LogoMation 2.0:

Prelude into Programming

and a

Reference Manual

Chuck Shavit
Magic Square, Inc.

June 1997
revised April 1998

Copyright © 1992, 1993, 1994, 1995, 1996, By Chuck and Yuval Shavit
Copyright © 1997, 1998, by Magic Square, Inc.

Email inquiries: i nf o@/hagi cSguar e. com

Page 2

Before We Begin

LogoMation is for everyone: kids can do wonders with it. Grownups can do impressive things with
it, too. You will enjoy LogoMation if it is your first programming language, or if it is your tenth.

Yuval Shavit’s dad developed LogoMation when Yuval was eight and a half. One day Yuval came up
to his dad and asked to program a computer, just like mom and dad do. When Yuval’s dad started
developing LogoMation, Yuval could do many more things than LogoMation would allow him to do.
LogoMation had since become smatter, and so did Yuval.

This book is divided into two parts: a tutorial for the beginner programmer, and a reference manual.
The tutorial has 7 lessons, labeled A to G. The first lesson starts on page 4. The tutorial is for
everyone: it 1s for kids who never wrote a computer program before, and for grownups who did not
even zhink that they can write programs. It will introduce you to the fundamentals of computer
programming, as well as the fundamentals of LogoMation.

People also enjoy LogoMation if they have programmed computers before. See, anyone can use
LogoMation, even seasoned programmers. Experienced programmers might decide to quickly skim
through the tutorial, and go directly to the reference manual. The first reference manual chapter, A4

Quick Tour, starts on page 38.

So what is LogoMation?

There are hundreds, perhaps thousands, of programming languages out there. They all seem to have
one goal in common: to tell a computer how to execute certain operations. Typically, a given task
can be programmed in many of these languages. The choice of which language to chose for a given
task has to do with the ease of applying a particular programming language for the task at hand, with
the effectiveness of the language for the task, and also with the programmer’s personal preference.

LogoMation is a programming environment. Using LogoMation, you will discover that
programming is fun, and is not as difficult as you may have thought it was.

With LogoMation, you write programs that tell the computer to draw things. When the program is
ready, you click the Go button. Then bingo — you can see the picture that you were describing to the
computer. The picture can be static (not moving), or animated (moving). It can even have sound
effects. In short: your very own LogoMation creation.

Sounds too simple? Well, it’s like skiing or playing the piano: if you love it, it is a little hard at first,
but a lot of fun even as you start learning it. And as you learn more and more, it is even more fun.

Learning LogoMation

Learning a new programming language is not all that difficult — if you are already familiar with
another language. Learning LogoMation is not difficult evex if it is your first programming language.
It was designed this way.

You may ask at this point: will I need a lot of math skills to use LogoMation? The answer 1s yes and
no. No —you will not need to be a math wiz to draw real lovely pictures, which will give you a
tremendous amount of pleasure and fun. And yes — you wi// need some math to draw some more
complicated things. Whatever math skills you have, you can use LogoMation and have fun.

The tutorial will teach you some of the basics of programming in general, and LogoMation
programming in particular. It is structured so that you can learn these basics all by yourself.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 3

However, if LogoMation is your first programming language, it might help if you can occasionally get
help from someone who is more experienced in programming.

Use the tutorial as your introduction to LogoMation. Follow the step-by-step instruction, and don’t
do it all at once. I am not telling you how many lessons you can take at one time, but I advise you
not to take too many, or else it will confuse you too much. If you never wrote computer programs
before, do not take more than one lesson a day. I also suggest that you rea/ly do the exercises, even
though I am sure that you hate homework just like everybody else. These exercises are fun to do,
and it is through these exercises that you’ll learn LogoMation. The only way to really learn
programming is by actually writing programs.

By the way, this book assumes that you know how to use your computer, e.g., double-click icons,
select menu commands, and type and edit text.

One last thing before we start: you may have heard of the Logo language. Maybe you have actually
programmed in that language. LogoMation borrowed from the original Logo language the idea of
“turtle geometry™: the idea that you are moving a pen around and thus draw on the screen. But other
than borrowing the idea, LogoMation is totally different from Logo. So if you are familiar with
Logo, I suggest that you still spend the time to learn LogoMation as if you have never used Logo.

LogoMation is available on the following configurations:
O PCs running Windows 95 and higher.
O PCs running Windows NT 4.0 and higher.

0 Macintosh computers — both 68K-based and PowerPC-based — running O/S 6.0.7 ot
higher.

: The Windows and Macintosh implementations of LogoMation are very similar. Where applicable,

E differences are highlighted in a box like this one.

i Most of the screen shots in this manual were taken on a Window implementation. The Mac
 implementation is quite similar. The specific implementation on Microsoft Windows is described in

\ Chapter 11: Running LogoMation on Windows, on page 116. The specific implementation on Macintosh
:Lcomputers is described in Chapter 12: Running LogoMation on Macintosh, on page 124.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 4

Table of Contents
BEFORE WE BEGINc.c.ccciiiccctsmscssssssssannnsssssssannnnssssssannnnnnsssssnnnnnnns 2
LESSON A: LOGONMATION IS ABOUT MOVING......cccccceceennnnnnnes 9
LESSON B: LET’S MOVE SOME MORE.........ccoecmrmsanmsmsannsssannnnes 13
LESSON C: TEXT, COLOR, AND FILL......ccocutmmmmmmnmmnnsnnnnsnnsnnnnas 19
LESSON D: CIRCLESciccoiiscsnssssansssssn s san s ssann s nann s nnannnnnannnns 24
LESSON E: VARIABLES AND FUNCTIONS, PART |cccvemuenanes 26
LESSON F: VARIABLES AND FUNCTIONS, PART Ilccccueeee 30
LESSON G: FUN WITH ANIMATIONccccccumereccesnnnnnnssssssnnnnnns 34
CONGRATULATIONS!ccccccucciesccssannnnsssssssnnnnnnssssssnnnnnnsssssannnnnnnsnnsn 37
CHAPTER1: A QUICK TOUR....cc.cceemmrmsanmssssnnssssnnnsssnnnsssnnnnssnnnnnnn 38
1.1 THE LOGOMATION WINDOWS 38
1.2 HELLO WORLD - THE FIRST LOGOMATION PROGRAM 38
1.3 WYSIWYG INDENTATION 40
1.4 THE TRACER a1
1.5 PROGRAM DEVELOPMENT AND DEBUGGING a1
1.6 ANIMATION AND SOUND 43
1.7 WHAT’S NEXT 43
CHAPTER 2: SYNTAX ccciceeanesesnnnsssannsssansssssnsssssnnnsssnnnsssnnnnssnnnnnsn 44
2.1 ALOGOMATION PROGRAM 44
2.2 COMPOUND STATEMENTS a4
2.3 COMMENTS a5

CHAPTER 3:

DATA TYPES, VARIABLES AND EXPRESSIONS....46

3.1 FOUR DATA TYPES 46

3.2 NUMBERS 46

3.3 STRINGS 46

3.4 VARIABLES a7

3.5 LISTS a8

3.6 ASSOCIATIVE ARRAYS 49

3.7 COMBINING INDEXING; MULTIDIMENSIONAL ARRAYS 50

3.8 THE TYPE OF DATA STORED IN VARIABLES 50

3.9 EXPRESSIONS 50
CHAPTER 4: THE GRAPHICS ENVIRONMENTccccvvmmmmmsnnsnnsnnsas 53

4.1 THE EDIT AND RUN WINDOWS 53

4.2 POINTS AND PENS 53
LogoMation 2.0 Magic Sauare, Inc. AllRights Resanved

Page 5

4.3 MOVEMENT MODES 53
4.4 DRAWING TO THE SCREEN VS. PRINTING 54
CHAPTER 5: STATEMENTS.....cc oo sssn s ssn s ann s nnnnmnnnnn 39
5.1 RELATIVE PEN MOVEMENT STATEMENTS 55
5.1.1 The FORWARD Statement 55
5.1.2 The BACKWARD Statement 56
5.1.3 The RIGHT Statement 56
5.1.4 The LEFT Statement 56
5.1.5 The STRAIGHT Statement 57
5.1.6 The CIRCLE Statement 57
5.2 ABSOLUTE MOVEMENT, UP AND DONN STATEMENTS 58
5.2.1 The GOTO Statement 58
5.2.2 The DOWN Statement 58
5.2.3 The UP Statement 59
5.3 PEN AND BACKGROUND PROPERTIES STATEMENTS 59
5.3.1 The COLOR Statement 59
5.3.2 The WIDTH Statement 60
5.3.3 The CLEAR Statement 60
5.3.4 The PATTERN Statement 60
5.4 PRINTING 61
5.5 HALTING THE PROGRAM’S EXECUTION 62
5.6 TEMPORARILY HALTING THE PROGRAM’S EXECUTION 63
5.7 PAUSING A PROGRAM’S EXECUTION 63
5.8 PLAYING A SOUND 63
5.9 LIBRARY FILES 64
5.10 LOGOMATION LOOPS 64
5.10.1 The REPEAT Statement 64
5.10.2 the BREAK Statement 65
5.10.3 The WHILE Statement 66
5.11 LOGOMATION CONDITIONALS - THE IF... AND IF...ELSE..STATEMENTS 66
5.12 THE CURVE STATEMENT 68
5.13 THEFILL STATEMENT 69
CHAPTER 6: FUNCTIONS......ccocsmnnnssssnnnsssnnnsssnnnsssnnnsssnnnnnnnnnnnnnn £ 4
6.1 DEFINING A FUNCTION 71
6.2 CALLING A FUNCTION 71
6.3 RETURNING A VALUE 72
6.4 ARGUMENT BINDING 73
6.5 SCOPING 74
6.6 LOCAL VARIABLES 74

6.7 BUILT-IN FUNCTIONS

LogoMation 2.0 Magjic Square, Inc. Al Rights Reserved

Page 6

bg_rgb
CDAP vveveveeeeereeeeereeeeeee e rese s sssesenn
closeFile..

defined.
/7

excec

exp
Jorm
Sformat
free_stack
ZEE_CDAT o
getFileName ...

..

openLile
POIADOVE ...ttt
PONDUTALION. ..o
penEnd
penFontBold() or penBold()
penFontdir()
penFontltalic()or PenItQlc() ... s
penFontname.
penFontsize
penFontstyle()
penFontUnderline() or penUnderiing()cecececcevceneuneniniceciscncncnnns
penName
penPicture ...
penRadins
PENSPCEU. ..o
penTrail
penUp
penWidth........

push.
random
randomize
readlile
rgb
round
sAscent
sDescent

seconds ...

Shifteeininnn.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 7

S errerecerareirecrneraennns
split....
sqrt
sublist ...
SUDSIT covevevereererereererarenns
K7
JAT covoviiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeees
this.....
thisO.......
this1
LIMMeuvevrareerersrsessessiessessssssssssessesessssens
DYDC vttt
WA vevererererennns
writeFile & writeFileNow
Norerrerereresseresnsesesenes
Jevrereeeeeneneneeanns
cHAPTER 7: READING AND wRITING FILEs lllllllllll................1 oo
7.1 SUMMARY 100
7.2 TECHNIQUES & HINTS 100
7.2.1 Typical File Reading Process 100
7.2.2 Typical File Writing Process 102
7.2.3 Closing Files 102
7.2.4 Hard-Coded Pathnames 102
CHAPTER 8: PENS.....cccccccssssssnnssssnnssssnnnsnsnnnsnsnnnsasannsassnnnansnnnnn] 0
8.1 APENIS A SET OF ATTRIBUTES 103
8.2 DEFINING AND SWITCHING PENS 103
8.3 THE PEN’S ATTRIBUTES 104
8.3.1 Font Attributes 104
8.3.2 Animation Attributes 106
8.3.3 Other Attributes 107
8.4 SETTING A PEN AS A TRACER 107
cHAPTER 9: ANIMATION -....lllllllllllllllllllllllllll..................-------1 09
9.1 THE PI CTURE STATEMENT 109
9.2 THE ANCHOR POINT 110
9.3 MOVEMENT MODES 110
9.4 SINGLE FRAME VS. MULTI FRAME PICTURES 111
9.5 MULTI FRAME PICTURES 111
cHAPTER 10: THE _LM_sTARTUP FILE --------....lllllllllllllllllllllllll1 14
10.1 THE STARTUP FILE 114
10.2 _ LM STARTUP() 114
10.3 APPLICATION - “TURTLE MODE” 114
10.4 ANOTHER APPLICATION - “STATIONARY” BACKGROUND 115
CHAPTER 11: RUNNING LOGOMATION ON WINDOWS116
11.1 STARTING LOGOMATION, MENUS 116
11.2 EDIT & RUN WINDOWS 117

LogoMation 2.0 Magjic Square, Inc. Al Rights Reserved

Page 8

11.3 EDITING A PROGRAM 117
11.4 SOUNDS AND PICTURES IN LOGOMATION 121
11.5 RUNNING AND DEBUGGING A PROGRAM 122
11.6 PRINTING 123
CHAPTER 12: RUNNING LOGOMATION ON MACINTOSH 124
12,1 STARTING LOGOMATION, MENUS 124
12.2 EDIT & RUN WINDOWS 124
12.3 EDITING A PROGRAM 124
12.4 SOUNDS AND PICTURES IN LOGOMATION 127
12.5 RUNNING AND DEBUGGING A LOGOMATION PROGRAM 127
12.6 PRINTING 128
12.7 TRACER MODE 128
12.8 PREFERENCES 130
12,9 GETTING HELP 131
APPENDIX A. INSTALLATION........cocceusmnmnmmnmnmssnsssssnsassnsnsnsnnnnnas 132

APPENDIX B. FORMAT SPECIFICATIONS IN FORVAT() wsasessnsana134

LogoMation 2.0 Magjic Square, Inc. Al Rights Reserved

Page 9

Lesson A: LogoMation is About Moving

LogoMation moves things. When your program starts, there is a pen waiting to be moved on the
screen and draw stuff for you. You can move the pen straight ahead, in a straight line, then you can
tell the pen to turn left and move in a different direction. Itis almost like the pen is a little creature
that you can tell things to. You tell the pen to go forward 100, and it does just that: move 100 pixels
on the screens. A pixe/is a little dot on the screen. You can think of the screen as being made of lots
and lots of dots, and each can be in a different color. So, when you tell the pen to move forward 100
pixels, it does just that, coloring the pixels along the way so that you see a line.

We will write our first LogoMation program in just a minute. But before we do, I’d like to mention
that pens in LogoMation have a lot of properties. You can have pens of different colors and widths,
for example. But let’s not worry about that for now. If you don’t tell the computer otherwise, it will
assume that you want to use a black pen with a width of one pixel, so when you move it around
you’ll get black lines whose width is one pixel.

And now to our first LogoMation program. We will draw a little rectangle on the screen. How’s that
for starters? Let me warn you: this is going to be among the most difficult of all the LogoMation
lessons, because we have to learn a lot of new things. Once you are done with this lesson, I suggest
you let it sink in, at least a day. And I suggest that the next day you quickly review this lesson before
going on to the next one. You'll be surprised how easy this lesson is going to be the second time
around.

Now, follow me. I suggest that you hold this book next to you when you write your very first
LogoMation program. It will help you make sure you do everything as I tell you.

1. Create a directory in which you’ll store your LogoMation programs. Call it anything you like.
For example, if your name is Chatlie, you may want to call it Charlie’s LogoMation

2. Start LogoMation. Of course, you might need to install it first if it is not installed on your
computer yet. And if you are using LogoMation for the first time, you will have to fill in the
registration information.

3. LogoMation will open a window in which you are supposed to type your LogoMation program.
At this time, the top-left part of the LogoMation window will look more or less like this:

7 LM - Untitled1

File Edit Bun Tools Miew Debug Whir
O|lE|E| 7 |2]|a] &2 |\
||

Below the menu line, you have your Untitledl ~ window, waiting for you to type in
something. So, type something, for example, Hello, LogoMation!

Before writing your first program in this window, it is a good idea to save it under a name that
makes sense to you, so that next time you look for the program, you’ll be able to find it. How
about calling it Rectangle ? In order to give it a name, we save it, just like in most other
applications on your computer. We can save it using the Save command from the File menu, or
by typing control-S — it does not matter. Any way we do it, LogoMation will pop up its standard
file dialog window, asking you to select both the file name and the directory it will be in. You
type Rectangle as the file’s name, and select the directory you just created in step 1 (if you are

LogoMation 2.0 Magjic Square, Inc. Al Rights Reserved

Page 10

not familiar with how to do this, or do not understand what "directory” is, ask someone for
help). Now the screen looks like this:

m LM - Rectangle LM

Eile Edit Bun Tools Niew Debug
Ol | | 2]|= |l &4

Rectangle LM

| Hello, LogoMationl!|

So far, so good. Now that you have said Hello to LogoMation, let's erase this text. What you
typed is not a LogoMation program. We are now ready to type in the rea/ program.

4. We will now tell the pen to go straight-ahead 100 pixels. LogoMation starts drawing at the
center of the graphics window (you don’t see the graphics window yet, but soon you will). The
way LogoMation starts drawing, the pen’s direction is from left to right, so if you go straight 100
pixels, you will go from the graphics window’s center to a point which is 100 pixels to the right
of the starting point.

We tell LogoMation to go 100 pixels by typing For war d 100 as the first line of our program.

5. After going forward 100 pixels, we now want to go up 50 pixels. In order to change the pen’s
direction, we tell LogoMation to turn the pen’s direction left by 90 degrees. So the second line
of our program will be Lef t 90. Note that when LogoMation changes the pen’s direction,
nothing happens graphically. All the Left command means is that the next line will be drawn in a
different direction.

6. You may have guessed the next statement (a statement is just a line in LogoMation in which we
tell the computer to do something): it is For war d 50. Just before the statement is executed,
we are at the end point of the previous line, and the direction is facing up. At the end of the
Forward 50 statement we have moved up. So the part of the picture which we have so far
should be something like a rotated L shape:

Of course, we still do not have any graphics on the screen. The picture of the rotated L shape is
in our mind.

7. If we now turn 90 degrees left and go 100 pixels forward, we will be drawing the third line in our
rectangle. So the next two LogoMation statements will be Lef t 90 and For ward 100 (if
you are not sure why, you should read back enough to understand). But wait! Don’t type just
yet. I want to tell you now about abbreviation. Abbreviation in LogoMation is when you do not
type a command name in full. You type just the first few letters. For example, the following are
all abbreviations of the Forward command: f 0, For , FORW Or WA. Note that I sometimes
used uppet-case letters, and sometime lower-case. LogoMation does not care which ones you
use for command names. So instead of typing f Or war d, you can just type FO and that would
be just fine. Likewise, Lef t can also be abbreviated, for example, to Le. However, too much
abbreviation can be confusing to LogoMation. For example, a LogoMation statement, which we
will learn later, is Funct i on. Now, Funct i on and For war d both start with the same
letter, so if we just write F, LogoMation will not be able to tell if we meant Funct i on or
For war d. So if you abbteviate the FOr war d command too much, LogoMation will complain

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 11

about it when it tries to do what you asked it to do. It will highlight the line with the F
command and pop up a window asking you what exactly did you have in mind:

™]|

& Did wou rmean "Function”, or "Farward", or maybe something else?

When that happens, you simply need to type more letters. Actually, most LogoMation statements
can be abbreviated down to two letters (there are exceptions to this, though).

8. The last two statements should now be obvious: they are Lef t 90 and For war d 50. This
will bring the pen back to its initial location. Your screen should now look like this:

m LM - Rectangle LM

File Edit Bun Tools Yiew Debug
Ol | | @ |=|e| &%

Rectangle LM

Forward 50
Leftt 90
Forward 50
Left 90
Forward 50
Left 90
Forward 50
Left 90

By the way, you must have noticed that LogoMation colors the commands. It uses red to
highlight the command, and black for the numbers. We will see more colots as we go on.

9. The big moment has come. We are about to run the program. In order to do that, simply press
the GO button (or you can just as well select the Go command from the Run menu). What
happens next is that LogoMation checks the program for errors, and if none are found (none
should be found if you followed the directions above), it opens the Run window and, following
your commands, draws the picture.

That was a rather long exercise. Now that you have your first program written, you can enjoy the
rectangle, and when you are done, you can get rid of the graphics window, by clicking on its close
box.

Now you can try a few experiments of your own:

¢ Try to change one of the numbers in the program, click GO and see what happens. Make
sure you fully understand why the graphics are the way they are.

% Now try replacing one of the Lef t statements with a new statement: Ri ght . It will be
fairly easy to understand how that affects the picture.

% Tty to replace a FOr war d statement with a Backwar d and see what happens.

¢ Next, try to draw a triangle.

LogoMation 2.0 Magjic Square, Inc. Al Rights Reserved

Page 12

% Last, I'd like you to experiment with negative numbers: what happens if you go forward a
negative number of pixels? What happens if you turn left a negative number of degrees?
Try it, and try to understand what makes LogoMation behave the way it does.

LogoMation 2.0 Magjic Square, Inc. Al Rights Reserved

Page 13

Lesson B: Let’s Move Some More

In the first lesson we learned how to use the Forward and Left statements, and if you did your
homewortk, you also know what Right and Backward do. You may have actually noticed that if you
use negative numbers, you can get Forward to behave like Backward, or Left to behave like Right.
So, for example,

¢ Forward -100 is the same as Backward 100,
¢ Forward 100 is the same as Backward -100,
* Left 45 is the same as Right -45, and

* Left-45is the same as Right 45.

In fact, Left and Right are even closer relatives. Since there are 360 degrees in a circle, if you turn
Left 360 then you are really facing the same direction as before, so it is just like doing Left 0, which is
really doing nothing. Now, what happens if you turn Left 350° This is almost like completing a 360
degrees circle, except that you stop 10 degrees short of completing the circle. Try to do it yourself:
stand up facing a chair, then turn left almost a full circle, but not quite. When you’re done, you are
now facing a direction that is right of the chair. In fact, if you really turned 350 degrees (which is
hard to measure when you are spinning: you get dizzy), then you end up at the same direction you
would face if you turned 10 degrees to the right. Likewise, if you want to turn 90 degrees left, you
can just as well turn 270 degree right. And in general, if you want to turn x degrees left, you can turn
360-x degrees right. And vice versa. But, enough of that.

Before we continue, I would like to introduce you to the zracer.

E Note: the tracer is only available on the Windows version of LogoMation. A related functionality is
1 available on the Mac using “turtle mode’, described in Section 12.7, Tracer Mode, on page 128. If you are
1 running on a Mac, you can skip the description of the tracer below.

The tracer helps you visualize the movement of the pen. When it is off, drawing 1s done at
maximum speed, which sometimes might look instantaneous. For example, if the tracer was off
when you drew the square in the previous lesson, then as soon as you pressed the GO button you
saw the square. There was no sense of which line was drawn first, and in what direction the pen was
moving as it drew the square. Many people are happy to write programs in that way, and that is fine,
as long as everything goes according to plan. But sometimes what you get on the screen is not quite
what you had intended, and it might not be obvious which erroneous Forwar d or Ri ght is to
blame. In such cases, you may want to run things in slow motion. That is precisely what the tracer
is for.

The tracer is activated by selecting the Pen Tracer command from the Run menu:

Tools Debug
Go Cirl+G
Ewaluate Cirl+E

You will note that there is a little check sign to the left of the menu command. This indicated that
the tracer is on. If the check mark is not there, the tracer is gff. Each time you select the Pen Tracet
command, the check mark is toggled, thus setting the tracer on or off. LogoMation remembers the

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 14

setting of the tracer mode between LogoMation sessions. By the way, there is another way to turn
the tracer on or off from the program itself, but we will not be talking about that for now.

When the tracer is on, you will see a little > sigh moving along with the pen. The direction of the
sign shows the direction of the pen.

Play a little with the tracer. My advice to you is not to enable the tracer unless you need it, i.e., unless
something has gone wrong in your program and after scratching your head, you still don’t know what
it is.

Now I would like to tell you about four new LogoMation statements. The first is Width. You use
this statement to control the width of the line your pen draws. If you don’t tell LogoMation
otherwise, it uses a pen with a width of 1 pixel. You can change the width, for example by

W dt h 10, which will draw thick lines.

The next statement I’d like to tell you about is Up. This is the first statement we encounter that does
not need an argument. An argument is the number that is part of a statement. For example, in
Forwar d 50, the 50 is the argument. So a statement has two patts: the command (e.g.

For war d), and the arguments. There can be zero or more arguments following the command,
depending on the type of statement. Anyway, the Up statement simply lifts the pen up, so it does
not draw when we move it. After all, how many interesting pictures can you draw using a pen which
1s not allowed to ever be raised off the paper?

Can you guess the next statement? It is Down, which is just the opposite of Up. If your pen was
moving in the Up position then Down will bring it down so it can draw again.

What if your pen was already up when you used the Up statement? The answer: nothing will happen,
and the pen will still stay up. Likewise, if the pen was down and you use a Down statement, it will
stay down and no harm will be done.

Using these three new statements, you can draw quite a lot of interesting things. The next statement
that I’ll tell you about will save you typing. The statement is Repeat, and using it you can tell
LogoMation to execute a bunch of statements several times. Let me demonstrate.

Suppose you wanted to draw a square with each side being 100 pixels long, and then to lift the pen

up. Here is a program that does it:
Forward 100
Left 90
Forward 100
Left 90
Forward 100
Left 90
Forward 100
Left 90

Up

Actually, when I typed this program, I did not really type every one of the nine lines. Instead, I just
typed the first two lines, and using the editor’s copy and paste menu commands, I replicated them
four times. Then I added the last line.

When you use the Repeat statement, LogoMation does this automatically for you. Here is a
LogoMation program that draws the same square, but has only four lines:

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 15

Repeat 4
Forward 100
Left 90

Up

Now, let’s see how it wotk. When LogoMation sees the Repeat 4 statement, it knows that it has
to repeat the statements that follow four times. But how does it know how many lines to repeat?
Simply — by noting that the statements to be repeated (Forward and Left) are indented, that is, they
do not start at the beginning of the line. Up till now I did not tell you whether you could use spaces
at the beginning of the lines, before the first letter. Now I do: you can. You can start a statement in
the middle of the line, if you like, and have any number of spaces between the command and the
argument, and in between the arguments. Spaces do not matter much to LogoMation except when it
has to group statements together. A group of statements should be indented relative to the statement
that starts the group. In our example, the Repeat statement starts at the beginning of the line. As
long as the statements that follow the Repeat do not start at the beginning of the line, LogoMation
knows that they are related to the Repeat. So, LogoMation knows that FOr war d is patt of the
Repeat group, as well as Lef t . But when it reads the next statement (Up), it notice that it is not
indented relative to the Repeat, so that must be the end of the Repeat group.

Actually, you may notice that when you type a space at the beginning of the line, you get more than
one space — you get four. This is because LogoMation wants to help you see the indentation, and
sometimes a single space 1s just not clear enough. And just like a single space typed at the beginning
of the line indents four space to the right, deleting one of the spaces at the beginning of a line indents
the line four spaces to the left. It also jumps the cursor to the first letter in the line. And last, you
may have noticed that if the line you're at is indented, then when you type a return (new line),
LogoMation indents the next line the same way the previous one is indented. This is to help you
wrtite a long indented paragraph. When you're done indenting, just delete the extra blanks at the
beginning of the next line.

Here is what the screen looks like after you type in the program:

Untitled1

Fepeat 4
Forward 100
Fight 90

Up

You will note that the Repeat command is purple and not red. LogoMation uses purple to indicate a
compound statement, that is, a statement that modifies the behavior of other statements that follow it
and are indented relative to it.

Do you think we can have a Repeat inside another Repeat? The answer is yes. It is actually very
useful. For example, suppose we wanted to draw five little boxes, side by side. Here is a screen shot
of the program that does it, and the resulting Run window. Tty to type this program in and see if you
get the picture below when you run it:

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 16

M5 Squares LM _|o] x|
Width 3
Fepsat &
Fepsat 4
Forward 20
Left 90
To = -
Forward 30
Diown

oooaa

Before ending this lesson, I would like to mention comments. Comments are remarks written in
English (or any other language that you care to write in). They are totally ignored by LogoMation,
and their sole purpose is to let you describe what the program does, in case you will forget the next
time you read it. If you never wrote programs before, this may seem like a silly idea: why should you
spend the time and write these comments, if LogoMation ignores them? Isn’t it true that what the
program does is obvious from just reading it? Well, the answer 1s that what the program does is
usually obvious to you when you write the program, but the next time you read it, which could be
only a few hours later, you may not remember where exactly does everything belong. This is
especially true for larger programs, programs that take tens and even hundreds of lines.

LoooMation 20 Magic Square, Inc. R

Page 17

A comment is something that starts with two slashes: // and ends at the end of the line. If you start a
line with two slashes, the rest of the line is a comment. Note that in order for LogoMation to be able
to tell where a comment starts, you must not put any spaces in between the two slashes. Also, blank
lines can be put anywhere, to improve the “looks” of the program. Let’s end this lesson with the
same program as before, this time with some comments. As you can see, LogoMation colors
comments in green. It does it so that they stand out, and also so that they are easily distinguishable
from the “real” program:

L'+ Squares LM !El E

<« The following program draw=s five =gquares
S

Width 3 S line width: 3 pizel=.

¢« The main loop: draw a s=guare, mnove as=ide, and
< repeat this five tines.

Fepsat &
Fepsat 4 ¢ thi=z Fepsat block plots a =guares
Forward 20
Left 90
To < When we're done with the =gquare,
Forward 20 S we lift the pen up, move a=s=ide, and
Diown <« lower the pen, ready for the sguare.

ﬁ <5 Squares.LM> RUN Window - Ran

o] x]

nooag

Does the program look nicer now? You don’t have to agree with me, but I think it does. Do you
fully understand how the program draws five squares? If not, read it again till you do.

Now for the exercises:
» Draw a staircase, something like the following. By the way, my program had five statements.
How many did yours have?

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

>

>

Page 18

Draw a black square (hint: first draw a picture like the one on the left, then set the line width
such that the lines actually cover the entire area). In the next lesson we will learn easier ways to
fill areas.

Draw three stars:

LA XL
V B W

In order to draw a star, you will have to go Forward, turn Left, and again go forward and left,
five times altogether (I hope you are using Repeat and not just copying the code five times).
How much left do you have to turn? Here is one nice feature of LogoMation: you can either
think about it, come up with the number and have it work the first time, or simply try different
numbers till you get the right one. T’ll give you two hints: one for finding the number of degrees
by trial and error, the other for finding the number by thinking,

Trial and error: Think about the angle between two lines. It is clearly more then 90 degrees, and
1s cleatly less then 180 degrees. Try something in the middle, for example, 160. Write the
program using Left 160, and run it. Does the end of the fifth line touch the beginning of
the first? Did you turn left too much, or too littler If too much, try lowering the number, maybe
to 130. Is it too little? If it is, it must be between 130 and 160. Continue trying.

Thinking: imagine yourself at the pen, walking along the lines that make the star. As you go,
keep looking at the center of the star. How many times did you have to go around it? Each
complete circle around the center is 360 degrees. If you know how many degrees you had to turn,
and since you know how many #mes you had to turn, the rest is a simple math exercise.

LogoMation 2.0 Magjic Square, Inc. Al Rights Reserved

Page 19

LessonC: Text, Color, and Fill

Sometimes it is useful to add some text to a picture. We do it with the Print statement. The Print
statement can print numbers or siings. A string 1s any sequence of characters — letters, digits, spaces,
and any other character. Strings have to be put inside quotes. The quotes are not printed, they
simply help LogoMation to know where is the beginning and where is the end of the string. The
following are all valid Print statements:

Print 3 /1 sinmply print the nunber three
Print "3" /1 the sane thing
Print 3.14 /1 print just that: 3.14

Print "ABC /1 prints the letters A, B and C with spaces in between.

Just like in most word processors, LogoMation allows you to change the shape, the size and even the
angle of the printed text, but let’s not worry about that for now. Needless to say, printing is done at
the current pen position. Printing is done even if the pen is up. So the following code:

Left 45

Print "Start"

Forward 25

Print "Md"

Up

Forward 25

Print "End"
will display:

End

Mid
Q{art
Make sure that you understand why this little program works the way it does.

When you print a string, you can put any letter you want inside the quotes, except for quotes. If you

really have to print the quote sign, you should precede it with a back-slash, like that:
Print "And then he said, \"Quiet!\""

which would print

And then he said, "Quiet!"

As I have said, Print displays the text starting at the current pen position. As the example above
demonstrates, the pen's position does not change after the printing. Sometimes it is necessaty to
move the pen to the end of the printed string. This is done by adding a second argument to the Print
statement. The argument should be a number. If this number is zero, the pen does not move after
printing. Any other number, e.g., 1, will cause the pen to move to the end of the printed string.

Example of such a statement:
Print "two words", 1

So, the Print statement is the first statement that we encounter that can have more then one
argument. In fact, it is the first statement that we encounter which can have different number of
arguments — one and two. There are other statements in LogoMation which can have different
number of arguments, and in fact even the familiar Up and Down statements can have different
number of arguments.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 20

To actually see what happens if we add the argument to the Print statements, let’s add it to the code
from the previous example:

Left 45

Print "Start", 1
Forward 25

Print "Md", 1

Up
Forward 25
Print "End", 1

we get:

End

Mid
Start/

Note how the line starts where "Start" ends. Do not go on reading before you fully understand this
example.

Let's turn now to another subject: colots. If you have a B&W (black and white) screen, you would
probably not be very interested, but if you have a color display, you’re gonna love it. Most
computers nowadays have color displays, and I certainly hope you have one. 1f you do, and you look
very closely at the screen, you will be able to see that each pixel is made of a tiny red dot, a tiny green
dot, and a tiny blue dot. It might be hard to see on a computer display, but on a TV screen where
each pixel is much bigger, you'll be able to see these dots quite cleatly!. The way your TV, as well as
the computer monitor, displays a color in a pixel is by illuminating each of the three colors so that
from a distance they look like one dot, with the required color. For example, if the tiny red dot is
bright while the green and blue dots are dark, you'll see a red color. If both the red and the green are
on and the blue is off, you'll get a yellow. If all three colors are on, you'll get white, and if none is on
you'll get black (don't get confused with the way “real” colors, like water colors or crayons, are
mixed. If you mix a “real” red color with a green, you will not get a yellow. That is because real
colors work by absorbing light and letting only light with the right color to go through).

Computer people call the three colors RGB, for Red, Green and Blue. Each of the three colors is
specified by its znfensity, which 1s a measure of how bright it shines. In LogoMation, a number in the
range 0 to 1 specifies the intensity, where 0 1s the lowest intensity (color is off), and 1 is the brightest
it can get. For example, 0.5 would be half intensity.

The way we tell LogoMation to change the color of the pen is with the Color statement, which
requires three arguments: red, green and blue. Here are some examples:

Color 0,0,0 /1 black

Color 1,1,1 /1l white

Color 1, 0, O // bright red
Color 0, 0, 1 // bright blue
Color 0.3, 0, 0// darkish red

! Note: in some Sony displays you will see stripes of red, green and blue, as opposed to little dots.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 21

At this point you may wonder: how am I ever going to tell LogoMation to display the color I have in
mind? For example, what is the RGB of light brown? What 1s the RGB of Navy blue or dark purple
or light pink? Luckily, LogoMation provides a color picker. All you have to do is to position the
cursor where you want the RGB colors to be typed, and then use the Select a Color command from
the Tools menu. Doing so will pop up the color picker, and you will be able to pick the color of
your choice. When you picker the color, click OK, and LogoMation will type the RGB numbers for
you. If you want to change a color, simply select the RGB numbers in the editor and invoke the
color picker. Note that you should select only the three numbers — not any other part of the Color
statement. The color picker now would display both the old color and the new one, allowing you to
compare the two.

You can switch colors any time in a LogoMation program. Every line which the pen draws after a
color change will use the new color — unless you change the color again.

While we are using the Tools menu, maybe it is time to learn about three other time-saving tools,
which are available in the same menu. These are Beautify, Indent Left and Indent Right.

Beautify reads your program, and converts commands to capitalized words, fully spelled out. So if
you had an LE command, for example, then Beautify will convert it to Lef t . You can also use cttl-
B to achieve the same thing (note: on Macintosh computers, you use option-B instead of ctrl-B. The
same 1s true for other control sequences). The Beautify menu command works on the selected lines
or on the current line if nothing is selected. A common practice is to select all the lines in the buffer
before beautifying (selecting all lines is done either by dragging the mouse over them, or better, by
using the Select All menu command, ctrl-A for short).

The Indent Left and Indent Right menu commands help you indent a entire region right or left. If
nothing is selected, Indent Right indents the current line, plus select it. You can use ctrl-] as a
shortcut for Indent Right. Likewise, Indent Left removes blanks (if any) at the beginning of the
line. You can use cttl-| as a shortcut for Indent Left. If several lines ate selected, the indentation
menu commands indent the entire block of lines and select it. The selecting of the lines after the
indentation helps if you want to indent some more. For example, you can type two ctrl-] and indent
right by 8 blanks.

If you did your homework for Lesson 2, you know that it is possible to fill a shape by drawing inside
it using a thick pen. But for anything other than rectangles, this is really pretty hard. We are now
going to learn about the Fill statement.

The Fill statement tells LogoMation to fill the stuff inside a closed path that the pen makes. Like
Repeat, we use indentation in order to tell LogoMation which pen movement statements are included
in the area which should be filled. Here is an example:

Down /1 just in case the pen was up
Fill /1 we start filling:
Repeat 6 /] ready to plot a hexagon -

Forward 50 // by drawi ng 20 pixels lines
Ri ght 60 Il with 60 degrees between them
Up /1l done Repeat, done Fill

When we run the program, we get

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 22

To understand why we got what we got, try to comment out the Fill statement (commenting out
means typing // at the beginning of the line, so that LogoMation will ignore the entite line). What
did you get? Well, the Fill statement simply fills that shape.

The filling that we have just seen was so/zd fill. LogoMation also supports filling with other patterns,
such as round dots or crisscross lines, but we will not talk about it in this tutorial. The Reference
Manual part of this book describes filling with patterns (sections 5.3.4 and 5.13). Not that it’s
difficult to do — but I’d like to defer the topic of patterns so that we can cover other important
features.

How about filling with colors? Well, since we know how to change the color of the pen, we can
draw filled shapes with these colors. The Fill statement, which we have just seen, fills a shape with
the same color as the pen's. So if we wanted a red hexagon, for example, all we had to do was
change the color to red before using the Fill statement in the last example. But LogoMation can do
even better. You can tell LogoMation to draw the outline in one color (which is the color of the
pen), and do the filling in another color. You tell LogoMation about the color of the filled area by
adding three arguments to the Fill statement. The three arguments are our old friends RGB
(remember, you can use the color picker to help you type them in). We end this chapter with yet
another hexagon. It is almost the same hexagon as the before, but there are two differences. One is
that we have colors. The other is that the Repeat count is now 5 and not 6:

™ Filled Hexagon.LM
Color 1.0.17.0.13 ## bright red

=10] x|

Width 3 < thick outline

Diown < qu=t 1n case the pen was up

Fill 0.15.0.4.1 A4 =ztart filling hlue-
Foramrd S0 Lth ﬁ <Filled Hexagon LM> RUN Window __. !EIE
Fight &0 S hl

Up

How come we got a hexagon even though the repeat count was only 52 Remember, the Fill
statement works on closed paths. A closed path is a path that the pen makes, which ends at the
point in which it started. What if we do not close the path inside the Fill statement? In that case,
LogoMation will close the path just for filling purposes, but will not draw the extra outline. That is
why we got a filled hexagon even though we actually drew only 5 of the 6 edges.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 23

Before giving you this lesson's homework, I'd like make a confession. The hint that I gave you in the
homework of the last class, on how to draw a black square, was a bit misleading. What I wanted you
to do was to exercise the use of the Width and the Repeat statements. But if you chose to ignore my
hint, you could instead write a two-line program, with no Repeat, that does the job. Did you think of
it yourself? I hope so. What lesson does it teach you? That you should not believe books too much,
because they can sometimes be wrong, too.

Now for the homework:
» Draw three ten-sided polygons side by side, each with a green outline and blue filled inside.

» Modify the three stars exetcise from the last lesson, so that the stars are inside a Fill block.
So far, easy enough. Now for the challenge: can you figure out why you got the picture that
you got? You probably got something like:

22X

This exercise teaches you something about filling a shape made of lines that cross one
another. Try some more such exercises: draw a shape with lines that cross one another, then
indent the program (ctrl-] might be handy) and put a Fill statement in front of it. After a
while, you'll understand why LogoMation behaves the way it does.

» Draw a STOP sign. It should look like the one in the street around the corner, or maybe
two blocks down the road. Use colors. Later, when you know mote about fonts, you'll be
able to change the size and shape of the STOP letters. By the way, have you figured out
how to change the color of the STOP text?

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 24

Lesson D: Circles

This lesson is going to be short. I want to give you a little break, and I want you to spend more time
doing the exercises and inventing some of your own.

We begin this lesson by learning how to draw circles, or part of circles (arcs). We will have to learn
two new statements. The first statement is Straight. You use this statement to tell LogoMation that
all the Forward and Backward statements that will come next are to be done in straight lines. In fact,
all the programs that we wrote thus far had only used straight lines, so you could use this statement
anywhere in a program without changing anything in the way the program works. Here are two
programs that do exactly the same thing (draw a square), one with St r ai ght and one without.

Strai ght Repeat 4

Repeat 4 Forward 30
Forward 30 Ri ght 90
Ri ght 90

We tell LogoMation to move in arcs by using the Citcle statement, with the circle's radius being the
argument (I will tell you how to do it in the next paragraph). When we draw a circle or part of a
circle, the Forward and Backward statements will actually move along a circular path. When we are
done moving in circles, we use the Straight statement to tell LogoMation that Forward and Backward
will now mean what they used to mean when the program started, namely, that we want to move in
straight lines.

A circle has a radius — you probably know this already. You tell LogoMation that you want to move
on a circle with a radius of say, 50. Then you use a movement command such as a Forward
statement. LogoMation will start going in the same direction it used to go, except that it will curve,
and if we go far enough we will get back to where we were when we started the circle. Here in an
example, which includes the code and the resulting graphics:

Forward 40
Left 45
Forward 40
Circle 50
Forward 100

What have we done here? We started by drawing a horizontal line of length 40, then we turned left
45 degrees and drew a second line. We then told LogoMation to move in a circle with a 50-pixel
radius. The last statement was to move forwards 100 pixels. This last statement was executed when
LogoMation was in circle mode. It starts from the end point of the previous Forward, and cutls
instead of going straight. How much do we have to move forwatd in order to get to where we
started? The answer is: 2 times 7 times the radius, which in our case is 50. If you don't know about
this magical number, = (pronounced Pi), ask someone.

So, to get a complete circle, you can use a calculator, figure out how much is 2 times 7 (7 is
approximately 3.14159) times 50, and enter that number as the argument of the Forward statement.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 25

Actually, LogoMation can help in doing the math. In the next chapter we will talk a lot more about
how to do math in LogoMation. For now, I will just mention that instead of using a calculator and
copying the result of the multiplication, you can simply type 2*¥3.14159*%50. Actually, on the
Macintosh you can do much better — instead of typing the value of =, you can simply type n by
holding down the option key and pressing lower-case p. So the Forward statement would look like

this:
Forward 2*3. 14159*50

Forward 2*m*50 ac&Fc

So let us write a simple program that draws a straight line, tangent (this means, touching at one point)
to a circle. The program:

Forward 50

Circle 40

Forward 2*3.14159*40

Strai ght

Forward 50
And here 1s what it does. Note that the straight line at the bottom is really made of two line

segments, each 50 pixels long. You should thoroughly understand the program before you go on.

Of course, circles, or part of circles, can be filled too. Here is a slight modification to the program
above:

Wdth 2
Forward 50
Fill 0.5,0.97,0.53
Circle 40
Forward 3.14159*40
Strai ght
Forward 50

And here 1s what it does:

Now for the homework:

» Draw a car, with wheels (how else would it move?). Make it as realistic as you like, but filling
it with lively colors. Do not forget to save the picture in a file!

» Draw the logo of the Olympic Games. By the way, do you know why this logo is the way it
1s? I knew once, but now as I write this book, I forget.

» Make up your own pictutes, with colors, lines of different width, filled shapes and citcles.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 26

Lesson E: Variables and Functions, Part |

What we have learned thus far had enabled us to do simple things, like drawing shapes and filling
them with colors. In this chapter we will learn about variables and about functions. Variables and
functions are very powerful: they allow us to write programs that do complex things, and yet these
programs can be kept simple, easy to write and easy to understand. If you saw a demo of
LogoMation in which LogoMation draws real nice pictures, you can bet that these programs used
variables and functions. By the time you finish this lesson and the next one, you will be able to do
some of it yourself. But be warned: if LogoMation is your first programming language, learning
about variables and functions may not be very easy. Take your time and study them carefully.

People use functions (also called "procedures” in other programming languages) for different
reasons, but by far the most frequent use of functions is when you want to do the same thing again
and again in your program. You may remember that we used Repeat to avoid replicating the same
lines many times. Well, functions are even more powetful and general. Let's start with an example.
We will write a program for drawing a few squares of different sizes on the screen. We will first
write if without using a function and then see how using a function helps in getting the program
shorter and simpler. Here is the program.

/'l Move a little, with the pen up
Up
Forward 30
Down
/'l Draw a 5 x 5 square
Repeat 4
Forward 5
Ri ght 90

/'l Move a little, with the pen up

Up
Forward 30
Down
// Draw a 10 x 10 square
Repeat 4
Forward 10
Ri ght 90

/1l Move a little, with the pen up

Up
Forward 30

Down
/1 Draw a 20 x 20 square
Repeat 4

Forward 20

Ri ght 90

It 1s not too difficult to understand what this program does, but please try to do it before you
continue reading. Gotit? Itis really a simple program: it moves 30 pixels to the right, then draws a 5
by 5 pixel square, then moves 30 again and draws a 10 x 10, and then does this yet another time and
draws a 20 x 20 square. I suggest you type it in and run it, just to see how it works.

If you read the program a second time, chances are that you will find it boring. After all, it does
almost the exact same thing three times. The only thing that is different each time is the size of the
square — just one number. Surely there is a way to write the program without having to replicate the
code and modify it slightly in every copy.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 27

This, by the way, is what every good programmer is always trying to do: write programs that are
smaller and clearer. A small program is easier to write, easier to debug (that is — to find the
programming errors, also called "bugs"), and many times it is more efficient, i.e., it runs faster.

If you read the program and think about how to make it shorter, you may think of using a Repeat
statement to reduce its size. Unfortunately, a Repeat, at least the way we learned about it in Lesson
B, cannot help. This is because a Repeat executes the same statements again and again, each time
exactly the way it did before. It is this exaczly that we don't like here, because each square is slightly

different in size. So instead, we will use a Function. Here is the program, re-written with a function:
/I square — define a function to draw a square
Function square(size)
Up
Forward 30
Down
Repeat 4
Forward size
Right 90

// now draw three squares
square(5) // draw a 5 x 5 square
square(10) // draw a 10 x 10 square
square(20) // draw a 20 x 20 square

OK, so what have we got here? Everything seems new, and yet some lines look familiar. Let's read
it together. The first line is a comment, which 1s always a good idea. The comment says that we are
defining a function. A function is something that you define, which is something that we did not see
before. When we define a function, we just tell LogoMation that if we ever use this function, this is
what it should do. But we are not asking LogoMation to do anything yet. Programmers also call this
"declaration", because we declare something to be such and such.

The second line is the actual beginning of the function. As usual in LogoMation, we use indentation
to define the scope of the function, i.e., where it begins and where it ends. So, our function has
seven lines altogether — the line that starts with Funct i on, and six additional lines. The line that
starts with FUNCt I 0N has the name of the function, Squar € in this case. The function's name is
entirely up to us. It is better to use a meaningful name to tell something about what the function
does (draws a square in our case), but it is really up to us, and we can pick any name we like. The
only restrictions on names are that they must be made of only letters, numbers, and underscores (
character), and must start with a letter.

«

Following the name Squar e we find the word Si ze in parentheses. This tells LLogoMation that
whenever the function is called , the call should provide an argument. Calling a function is the term
programmers use to describe the act of actually using the function to do something -- more on that
later. Again, the name of the argument is up to us. I chose Si z€ because I want the argument to
tell LogoMation the size of the square. Indeed, if you look at the last three lines of the program,
each of them is a call to the Squar e function, and each has a size number in parentheses. But let us
go back to the function's declaration.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 28

Each function declaration has two parts: the Function line, also called the function’s bead, and the
function's body. The function’s head is where we tell LogoMation how we will later call the function.
The function's body is where we tell LogoMation what the function should do once we call it. Read
the square function's body. It has six lines, all of which you have seen before, at the beginning of
this chapter. There is a Repeat, and a Forward, and other statements. Look carefully. Do you see

something new? Read again. The new thing is the following line:
Forward size

When LogoMation sees this, it knows that we want it to go forward. What is the Forward
statement's argument? Itis Si ze. We call Si ze a yariable. A variable is something that has a name
(Si ze in this case), and also has a value. What is the value of Si ze? In this case, since we used

Si ze in the function's declaration, we are actually telling LLogoMation to use the value that will be
supplied in the function's call.

Confused? I don't blame you. This is all new stuff, as I said before. It is really simple, once you
digest all these new words. It’s one of those cases where the explanation is more difficult than the
concepts it Is trying to explain. I am now going to tell you what really happens when you call a
function, and hopefully it will all become clear.

The first function call in our program is this:

squar e(5)
This is common to all function calls. All function calls have a word, which is the function's name,
followed by zero or more arguments, all in parentheses. In this case there is one argument, but if it
had more, we would have to separate the arguments with commas. By the way, no spaces are
allowed between the name and the left parentheses. Likewise, no spaces are allowed between the
name and the left parentheses in the function’s head. This is one exception to the rule that you can
add spaces in a LogoMation program anywhere you want, to clarify the program and make it nicer.

Here 1s an example of another function call (not in our program):

rectangl e(10, 6)
This call calls ar ect angl e function and passes it two arguments, 10 and 6. Note again that there
1s no space after the function’s name. But there is a space after the comma. Why? Because I think it
looks nicer. You don’t need the space.

What happens when LogoMation runs the program and gets to the squar €(5) function call? It
does the following:

1. Itlooks for a function called Squar €. In this case, we just defined it before the call, so it finds
it without any problem. If we had not defined it, LogoMation would complain. By the way, you
can define the function anywhere in the program, not necessarily at the beginning. You can even
define it after the first call, if you want. LogoMation reads the entire file before executing the
first statement, so it does not matter to LogoMation where you put the function definitions.

2. From the function's definition, L.ogoMation understands that there is one argument, Si ze. It
checks if the call also has one argument, which it does. LogoMation then sets a variable called
Si ze to the value supplied by the call, i.e. to 5. So from now on, till the end of the function,
every time LogoMation sees the word Si Z€ in the function's body, it replaces it with 5.

3. LogoMation starts executing the function. This means that it reads each statement in the
function's body and executes it. So, it will do Up, and then it will do Forward 30, and so on.
When it gets to the FOr war d Si ze statement, it will do Forward 5, because the variable Si ze
has the value of 5.

4. After executing the function's body, LogoMation returns from the function. This means that it
goes back to the next statement following the function's call. In this case, it returns from the
squar e(5) call, and is ready to execute the next statement, which in this case is also a

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 29

function call. When LogoMation returns from a function, it “forgets” the definition of the
atguments (Si Z€ in out case); the definition of function arguments holds only during the
execution of the function.

If you are still a bit uncertain what is going on here, please read the explanation again until you fully
understand. It is important that you fully understand what it means to define a function, what is the
function’s head and body, what is a function ca//, and what it means to return from a function.

There is more to be said about functions and variables, but we will break now.

Now for the homework:

>

>

Write a function pol ygon(n, si ze) which will draw a polygon with N sides, with
each side length being Si ze. Use the function to draw 4, 5, 6, 7, and 8 edged polygons.

Using a function with two arguments, draw 5 rectangles separated from one another by 10
pixels. The sizes should be 4x7, 6x3, 10x11, and 20x20.

Modify the above program so that the 10x11 rectangle will be filled with solid black, while
the rest of the rectangles remain not filled.

Modify the above function yet another time, so that all the rectangles will be filled with
solid black.

The next exercise is going to be tricky — but I’d like you to try to do it anyway. Start with
the program in this lesson, the one with the three squares. Id like you to modify it by adding
a second argument to the function: when the argument is 0, the function will draw a square
just like it did before, taking the edge size from the first argument. If it is non-zero, it will
draw a circle with a radius specified in the first argument. Call the function, and draw three
squares and two circles.

To write this, you will need to use an | f statement — something that we have not learn
about yet. I’d like you to read about it in the Reference Manual section of this book, section
5.11, LogoMation Conditionals — the IF... and IF...EL SE. .Statements, on page 66. There are
some new concepts mentioned there, but you do not have to understand all of them (for
now...). Just try to understand how to write a simple If statement.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 30

Lesson F: Variables and Functions, Part 1l

Before we go on, Id like to talk a little about the last exercise in the last chapter. I hope you
managed to do it, or that at least you tried. The reason that it is so important is that sooner or later
you will have to start using the Reference Manual part of this book. The reference manual describes
every feature and capability of LogoMation, and is your main source of information about how to
use the programming language and the development environment. The problem is, that the manual
1s kind of hard to read because it is somewhat concise, and sometimes uses a technical language,
which experienced programmers understand, but some less experienced programmers might find
confusing. Frankly, if LogoMation is your first programming language, there is little hope that you
will understand everything in the reference manual. You will have to get someone to teach you
advanced programming. But whenever you learn a new concept, or even a new statement type, try to
read about it in the Reference Manual part of this book, and thus become more familiar with the way
programming languages are described. This ability will become handy when you learn your next
programming language.

Back to variables. In the previous chapter we learned about variables. We learned that they can store
values. We learned that they can store different values at different times — for example, the Si ze
variable in the example from the last chapter stored a different value each time the function was
called. We also learned a way to assign a value to a variable: it was done by the act of calling a
function. In calling a function, LogoMation assigns the value of the argument (or arguments, if there
are mote than one) to the variable (or variables, if more than one) in the Function declaration.

There are other ways in LogoMation to assign a value to a variable. In this chapter we’ll learn two
new ways. The first and the most important is the assignment statement.

Here is an example of an assighment statement:
G=10

The statement has three parts:

1. The variable’s name — in our example it is G By the way, I have not mentioned it yet, but
variables’ names are case sensitive. “Case Sensitivity” is a big word that simply means that it
matters whether you use lower case or upper case. Thus, for example, the vatiables Si ze
and Si ze ate two entirely different variables, even though the only difference in their names
1s that one is capitalized and other is not. So be careful and consistent with how you type
variables! By the way, the same is also true of function names, so squar e and Squar e are
entirely different.

2. The second part is the equals sign (=). The equals sign tells LogoMation that we have an
assignment statement here. The assignment statement 1s kind of unique, because all the other
LogoMation statements begin with a command that tells LogoMation what to do, for
example Forward, and the command is followed by the arguments. The assignment
statement begins with a variable’s name, and only the second patt tells LogoMation what to
do. Why? Because it is a common practice in many other programming languages. It has
become a tradition.

3. The third part is the value, to be assigned to the variable. In our case, it is 10, and thus when
you use the variable G after the assignment statement, it is entirely equivalent to using the
number 10. The variable will hold its value until you replace it with a different value.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 31

Here is a quick example:
G=10 /I set variable “G” to 10
Forward G // go forward 10 pixels
Right 90
G=G+1 [/lincrement G by one, to 11
Forward G // go forward 11 pixels
Right 90
G=G+1
Forward G // go forward 12 pixels
Right 90
G=G+1
Forward G // go forward 13 pixels

The first assignment statement is clear enough (especially since we discussed it so much already).
The second statement should also be clear enough: since G equals 10, going forward “G” is the same
as going forward 10. The fourth statement is kind of strange, though. Let’s stop for a minute and
talk about it.

The statement G = G + 1 is an assighment statement. Every assignment statement has three parts
(have I said it before?), and the first two parts are just what we had before: the variable’s name and
the equals sign. The third patt, the value part,is G + 1. Since Gequals 10, the value of G + 1 is
11, and therefore what we actually do is assigh Gthe value of 11. The confusing patt is that we use G
both as the variable to be assigned a value, and as the variable to provide the value. When
LogoMation executes an assignment statement, two things happen, in that order:

1. LogoMation computes the value part (the third part of the statement). In some cases there
1s not much computing to do because the value is simply a number, such as 10. In other
cases, some computation needs to be done, because the value has operators such as + (plus),
- (minus), * (multiply), and / (divide). If the value part has vatiables, LogoMation
substitutes their value in the computation.

2. LogoMation assigns the calculated value to the variable whose name appears in the first part.

So, a statement like G = G + 1 should not be confusing at all because there is a clear order: first
come the computation and #hen come the assignment. Duting the computation, Ghas not been
assigned a new value yet, and its value is 10, so that is the value which is being used to compute the
new value.

Personally, I was a bit confused when I learned my first programming language and I first saw a
statement such as G = G + 1, because such a statement can never be true mathematically. In
Algebra, the equation G = G + 1 has no solutions: thete is no number Gsuch that G = G + 1.
But in programming, the assignhment statement just tells the computer what to do, and does not
represent a mathematical equation. You should read it as follows: G = G + 1 means “assign a zew
value to G the value being equal to the crent value of Gplus one”.

Why would anyone want to change the value of a variable? Actually, it is extremely useful. The

following program will demonstrate:
/I A spiraling square
i
side =10
Repeat 150
Repeat 4

Forward side

side = side + 1

Right 90

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 32

Before you continue reading, stop for a minute and try to guess what the program does. It’s not at
all obvious! When you have clue (or when you give up), continue reading.

OK. Let’s read it together. We will start with the inner loop. Oops — I have used another
programming jargon! When a program has a loop (i.e. a Repeat statement) within another loop, we
say that we have #estedloops. And when we have nested loops, the /nnerloop is the one that is
“deepest”, the one that 1s executed more times. So in our case, the inner loop 1s the one with the
Repeat 4 statement.

We have seen loops like it before, have we not? If we took the Si de = si de + 1 assignment
statement out of the loop, it is a familiar loop that draws a square. So, leaving the assighment
statement out for one more minute, we have an outer loop that runs 150 times, and each time draws
a square. And all the squares are the same, so if we ran the program without the above assignment
statement, we would only see one square, although LogoMation re-draws it 150 times.

So now let us add the assighment statement. What is the size of the square now? The first edge is 10
pixels. The second 1s 11, the third is 12 and the fourth is 13. But wait! This cannot be a square,
because the shape is not closed! And as we continue the outer loop, we draw another “almost
square”, this time with edge sizes of 14, 15, 16 and 17. By now you should have a picture in your
mind what this program does. Run it and enjoy! By the way, you may need to adjust the size of the
Run window so that it displays all the graphics.

I promised two new ways of assigning a value to a variable. The second way is with a new form of
the familiar Repeat statement. This new form loops, just like a normal Repeat, but each time through
the loop it increments a variable. With all that we’ve learned about variables, the following program

should be easy enough to understand — especially if I tell you that it does exactly what the previous
one did:

/1 Another spiraling square
Repeat size, 10, 610
Forward size
Ri ght 90

The Repeat statement has three arguments:
1. The variable’s name — in our example it is Si ze.
2. The initial value, to which the variable is set before the loop.

3. The last value — the Repeat loop increments the variable by one every loop, until its value
equals the last value. After the variable reach this last value, the loop ends.

As 1s the case for all of the statements that we have learned thus far, there is more to be said about
the Repeat statement. It is covered in the Reference Manual section of this book.

Now that we know a lot about variables, I’d like to mention another programmers’ jargon word: an
expression. An expression is simply something that has a value. For example, 10 is an expression. In
LogoMation we use expressions to provide values to arguments of statements, and to arguments of
functions. For example, the Forward statement has one argument, and that argument can be any

expression, including any math operations that you want, for example
Forward ((x1 + 8) * (x1-2)) / vy

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 33

As in math, parenthesis can be used to tell LogoMation in what order to evaluate the expression.
Without parentheses, LogoMation computes first the multiplication and division, then the addition
and subtractions. So, for example, 10+20* 2 equals 50, while (10+20) * 2 equals 60.

There are four types of “values” in LogoMation. In these lessons we will only learn about two:
numbers, and strings. We have already seen both. LogoMation allows you to use them
interchangeably — for example, the string “10” has the same effect in a Forward statement as the
number 10. LogoMation will convert a string to a number or a number to a string as needed by the
statement. You may want to read the examples and an in-depth explanation in the reference manual,
Chapter 2: Data Types. Variables and Expressions, on page 46.

Homework (have you noticed, they become harder and harder...):

>
>

Write a program to draw concentric circles.

Modify the above program so that the circles have different colors. For example, you may
want all the circles to have shades of red: just change the intensity of the red while keeping
the green and blue intensities at zero.

Here is a problem that will keep you thinking for a while, unless you have already seen its
solution: can you draw a circle without using the Circle statement, i.e., with only straight
lines?

Modify the previous program, the one that draws circles without a Circle statement, and
draw one big spiraling shape that would fill up the entire screen. It is essentially a round
relative of the Spiraling Square program, which we have seen earlier in this lesson.

Read and understand the Font Test program in the examples directory. You will
need to consult the reference manual.

Read in the Reference Manual about built-in functions, and modify the spiraling circle
program to draw the shape until it touches an edge of the Run window. The shape should
start at the center of the Run window, and grow outwards. When it touches the edge of
the window (either the top of the left edge, depending on the shape of the window), the
program should stop. You will probably use the X() ,y() ,width() and height()
built-in functions, the If statement, and the Break statement.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 34

Lesson G: Fun with Animation

You now know enough to start enjoying animation. Animation in LogoMation is done by attaching
a picture to the pen. Computer professionals call a picture a bitmap. What is there in a bitmap?
Actually, you do not really need to know this in order to do animation in LogoMation, but I will tell
you anyway, just so you do know. If you wish, you can skip this description.

A bitmap has four characteristics that distinguish it from other bitmaps:

1. Size — a bitmap is rectangular. An # x » bitmap has 7 rows, each with » pixels. Alternatively you
could say that the bitmap has 7 columns of # pixels each, but programmers prefer to talk about
rows of pixels. The reason for that has to do with the way that the bitmap is stored in memory
or on a disk: it is stored in rows: first all the pixels of the first row, then all the pixels of the
second, and so on.

2. Depth — this is the number of bits which are used to represent each pixel. For example, if a
bitmap has a depth of 8, then each pixel is represented by 8 bits and therefore can represent
2°=256 different colors. So what would the depth of a black and white bitmap be? You guessed
it: 1.

3. Color table, also called a Lookup Table (LUT), also called a patette — this is a table, which
translates the value of the pixel (expressed by depzh bits), to a color displayed on the monitor. As
you already know, a color has three components (RGB), and typically each component is
represented in the computer by an integer in the range 0 to 255 (do not confuse this “low level”
representation with the way LogoMation represents intensities — each in the range 0 to 1). A
modern monitor can thus represent about 16 million colors (2°* to be exact). The palette maps
the value of each pixel to a color. The most important reason that people use palettes is to save
memoty, because each pixel can have a depth less than 24. There are other reasons, too.

4. And the fourth item? You guessed it — the actual value of each of the # x 7 pixels.

When I think about it, I discover that I am not sure why a bitmap is called a bitmap — I am not sure
what “bit” has to do with it, and what “map” has to do with it. But anyway, that’s the term that
programmers use, so we better stick to it.

Now that I told you about bitmaps, just archive the information. We are not going to need it for
what follows.

In LogoMation, a picture is an entity that has a unique name. The name of a picture can consist of
any character except parentheses (parentheses are used for multi-frame animation, which is described
in section 9.5, Multi Frame Pictures, on page 111). For example, “a picture” is a legal picture
name. Pictures come into being in two ways: either they are imported to LogoMation from other
graphics tools (using the Import a Picture menu command), or they are created in LogoMation by
standard LogoMation statements.

Can you guess how to create a picture in LogoMation? As you might expect, it is consistent with
other statements like Fill or Repeat. You use a Picture statement, followed by movement commands

which are indented relative to the statement. For example, a picture “square” can be created thus:
Picture “square”
Repeat 4
Forward 40
Right 90

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 35

Looks simple enough. I would like you to note, though, that the Picture statement creates a picture,
and does not define it. In other words, the statements in the Picture statement’s body must be
executed. Contrast this to the Function statement, which is a declaration. You do not execute a
function definition — you just put it somewhere in the file. But a picture needs to be created.

When a Picture statement is executed, nothing happens on the screen. All the graphics is stored into
a— are you ready? — a bitmap. The bitmap is stored by LogoMation and is brought into use when it
1s attached to a pen. Attaching a picture to a pen is done via a Pen statement, as in the following

example:
Pen picture="square”

The Pen statement modifies several of the pen’s parameters. As always, you can read about it in the
Reference Manual section of this book. In this lesson I will only mention another parameter of the
pen: speed. When in animation mode, the speed can be controlled by setting its value in the Pen

statement. For example:
Pen speed=100

This tells LogoMation to move the picture at a speed of 100 pixels per second.

Combining all this, here is our first animation: we move a square 200 pixels to the right, and this
movement takes 2 exactly seconds. Note that I am setting both the picture’s name and its speed in
one Pen statement. You can put as many Pen parameters in one statement, or sepatrate them into

several statements.
Picture “square”
Fill 0,0,0 // black
Repeat 4
Forward 40
Right 90

Pen picture="square”, speed=100
Forward 200

Please type this in and run it to see how it works.

Now change the size of the square from 40 to 100 and re-run. Did you get what you expected? 1
think not. You got the same 40 x 40 square as before. The reason for that is that LogoMation caches
pictures’ definitions. Caching means that the bitmap is saved, and when the program re-runs,
LogoMation notices that the picture was already created before and skips its re-creation. This is
done to save time, of course, but in our case it is a mixed blessing, because LogoMation skips the
new definition of the picture.

Disabling the caching is easy: you simply add an argument 1 to the Picture statement. So the

modified program with 100 x 100 square is as follows:
Picture “square”, 1
Fill 0,0,0 // black
Repeat 4
Forward 100
Right 90

Pen picture="square”, speed=100
Forward 200

And now, to the homework:

» Animate a sequence. Define several pictures of the same shape, say, a square, which
differ in their name (of course) and in their color. Then move them along a straight line,

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 36

alternating between them as you go. For example, you could move the red square for 10
pixels, then switch to the blue and move it for 10 pixels, and so on.

Animate a bouncing ball. The ball starts at a given angle, and when it hits an edge of the
Run window, it bounces back using the opposite angle. To add to the effect, use sound,
and increase the speed of the ball in each loop (looks like the ball receives energy from
the Run window’s edges).

Do not drink and drivel Take your car drawing program (from Lesson D), combine it
with the Stop sign program (from Lesson C), and create an animation of the poor
drunken driver hitting the Stop sign. I have been told that typically male student like
this exercise much more than female student. I wonder why. Anyway, if you prefer,
you could instead animate a peaceful scene in which the driver drives carefully to the
Stop sign and stops.

Add sound effects to the above animation. Use the Sound statement, described in the
Reference Manual. Look for cool sounds on your computer, and import one or two of
them to LogoMation.

Animate a square and a triangle moving towards one another. The pictures should look
like they are moving concurrently, although in reality you will alternate between them.
The most efficient way to do this is to use named pens. Read about it in the Reference
Manual section 8.2, Defining and Switching Pens, on page 103.

Animate an explosion: a round ball moves on the screen, and then explodes into 10 little
balls that are dispersed all over.

LogoMation 2.0

Magic Square, Inc. AlRights Reserved

Page 37

Congratulations!

If you have read and understood the tutorial thus far, and if you prepared your homework, you
should be in a good shape. You are now a certified beginner programmer. Perhaps not quite ready yet
to be the Vice President of Engineering at Microsoft, but certainly ready to go into more complex
and challenging stuff. All beginnings are hard, and if LogoMation is your first programming
language, then you have made a most important step towards mastering this trade.

Congratulations!

Where should you go from here? There are two ways that you can make progress and become a
better programmer.

The first is to seeck wisdom. No, not necessarily in a monastery in Tibet. Since the invention of the
electronic computer, a large number of smart people have used it and devised innovative methods to
have it do what they wanted it to do. Your bookstore might have more LogoMation books — check
them out. Go to the bookstore and buy a book that will teach you computer algorithms. You would
be surprised, and I believe delighted, to find out how many ways there are to sort items on the
computer, for example, to sort strings alphabetically. You will discover recursion, and after getting
the hang of it, you would love the concept. Before long, you would discover what areas of computer
sclence attract you. It might be computer graphics. Or it might be computations (find out how to
compute n to the 1000t digit). If you are a self-learner, there is a tremendous amount of information
out there that you might want to access. And if you prefer a more structured study, you would surely
find that, too.

The second crucial ingredient in making you a better programmer is practice. The more programs
you write, the better you will be at writing the next one. Seems rather obvious, I know. Practice will
teach you that programming is an engineering activity, rather than a scientific or an artistic activity. The
more you code, the more you will understand the engineering tradeoffs that one should constantly
consider: should I make this program more general and less efficient, or more efficient and less
general? Should I reduce the number of features on this program and release it, or should I spend
more time making it more powerful? How should I go about designing this project? How can 1
maximize the odds that other people would use the program and enjoy it too?

At first, these questions would not bother you much, but as you become more professional, you will
find yourself thinking about them more and more. When you find yourself doing it, and when you
find yourself inventing ways to objectively measure these tradeoffs, e.g. in time or in money, then you
will know that you have become an experienced programmer.

Programming can be done alone, and can be done as part of a team. Programming is an extremely
rewarding intellectual activity. Oh, and let’s not forget that it also has its financial rewards: a
programming project can finance your next vacation, and if you are lucky and skilled, your next
house.

You are off to a good start. Make yourself a cup of tea, and start reading the Reference Manual part
of this book.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 38

Chapter 1:A Quick Tour

This is the first chapter of the Reference Manual section of this book. If you are reading these lines,
then either you have just finished the tutorial, or you chose to skip the tutorial and go directly to
Reference Manual section of this book. If you have read the tutorial, this chapter could be taken as
a refreshing review, although you surely will learn new things here.

Starting at the next chapter, we will be getting into the gory details. This chapter will give you a

glimpse at some of the features of LogoMation. The tour is done in a rather intuitive manner. If you
don’t understand something, do not worry — it will be explained more rigorously later in the manual.

1.1 The LogoMation Windows

You edit LogoMation programs in Edit windows, and see the results of running them in Run
windows. At any moment, any number of Edit and Run windows can be opened. The next screen
shot shows a LogoMation application with one Edit window (in the back), and a Run window (front)
containing the results of the program’s execution.
7 LM - <Hilbert Fractal.LM> RUN Window - Ran (O] x]
File Stop Debug ‘Window Help

0 N e = e . v e e S T 8

™ Hilbert Fractal.LM = 0] x|
AI
recursionDepth = &
t0 = =econds=()

stepSize = int{ min{width() height{}) ~ (2 recursionDepth))
REepeat 1.0.2

pickOff=zetindColor{i)

Hilbert (recursionDepth. stepSize)

PP Py
Function Hilbert(de
HilbertStepi{der

B <Hilbert Fractal LM> RUN Window - Ran M=1E3

LSS
Function HilbertSte
If depth » 0
Left direct
Forward len
Forward len
FEight direc
Left direct

L (] (1 [(] (] [0 1]
I_II_T|I]|__I|_T|I] I_Il_Tllj I_Il_Tllj
_I_I__I__I_I__|_I_I__I__I_I_

iﬁiﬁ{mﬁ i
neslmmlEsln |

I__I_ L= - I_I

PP Py
Function pickOffset
If iteration =

1.2 Hello World - The First LogoMation Program
Using LogoMation, it is very easy to write programs that draw things on the screen. The most basic
drawing is done via pe# movement. Imagine holding a pen and telling it to go places, such as go

forward in a straight line for 100 pixels, then turn right 45°, continue 70 pixels in a citcle of a given
radius, and so on. As the pen moves, it draws a line on the screen, and you can control the line’s
attributes, such as its width and color.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 39

Let us draw an arrow, and at its tip write “Hello World” in red. To do so, double-click the
LogoMation icon to invoke the application. It comes up with an empty Edit window, ready for
typing a program in it. Note that as you type, the color of the typed letters indicates how LogoMation
understand them. A LogoMation program is made of a seties of statements. LogoMation statements
are written in separate lines, or can be grouped together in one line by separating them with semi-
colons. Statements start with a command name, which LogoMation colors red or purple (see below).
Comments, which are ignored by LogoMation, start with two slashes, end at the end of the line, and
are colored green. Here is our first shot at typing the program; you are invited to type it in. Be sure
to use O (the number zero) when typing a number, and O (the letter) in the commands.

BB Untitledt Mi=1E3

< my first LogoMation program

fo 30

ri 150

fo 10; ba 10

Left 200

fo 10; back 10

2 1.0.0 ~ changs the color to red
pr " Hello LogoMation®

This program is not very legible. It uses cryptic statements like FO 30. LogoMation allows an
abbreviation of command names, and we have taken advantage of that. The FORWARD command,
for example, can be abbreviated and can be typed in any combination of upper and lower case. Thus
FO f or etc., ate all legal abbreviations of FORWARD. Most usets find it easier to type in an
abbreviated command, and let LogoMation “beautify” it. This can be done by selecting the lines that
need to be “beautified” (or typically, typing ctrl-A to select all the text), and then selecting the
Beautify command from the Tools menu. Doing so, we get the following, which is #zch more
legible:

B8 untitled1 M=]1E3

S my first LogoMation program

Forward 30

Fight 150

Forward 10: Baclkward 10

Left 300

Forward 10; Baclwazrd 10

Color 1.0.0 #¢ chahge the color to red
Frint " Hello LogoMation®

If you get any error messages when applying the “beautify” command, click OK in the error box, and
correct the highlighted line — you must have typed it erroneously.

At the beginning of the program, the pen is facing “east” (i.e., to the right). The first statement

moves it in this direction for 30 pixels. The second statement changes the direction by 150°
clockwise, i.e., it now faces southwest.

We are now ready to click the GO button (alternatively, we could click the Go button, or select the
Go command from the Run menu, or simply type ctrl-G). Here is what we get, after some re-
arranging of the windows:

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 40

B Untitledt
S ny first LogoMation progran

Forward 30

Fight 150

Forward 10; Backward 10

Left 300

Forward 10; Baclkward 10

Color 1.0.0 v change the color to red
Frint " Hello LogoMation'

ﬁ <Untitled1> AUN Window - status: Done

= Hello LogoMation

1.3 WYSIWYG Indentation

LogoMation has two types of statements: simple statements, and compound statements. The program
in the previous section contained only simple statements. Compound statements tell LogoMation
that something needs to be done to a group of LogoMation statements. For example, the group of
statements should be repeated several times, or it should be executed conditionally. In the example
below, we use a REPEAT statement to create a square.

B Untitled1

Fepeat 4
Forward 20
Fight 90

Up
Forward 40
Frint "a sguare"

ﬁ <Untitled1> AUN Window - status: Done

a sguare

[]

Note that the color of the REPEAT command is purple: LogoMation uses this color to indicate
compound statements. The REPEAT statement cause the two lines that follow it to be repeated four
times, thus drawing a square. LogoMation knows that only two statements need to be repeated,
because these two statements are indented to the right relative to the compound statement. The last
three statements in the program are not indented relative to the REPEAT command, and therefore
they are not part of the REPEAT statement.

Indentation is aided by LogoMation, but is essentially something that the programmer is responsible
for. When you use the “return” (or “entet”) key after typing the REPEAT statement, LogoMation

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 41

automatically starts a new indentation level, i.e., places the cursor at one indentation step relative to
the previous statement. When you type “return” (or “enter”) at the end of the following FORWARD
statement, LogoMation still maintains the same indentation level. The same is true after the next
“return” (or “enter”) at the end of the Rl GHT statement, except that now we wish to end the
indentation so we have to erase one level of indentation. We do so by using the backspace key. In
general, you can always indent one level to the right by typing a space at the beginning of a line,
indent one level to the left by erasing a space character at the beginning of the line. You can also use
the Indent Right and Indent Left menu commands to indent a group of lines.

You might wonder whether compound statements could be nested. The answer is that they do, and
in fact it is a very common practice in LogoMation. In the next example, we fill the square with blue:

B Untitled1 O] =]

Fill 0.0.,1 ~~ blue
Fepeat 4
Forward 20
FEight 90
i}

=
Forward 40 ﬁ <Untitled1> RUN Window - status: Done !Elm

Frint "a blus sguares"

a hlue sguare

]
|

The FI LL statement is used to fill a shape with a given color and pattern. The shape is drawn by the
group of statements, which follow the FI LL statement and are indented to the right relative to it. In
the example above, we fill the squate with a solid blue, selected by the three numbers in the FI LL
statement. The exact way of how to select a color of a pattern will be explained later in this manual.

1.4 The Tracer

LogoMation is very fast, but sometimes you may want to slow it down. For example, you could be
working on one of these fractals programs that can be expressed in 10 lines of LogoMation code, but
might take hours to get right. Each time you click the GO button, and almost instantaneously you
get a strange picture which you certainly did not expect.

The Traceris a tool for slowing down the drawing process. It draws lines at the rate of 50
pixels/seconds, so for example a For war d 100 statement would take 2 seconds to complete.
That is enough time to see which line preceded the current line, which direction the line is drawn,
and what line follows it. The tracer can be toggled on and off by selecting the Pen Tracet command
from the Run menu. The tracer can also be turned on or off from the program itself, as explained in
section 8.4, Setting a Pen as a Tracer, on page 107.

1 The tracer is only available on Windows. On the Mac, you can instead use “turtle mode”, described in
 section 10.3, Application — “Turtle Mode” page 114.

1.5 Program Development and Debugging

LogoMation uses hundreds of different messages to indicate to the user when something is wrong.
This includes compilation errors, run-time errors, and other messages. An example of a compilation
error is when a given command cannot be understood. An example of a run-time error is when an

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 42

argument of a command has an illegal value. When an error occurs, LogoMation pops up an error
message box, and highlights the statement that caused the error.

After a program starts running, it keeps running until one of the following:
1. Normal end — the program’s last statement was executed.
2. A HALT statement was executed.

3. Program execution was halted by the user (on Windows: by using the STOP button, or the
Stop menu command, or ctrl-Break. On the Mac: via cmd-period).

4. A run-time error had occurred. In that case, LogoMation pops up an error message, and
gives the programmer the choice of checking the erroneous line.

After a program execution had been paused or had ended, variables and expressions can be examined
by clicking the Evaluate button (or selecting the Evaluate command from the Run menu). The
screen shot below shows an example of evaluating an expression by selecting it in the Edit window
and then invoking the evaluator. The user had selected the expression I 4+r 5* 2. LogoMation
shows the selected expression in the first field, the way it understands it (including the order of
evaluation) in the second field, and the result of evaluating the expression in the third.

' moon landing. LM

Ip IE*CDSEanElE}, rh®=zin{angle). 180+angle;

Forward
Tp ri#co=(angle+30) . ri*=zini{angle+90). 180+90+angle;
Down: Forward rS=2

G

the zource
EXpIESEInn:

+angle:

Logobdation's |[rd + [15 * 2]]
interpretation:

walue:

computed IEEI

continuous
evaluatian

™
[nizert | Evalirate -

Note that evaluating an expression in this way can only be done after a program’s execution has
stopped or was paused, and the Run window is still up. You can use the evaluator even if the
program has never run, but in that case you will obviously not be able to see the values of variables.
Using the evaluator when the program did not run yet is handy for checking the order of expression
evaluation (seen in the LogoMation’s Interpretation field), and also for doing computations that do not
include variables, for example, 2" 15- 1.

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

Page 43

1.6 Animation and Sound

The real fun begins when a LogoMation program is used to animate objects on the screen. In
essence, animation is done by attaching a picture to a pen, and then moving the picture around, using
pen movement statements. The animation can be controlled in several ways, such as setting its
speed, or controlling whether it is done under or above the background. Sound can be played,
synchronously, asynchronously, and in a loop, in conjunction with the animation.

Pictutes can be created in via the Pl CTURE compound statement, ot they can be imported from
picture files. Sounds can be recorded in LogoMation (Mac version only), or can be imported from
sound files.

We end this quick tour by taking the blue square example one small step forward. First we create a
picture called “my blue”, and then we move it from (0,0) 100 pixels to the right. Note that when the
Pl CTURE statement is executed, no picture is drawn on the screen. The picture is drawn in the
computetr’s memory and is labeled “my blue”. The picture is then attached to the pen using the PEN
statement, and is then moved to the right using the familiar FORWARD statement. It’s kind of hard
to show the animation in a screen shot, so we’d suggest that that you type in the following program
and try it out yourself:

B3 Basic Animation. Lk

Ficture "y blue”

Fill 2,01
Fepeat 4
Forward 20
Fight Q0

pen picture="ry blue”
Faorward 100

1.7 What’s Next

Before reading on, you may like to play a bit with LogoMation. Run some sample programs and see
if you can guess what certain statements do. You might have fun writing your own programs, even
before continue reading this manual, by copying statements from some examples and modifying
them. Or you may prefer to read on before attempting to write your own code. Either way, have
fun — this is the goal of LogoMation!

LogoMation 2.0 Magic Square, Inc. Al Rights Reserved

