the gateway requires the Java Communications package.

Input:
Receives input packets through the serial port, which comein the form of X10 addresses and
functions.

Output:

Sends output packets through the serial port, which are transmitted over the power lines to
control X10 devices.

Packet descriptions:
X10ADDRESS - stores X10 address data

X10 ADDRESS - full X10 address
X1O0FUNCTI ON- stores X 10 function data

Command COMVAND - X 10 function
X10 ADDRESS - X10 house code
Number DI M5 - number of dims

Initialization Parameters:
Sring portname - name of the serial port that the CM11A is connected to

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

JOY

Input gateway that receives state information from the joystick port. Currently button state
information is contained in the input packet. Individual joysticks can be rewired and connected
to other types of sensors to receive unique kinds of input. For example, a circuit of door and
window sensors could interface with X10Gimli through the joystick gateway by wiring a button
into the circuit.

Input:

Polls the state of the joystick every second and creates an input packet whenever the state
changes.

Packet descriptions:
JOYSTI CK - contains joystick state information
Ident BUTTONL - "UP" or "DOWN"
Ident BUTTONZ - "UP" or "DOWN"

Ident BUTTONS - "UP" or "DOWN"
Ident BUTTON4 - "UP" or "DOWN"

Initialization Parameters:
Number joystickid - number of the joystick to interface with

MR26A

Input gateway that receives data from an MR26A X10 serial device. X10 address and function
input is received, as well as media control functions from RF remote controls. This is often a
preferred method of receiving X10 commands from remote controls because there is no delay
receiving the input. That allows responses to be sent out with less lag than if input is received
by way of the CM11A.

Input:

Receives input packets through the serial port, which come in the form of X10 addresses
and functions, and media control packets. The media control commands are as follows:

"1t 2t "3, "4, e e, T, e, "9, 0", "AB”, "ENTER", "DISPLAY",
"SUBTITLE", "TITLE", "RETURN", "EXIT", "POWER", "RECALL", "SKIPUP",
"SKIPDOWN", "VOLUP", "VOLDOWN", "MUTE", "PLAY", "STOP", "PAUSE",
"RW", "FF", "RECORD", "RIGHT", "LEFT", "DOWN", "UP", "MENU"

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

77

http://www.fineprint.com

/8

Packet descriptions:
X10ADDRESS - stores X10 address data

X10 ADDRESS - full X10 address
X1O0FUNCTI ON- stores X 10 function data

Command COMVAND - X 10 function
X10 ADDRESS - X10 house code
Number DI MS - number of dims

MEDI ACONTROL - stores media control information

String COMVAND - media control function
Number LEVEL - amount of function input

Initialization Parameters:

Sring portname - name of the serial port that the MR26A is connected to

TCP

X10GIMLI

I nput/Output gateway that handles TCP network communication. Implements the transmission
and reception of X10Gimli packets between machines and processes. Connections can be named
S0 some routing is done if source and destination information is available. The gateway can be

activated as afull server/client, or just aclient.

Input:

Receives input packets from connected sockets and passes them to the input listeners.

Output:

Sends output packets through the connected sockets. Some connections will have a name
associated with them. In that case, a packet is only send to it if it is known to be a possible

destination.

Packet descriptions:

This gateway relays packets and handles al packet types. One particular packet is a handled
within the gateway and manages some connection issues. A description of this packet is as

follows:

CONNECTI ON- network connection packet

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

79

Ident COVIVAND - connection command
Value EXTRA - command parameter

Initialization Parameters:
Number port - listening port for accepting connections

TTS

Output gateway that uses the Java Speech API to produce text-to-speech output. In this way,
X10Gimli can provide voice feedback to input events, as well as provide system status, timed
voice events, etc. A Java Speech APl must be installed for this gateway to function.

Output:
Takes an output string and sends it the the Java Speech API.

Packet descriptions:
TTS - text-to-speech packet

String TEXT — text to be spoken

Initialization Parameters:
none

UDP

I nput/Output gateway that handles UDP network communication. Implements the transmission
and reception of X10G m i packets between machines and processes. The UDP gateway
periodically polls output addresses to confirm that the output addresses are still valid. If an output
address becomes invalid, then it is removed from the list.

Input:
Receives input packets using the listening socket, and passes them to the input listeners.

Output:
Sends output packets to all destination addressesin thelist.

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

80 X10GIMLI

Packet descriptions:

This gateway relays packets and handles al packet types. One particular packet is a handled
within the gateway and manages some connection issues. A description of this packet is as
follows:

CONNECTI ON- network connection packet

Ident COVIVAND - connection command
Value EXTRA - command parameter

Initialization Parameters:
Number port - port for receiving input packets

WINAPI

I nput/Output gateway that allows certain Windows API callsto be made. This allows X10Gimli
to easily interact with other Windows processes. Usage of the WINAPI gateway requires a native
library to handle to different functions. Some API calls will return values, so this is an input
gateway for that reason.

Input:
Thereturn valuesto certain API calls. Thereturn values are received in response packets.

Output:

A Windows message is posted using the message number and two message parameters.
Window destination is determined by two strings for the parent window, and two more for
the child window.

Packet descriptions:
W NAPI - contains a Windows API call with associated parameters

String COMVAND - the APl command to execute
“FINDWINDOW” - returns a Number

String W NDOWNANE - window name
String CLASSNAME - window class

“FINDCHILDWINDOW” - returns a Number

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

81

String W NDOWNANVE - window name

String CLASSNAME - window class

Number PARENT - parent window to search from
Number CLDEST - first child to search

“SIMULATEKEYDOWN”

Number KEY - key to press

“SIMULATEKEYUP”

Number KEY - key to release

“POSTMESSAGE”

Number HAND - window handle

Number MESSACGE - message

Number WPARAM- first message parameter
Number LPARAM- second message parameter

“SETFOCUS”

Number HAND - window handle

“RESTOREFOCUS”
“CREATEPROCESS”

String COMVANDL I NE — command line parameter

Initialization Par ameters:

none

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

82

.GIM. See File Formats:source code
X10GIMLI. See File Formats.properties

A

ACTIVATE. See User Functions
ADDRESS. See Externa Variables

B

Basic Environment, 29
Boolean. See Data Types

C

CHANGEMODE. See User Functions
CM11A. See Gateways
Command. See Data Types
COMMAND. See External Variables
Configuration

logs, 13

paths, 12

properties, 11

source file, 13
Contral, 19, 24, 33

Data Types, 36

Boolean, 37

Command, 37

Date, 38

Day, 39

Ident, 39

List, 40

Month, 40

Number, 41

String, 41

Time, 42

X10, 42
Date. See Data Types
DATE. See Externa Variables
Day. See Data Types
DAY. See External Variables
DEACTIVATE. See User Functions
Definition, 23, 31

INDEX

DELAY. See User Functions
DEVICE. See External Variables
distributed system, 75

E

example code

X10GIMLI

begin, 28, 29, 34, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54

changemode, 20

control, 20, 29, 30, 32, 33, 34
define, 31, 44, 46, 52, 53, 54
definitions, 29, 30, 31, 54
delay, 52, 53

else, 48, 49

finish, 52

functions, 32, 45, 50, 54

if, 31, 47, 48, 49, 50
imports, 29, 30

interface, 28

log, 20, 29, 30, 31, 32, 44, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54
loop, 49
mode, 19, 29, 32
motion, 52
new, 45
packet, 34, 46
return, 32, 50
start, 28, 29, 45, 51, 52, 54
switch, 20, 29, 30, 32, 33, 34
template, 17
trigger, 53
triggers, 32
while, 45, 47

Expanded Environment, 29
External Variables, 70

ADDRESS, 70
COMMAND, 70
DATE, 71
DAY, 71
DEVICE, 71
INPUTPACKET, 72
MONTH, 72
SOURCE, 72
TIME, 73
TYPE, 73

File Fomats
properties, 11

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

X10GIMLI

source code, 17
Function, 18, 31

Gateways, 75
CM11A, 75
Jovy, 77
MR26A, 77
TCP, 78
TTS, 79
UDP, 79
WINAPI, 80

grammar, 23

Ident. See Data Types

Import Manager, 30

INPUTPACKET. See External Variables
INTERFACE. See User Functions

J
JOY. See Gateways

L
List. See Data Types
LOG. See User Functions
Log Viewer. See Usage
logs. See Configuration

M

Mode, 19, 23, 32

Month. See Data Types

MONTH. See Externa Variables
Motion Command. See Statements
MR26A. See Gateways

N
Number. See Data Types

P

Packet, 15, 16, 34

PACKET. See User Functions

paths. See Configuration

properties. See File Formats. See Configuration

R

Real-time Externa Variables. See External Variables

Return Command. See Statements

S

SENDPACKET. See User Functions
SENDPACKETANDWAIT. See User Functions
SOUND. See User Functions
SOURCE. See External Variables
source code. See File Formats
source file. See Configuration
Standard Data Types. See Data Types
Standard Language Statements. See Statements
start system. See Usage:System Launch
Statements, 43

Motion Command, 51

Return Command, 50

Trigger Command, 53
stop system. See Usage
String. See Data Types
Switch, 24
System Launch. See Usage
System Model, 28

TCP. See Gateways

Time. See Data Types

TIME. See Externa Variables
TOCONTROL. See User Functions
TOCONTROLSWITCH. See User Functions
TOGGLE. See User Functions
TOSWITCH. See User Functions
Trigger, 18, 23, 32

Trigger Command. See Statements
TTS. See Gateways

TYPE. See Externa Variables

U

UDP. See Gateways

Usage
Log Viewer, 15
stop system, 16
System Launch, 14

User Functions, 60
ACTIVATE, 60
CHANGEMODE, 60
DEACTIVATE, 61
DELAY, 61
INTERFACE, 61
LOG, 62
PACKET, 62
SENDPACKET, 63
SENDPACKETANDWAIT, 64
SOUND, 64
TOCONTROL, 65
TOCONTROLSWITCH, 65
TOGGLE, 65
TOSWITCH, 66

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

84 X10GIMLI

X10ADDRESS, 66 X
X10COMMAND, 67
X10SWITCH, 67 X10. See Data Types
X10ADDRESS. See User Functions
Wi X10COMMAND. See User Functions

X10SWITCH. See User Functions
WINAPI. See Gateways

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

86 X10GIMLI

X10d M.I
X-10 Ceneral Interface Mdal Language |dea

Documentation
and
Reference Guide

Language Concept and Design by
Adam Lane

Copyright a2001

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com

