NEW C PRIMER PLUS SECOND EDITION

CHAPTER 5 NOTES

Copyright (C) 1993 by The Waite Group

Copyright (C) 1997 by Linda Buck

 1. Fundamental Operators

 Table of Operators

 Assignment Operator:

 = Assigns the value at its right to the variable at its left.

 Note that C allows multiple assignment.

 Arithmetic Operators:

 + Adds the value at its right to the value at its left.

 - Subtracts the value at its right from the value at its left.

 - As a unary operator, changes the sign of the value at its

 right.

 * Multiplies the value at its left by the value at its right.

 / Divides the value at its left by the value at its right.

 Answer is truncated if both operands are integers. Note that

 dividing by zero gives a run-time error.

 % Yields the remainder when the value at its left is divided by

 the value at its right (integers only).

 Note:

 C does not have an exponent operator.

 2. Example 5.1

 Program:

 /* assign1.c -- increments a variable */

 #include <stdio.h>

 int main(void)

 {

 int i = 3;

 printf("i = %d\n", i);

 i = i + 1;

 printf("i = %d\n", i);

 return 0;

 }

 Output:

 i = 3

 i = 4

 3. Example 5.2

 Problem:

 Switch the contents of two variables.

 Program #1:

 /* assign2.c -- tries to swap two variables */

 #include <stdio.h>

 int main(void)

 {

 int a = 3, b = 5;

 printf("a = %d, b = %d\n", a, b);

 a = b;

 b = a;

 printf("a = %d, b = %d\n", a, b);

 return 0;

 }

 Output #1:

 a = 3, b = 5

 a = 5, b = 5

 Program #2:

 /* assign3.c -- swaps two variables */

 #include <stdio.h>

 int main(void)

 {

 int a = 3, b = 5;

 int temp;

 printf("a = %d, b = %d\n", a, b);

 temp = a;

 a = b;

 b = temp;

 printf("a = %d, b = %d\n", a, b);

 return 0;

 }

 Output #2:

 a = 3, b = 5

 a = 5, b = 3

 4. Example 5.3

 Program:

 /* assign4.c -- multiple assignment */

 #include <stdio.h>

 int main(void)

 {

 int a, b;

 /* C allows multiple assignment */

 a = b = 0;

 printf("a = %d, b = %d\n", a, b);

 return 0;

 }

 Output:

 a = 0, b = 0

 5. Example 5.4

 Program:

 /* arith1.c -- arithmetic operators */

 #include <stdio.h>

 int main(void)

 {

 printf("7+4 = %d\n", 7+4);

 printf("7-4 = %d\n", 7-4);

 printf("7*4 = %d\n", 7*4);

 /* /: answer is truncated if both operands are integers */

 printf("7/4 = %d\n", 7/4);

 printf("7.0/4.0 = %.2lf\n", 7.0/4.0);

 /* %: remainder when integer at left is divided by integer at

 right */

 printf("7%%4 = %d\n", 7%4);

 return 0;

 }

 Output:

 7+4 = 11

 7-4 = 3

 7*4 = 28

 7/4 = 1

 7.0/4.0 = 1.75

 7%4 = 3

 6. Example 5.5

 Program:

 /* arith2.c -- arithmetic operators */

 #include <stdio.h>

 int main(void)

 {

 double a = 3.5, b = 0.0;

 /*** error ***/

 /* dividing by zero gives a run-time error */

 printf("a/b = %.2lf\n", a/b);

 return 0;

 }

 Output:

 run-time error M6103: MATH

 - floating-point error: divide by 0

 7. Precedence and the Order of Evaluation

 Table of Operators in Order of Decreasing Precedence

 --

 Operator Associativity

 (1) () left to right

 (2) +(unary) -(unary) right to left

 (3) * / % left to right

 (4) +(binary) -(binary) left to right

 (5) = right to left

 Note:

 (1) If two operators share an operand, precedence and associativity

 rules tell us the order of evaluation.

 (a) Evaluate the higher precedence operator first.

 (b) If the two operators have the same precedence, use the

 associativity rule.

 (2) If two operators do not share an operand, the order is left up

 to the compiler. This allows the compiler to optimize code.

 8. Example 5.6

 Program:

 /* prec1.c -- precedence */

 #include <stdio.h>

 int main(void)

 {

 double ans1, ans2;

 /* if two operators share an operand, precedence and associativity

 rules tell us the order of evaluation:

 (1) evaluate the higher precedence operator first

 (2) if the two operators have the same precedence, use the

 associativity rule */

 ans1 = 25.0 + 60.0 * 6.0 / 2.0;

 ans2 = (25.0 + 60.0 * 6.) / 2.0;

 printf("ans1 = %.2lf, ans2 = %.2lf\n", ans1, ans2);

 return 0;

 }

 Trace:

 1) ans1 = 25.0 + 60.0 * 6.0 / 2.0

 = 25.0 + 360.0 / 2.0

 = 25.0 + 180.0

 = 205.0

 2) ans2 = (25.0 + 60.0 * 6.0) / 2.0

 = (25.0 + 360.0) / 2.0

 = 385.0 / 2.0

 = 192.5

 Output:

 ans1 = 205.00, ans2 = 192.50

 9. Example 5.7

 Program:

 /* prec2.c -- precedence */

 #include <stdio.h>

 int main(void)

 {

 int ans;

 /* if two operators do not share an operand, the order is left up

 to the compiler */

 ans = 6 * 12 + 5 * 20;

 printf("ans = %d\n", ans);

 return 0;

 }

 Trace:

 1) Doing leftmost multiplication first:

 ans = 6 * 12 + 5 * 20

 = 72 + 5 * 20

 = 72 + 100

 = 172

 2) Doing rightmost multiplication first:

 ans = 6 * 12 + 5 * 20

 = 6 * 12 + 100

 = 72 + 100

 = 172

 Output:

 ans = 172

10. Type Conversions

 (1) Ranking of types from highest to lowest:

 long double

 double

 float

 unsigned long

 long

 unsigned int

 int

 char, short

 (2) In any operation involving two types, the lower ranking value

 is converted to the higher ranking type.

 (3) In an assignment statement, the final result of the calculations

 is converted to the type of variable that is being assigned a

 value.

 Note:

 Converting to a lower ranking type can lead to trouble because the

 lower ranking type may not be large enough to hold the result.

11. Example 5.8

 Program #1:

 /* type1.c -- type conversions */

 #include <stdio.h>

 int main(void)

 {

 /* in any operation involving two types, the lower ranking value

 is converted to the higher ranking type */

 printf("24/5/3 = %d\n", 24/5/3);

 printf("24/5/3. = %.2lf\n", 24/5/3.);

 printf("24/5./3 = %.2lf\n", 24/5./3);

 return 0;

 }

 Trace #1:

 1) 24/5/3 = 4/3 = 1

 2) 24/5/3. = 4/3. = 4./3. = 1.333333

 3) 24/5./3 = 24./5./3 = 4.8/3 = 4.8/3. = 1.6

 Output #1:

 24/5/3 = 1

 24/5/3. = 1.33

 24/5./3 = 1.60

 Program #2:

 /* type2.c -- type conversions */

 #include <stdio.h>

 int main(void)

 {

 int ans1;

 double ans2;

 /* in an assignment statement, the final result of the calculations

 is converted to the type of variable that is being assigned a

 value */

 ans1 = 2.6;

 printf("ans1 = %d\n", ans1);

 ans2 = 24/5;

 printf("ans2 = %.2lf\n", ans2);

 return 0;

 }

 Trace #2:

 1) ans1 = 2.6 = 2

 3) ans2 = 24/5 = 4 = 4.0

 Output #2:

 ans1 = 2

 ans2 = 4.00

12. Miscellaneous Operators

 Table of Operators

 Miscellaneous Operators:

 sizeof(type) or sizeof(variable): Yields the size, in bytes, of the

 operand to its right.

 (type) Cast operator: converts the following value to the type

 specified by the enclosed keyword(s).

 Table of Operators in Order of Decreasing Precedence

 --

 Operator Associativity

 (1) () left to right

 (2) +(unary) -(unary) sizeof (type)(all unary) right to left

 (3) * / % left to right

 (4) +(binary) -(binary) left to right

 (5) = right to left

13. Example 5.9

 Program:

 /* sizeof.c -- sizeof operator */

 #include <stdio.h>

 int main(void)

 {

 int i_num;

 double d_num;

 char str[11];

 /* sizeof: yields the size, in bytes, of the following operand */

 printf("sizeof(int) = %d, sizeof(i_num) = %d\n", sizeof(int),

 sizeof(i_num));

 printf("sizeof(double) = %d, sizeof(d_num) = %d\n",

 sizeof(double), sizeof(d_num));

 printf("sizeof(str) = %d\n", sizeof(str));

 return 0;

 }

 Output:

 sizeof(int) = 2, sizeof(i_num) = 2

 sizeof(double) = 8, sizeof(d_num) = 8

 sizeof(str) = 11

14. Example 5.10

 Program:

 /* cast.c -- type cast operator */

 #include <stdio.h>

 int main(void)

 {

 int a = 3, b = 5;

 double ans1, ans2;

 /* (type): converts the following value to the given type */

 ans1 = a/b;

 ans2 = (double)a/(double)b;

 printf("ans1 = %.2lf, ans2 = %.2lf\n", ans1, ans2);

 return 0;

 }

 Trace:

 1) ans1 = a/b = 3/5 = 0 = 0.0

 2) ans2 = (double)a/(double)b = (double)3/(double)5 = 3./5. = 0.6

 Output:

 ans1 = 0.00, ans2 = 0.60

15. Increment/Decrement Operators

 Table of Operators

 Increment/Decrement Operators:

 ++ Adds 1 to the value of the variable to its right (prefix

 mode) or adds 1 to the value of the variable to its left

 (postfix mode).

 (1) When ++a is part of an expression:

 step 1: increment a

 step 2: use the new value of a

 (2) When a++ is part of an expression:

 step 1: use the current value of a

 step 2: increment a

 -- Subtracts 1 from the value of the variable to its right

 (prefix mode) or subtracts 1 from the value of the variable

 to its left (postfix mode).

 (1) When --a is part of an expression:

 step 1: decrement a

 step 2: use the new value of a

 (2) When a-- is part of an expression:

 step 1: use the current value of a

 step 2: decrement a

 Table of Operators in Order of Decreasing Precedence

 --

 Operator Associativity

 (1) ++(postfix) --(postfix) () left to right

 (2) ++(prefix) --(prefix) +(unary) -(unary) right to left

 sizeof (type)(all unary)

 (3) * / % left to right

 (4) +(binary) -(binary) left to right

 (5) = right to left

 Increment and Decrement Operator Problems

 (1) Don't use increment or decrement operators on a variable that is

 part of more than one argument of a function. This can cause

 problems because the direction of argument evaluation is left up

 to the compiler.

 Note: Most systems evaluate arguments right-to-left.

 (2) Don't use increment or decrement operators on a variable that

 appears more than once in an expression. This can cause

 problems because:

 (a) Prefix

 The compiler can increment/decrement the variable at any

 point in an expression before it uses the new value.

 (b) Postfix

 The compiler can increment/decrement the variable at any

 point in an expression after it uses the current value.

16. Example 5.11

 Program #1:

 /* inc_dec1.c -- increment and decrement operators */

 #include <stdio.h>

 int main(void)

 {

 int n;

 n = 3;

 ++n; /* n = n+1; */

 printf("n = %d\n", n);

 n = 3;

 n++; /* n = n+1; */

 printf("n = %d\n", n);

 n = 3;

 --n; /* n = n-1; */

 printf("n = %d\n", n);

 n = 3;

 n--; /* n = n-1; */

 printf("n = %d\n", n);

 return 0;

 }

 Output #1:

 n = 4

 n = 4

 n = 2

 n = 2

 Program #2:

 /* inc_dec2.c -- increment and decrement operators */

 #include <stdio.h>

 int main(void)

 {

 int n, ans;

 n = 3;

 ans = ++n; /* n = n+1; ans = n; */

 printf("n = %d, ans = %d\n", n, ans);

 n = 3;

 ans = n++; /* ans = n; n = n+1; */

 printf("n = %d, ans = %d\n", n, ans);

 return 0;

 }

 Output #2:

 n = 4, ans = 4

 n = 4, ans = 3

 Program #3:

 /* inc_dec3.c -- increment and decrement operators */

 #include <stdio.h>

 int main(void)

 {

 int n, ans;

 n = 3;

 ans = 2*++n; /* n = n+1; ans = 2*n; */

 printf("n = %d, ans = %d\n", n, ans);

 n = 3;

 ans = 2*n++; /* ans = 2*n; n = n+1; */

 printf("n = %d, ans = %d\n", n, ans);

 return 0;

 }

 Output #3:

 n = 4, ans = 8

 n = 4, ans = 6

17. Example 5.12

 Program #1:

 /* inc_dec4.c -- increment/decrement operator problems */

 #include <stdio.h>

 int main(void)

 {

 int n = 3;

 /*** problem ***/

 /* don't use increment or decrement operators on a variable that

 is part of more than one argument of a function -- this can

 cause problems because the direction of argument evaluation is

 left up to the compiler */

 printf("n = %d, n+1 = %d\n", n, ++n);

 return 0;

 }

 Trace #1:

 1) Evaluating argument list left to right:

 n = 3

 ++n, n = n+1 = 3+1 = 4

 Output:

 n = 3, n+1 = 4

 2) Evaluating argument list right to left (most systems):

 ++n, n = n+1 = 3+1 = 4

 n = 4

 Output:

 n = 4, n+1 = 4

 Program #2:

 /* inc_dec5.c -- increment/decrement operator problems */

 #include <stdio.h>

 int main(void)

 {

 int n = 3, ans;

 /*** problem ***/

 /* don't use increment or decrement operators on a variable that

 appears more than once in an expression -- this can cause

 problems because:

 (1) prefix

 the compiler can increment/decrement the variable at any

 point in an expression before it uses the new value

 (2) postfix

 the compiler can increment/decrement the variable at any

 point in an expression after it uses the current value */

 ans = n + n++;

 printf("n = %d, ans = %d\n", n, ans);

 return 0;

 }

 Trace #2:

 1) Possibility #1:

 ans = n+n++

 ans = n+n, n = n+1

 ans = 3+3 = 6

 n = 3+1 = 4

 Output:

 n = 4, ans = 6

 2) Possiblity #2:

 ans = n+n++

 cur = n, n = n+1, ans = n+cur

 cur = n = 3

 n = n+1 = 3+1 = 4

 ans = n+cur = 4+3 = 7

 Output:

 n = 4, ans = 7

18. Assignment Operators

 Table of Operators

 Assignment Operators:

 Operator Meaning

 += Adds the righthand quantity to the lefthand variable and

 stores the result in the lefthand variable.

 -= Subtracts the righthand quantity from the lefthand

 variable and stores the result in the lefthand variable.

 *= Multiplies the lefthand variable by the righthand

 quantity and stores the result in the lefthand variable.

 /= Divides the lefthand variable by the righthand quantity

 and stores the result in the lefthand variable.

 %= Gives the remainder from dividing the lefthand variable

 by the righthand quantity and stores the result in the

 lefthand variable.

 General Form:

 variable operator= expression

 General Meaning:

 variable = variable operator (expression)

 where variable is computed only once.

 Table of Operators in Order of Decreasing Precedence

 --

 Operator Associativity

 (1) ++(postfix) --(postfix) () left to right

 (2) ++(prefix) --(prefix) +(unary) -(unary) right to left

 sizeof (type)(all unary)

 (3) * / % left to right

 (4) +(binary) -(binary) left to right

 (5) = *= /= %= += -= right to left

19. Example 5.13

 Program:

 /* assign5.c -- assignment operators */

 #include <stdio.h>

 int main(void)

 {

 int n, ans;

 n = 3;

 ans = 7;

 ans += n; /* ans = ans + (n); */

 printf("n = %d, ans = %d\n", n, ans);

 n = 3;

 ans = 7;

 ans -= n; /* ans = ans - (n); */

 printf("n = %d, ans = %d\n", n, ans);

 n = 3;

 ans = 7;

 ans *= n; /* ans = ans * (n); */

 printf("n = %d, ans = %d\n", n, ans);

 n = 3;

 ans = 7;

 ans /= n; /* ans = ans / (n); */

 printf("n = %d, ans = %d\n", n, ans);

 n = 3;

 ans = 7;

 ans %= n; /* ans = ans % (n); */

 printf("n = %d, ans = %d\n", n, ans);

 n = 3;

 ans = 7;

 ans *= n + 1; /* ans = ans * (n+1); */

 printf("n = %d, ans = %d\n", n, ans);

 return 0;

 }

 Output:

 n = 3, ans = 10

 n = 3, ans = 4

 n = 3, ans = 21

 n = 3, ans = 2

 n = 3, ans = 1

 n = 3, ans = 28

20. Expressions and Statements

 (1) An expression is a combination of operators and operands.

 (2) Every C expression has a value.

 (3) C allows you to embed an assignment in an expression.

 The value of the assignment is the value of its right-hand

 expression.

 (4) A statement is a command to the computer.

 (5) Simple statements terminate in a semicolon.

 (6) Compound statements consist of one or more statements enclosed

 in braces.

 Embedded Assignment Problems:

 (1) Don't use embedded assignment on a variable that is part of more

 than one argument of a function. This can cause problems

 because the direction of argument evaluation is left up to the

 compiler.

 (2) Don't use embedded assignment on a variable that appears more

 than once in an expression. This can cause problems when the

 order of expression evaluation is left up to the compiler.

21. Example 5.14

 Program:

 /* embed.c -- embedded assignment */

 #include <stdio.h>

 int main(void)

 {

 int ans1, ans2;

 /* C allows you to embed an assignment in an expression -- the

 value of the assignment is the value of its right-hand

 expression */

 ans2 = 3 + (ans1 = 5+7);

 printf("ans1 = %d, ans2 = %d\n", ans1, ans2);

 return 0;

 }

 Output:

 ans1 = 12, ans2 = 15

22. Relational Operators

 Table of Operators

 Relational Operators:

 Operator Meaning

 < is less than

 <= is less than or equal to

 == is equal to

 >= is greater than or equal to

 > is greater than

 != is not equal to

 True and False:

 (1) In C, a true expression has the value 1; a false expression has

 the value 0.

 (2) All nonzero values are regarded as true, and only 0 is

 recognized as false.

 Note:

 (1) Be sure to use = for assignment and == for equality. Some care

 is needed, for a compiler will let you use the wrong form in

 many cases, yielding results other than what you expect.

 (2) Relational operators can be used with characters. The machine

 code (which we have been assuming is ASCII) is used for the

 comparison. However, you can't use relational operators to

 compare strings.

 (3) Relational operators can be used with floating-point numbers.

 However, you should limit yourself to using only < and > in

 floating-point comparisons because roundoff errors can prevent

 two numbers from being equal even though logically they should

 be.

 Table of Operators in Order of Decreasing Precedence

 --

 Operator Associativity

 (1) ++(postfix) --(postfix) () left to right

 (2) ++(prefix) --(prefix) +(unary) -(unary) right to left

 sizeof (type)(all unary)

 (3) * / % left to right

 (4) +(binary) -(binary) left to right

 (5) < > <= >= left to right

 (6) == != left to right

 (7) = *= /= %= += -= right to left

23. Example 5.15

 Program:

 /* relat1.c -- relational operators */

 #include <stdio.h>

 int main(void)

 {

 /* a true expression has the value 1; a false expression has

 the value 0 */

 printf("10>2 is %d\n", 10>2);

 printf("10<2 is %d\n", 10<2);

 return 0;

 }

 Output:

 10>2 is 1

 10<2 is 0

24. Example 5.16

 Program:

 /* relat2.c -- relational operators */

 #include <stdio.h>

 int main(void)

 {

 int a = 3, b = 5;

 /*** error ***/

 /* uses equality instead of assignment */

 a == b;

 printf("a = %d, b = %d\n", a, b);

 return 0;

 }

 Trace:

 (a==b) = (3==5) = 0 (false)

 Output:

 a = 3, b = 5

25. Example 5.17

 Program #1:

 /* relat3.c -- relational operators */

 #include <stdio.h>

 int main(void)

 {

 char ch = 'D';

 /* relational operators can be used with characters -- the

 machine code (which we have been assuming is ASCII) is used for

 the comparison */

 printf("ch>='A' is %d\n", ch>='A');

 printf("ch<='Z' is %d\n", ch<='Z');

 printf("ch>='a' is %d\n", ch>='a');

 printf("ch<='z' is %d\n", ch<='z');

 return 0;

 }

 Trace #1:

 1) ch>='A' is 'D'>='A' is 68>=65 is 1

 2) ch<='Z' is 'D'<='Z' is 68<=90 is 1

 3) ch>='a' is 'D'>='a' is 68>=97 is 0

 4) ch<='z' is 'D'<='a' is 68<=122 is 1

 Output #1:

 ch>='A' is 1

 ch<='Z' is 1

 ch>='a' is 0

 ch<='z' is 1

 Program #2:

 /* relat4.c -- relational operators */

 #include <stdio.h>

 int main(void)

 {

 char str1[4] = "abc";

 char str2[4] = "abc";

 /*** error ***/

 /* you can't use relational operators to compare strings */

 printf("str1==str2 is %d\n", str1==str2);

 return 0;

 }

 Output #2:

 str1==str2 is 0

 Program #3:

 /* relat5.c -- relational operators */

 #include <stdio.h>

 int main(void)

 {

 double sum;

 /*** problem ***/

 /* relational operators can be used with floating-point

 numbers -- you should limit yourself to using only < and

 > in floating-point comparisons because roundoff errors can

 prevent two numbers from being equal even though logically they

 should be */

 sum = 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;

 printf("sum==1.0 is %d\n", sum==1.0);

 return 0;

 }

 Output #3:

 sum==1.0 is 0

26. Example 5.18

 Program:

 /* relat6.c -- relational operators */

 #include <stdio.h>

 int main(void)

 {

 int ans;

 /* arithmetic operators have higher precedence than relational

 operators */

 printf("2+8>2*4 is %d\n", 2+8>2*4);

 /* be careful -- doesn't do what you think */

 /* relational operators associate left-to-right */

 printf("7>5>3 is %d\n", 7>5>3);

 /* relational operators have higher precedence than assignment

 operators */

 printf("ans=5!=6 is %d\n", ans=5!=6);

 printf("ans = %d\n", ans);

 printf("(ans=5)!=6 is %d\n", (ans=5)!=6);

 printf("ans = %d\n", ans);

 return 0;

 }

 Trace:

 1) 2+8>2*4 is 10>8 is 1

 2) 7>5>3 is 1>3 is 0

 3) ans=5!=6

 5!=6 is 1, ans = 1

 4) (ans=5)!=6

 ans = 5, 5!=6 is 1

 Output:

 2+8>2*4 is 1

 7>5>3 is 0

 ans=5!=6 is 1

 ans = 1

 (ans=5)!=6 is 1

 ans = 5

27. Logical Operators

 Table of Operators

 Logical Operators:

 (1) AND (&&)

 exp1 exp2 exp1 && exp2

 ----- ----- ------------

 false false false

 false true false

 true false false

 true true true

 (2) OR (||)

 exp1 exp2 exp1 || exp2

 ----- ----- ------------

 false false false

 false true true

 true false true

 true true true

 (3) NOT (!)

 exp !exp

 ----- -----

 false true

 true false

 Table of Operators in Order of Decreasing Precedence

 --

 Operator Associativity

 (1) ++(postfix) --(postfix) () left to right

 (2) ++(prefix) --(prefix) +(unary) -(unary) ! right to left

 sizeof (type)(all unary)

 (3) * / % left to right

 (4) +(binary) -(binary) left to right

 (5) < > <= >= left to right

 (6) == != left to right

 (7) && left to right

 (8) || left to right

 (9) = *= /= %= += -= right to left

 Operators Associativity

 () left to right

 +(unary) -(unary) ! ++ -- sizeof (type) right to left

 * / % left to right

 + - left to right

 < > <= >= left to right

 == != left to right

 && left to right

 || left to right

 = *= /= %= += -= right to left

 , left to right

 Order of Evaluation:

 (1) Logical expressions are evaluated from left to right whether

 they share an operand or not.

 (2) Evaluation stops as soon as something is discovered that

 renders the expression true or false.

 (3) With the && and || operators, all side effects take place

 before a program moves from one operand to the next.

28. Example 5.19

 Program:

 /* logical1.c -- logical operators */

 #include <stdio.h>

 int main(void)

 {

 /* relational operators have higher precedence than logical

 operators */

 printf("5>2&&4>7 is %d\n", 5>2&&4>7);

 printf("4>7||5>2 is %d\n", 4>7||5>2);

 /* ! has higher precedence than relational operators */

 printf("!4>7 is %d\n", !4>7);

 printf("!(4>7) is %d\n", !(4>7));

 /* (1) relational operators have higher precedence than logical

 operators

 (2) && has higher precedence than || */

 printf("4>7||5>2&&6>3 is %d\n", 4>7||5>2&&6>3);

 return 0;

 }

 Trace:

 1) 5>2&&4>7 is 1&&4>7 is 1&&0 is 0

 2) 4>7||5>2 is 0||5>2 is 0||1 is 1

 3) !4>7 = 0>7 = 0

 4) !(4>7) is !0 is 1

 5) 4>7||5>2&&6>3 is 0||5>2&&6>3 is 0||1&&6>3 is 0||1&&1 is 0||1 is 1

 Output:

 5>2&&4>7 is 0

 4>7||5>2 is 1

 !4>7 is 0

 !(4>7) is 1

 4>7||5>2&&6>3 is 1

29. Example 5.20

 Program:

 /* logical2.c -- logical operators */

 #include <stdio.h>

 int main(void)

 {

 int num, ans;

 /* order of evaluation rules:

 (1) logical expressions are evaluated from left to right

 whether they share an operand or not

 (2) evaluation stops as soon as something is discovered that

 renders the expression true or false */

 /* order of evaluation rules guarantee that if scanf() fails to

 assign a value to num, the computer won't try to use num */

 printf("Please enter an integer.\n");

 ans = (scanf("%d", &num) == 1 && num != 0);

 printf("ans = %d\n", ans);

 /* order of evaluation rules guarantee that if num is zero, the

 computer won't try to divide by zero which gives a run-time

 error */

 num = 0;

 ans = (num != 0 && 12/num == 2);

 printf("num = %d, ans = %d\n", num, ans);

 return 0;

 }

 Screen:

 Output: Please enter an integer.

 Input: q

 Output: ans = 0

 Output: num = 0, ans = 0

�

�PAGE �

�PAGE �17�

