SOMobjects Developer’s Toolkit
Programmer’s Reference, Volume I: SOM and DSOM
SOMobijects Version 3.0

Note: Before using this information and the product it supports, be sure to read the
general information under Notices on page iii.

Second Edition (December 1996)

This edition of Programmer’s Reference, Volume |I: SOM and DSOM applies to SOMobjects Developer’s
Toolkit for SOM Version 3.0 and to all subsequent releases of the product until otherwise indicated in new
releases or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: IBM CORPORATION PROVIDES THIS MANUAL “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions;
therefore, this statement may not apply to you.

IBM Corporation does not warrant that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements nor that the
publication or the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes are incorporated in new editions of the publication. IBM
Corporation might make improvements and/or changes in the product(s) and/or the program(s) described in
this publication at any time.

This publication might contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM Corporation intends to announce such IBM products, programming, or
services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only the IBM licensed program. You can use any functionally equivalent
program instead.

To initiate changes to this publication, submit a problem report from the technical support web page at URL:
http://www.austin.ibm.com/somservice/supform.html. Otherwise, address comments to IBM Corporation,
Internal Zip 1002, 11400 Burnet Road, Austin, Texas 78758-3493. IBM Corporation may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing representative.

© Copyright IBM Corporation 1996. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Notices

IBM Corporation may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENCE: This publication contains printed sample application programs in source language,
which illustrate AIX, OS/2, or Windows programming techniques. You may copy and distribute these
sample programs in any form without payment to IBM Corporation, for the purposes of developing, using,
marketing, or distributing application programs conforming to the AIX, OS/2, or Windows application
programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: “© (your company name) (current year), All Rights Reserved.”
However, the following copyright notice protects this documentation under the Copyright Laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

References in this publication to IBM products, program, or services do not imply that IBM Corporation
intends to make these available in all countries in which it operates.

Any reference to IBM licensed programs, products, or services is not intended to state or imply that only
IBM licensed programs, products, or services can be used. Any functionally-equivalent product, program or
service that does not infringe upon any of the IBM Corporation intellectual property rights may be used
instead of the IBM Corporation product, program, or service. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM Corporation, are the user’s
responsibility.

IBM Corporation may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries in writing to the:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, New York 10594, USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department 931S

11400 Burnet Road
Austin, Texas 78758 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Asia-Pacific users can inquire, in writing, to the:

IBM Director of Intellectual Property and Licensing

IBM World Trade Asia Corporation,

2-31 Roppongi 3-chome,

Minato-ku, Tokyo 106, Japan
This publication contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Notices il

Trademarks and Acknowledgements

AlX is a trademark of International Business Machines Corporation.
FrameViewer is a trademark of Frame Technology.

IBM is a registered trademark of International Business Machines Corporation.
0S/2 is a trademark of International Business Machines Corporation.

SOM is a trademark of International Business Machines Corporation.
SOMobject is a trademark of International Business Machines Corporation.
Windows and Windows NT are trademarks of Microsoft Corporation.

iV Trademarks and Acknowledgements

Table of Contents

Chapter 1. SOM Kernelo e 1
SOMAPPIY FUNCHION . . . oo e 2
somBeginPersistentlds FUNCLION. 4
SOMBUIIACIAss FUNCHION e e e e e 5
SOMCheckld FUNCLIONo 6
soMCIlassResOIVe FUNCHION. e e e 7
somComparelds FUNCLION 9
somDataResoIve FUNCLION e e e 10
somDataResolveChK FUNCHLION e 11
somENdPersistentlds FUNCLION e 12
somEnvironmentNew FUNCHION 13
SOMEXceptionFree FUNCHION o e e 14
SomEXceptionld FUNCHION 15
somEXxceptionValue FUNCLION e 16
somGetGlobalEnvironment FUNCLION e 17
somldFromString FUNCHION e 18
SOMISOD) FUNCHION 19
SOMLPHNtf FUNCHON 20
somMainProgram FUNCHON e e e e e 21
somParentNUMRESOIVE FUNCLION e 22
somParentResoIve FUNCHON e e 24
somPrefixLevel FUNCHION. 25
SOMPHINt FUNCHON e 26
somRegisterld FUNCHION e 27
SOMRESOIVE FUNCHION e e e e e e 28
somResolveByName FUNCLON e e 30
SOMSeEtEXCeption FUNCHON e e 32
somSetExpectedlds FUNCHLONo 34
somSetOutChar FUNCHION e e 35
somStringFromid FUNCLION e 36
somTotalReglds FUNCHON e e 37
somUniqueKey FUNCLION 38
somvalistGetTarget FUNCLION e 39
somvalistSetTarget FUNCLION. e e 40
somVaBuf_add FUNCHION. 41
somVaBuf_create FUNCLION. e 42
somVaBuf_destroy FUNCLON e e 44
somVaBuf_get valist FUNCLION 45
SOMVPrntf FUNCHONo e 46
SOMCaAllOC FUNCHION e e e e e e e 47
SOMClassInitFuncName FUNCtion e e e 48
SOMDeleteModule FUNCLION e e e e e e 49
SOMEITOr FUNCHON e e e e e e e e e e 50
SOMFree FUNCHON e e e e e e e e e e 51
SOMInitModule FUNCLION. e e e e e e 52
SOMLoadModule FUNCHION e e e 53
SOMMaIlOC FUNCHION. e e e e e e e e e e 54
SOMOuUtCharRouting FUNCHION e e e et 55
SOMReaAllOC FUNCHION e e e e e e e e e e 56
SOM _ASSEIt MaACIO. .« . vttt et e e e 57

SOM_CreateLocalEnvironment MacCrot e e 58

SOM_DestroyLocalEnNvironment Macro e e et 59

SOM _EITOr MacCrO . . .ot e 60
SOM_EXPECEMACIO . . o o o e e e e 61
SOM_GetClass MaCr0.ttt et 62
SOM_INIENVIFONMENE MACIO . . . oottt e e e e e e e e 63
SOM_NOTIACE MaACIO . . . o it e e e e e e e e 64
SOM_ParentNUMRESOIVE MACIO e e e e e 65
SOM _RESOIVE MaCI0 . .\ v 66
SOM_Res0IVENOCHhECK MaACIOot e e e e e i 67
SOM_SubstituteClassS MaCrOo ottt e e e 68
SOM TSt IMaACIO . . .ottt e e e e 69
SOM_TESIC MaACIO . . . vttt e e e e e e e 70
SOM_UnINtENvironment Macro e e e et 71
SOM_WarnMSg MaCrOot e e e 72
SOMCIASS Class . . . ottt e e 73
somAddDynamicMethod Method e 77
somAllocate Method e e 79
somCheckVersion Method e 80
somClassReady Method e 82
somDeallocate Method e 83
somDefinedMethod Method e 84
somDescendedFrom Method e e 85
somFindMethod(OK) Methods. 86
somFindSMethod(OK) Method 89
somGetinstancePartSize Method e 90
somGetinstanceSize Method e 91
somGetinstanceToken Method e 92
somGetMemberToken Method e 93
somGetMethodData Method e 94
somGetMethodDescriptor Method. 95
somGetMethodIindex Method e 96
somGetMethodToken Method. e e e 97
somGetName Method e 98
somGetNthMethodData Method e 100
somGetNthMethodInfo Method e 101
somGetNumMethods Method e e 102
somGetNumsStaticMethods Method. e 103
somGetParents Method. e e e 104
somGetVersionNumbers Method e 105
somLookupMethod Method e 106
somNew(NoInit) Methods 108
somRenew(NolnitNoZero) Methods 109
somSupportsMethod Method 111
SOMCIASSMOr Classot e 112
somClassFromld Method e 114
somFIiNdClass Method. e e 115
somFindClsinFile Method e 117
somGetlnitFunction Method e e 119
somGetRelatedClasses Method e 120
sombLoadClassFile Method e 122
sombLocateClassFile Method e 124
somMergelnto Method. 125
somRegisterClass Method e 127
somRegisterClassLibrary Method 128

Vi

Programmer’s Reference for SOM and DSOM

somSubstituteClass Method e 129

somUnloadClassFile Method 131
somunregisterClass Method. e 132
SOMODECt Class . .ottt e 134
somMCastOb] Method 136
somDefaultAssign Method e 137
somDefaultConstAssign Method. e 139
somDefaultConstCopylnit Method. 140
somDefaultCopylnit Method 142
somDefaultinit Method 144
somDestruct Method 146
somClassDispatch Method 148
somDumpsSelf Method. 151
somDumpsSelfint Method. 152
SomMEree Method o 154
somGetClass Method 155
somGetClassFromMToken Method 156
somGetSize Method 157
SOMISA Methodo 158
somisinstanceOf Method 160
somPrintSelf Method. 162
somResetOb] Method 163
SOMReSPONdSTO Method 164
Chapter 2. DSOM Framework e 165
Notes About DSOM and CORBA e 166
Method Naming CONVENtIONS e e e e e e 166
get_next_response FUNCLION. e e 167
ORBIfree FUNCLION e e e e e 168
send_multiple_requests FUNCLION 170
somdCreate FUNCHION e e e 172
somdCreateDynProxyClass FUNCLION e 173
somdDaemonReady FUNCLION. e e e e 174
somdExceptionFree FUNCHONo 175
SOMD_FlushinterfaceCache Function i e 177
SOMD _FreeType FUNCLIONo o e e e e e e e e e 178
SOMD _INit FUNCHION e e e e e e e e 180
SOMD_NOORBIfree FUNCHON e e e e e et e 181
SOMD_QueryORBfree FUNCHION. e e 182
SOMD _UnNinit FUNCHON e e e e e e e e e e 183
SOMD_YesORBfree FUNCLON. e e e e e 184
Context_delete MacCrO. e 185
Request_delete MacCroo 186
BOA ClaSS ..ottt e 188
change_implementation Method. e 189
Ccreate Methodo 190
deactivate_impl Method e 192
deactivate_obj Method 193
diSpPose Method. e 194
get id Method e e 195
get_principal Method. e 197
impl_is_ready Method 199
obj_is ready Method. 201
set_exception Method 202

Vii

Context Class o e 203

create_child Method e 204
delete_values Method e 205
destroy Method e e 206
get values Method e 207
set_one value Method 209
set_values Method 210
ImplementationDef Class 212
IMPIREPOSITOrY Classo 215
add_class_to_all Method. 217
add_class_to_impldef Method. e 218
add_class_with_properties Method. 219
add_impldef Method e 221
delete_impldef Method e 222
find_all_aliases Method. 223
find_all_impldefs Method. 224
find_classes_by impldef Method 225
find_impldef Method 226
find_impldef_by alias Method. 227
find_impldef_by class Method 228
remove_class_from_all Method. 229
remove_class_from_impldef Method. 230
update_impldef Method. 231
NVLISt Classo 232
add_item Method. e 233
free Method 235
free_memory Method 236
get_count Method e 238
get_item Method 239
set item Method 241
ObJeCtMOr Class . ..ot e 243
ORB ClaSS . . ottt 244
create list Method e 245
create_operation_list Method e 246
get_default_context Method 247
list_initial_services Method 248
object_to_string Method e 249
resolve_initial_references Method. 251
String_to_object Method 253
Principal Class 254
ReqUESE Class . . . o e 255
add_arg Method e 256
destroy Method e 258
get_response Method e 260
INVOKE Method 262
Send Method 264
SOMDCHENtPIOXY Class e 266
somdProxyGetClass Method. e 269
somdProxyGetClassName Method e 270
somdReleaseResources Method e 271
somdTargetFree Method. 272
somdTargetGetClass Method 273
somdTargetGetClassName Method e e 274
SOMDODECE ClasS . . o vttt e 275

Viii Programmer’s Reference for SOM and DSOM

create_request Method e 276

create_request_args Method e 278
duplicate Method. e 280
get_implementation Method e 281
get_interface Method e 282
IS _NIEMethod 283
IS_Proxy Method 284
iIS_SOM_ref Method 285
release Method 286
SOMDODJECIMr Class 287
SOMDSEIVEN ClaSS 288
somdCreateFactory Method e 289
somdDispatchMethod Method. 291
somdObjReferencesCached Method e 293
somdRefFromSOMObj] Method. e 294
somdSOMODbjFromRef Method. e 296
SOMDSEIVErMOr Class . ..t 298
somdListServer Method 299
somdRestartServer Method 300
somdShutdownServer Method 301
somdStartServer Method 302
SOMOA ClaSS .« vt vttt e 303
activate_impl_failed Method e 305
create_ SOM _ref Method. 306
execute_next_request Method e 307
execute_request_loop Method e 308
get SOM_object Method 309
Chapter 3. Interface Repository Framework Classes 311
AttributeDef Classo 312
ConstantDef Class 313
Contained Classo 314
describe Method e 316
WIthin Method e 318
Container Class 320
contents Method e 321
describe_contents Method 323
lookup_name Method 325
EXCeptioNDef Class i e 327
InterfaceDef Class o 328
describe_interface Method 330
ModuleDef Class 331
OperationNDef Class 332
ParameterDef Class 334
ReEPOSITOrY Class 335
lookup_id Method 336
lookup_modifier Method 338
release_cache Method 340
TypeDEf Class . ..o 341
TypeCodeNew FUNCLION e 342
TypeCode_alignment FUNCLION e e 345
TypeCode_copy FUNCHION 346
TypeCode_equal FUNCLION e e 347
TypeCode_free FUNCLION. 348

TypeCode_Kind FUNCHON. e 349

TypeCode_param_count FUNCLION e e e e 352
TypeCode_parameter FUNCHION. e e e 353
TypeCode_print FUNCHLION e e e 355
TypeCode_setAlignment FUNCION e 356
TypeCode_Size FUNCHION. e e e 357
Chapter 4. Metaclass Framework Classes e 359
SOMMBeforeAfter Metaclass 360
sommAfterMethod Method e 361
sommBeforeMethod Method 363
SOMMPIOXYFOr Metaclasso e e e 365
sommMakeProxyClass Method. 366
SOMMPIoxXyFOrObject Classo e e e e e e 368
sommProxyDispatch Method. 371
SOMMSInglelnstance Metaclass e e e 373
sommGetSinglelnstance Method 374
SOMMTraced Metaclass e 375
IO X . oo 377

X Programmer’s Reference for SOM and DSOM

Chapter 1. SOM Kernel

SOMObject

= A
N 77N

SOMClass SOMClassMgr

=/ N oo

rmetaclass
@ claeg

— inherits from

Figure 1. SOM Kernel Class Organization

Chapter 1. SOM Kernel 1

somApply Function

somApply Function

C Syntax

Description

Parameters

Invokes an apply stub. Apply stubs are never invoked directly by SOM users. The
somApply function must be used instead.

boolean somApply (
SOMObject objPtr,
somToken *retVal,
somMethodDataPtr mdPtr,
va_list args);

somApply provides a single uniform interface through which you can call any method
procedure. The interface is based on the caller passing: the object to which the method
procedure is to be applied; a return address for the method result; a somMethodDataPtr
indicating the desired method procedure; and an ANSI standard va_list structure
containing the method procedure arguments. Different method procedures expect different
argument types and return different result types, so the purpose of somApply is to select
an apply stub appropriate for the specific method involved, according to the supplied
method data, and then call this apply stub. The apply stub removes the arguments from the
va_list, calls the method procedure with these arguments, accepts the returned result, and
then copies this result to the location pointed to by retVal.

The method procedure used by the apply stub is determined by the content of the
somMethodData structure pointed to by mdPtr. The class methods somGetMethodData
and somGetNthMethodData are used to load a somMethodData structure. These
methods resolve static method procedures based on the receiving class’s instance method
table.

The SOM API requires that information necessary for selecting an apply stub be provided
when a new method is registered with its introducing class (via somAddStaticMethod or
somAddDynamicMethod). This is required because SOM itself needs apply stubs when
dispatch method resolution is used. C and C++ implementation bindings for SOM classes
support this requirement, but SOM does not terminate execution if this requirement is not
met by a class implementor. There may be methods for which somApply cannot select an
appropriate apply stub.

objPtr
A pointer to the object on which the method procedure is to be invoked.

retval
A pointer to the memory region into which the result returned by the method procedure
is to be copied. This pointer cannot be null (even in the case of method procedures
whose returned result is void).

mdPtr
A pointer to the somMethodData structure that describes the method whose
procedure is to be executed by the apply stub.

2 Programmer’s Reference for SOM and DSOM

args
A va_list that contains the arguments for the method procedure. The first entry of the
va_list must be objPtr. Furthermore, all arguments on the va_list must appear in
widened form, as defined by ANSI C. For example, a float must appear as a double,
and a char and a short must appear as the int data type. The SOM API for va_list
construction ensures this.

Return Value

somApply Function

The somApply function returns 1 (TRUE) if it executes successfully, or 0 (FALSE)

otherwise.

C++ Example

#include <somcls.h>
#include <string.h>
#include <stdarg.h>
main ()

{

}

Related Information

somVaBuf vb;

va_list args;

string result;

SOMClas *scObj;

somMethodData md

somEnvironmentNew () ; /* Init environment */
scObj = _SOMClass; /* The SOMClass object */
scObj->somGetMethodData (somIdFromString (” somGetName”), &md) ;

vb = (somVaBuf)somVaBuf create (NULL, O0);

somVaBuf add(vb, (char *)&scObj, tk ulong) ;
somVaBuf get valist (vb, &args);

somApply (scObj, (somToken *)&result, &md, args);

SOM_Assert (!strcmp (result, ”SOMClass”), SOM Fatal) ;
/* result is ”SOMClass” */

somGetMethodData Method
somGetNthMethodData Method
somAddDynamicMethod Method (somcls.idl)
SOMObject (somobj.idl)

somMethodData (somapi.h)

somToken (sombtype.h)

somMethodPtr (sombtype.h)

va_list (stdarg.h)

Chapter 1. SOM Kernel 3

somBeginPersistentlds Function

somBeginPersistentlds Function

Tells SOM to begin a “persistent ID interval.”
C Syntax
void somBeginPersistentlds ();

Description

The somBeginPersistentlds function informs the SOM ID manager that strings for any
new SOM IDs that are registered will not be freed or modified. This allows the ID manager
to use a pointer to the string in the unregistered ID as the master copy of the ID’s string,
rather than making a copy of the string. This makes ID handling more efficient.

C Examples

#include <som.h>

/* This is the way to create somlIds efficiently */

static string idlName =
static somId somId idl =

/*

"whoami” ;
&idlName;

somId idl will be registered the first time it is usde in an

operation that takes a somId,
using somCheckId.

*/
main ()
somId idl, id2;
string id2Name = “whereami”;

somEnvironmentNew () ;
somBeginPersistentIds() ;

idl = somCheckId(somId idl) ;
somEndPersistentIds () ;

id2 =
SOM_Assert (!strcmp (”whoami”,

SOM_Assert (!strcmp (”“whereami”,

idlName = ”it does matter”;

id2Name = ”it doesn’t matter”;

SOM_Assert (strcmp (”whoami”,

SOM_Assert (!strcmp (”"whereami”,

}
Related Information

somCheckld Function
somComparelds Function
somEndPersistentlds Function
somldFromString Function
somRegisterld Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function

somUniqueKey Function

4 Programmer’s Reference for SOM and DSOM

somIdFromString (id2Name) ;

somStringFromId(idl)),

or it can be explicitely registered

/* registers id as persistent */

/* registers the id */

somStringFromId(idl)), SOM Fatal);
somStringFromId(id2)), SOM Fatal) ;
/* is persistent */

/* 1s not persistent */
SOM_Fatal) ;

/* The idl string has changed */
somStringFromId(id2)), SOM Fatal) ;
/* the id2 string has not */

somBuildClass Function

somBuildClass Function

C Syntax

Description

Parameters

Example

Automates the process of building a new SOM class object.

SOMClass somBuildClass (
unsigned long inheritVars,
somStaticClassInfoPtr sciPtr,
long majorVersion,
long minorVersion);

The somBuildClass function accepts declarative information defining a new class that is
be built, and performs the activities required to build and register a correctly functioning
class object. The C and C++ implementation bindings use this function to create class
objects.

inheritVars
A bit mask that determines inheritance from parent classes. A mask containing all ones
is an appropriate default.

sciPtr
A pointer to a structure holding static class information.

majorVersion
The major version number for the class.

minorVersion
The minor version number for the class.

See any .ih or .xih implementation binding file for details on construction of the required
data structures.

Return Value

The somBuildClass function returns a pointer to a class object.

Related Information

somStaticClassInfo (somapi.h)

Chapter 1. SOM Kernel 5

somCheckld Function

somCheckld Function

Registers a SOM ID.
C Syntax
somld somCheckld (somld id);
Description

The somCheckld function registers a SOM ID and converts it into an internal
representation. The input SOM ID is returned. If the ID is already registered, this function
has no effect.

Parameters

id
The somld to be registered.

Return Value

The registered somid.
Example

See somBeginPersistentlds Function on page 4.
Related Information

somBeginPersistentlds Function
somComparelds Function
somEndPersistentlds Function
somldFromString Function
somRegisterld Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function
somUniqueKey Function 0
somld (sombtype.h)

6 Programmer’s Reference for SOM and DSOM

somClassResolve Function

somClassResolve Function

C Syntax

Description

Parameters

Obtains a pointer to the procedure that implements a static method for instances of a
particular SOM class.

somMethodPtr somClassResolve (SOMClass clsPtr, somMToken mToken);

The somClassResolve function is used to obtain a pointer to the procedure that
implements the specified

method for instances of the specified SOM class. The returned procedure pointer can then
be used to invoke the method. somClassResolve is used to support casted method calls,
in which a method is resolved with respect to a specified class rather than the class of
which an object is a direct instance. The somClassResolve function can only be used to
obtain a method procedure for a static method (a method declared in an IDL specification
for a class); dynamic methods do not have method tokens.

The SOM language usage bindings for C and C++ do not support casted method calls, so
this function must be used directly to achieve this functionality. Whenever using SOM
method procedure pointers, it is necessary to indicate the use of system linkage to the
compiler. The way this is done depends on the compiler and the system being used.
However, C and C++ usage bindings provide an appropriate typedef for this purpose. The
name of the typedef is based on the name of the class that introduces the method, as
illustrated in the example below.

clsPtr
A pointer to the class object whose instance method procedure is required.

mToken
The method token for the method to be resolved. The SOM API requires that if the
class xXyz introduces the static method foo, then the method token for foo is found in
the class data structure for XYz (called XYZClassData) in the structure member named
foo (that is, at XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method for the
specified class of SOM object.

C++ Example

// SOM IDL for class A and class B
#include <somobj.idl>
module scrExample {
interface A : SOMObject { void foo(); implementation {
callstyle=oidl; }; };
interface B : A { implementation { foo: override; }; };
Vi
// Example C++ program to implement and test module scrExample
#define SOM_Module_screxample_Source
#include <scrExample.xih>
#include <stdio.h>

Chapter 1. SOM Kernel 7

somClassResolve Function

SOM_Scope void SOMLINK scrExample Afoo (scrExample A *somSelf) ;

{ printf(”1\n”); }

SOM_Scope void SOMLINK scrExample_ Bfoo (scrExample B *somSelf) ;
{ printf(72\n”); }

main ()

{
scrExample B *objPtr = new scrExample B;
// This prints 2
objPtr->foo () ;
// This prints 1
((somTD_scrExample A foo) /* Necessary method procedure cast */
somClassResolve (
_scrExample A, // the A class object
scrExample AClassData.foo) // foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */
// This prints 2
((somTD_scrExample A foo) /* Necessary method procedure cast */
somClassResolve (
_scrExample B, // the B class object
scrExample AClassData.foo) // foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

}
Related Information

somParentResolve Function
somParentNumResolve Function
somResolve Function
somResolveByName Function
somClassDispatch Method
somFindMethod(Ok) Methods
somGetMethodToken Method
SOM_Resolve Macros
SOM_ResolveNoCheck Macro
somMethodPtr (sombtype.h)
SOMClass (somcls.idl)
somMToken (somapi.h)

8 Programmer’s Reference for SOM and DSOM

somComparelds Function

somComparelds Function

Determines whether two SOM IDs represent the same string.
C Syntax
int somComparelds (somld id1, somld id2);
Description

The somComparelds function returns 1 if the two input IDs represent strings that are
equal; otherwise, it returns 0.

Parameters
idl
The first SOM ID to be compared.
id2
The second SOM ID to be compared.
Return Value
Returns returns 1 if the two input IDs represent strings that are equal; otherwise, it returns 0.

C Example

#include <som.h>

main ()

{
somId idl, id2, id3;
somEnvironmentNew () ;
id1 somIdFromString (“this”) ;
id2 somIdFromString (“that”) ;
id3 = somIdFromString (”this”) ;
SOM_Test (somComparelds (idl, id3));
SOM_Test (! somComparelIds(idl, id2));

}
Related Information

somBeginPersistentlds Function
somCheckld Function
somEndPersistentlds Function
somldFromString Function
somRegisterld Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function
somUniqueKey Function

somld (sombtype.h)

Chapter 1. SOM Kernel 9

somDataResolve Function

somDataResolve Function

C Syntax

Description

Parameters

Accesses instance data within an object.

somToken somDataResolve (SOMObject obj, somDToken dToken);

The somDataResolve function is used to access instance data within an object. This
function is of use primarily to class implementors (rather than class clients) who are not
using the SOM C or C++ language bindings.

For C or C++ programmers with access to the C or C++ implementation bindings for a
class, instance data can be accessed using the classNameGetData macro (which expands
to a usage of somDataResolve).

obj
A pointer to the object whose instance data is required.

dToken
A data token for the required instance data. The SOM API specifies that the data token
for accessing the instance data introduced by a class is found in the

instanceDataToken component of the auxiliary class data structure for that class. The
example below illustrates this.

Return Value

Example

A somToken (that is, a pointer) that points to the data in obj identified by the dToken. If obj
does not contain the requested data identified by dToken, somDataResolve generates a
run-time error and terminates execution.

The following C and C++ expression evaluates to the address of the instance data
introduced by class xYZz within the object obj. This assumes that obj points to an instance
of XYz or a subclass of xyz.

#include <som.h>
somDataResolve (0bj, XYZCClassData.instanceDataToken) ;

Related Information

somToken (somapi.h)
SOMObject (somobj.idl)
somDToken (sombtype.h)

10 Programmer’s Reference for SOM and DSOM

somDataResolveChk Function

somDataResolveChk Function

Accesses instance data within an object.

C Syntax
somToken somDataResolveChk (SOMObject obj, somDToken dToken);
Description
The somDataResolveChk function is used to access instance data within an object. This
function is of use primarily to class implementors (rather than class clients) who are not
using the SOM C or C++ language bindings.
For C or C++ programmers with access to the C or C++ implementation bindings for a
class, instance data can be accessed using the classNameGetData macro (which expands
to a usage of somDataResolve).
Parameters
obj
A pointer to the object whose instance data is required.
dToken

A data token for the required instance data. The SOM API specifies that the data token
for accessing the instance data introduced by a class is found in the
instanceDataToken component of the auxiliary class data structure for that class. The
example below illustrates this.

Return Value

A somToken (that is, a pointer) that points to the data in obj identified by the dToken. If obj
does not contain the requested data identified by dToken, somDataResolveChk returns
NULL.

Example

The following C and C++ expression evaluates to the address of the instance data
introduced by class xYZz within the object obj. This assumes that obj points to an instance
of XYz or a subclass of xyz.

#include <som.h>
somDataResolve (0bj, XYZCClassData.instanceDataToken) ;

Related Information

somToken (somapi.h)
SOMObject (somobj.idl)
somDToken (sombtype.h)

Chapter 1. SOM Kernel 11

somEndPersistentlds Function

somEndPersistentlds Function

Tells SOM to end a persistent ID interval.

C Syntax
void somEndPersistentlds ();
Description
The somEndPersistentlds function informs the SOM ID manager that strings for any new
SOM IDs that are registered might be freed or modified by the client program. Thus, the ID
manager must make a copy of the strings.
Example

See somBeginPersistentlds Function on page 4.
Related Information

somBeginPersistentlds Function
somCheckld Function
somComparelds Function
somldFromString Function
somRegisterld Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function
somUniqueKey Function

12 Programmer’s Reference for SOM and DSOM

somEnvironmentNew Function

somEnvironmentNew Function

Initializes the SOM runtime environment.
C Syntax
SOMClassMgr somEnvironmentNew ();
Description

The somEnvironmentNew function creates the four primitive SOM objects (SOMObject,
SOMClass, SOMClassMgr and SOMClassMgrObject) and initializes global variables
used by the SOM run-time environment. This function must be called before using any
other SOM functions or methods with the exception of somSetExpectedlds. If the SOM
run-time environment has already been initialized, calling this function has no harmful effect.

Although this function must be called before using other SOM functions or methods, it
needn’t always be called explicitly, because the classNameNew macros, the
classNameRenew macros, the new operator, and the classNameNewClass procedures
defined by the SOM C and C++ language bindings call somEnvironmentNew if needed.

Return Value

A pointer to the single class manager object active at run time. This class manager can be
referred by the global variable SOMClassMgrObject.

Example
somEnvironmentNew () ;
Related Information

somExceptionld Function
somExceptionValue Function
somGetGlobalEnvironment Function

somSetException Function

Chapter 1. SOM Kernel 13

somExceptionFree Function

somExceptionFree Function

Frees the memory held by the exception structure within an Environment structure.
C Syntax
void somExceptionFree (Environment *ev);
Description

The somExceptionFree function frees the memory held by the exception structure within
an Environment structure.

Parameters

ev
A pointer to the Environment whose exception information is to be freed.

Example
See somSetException Function on page 32.
Related Information

somdExceptionFree Function
somExceptionld Function
somExceptionValue Function
somGetGlobalEnvironment Function
somSetException Function
Environment (somcorba.h)

14 Programmer's Reference for SOM and DSOM

somExceptionld Function

somExceptionld Function

Gets the name of the exception contained in an Environment structure.
C Syntax
string somExceptionld (Environment *ev);
Description

The somExceptionld function returns the name of the exception contained in the specified
Environment structure.

Parameters

ev
A pointer to an Environment structure containing an exception.

Return Value

Returns the name of the exception contained in the Environment structure as a string.
Example

See somSetException Function on page 32.
Related Information

somExceptionFree Function
somExceptionValue Function
somGetGlobalEnvironment Function
somSetException Function

string (somcorba.h)

Environment (somcorba.h)

Chapter 1. SOM Kernel 15

somExceptionValue Function

somExceptionValue Function

Gets the value of the exception contained in an Environment structure.
C Syntax
somToken somExceptionValue (Environment *ev);
Description

The somExceptionValue function returns the value of the exception contained in the
specified Environment structure.

Parameters

ev
A pointer to an Environment structure containing an exception.

Return Value

The somExceptionValue function returns a pointer to the value of the exception contained
in the specified Environment structure.

Example
See somSetException Function on page 32.
Related Information

somExceptionFree Function
somExceptionld Function
somGetGlobalEnvironment Function
somSetException Function
somToken (sombtype.h)
Environment (somcorba.h)

16 Programmer’s Reference for SOM and DSOM

somGetGlobalEnvironment Function

somGetGlobalEnvironment Function

Returns a pointer to the current global Environment structure.
C Syntax
Environment *somGetGlobalEnvironment ();

Description

The somGetGlobalEnvironment function returns a pointer to the current global
Environment structure. This structure can be passed to methods that require an
(Environment *) argument. The caller can determine if the called method has raised an
exception by testing whether

ev-> major != NO EXCEPTION
If an exception has been raised, the caller can retrieve the name and value of the exception
using the somExceptionld and somExceptionValue functions.

Return Value

A pointer to the current global Environment structure.
Example

See somSetException Function on page 32.
Related Information

somExceptionld Function
somExceptionValue Function
somExceptionFree Function
somSetException Function
Environment (somcorba.h)

Chapter 1. SOM Kernel 17

somldFromString Function

somldFromString Function

Returns the SOM ID corresponding to a given text string.
C Syntax
somld somldFromString (string aString);
Description

The somldFromString function returns the SOM ID that corresponds to a given text string.

Ownership of the somld returned by somldFromString passes to the caller, which has the
responsibility to subsequently free the somld using SOMFree Function.

Parameters

astring
The string to be converted to a SOM ID.

Return Value

Returns the SOM ID corresponding to the given text string.
Example

See somBeginPersistentlds Function on page 4.
Related Information

somBeginPersistentlds Function
somCheckld Function
somComparelds Function
somEndPersistentlds Function
somRegisterld Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function
somUniqueKey Function
somld (sombtype.h)

string (somcorba.h)

18 Programmer’s Reference for SOM and DSOM

somlIsObj Function

somlsObj Function

Failsafe routine to determine whether a pointer references a valid SOM object.
C Syntax
boolean somlsObj (somToken memPtr);
Description

The somIsObj function returns 1 if its argument is a pointer to a valid SOM object, or
returns 0 otherwise. The function handles address faults, and does extensive consistency
checking to guarantee a correct result.

Parameters

memPtr
A somToken (a pointer) to be checked.

Return Value
The somIsObj function returns 1 if obj is a pointer to a valid SOM object, and 0 otherwise.
C++ Example

#include <stdio.h>
#include <som.xh>
void example (void *memPtr)

if (!somIsObj (memPtr))
printf ("memPtr is not a valid SOM object.\n”);
else
printf ("memPtr points to an object of class %s\n”,
((SOMObject *)memPtr) ->somGetClassName ()) ;

}
Related Information

boolean (somcorba.h)
somToken (sombtype.h)

Chapter 1. SOM Kernel 19

somLPrintf Function

somLPrintf Function

C Syntax

Description

Parameters

Prints a formatted string in the manner of the C printf function, at the specified indentation
level.

long somLPrintf (long level, string fmt, ...);

The somLPrintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C printf function. The implementation of SOMOutCharRoutine determines
the destination of the output, while the C printf function is always directed to stdout.

The default output destination for SOMOutCharRoutine is stdout also, but this can be
modified by the user. The output is prefixed at the indicated level, by preceding it with
2*level spaces.

level
The level at which output is to be placed.

fmt
The format string to be output.

varargs
The values to be substituted into the format string.

Return Value

C Example

Returns the number of characters written.

#include <somobj.h>
somLPrintf (5, “The class name is %s.\n”, _somGetClassName (obj)) ;

Related Information

somPrefixLevel Function
somPrintf Function
somVprintf Function
SOMOutCharRoutine Function

string (somcorba.h)

20 Programmer’s Reference for SOM and DSOM

somMainProgram Function

somMainProgram Function

Performs SOM initialization on behalf of a new program.
C Syntax
SOMClassMgr *somMainProgram ();
Description

The somMainProgram function informs SOM about the beginning of a new thread of
execution. The SOM Kernel then performs any needed initialization, including the deferred
execution of the SOMInitModule Functions found in statically-loaded class libraries. When
somMainProgram is used, it supersedes any need to call the somEnvironmentNew
function.

Return Value
A pointer to the SOMClassMgr Class object.
Related Information

somEnvironmentNew Function

Chapter 1. SOM Kernel 21

somParentNumResolve Function

somParentNumResolve Function

C Syntax

Description

Parameters

Obtains a pointer to a procedure that implements a method, given a list of method tables.

somMethodPtr somParentNumResolve (
somMethodTabs parentMtab,
int parentNum,
somMToken mToken);

The somParentNumResolve function is used to make parent method calls by the C and
C++ language implementation bindings. The somParentNumResolve function returns a
pointer to a procedure for performing the specified method. This pointer is selected from the
specified method table, which is intended to be the method table corresponding to a parent
class.

For C and C++ programmers, the implementation bindings for SOM classes provide
convenient macros for making parent method calls (the “parent_" macros).

parentMtab
A list of method tables for the parents of the class being implemented. The SOM API
specifies that the list of parent method tables for a given class be stored in the auxiliary
class data structure of the class, in the parentMtab component. Thus, for the class XYz,
the parent method table list is found in location XYZCClassData.parentMtab.

parentNum
The position of the parent for which the method is to be resolved. The order of a class’s
parents is determined by the order in which they are specified in the interface
statement for the class. (The first parent is number 1.)

mToken
The method token for the method to be resolved. The SOM API requires that if the
class xvz introduces the static method foo, then the method token for foo is found in
the class data structure for XYz (called XYZClassData) in the structure member named
foo (that is, at XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method, selected
from the specified method table.

C++ Example

// SOM IDL for class A and class B
#include <somobj.idls>
module spnrExample {
interface A : SOMObject { void foo(); implementation {
callstyle=o0idl; }; };
interface B : A { implementation { foo: override; }; };
}i
// Example C++ program to implement and test module scrExample
#define SOM Module spnrexample Source
#include <spnrExample.xih>
#include <stdio.h>

22 Programmer’s Reference for SOM and DSOM

somParentNumResolve Function

SOM_Scope void SOMLINK spnrExample Afoo (spnrExample A *somSelf) ;
{ printf(”1\n”); }
SOM_Scope void SOMLINK spnrExample Bfoo (
spnrExample B *somSelf) ;
{ printf(”2\n"); }
main ()

{
spnrExample B *objPtr = new spnrExample B;
// This prints 2
objPtr->foo() ;
// This prints 1
((somTD_spnrExample A foo)
/* This method procedure expression cast is necessary */
somParentNumResolve (
objPtr->somGetClass () ->somGetPClsMtabs (), 1,
spnrExample AClassData.foo) // foo method token
) /* end of method procedure expression */
(objPtr); /* method arguments */

}
Related Information

somClassResolve Function
somParentNumResolve Function
somResolve Function
somResolveByName Function
somGetMethodToken Method
SOM_ParentNumResolve Macro
SOM_Resolve Macro
SOM_ResolveNoCheck Macro
somMethodPtr (sombtype.h)
somMethodTabs (somapi.h)
somMToken (somapi.h)

Chapter 1. SOM Kernel 23

somParentResolve Function

somParentResolve Function

Obtains a pointer to a procedure that implements a method, given a list of method tables.
Obsolete but still supported.

C Syntax

somMethodPtr somParentResolve (
somMethodTabs parentMtab,
somMToken mToken);

Description

The somParentResolve function is used by old, single-parent class binaries to make
parent method calls. The function is obsolete, but is still supported. somParentResolve
returns a pointer to the procedure that implements the specified method. This pointer is
selected from the first method table in the parentMtab list.

Parameters

parentMtab
A list of parent method tables, the first of which is the method table for the parent class
for which the method is to be resolved. The SOM API specifies that the list of parent
method tables for a given class be stored in the auxiliary class data structure of the
class, in the parentMtab component. Thus, for the class XYz, the parent method table
list is found in location XYZCClassData.parentMtab.

mToken
The method token for the method to be resolved. The SOM API requires that if the
class XYz introduces the static method foo, then the method token for foo is found in
the class data structure for XYz (called XYZClassData) in the structure member named
foo (that is, at XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

Return Value

A somMethodPtr pointer to the procedure that implements the specified method, selected
from the first method table.

Related Information

somcClassResolve Function
somParentResolve Function
somResolve Function
somResolveByName Function
somClassDispatch Method
somFindMethod(Ok) Methods
somGetMethodToken Method
SOM_Resolve Macro
SOM_ResolveNoCheck Macro
somMethodPtr (sombtype.h)
somMethodTabs (somapi.h)

somMToken (somapi.h).

24 Programmer’s Reference for SOM and DSOM

somPrefixLevel Function

somPrefixLevel Function

Outputs blanks to prefix a line at the indicated level.
C Syntax
void somPrefixLevel (long level);
Description

The somPrefixLevel function outputs blanks via somPrintf to prefix the next line of output
at the indicated level. The number of blanks produced is 2*level.

This function is useful when overriding the somDumpSelfint Method.
Parameters

level
The level at which the next line of output is to start.

C/C++ Example

#include <som.h>
somPrefixLevel (5) ;

Related Information
somLPrintf Function
somPrintf Function
somVprintf Function
SOMOutCharRoutine Function

Chapter 1. SOM Kernel 25

somPrintf Function

somPrintf Function

C Syntax

Description

Parameters

Prints a formatted string in the manner of the C printf function.

long somPrintf (string fmt, ...);

The somPrintf function prints a formatted string using the SOMOutCharRoutine function,
in the same manner as the C printf function. The implementation of SOMOutCharRoutine
determines the destination of the output, while the C printf function is always directed to
stdout.

The default output destination for SOMOutCharRoutine is stdout also, but this can be
modified by the user.

Note: If you use calls to both somPrintf and printf, you should be aware that these
functions use different buffers and that the output may not appear in the same
order as the calls occur in the code.

fmt
The format string to be output.

varargs
The values to be substituted into the format string.

Return Value

C Example

Returns the number of characters written.

#include <somcls.h>
somPrintf (“The class name is %s.\n”, _somGetClassName (obj)) ;

Related Information

somLPrintf Function
somPrefixLevel Function
somVprintf Function
SOMOutCharRoutine Function

26 Programmer’s Reference for SOM and DSOM

somRegisterld Function

somRegisterld Function

Registers a SOM ID and determines whether or not it was previously registered.

C Syntax
int somRegisterld (somld id);
Description
somRegisterld registers a SOM ID and converts it into an internal representation.
Parameters

id
The somld to be registered.

Return Value

If the ID is registered, returns O; otherwise, returns 1.

C Example
#include <som.h>
static string s = "unregistered”;
static somId sid = &s;
main ()

{

somEnvironmentNew () ;
SOM_Test (somRegisterId(sid) == 1);
SOM Test (somRegisterId (somIdFromString(”registered”)) == 0);

}
Related Information

somBeginPersistentlds Function
somCheckld Function
somComparelds Function
somEndPersistentlds Function
somldFromString Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function
somUniqueKey Function

somld (sombtype.h).

Chapter 1. SOM Kernel 27

somResolve Function

somResolve Function

C Syntax

Description

Parameters

Obtains a pointer to the procedure that implements a method for a particular SOM object.

somMethodPtr somResolve (SOMObject obj, somMToken mToken);

The somResolve function returns a pointer to the procedure that implements the specified
method for the specified SOM object. This pointer can then be used to invoke the method.
The somResolve function can only be used to obtain a method procedure for a static
method (one declared in an IDL or OIDL specification for a class); dynamic methods are not
supported by method tokens.

For C and C++ programmers, the SOM usage bindings for SOM classes provide more
convenient mechanisms for invoking methods. These bindings use the SOM_Resolve and
SOM_ResolveNoCheck macros, which construct a method token expression from the
class name and method name, and call somResolve.

obj
A pointer to the object whose method procedure is required.

mToken
The method token for the method to be resolved. The SOM API requires that if the
class XYz introduces the static method foo, then the method token for foo is found in
the class data structure for XYz (called XYZClassData) in the structure member named
foo (that is, at XYZClassData.foo). Method tokens can also be obtained using the
somGetMethodToken method.

Return Value

C Example

A somMethodPtr pointer to the procedure that implements the specified method for the
specified SOM object.

// SOM IDL for class A and class B
#include <somobj.idl>
module srExample
interface A : SOMObject { void foo(); implementation {
callstyle=o0idl; }; };
interface B : A { implementation { foo: override; }; };
}i
// Example C++ program to implement and test module scrExample
#define SOM Module srexample Source
#include <srExample.ih>
#include <stdio.h>
SOM_Scope void SOMLINK srExample Afoo (srExample A *somSelf) ;

{ printf(”1\n”); }

SOM_Scope void SOMLINK srExample_Bfoo (srExample B *somSelf) ;
{ printf(”2\n”); }

main ()

{

srExample B objPtr = srExample BNew() ;

/* This prints 2 */
((somTD_srExample A foo)
/* this method procedure expression cast is necessary */

28 Programmer’s Reference for SOM and DSOM

somResolve Function

somResolve (objPtr, srExample AClassData.foo)
) /* end of method procedure expression */
(Obj Ptr) ;

}
Related Information

somClassResolve Function
somParentNumResolve Function
somParentResolve Function
somResolveByName Function
somClassDispatch Method
somFindMethod(Ok) Methods

somGetMethodToken Method
SOM_Resolve Macro
SOM_ResolveNoCheck Macro
somMethodPtr (sombtype.h)
somMToken (somapi.h).

Chapter 1. SOM Kernel 29

somResolveByName Function

somResolveByName Function

Obtains a pointer to the procedure that implements a method for a particular SOM object.
C Syntax
somMethodPtr somResolveByName (SOMObject obj, string methodName);
Description

somResolveByName obtains a pointer to the procedure that implements a method for a
specific SOM object. The returned pointer can then be used to invoke the method. C and
C++ usage hindings use this function to support name-lookup methods.

This function can be used for invoking dynamic methods. However, C and C++ usage
bindings for SOM classes do not support dynamic methods. Typedefs necessary for
dynamic methods are not available as with static methods. somApply Function provides
an alternative mechanism for invoking dynamic methods that avoids the need for casting
procedure pointers.

Parameters
obj
A pointer to the object whose method procedure is required.

methodName
A character string representing the name of the method to be resolved.

Return Value
A somMethodPtr pointer to the procedure that implements the method for the SOM object.
C Example

Assuming the static method setSound is introduced by the class Animal, this example
will invoke this method on an instance of Animal or a descendent class.

#include <animal.h>
example (Animal myAnimal)

somTD_Animal_setSound
setSoundProc = somResolveByName (myAnimal, “setSound”) ;
setSoundProc (myAnimal, “Roar!”);

}
Related Information

somResolve Function
somParentResolve Function
somParentNumResolve Function
somClassResolve Function
somClassDispatch Method
somFindMethod(Ok) Methods
SOM_Resolve Macro
SOM_ResolveNoCheck Macro
somMethodPtr (sombtype.h)
SOMObject (somobj.idl)

30 Programmer’s Reference for SOM and DSOM

somResolveByName Function

string (somcorba.h)

Chapter 1. SOM Kernel 31

somSetException Function

somSetException Function

Sets an exception value in an Environment structure.
C Syntax

void somSetException (
Environment *ev,
enum exception_type major,
string exceptionName,
somToken params);

Description
The somSetException function sets an exception value in an Environment structure.
Parameters

ev
A pointer to the Environment structure in which to set the exception. This value must
be either NULL or a value formerly obtained from the function
somGetGlobalEnvironment.

major
An integer representing the type of exception to set.

exceptionName
The qualified name of the exception to set. The SOM Compiler defines, in the header
files it generates for an interface, a constant whose value is the qualified name of each
exception defined within the interface. This constant has the name
ex exceptionName, where exceptionName is the qualified exception name.
Where unambiguous, the usage bindings also define the short form
ex exceptionName, Where exceptionName is unqualified.

params
A pointer to an initialized exception structure value. No copy is made of this structure;
hence, the caller cannot free it. somExceptionFree should be used to free the
Environment structure that contains it.

C Example

/* IDL declaration of class X: */
interface X : SOMObject {
exception OUCH {long codel; long code2; };
void foo(in long arg) raises (OUCH) ;
/* implementation of foo method */
SOM_Scope void SOMLINK foo (X somSelf, Environment *ev, long arg)
X OUCH *exception params; /* X OUCH struct is defined
in X’s usage bindings */
if (arg > 5) /* then this is a very bad error */

{

exception params = (X OUCH*)SOM Malloc (sizeof (X OUCH)) ;
exception params->codel = arg;
exception params->code2 = arg-5;

somSetException(ev, USER_EXCEPTION, ex X OUCH,
exception params) ;
/* the Environment ev now contains an X OUCH exception,
* with the specified exception params struct. The
* constant ex X OUCH is defined in foo.h. Note that
* exception params must be malloced. */

32 Programmer’s Reference for SOM and DSOM

return;

main ()
Environment *ev;
X x;
somEnvironmentNew () ;
x = Xnew/() ;

ev = somGetGlobalEnvironment () ;

X foo(x, ev, 23);

if (ev-> major != NO_ EXCEPTION)
printf ("foo exception
somExceptionId(ev)) ;

printf (“codel = %d\n”,

somSetException Function

((X_OUCH*) somExceptionValue (ev)) ->codel) ;

/* finished handling exception.

/* free copied id and original X OUCH structure: */

somExceptionFree (ev) ;

}
Related Information

somExceptionFree Function
somExceptionld Function
somExceptionValue Function
somGetGlobalEnvironment Function
Environment

exception_type

string (somcorba.h)

Chapter 1. SOM Kernel 33

somSetExpectedlds Function

somSetExpectedlds Function

Tells SOM how many unique SOM IDs a client program expects to use.

C Syntax
void somSetExpectedlds (unsigned long numlds);
Description
The somSetExpectedlds function informs the SOM run-time environment how many
uniqgue SOM IDs a client program expects to use during its execution. This has the potential
of slightly improving the program’s space and time efficiency, if the value specified is
accurate. This function, if used, must be called prior to any explicit or implicit invocation of
the somEnvironmentNew Function to have any effect.
Parameters
numlds
The number of SOM IDs the client program expects to use.
C Example

#include <som.h>
somSetExpectedIds (1000) ;

Related Information
somBeginPersistentlds Function
somCheckld Function
somComparelds Function
somEndPersistentlds Function
somldFromString Function
somRegisterld Function
somStringFromld Function
somTotalReglds Function
somUniqueKey Function

34 Programmer’s Reference for SOM and DSOM

somSetOutChar Function

somSetOutChar Function

Changes the behavior of the somPrintf function.

C Syntax

void somSetOutChar (somTD_SOMOutCharRoutine * outCharRtn);

Description
somSetOutChar is called to change the output character routine that somPrintf invokes.
By default, somPrintf invokes a character output routine that goes to stdout.

The execution of somSetOutChar affects only the application (or thread) in which it occurs.
Thus, somSetOutChar is normally preferred over SOMOutCharRoutine for changing the
output routine called by somPrintf, since SOMOutCharRoutine remains in effect for
subsequent threads as well.

Some additional samples of somSetOutChar can be found in the somapi.h header file.
Parameters
outCharRtn
A pointer to your routine that outputs a character in the way you want.

Example

#include <som.h>
static int irOutChar (char c);
static int irOutChar (char c)

{
}
main (...)

{

}
Related Information

(Customized code goes here.)

somSetOutChar ((somTD_SOMOutCharRoutine *) irOutChar);

somPrintf Function
SOMOutCharRoutine Function

Chapter 1. SOM Kernel 35

somStringFromld Function

somStringFromld Function

Returns the string that a SOM ID represents.

C Syntax
string somStringFromld (somlid id);
Description
The somStringFromld function returns the string that a given SOM ID represents.
Parameters

¢ The SOM ID for which the corresponding string is heeded.
Return Value

Returns the string that the given SOM ID represents.
Example

See somBeginPersistentlds Function on page 4.
Related Information

somBeginPersistentlds Function

somCheckld Function

somComparelds Function

somEndPersistentlds Function

somldFromString Function

somRegisterld Function

somSetExpectedlds Function

somTotalReglds Function

somUniqueKey Function

string (somcorba.h)

somld (sombtype.h)

36 Programmer’s Reference for SOM and DSOM

somTotalReglds Function

somTotalReglds Function

Returns the total number of SOM IDs that have been registered.
C Syntax
unsigned long somTotalReglds ();
Description

The somTotalReglds function returns the total number of registered SOM IDs. This value
can be used as a parameter to the somSetExpectedlds function to advise SOM about
expected ID usage in later executions of a client program.

Return Value

Returns the total number of SOM IDs that have been registered.

C Example
#include <som.h>
main ()
{ int 1i;
somId id;

somEnvironmentNew () ;

id = somIdFromString (”abc”)

i = somTotalRegIds() ;

id = somIdFromString (”abc”) ;
SOM Test (i == somTotalReglIds) ;

}

Related Information
somBeginPersistentlds Function
somCheckld Function
somComparelds Function
somEndPersistentlds Function
somldFromString Function
somRegisterld Function
somSetExpectedlds Function
somStringFromld Function
somUniqueKey Function

Chapter 1. SOM Kernel 37

somUniqueKey Function

somUniqueKey Function

Returns the unique key associated with a SOM ID.
C Syntax
unsigned long somUniqueKey (somID id);
Description

The somUniqueKey function returns the unique key associated with a SOM ID. The
unique key for a SOM ID is a number that uniquely represents the string that the SOM ID
represents. The unique key for a SOM ID is the same as the unique key for another SOM
ID only if the two SOM IDs represent the same string.

Parameters
id
The SOM ID for which the unique key is needed.
Return Value
An unsigned long representing the unique key of the specified SOM ID.
C Example

#include <som.h>
main ()

{

unsigned long k1, k2;

k1l = somUniqueKey (somIdFromString (”abc”)) ;
k2 = somUniqueKey (somIdFromString (”abc”)) ;
SOM_Test (k1 == k2);

}

Related Information
somBeginPersistentlds Function
somCheckld Function
somComparelds Function
somEndPersistentlds Function
somldFromString Function
somRegisterld Function
somSetExpectedlds Function
somStringFromld Function
somTotalReglds Function
somld (sombtype.h)

38 Programmer’s Reference for SOM and DSOM

somvalistGetTarget Function

somvalistGetTarget Function

Gets the first scalar value from a va_list without other side effects

Note: There is adanger in using this function. This function treats whatever the va_list is
currently pointing to as an unsigned long regardless of type. The return value from
a double, for example, would be the high 4 bytes of the double, and setting it will
merely corrupt the high 4 bytes in the existing va_list. There is no guarantee that
this function will change the scalar value correctly.

C Syntax
unsigned long somvalistGetTarget (va_list ap);
Description
Returns the first scalar value from the va_list without other side effects.
Parameters

ap
The va_list from which to get the value.

Return Value
Scalar value from the va_list.
Example

va_list start_val;

somVaBuf vb;

unsigned long first;

vb = (somVaBuf)somVaBuf create (NULL, O0);

first = somvalistGetTarget (start _val) ;
ééﬁvalistSetTarget(start_val, first);
Related Information
somvalistSetTarget Function
somVaBuf_add Function
somVaBuf create Function
somVaBuf_destroy Function
somVaBuf_get_valist Function

Chapter 1. SOM Kernel 39

somvalistSetTarget Function

somvalistSetTarget Function

Modifies the va_list without other side effects.

Note: There is a danger in using this function. This function treats whatever the va_list is
currently pointing to as an unsigned long regardless of type. The return value from
a double, for example, would be the high 4 bytes of the double, and setting it will
merely corrupt the high 4 bytes in the existing va_list. There is no guarantee that
this function will change the scalar value correctly.

C Syntax
unsigned long somvalistSetTarget (va_list ap, unsigned long val);
Description

The somvalistSetTarget function replaces the first scalar value on the va_list with the
value val that is passed in the call without any other side effects.

Parameters

ap
The va_list to modify.

val
Value to set in the first scalar slot.

Example

va_list start val;

somVaBuf vb;

unsigned long first;

vb = (somVaBuf)somVaBuf create (NULL, O0);

éifst = somvalistGetTarget (start val) ;
éc.n;lvalistSetTarget (start_val, first);
Related Information
somvalistGetTarget Function
somVaBuf_add Function
somVaBuf_create Function
somVaBuf_destroy Function
somVaBuf_get_valist Function

40 Programmer’s Reference for SOM and DSOM

somVaBuf_add Function

somVaBuf _add Function

Adds an argument to the SOM buffer (somVaBuf) for variable arguments.
C Syntax
long somVaBuf_add (somVaBuf vb, char *arg, int type);
Description
This function adds the argument pointed to by arg to the va_list by using type for the size.
Parameters

vb
Value (somVaBuf) returned from somVaBuf_create function.

arg
Pointer to the argument to be added to the va_list.

type
Argument type (TCKind).

The following are the supported TCKind types:

tk_boolean
tk_char
tk_double
tk_enum
tk_float
tk_long
tk_octet
tk_pointer
tk_short
tk_string
tk_ulong
tk_ushort
tk_Typecode
Return Value
If successful, a value of one is returned; otherwise, a value of zero is returned.

Example
See somVaBuf_create Function on page 42.
Related Information

somvalistGetTarget Function
somvalistSetTarget Function
somVaBuf _create Function
somVaBuf_destroy Function
somVaBuf_get_valist Function

Chapter 1. SOM Kernel 41

somVaBuf_create Function

somVaBuf create Function

Creates a SOM buffer (somVaBuf) for variable arguments from which the va_list will be

built.
C Syntax
somVaBuf somVaBuf_create (char *vb, int size);
Description
This function allocates, if necessary, and initializes a somVaBuf data structure. Memory is
allocated if:
» size is less than the size of the somVaBuf structure
* sizeis zero
* Vvbis NULL
Because the somVaBuf data structure is opaque, users cannot determine its size.
Although this function accepts a user-allocated buffer, it is recommended that a NULL value
be passed as the first argument.
Parameters

vb

Pointer to user-allocated memory or NULL
size

Size of memory pointed at by vb, or else zero.

Return Value
If successful, somVaBuf is returned; otherwise, a NULL value is returned.
C Example

#include <somobj.h>
#include <somtc.h>
void f1(SOMObject obj, Environment *ev)
{
char *msg;
va_list start val;
somVaBuf vb;

char *msgl = “Good Morning”;
vb = (somVaBuf)somVaBuf create (NULL, O0);
somVaBuf_ add(vb, (char *)&obj, tk pointer); /* target _set msg
*
/
somVaBuf add(vb, (char *)&ev, tk _pointer); /* next argument */
somVaBuf_ add(vb, (char *)&msgl, tk pointer);/* final argument
*
/
somVaBuf get valist (vb, &start val);
/* dispatch _set msg on object */
SOMObject somDispatch(
obj, /* target for somDispatch */
0, /* says ignore dispatched method result
*
/

somIdFromString (“ set msg”),
/* the somId for set msg */
start_val) ; /* target and args for _set _msg */
/* Get a fresh copy of the va_list */
somVaBuf get valist (vb, &start val);
SOMObject somDispatch (
Obj 7

42 Programmer’s Reference for SOM and DSOM

C++ Example

somVaBuf_create Function

(somToken *)&msg, /* address to store dispatched result */

somIdFromString (“* get msg”),

start_val) ; /* target and arguments for _get msg */

printf (“$s\n”,msg) ;
somVaBuf_destroy (vb) ;

#include <somobj.h>
#include <somtc.h>
void f1(SOMObject obj, Environment *ev)

{

}
Related Information

char *msg;
va_list start val;
somVaBuf vb;
char *msgl = “Good Morning”;
vb = (somVaBuf)somVaBuf create (NULL, O0);
somVaBuf add(vb, (char *)&obj, tk pointer);
/* target for _set msg
somVaBuf add(vb, (char *)&ev, tk pointer);
/* next argument */
somVaBuf add(vb, (char *)&msgl, tk pointer);
/* final argument */
somVaBuf get valist (vb, &start val);
/* dispatch set msg on obj: */
obj->SOMObject somDispatch (
0, /* says ignore the dispatched method result */
somIdFromString (“ set msg”),

*/

/* the somId for _set msg */

start_val); /* the target and arguments for set msg */

/* dispatch get msg on obj: */
/* Get a fresh copy of the va_list */
somVaBuf get valist (vb, &start val);
obj->SOMObject somDispatch (
(somToken *)&msg,
/* address to hold dispatched method result */
somIdFromString (“ get msg”),
start _val);
/* the target and arguments for _get msg */
printf (“%s\n”, msg);
somVaBuf destroy (vb) ;

somvalistGetTarget Function

somvalistSetTarget Function

somVaBuf_add Function

somVaBuf_destroy Function

somVaBuf_get_valist Function

Chapter 1. SOM Kernel 43

somVaBuf_destroy Function

somVaBuf _destroy Function

Purpose
Releases the SOM buffer (somVaBuf) and its associated va_list.
C Syntax
void somVaBuf_destroy (somVaBuf vb);
Description

If somVaBuf was allocated by the somVaBuf_create function, the memory will be
deallocated.

Parameters

vb
Value (somVaBuf) returned from somVaBuf_create function.

Example
See somVaBuf_create Function on page 42.
Related Information
somvalistGetTarget Function
somvalistSetTarget Function
somVaBuf_add Function
somVaBuf_create Function
somVaBuf_get_valist Function

44 programmer's Reference for SOM and DSOM

somVaBuf_get_valist Function

somVaBuf get valist Function

Initializes a va_list from the SOM buffer (somVaBuf).
C Syntax
void somVaBuf_get valist (somVaBuf vb, va_list *ap);
Description

This function assigns a pointer to the passed va_list in the somVaBuf structure. The caller
should not free va_list.

Parameters

vb
Value (somVaBuf) returned from somVaBuf_create function.

ap
Pointer to a va_list.

Example
See somVaBuf_create Function on page 42.
Related Information
somvalistGetTarget Function
somvalistSetTarget Function
somVaBuf _add Function
somVaBuf create Function
somVaBuf_destroy Function

Chapter 1. SOM Kernel 45

somVprintf Function

somVprintf Function

Prints a formatted string in the manner of the C vprintf function.

C Syntax

long somVprintf (string fmt, va_list ap);

Description

The somVprintf function prints a formatted string using SOMOutCharRoutine, in the same
manner as the C vprintf function. The implementation of SOMOutCharRoutine determines
the destination of the output, while the C printf function is always directed to stdout.

The default output destination for SOMOutCharRoutine is stdout also, but this can be

modified by the user.
Parameters

fmt
The format string to be output.

ap

A va_list representing the values to be substituted into the format string.

Return Value

Returns the number of characters written.

C Example

#include <som.h>
#include <somtc.h>
main ()
{
va_ list args;
somVaBuf vb;
float £ 3.1415;
char ¢ = "a’;
int one 1;
char *msg = “This is a
somEnvironmentNew () ; /*
vb

(somVaBuf) somvaBuf create (NULL,

test”;
Init environment */
0);

somVaBuf add(vb, (char *)&one, tk long) ;
somVaBuf add(vb, (char *)&f, tk float);
somVaBuf add(vb, (char *)&c, tk char);
somVaBuf add(vb, (char *)&msg, tk pointer);
somVaBuf get valist (vb, &args);

somVprintf (”%d, %$f, %c, %s\n”, args);

}

Related Information
somLPrintf Function
somPrefixLevel Function
somPrintf Function
SOMOutCharRoutine Function
string (somcorba.h)
va_list (stdarg.h)

46 Programmer’s Reference for SOM and DSOM

SOMCalloc Function

SOMCalloc Function

Allocates sufficient zeroed memory for an array of objects of a specified size.

C Syntax
somToken (*SOMCalloc) (size_t num, size t size);
Description
The SOMCalloc function allocates an amount of memory equal to num*size (sufficient
memory for an array of num objects of size size). The SOMCalloc function has the same
interface as the C calloc function and performs the same basic function but with some
supplemental error checking. If an error occurs, the SOMError Function is called. This
routine is replaceable by changing the value of the global variable SOMCalloc.
Parameters

num
The number of objects for which space is to be allocated.

size
The size of the objects for which space to is to be allocated.

Return Value

A pointer to the first byte of the allocated space.
Example

See somVprintf Function on page 46.
Related Information

SOMFree Function
SOMMalloc Function
SOMRealloc Function

somToken (sombtype.h)

Chapter 1. SOM Kernel 47

SOMClassInitFuncName Function

SOMClassInitFuncName Function

Returns the name of the function used to initialize classes in a DLL.
C Syntax
string (*SOMClassInitFuncName) ();
Description

The SOMClassInitFuncName function is called by the SOM Class Manager to determine
what function to call to initialize the classes in a DLL. The default version returns the string
SOMiInitModule. The function can be replaced (so that the Class Manager will invoke a
different function to initialize classes in a DLL) by changing the value of the global variable
SOMClassInitFuncName.

Return Value

Returns the name of the function that should be used to initialize classes in a DLL.
C Example

#include <som.h>
string XYZFuncName () { return "XYZ"; }
main ()

{

SOMClassInitFuncName = XYZFuncName;
}
Related Information

SOMDeleteModule Function
SOMLoadModule Function
string (somcorba.h)

48 Programmer’s Reference for SOM and DSOM

SOMDeleteModule Function

SOMDeleteModule Function

Unloads a dynamically linked library (DLL).
C Syntax
int (*SOMDeleteModule) (somToken modHandle);
Description

The SOMDeleteModule function unloads the specified dynamically linked library. This
routine is called by the SOM Class Manager to unload DLLs. SOMDeleteModule can be
replaced (thus changing the way the Class Manager unloads DLLS) by changing the value
of the global variable SOMDeleteModule.

Parameters

modHandle
The somToken for the DLL to be unloaded. This token is supplied by the
SOMLoadModule function when it loads the DLL.

Return Value
Returns 0 if successful or a non-zero system-specific error code otherwise.
Related Information

SOMClassInitFuncName Function
SOMLoadModule Function
somToken (sombtype.h)

Chapter 1. SOM Kernel 49

SOMETrror Function

SOMEtrror Function

Handles an error condition.
C Syntax
void (*SOMError) (int errorCode, string fileName, int lineNum);
Description

The SOMError function inspects the specified error code and takes appropriate action,
depending on the severity of the error. The last digit of the error code indicates whether the
error is classified as:

* SOM Fatal (9)
* SOM Warn (2)
* SOM Ignore (1)

The default implementation of SOMError prints a message that includes the specified error
code, file name and line number, and terminates the current process if the error is classified
as SOM_Fatal. The fileName and lineNum arguments specify where the error occurred.
This routine can be replaced by changing the value of the global variable SOMError.

For C and C++ programmers, SOM defines a convenience macro, SOM_Error, which
invokes the SOMError function and supplies the last two arguments.

Parameters

errorCode
An integer representing the error code of the error.

fileName
The name of the file in which the error occurred.

lineNum
The line number where the error occurred.

Related Information
SOM_Assert Macro
SOM_Error Macro
SOM_Expect Macro
SOM_Test Macro
SOM_TestC Macro
SOM_WarnMsg Macro

50 Programmer’s Reference for SOM and DSOM

SOMFree Function

SOMFree Function

Frees the specified block of memory.

C Syntax
void (*SOMFree) (somToken ptr);
Description
SOMFree frees the block of memory pointed to by ptr. SOMFree should only be called with
a pointer previously allocated by SOMMalloc or SOMCalloc. SOMFree has the same
interface as the C free function and performs the same basic function, but with some
supplemental error checking. If an error occurs, the SOMError Function is called. This
routine is replaceable by changing the value of the global variable SOMFree.
To free an object (rather than a block of memory), use somFree, rather than this function.
Parameters
ptr
A pointer to the block of storage to be freed.
C Example

#include <som.h>
main ()

{

somToken ptr = SOMMalloc (20) ;

SOMFree (ptr) ;

}
Related Information

SOMCalloc Function

SOMMalloc Function

SOMRealloc Function
somFree Method

Chapter 1. SOM Kernel 51

SOMInitModule Function

SOMInitModule Function

C Syntax

Description

Parameters

Invokes the class creation routines for the classes contained in a class library (DLL).

SOMEXTERN void SOMLINK SOMInitModule (
long majorVersion,
long minorVersion,
string className);

A class library (DLL) can contain the implementations for multiple classes, all of which
should be created when the DLL is loaded. When loading a DLL, the SOM class manager
determines the name of a DLL initialization function, and if the DLL exports a function of
this name, the class manager invokes that function (whose purpose is to create the classes
in the DLL). SOMInitModule is the default name for this DLL initialization function. A
default class initialization function is generated by the imod emitter.

majorVersion
The major version number of the class requested when library was loaded.

minorVersion
The minor version number of the class requested when library was loaded.

className
The name of the class requested when library was loaded.

Related Information

SOMCIlassInitFuncName Function
somGetlnitFunction Method

52 Programmer’s Reference for SOM and DSOM

SOMLoadModule Function

SOMLoadModule Function

Loads the dynamically linked library (DLL) containing a SOM class.
C Syntax

int (*SOMLoadModule) (
string className,
string fileName,
string functionName,
long majorVersion,
long minorVersion,
somToken *modHandle);

Description

The SOMLoadModule function loads the dynamically linked library containing a SOM
class. This routine is called by the SOM Class Manager to load DLLs. SOMLoadModule
can be replaced (thus changing the way the Class Manager loads DLLs) by changing the
value of the global variable SOMLoadModule.

Parameters

className
The name of the class whose DLL is to be loaded.

fileName

The name of the DLL library file. This can be either a simple name or a fully-qualified
pathname.

functionName
The name of the routine to be called after the DLL is loaded. The routine is responsible
for creating a class object for each class in the DLL. Typically, this argument will have
the value SOMInitModule Function, obtained from the SOMClassInitFuncName
function. If no SOMInitModule entry exists in the DLL, the default version of
SOMLoadModule looks for a routine named classNameNewClass instead. If neither
entry point is found, the default version of SOMLoadModule fails.

majorVersion

The expected major version number of the class, to be passed to the initialization
routine of the DLL.

minorVersion

The expected minor version number of the class, to be passed to the initialization
routine of the DLL.

modHandle
The address where SOMLoadModule should place a token that can be subsequently
used by the SOMDeleteModule routine to unload the DLL.

Return Value
Returns 0 if successful or a non-zero system-specific error code otherwise.
Related Information

SOMClassInitFuncName Function
SOMDeleteModule Function

Chapter 1. SOM Kernel 53

SOMMalloc Function

SOMMalloc Function

Allocates the specified amount of memory.
C Syntax
somToken (*SOMMalloc) (size_t size);
Description

The SOMMalloc function allocates size bytes of memory. The SOMMalloc function has
the same interface as the C malloc function. It performs the same basic function as malloc
with some supplemental error checking. If an error occurs, the SOMError Function is
called. This routine is replaceable by changing the value of the global variable SOMMalloc.

Parameters

size
The amount of memory to be allocated, in bytes.

Return Value

A pointer to the first byte of the allocated space.
Example

See SOMFree Function on page 51.
Related Information

SOMCalloc Function
SOMFree Function
SOMRealloc Function

54 programmer’s Reference for SOM and DSOM

SOMOutCharRoutine Function

SOMOutCharRoutine Function

Prints a character. This function is replaceable.
C Syntax
int (*SOMOutCharRoutine) (char ¢);
Description

SOMOutCharRoutine is a replaceable character output routine. It is invoked by SOM
whenever a character is generated by one of the SOM error-handling or debugging macros.
The default implementation outputs the specified character to stdout. To change the
destination of character output, store the address of a user-written character output routine
in global variable SOMOutCharRoutine.

A new function, somSetOutChar, may be preferred over the SOMOutCharRoutine
function. The somSetOutChar function enables each application (or thread) to have a
customized character output routine.

Parameters

The character to be output.
Return Value
Returns 0 if an error occurs and 1 otherwise.
Example

#include <som.h>

#pragma linkage (myCharacterOutputRoutine, system)
/* Define a replacement routine: */

int SOMLINK myCharacterOutputRoutine (char c)

{
}

/* After the next stmt all output */
/* will be sent to the new routine */
SOMOutCharRoutine = myCharacterOutputRoutine;

Related Information

(Customized code goes here)

somLPrintf Function
somPrefixLevel Function
somPrintf Function
somSetOutChar Function

somVprintf Function

Chapter 1. SOM Kernel 55

SOMRealloc Function

SOMRealloc Function

Changes the size of a previously allocated region of memory.
C Syntax
somToken (*SOMRealloc) (somToken ptr, size_t size);
Description

The SOMRealloc function changes the size of the previously allocated region of memory
pointed to by ptr so that it contains size bytes. The new size may be greater or less than
the original size. The SOMRealloc function has the same interface as the C realloc
function and performs the same basic function but with some supplemental error checking.
If an error occurs, the SOMError Function is called. This routine is replaceable by
changing the value of the global variable SOMRealloc.

Parameters

ptr
A pointer to the previously allocated region of memory. If NULL, a new region of
memory of size bytes is allocated.

size
The size in bytes for the re-allocated storage. If zero, the memory pointed to by ptr is
freed.

Return Value

A pointer to the first byte of the re-allocated space. (A pointer is returned because the block
of storage may need to be moved to increase its size.)

Related Information

SOMCalloc Function
SOMFree Function
SOMMalloc Function

56 Programmer’s Reference for SOM and DSOM

SOM_Assert Macro

SOM_Assert Macro

Asserts that a boolean condition is true.
Syntax

void SOM_Assert (
boolean condition,
long errorCode);

Description

The SOM_Assert macro is used to place boolean assertions in a program:

« If condition is FALSE, and errorCode indicates a warning-level error and
SOM_WarnLevel global variable is set to be greater than zero, then a warning
message is output.

e If condition is FALSE and errorCode indicates a fatal error, an error message is output
and the process is terminated.

» If condition is TRUE and SOM_AssertLevel global variable is set to be greater than
zero, then an informational message is output.

External (Global) Data

long SOM WarnLevel; /* default = 0 */
long SOM AssertLevel; /* default 0 */

Parameters
condition
A boolean expression that is expected to be TRUE (nonzero).
errorCode
The integer error code for the error to be raised if condition is FALSE.
Example

#include <som.h>
main ()

{

SOM_WarnLevel = 1;
SOM Assert (2==2, 29);

}
Related Information

SOM_Expect Macro
SOM_Test Macro
SOM_TestC Macro

Chapter 1. SOM Kernel 57

SOM_CreateLocalEnvironment Macro

SOM_CreateLocalEnvironment Macro

Creates and initializes a local Environment structure.
Syntax
Environment * SOM_CreateLocalEnvironment ();
Description

The SOM_CreateLocalEnvironment macro creates a local Environment structure. This
Environment structure can be passed to methods as the Environment argument so that
exception information can be returned without affecting the global environment.

The SOM_InitEnvironment macro differs from the SOM_CreateLocalEnvironment
macro in how the local Environment structure is created. If the local Environment structure
is to be created on the stack, use the SOM_InitEnvironment macro to initialize it. If the
local Environment structure is to be created on the heap, use the
SOM_CreateLocalEnvironment macro to create and initialize it.

Expansion
SOM_CreateLocalEnvironment expands to an expression of type (Environment *).

C Example

Environment *ev;
ev = SOM_CreateLocalEnvironment () ;
_myMethod (obj, ev);

SOM DestroyLocalEnvironment (ev) ;

Related Information

SOM_DestroyLocalEnvironment Macro
SOM _InitEnvironment Macro
SOM_UninitEnvironment Macro
somGetGlobalEnvironment Function
Environment (somcorba.h)

58 Programmer’s Reference for SOM and DSOM

SOM_DestroyLocalEnvironment Macro

SOM_DestroyLocalEnvironment Macro

Destroys a local Environment structure.

Syntax
SOM_DestroyLocalEnvironment (Environment * ev);
Description
The SOM_DestroyLocalEnvironment macro destroys a local Environment structure,
such as one created using the SOM_CreateLocalEnvironment macro.
Parameters
ev
A pointer to the Environment structure to be discarded.
Expansion
SOM_DestroyLocalEnvironment first invokes the somExceptionFree function on the
Environment structure; then it invokes the SOMFree Function on it to free the memory it
occupies.
Example

Environment *ev;
ev = SOM_CreatelocalEnvironment () ;
_myMethod (obj, ev);

:;:éb}[_DestroyLocalEnvironment (ev) ;
Related Information

SOM_CreatelLocalEnvironment Macro
SOM_UninitEnvironment Macro
somExceptionFree Function

Chapter 1. SOM Kernel 59

SOM_Error Macro

SOM_Error Macro

Reports an error condition.

Syntax
void SOM_Error (long errorCode);

Description
The SOM_Error macro invokes the SOMError error handling procedure with the specified
error code, supplying the filename and line number where the macro was invoked. The
default implementation of SOMError outputs a message containing the error code,
filename, and line number. Additionally, if the last digit of the error code indicates a serious
error (that is, value SOM_Fatal), the process is terminated.

Parameters

errorCode
The integer error code for the error to be reported.

Related Information
SOMError Function

60 Programmer’s Reference for SOM and DSOM

SOM_Expect Macro

SOM_Expect Macro

Asserts that a boolean condition is expected to be true.
Syntax
void SOM_Expect (boolean condition);
Description

The SOM_Expect macro is used to place boolean assertions that are expected to be true
into a program:

« If condition is FALSE and SOM_WarnLevel is set to be greater than zero, then a
warning message is output.

e If condition is TRUE and SOM_AssertLevel is set to be greater than zero, then an
informational message is output.

Parameters

condition
A boolean expression that is expected to be TRUE (nonzero).

Example
SOM_Expect (2==2) ;
Related Information
SOM_Assert Macro
SOM_Test Macro
SOM_TestC Macro

Chapter 1. SOM Kernel 61

SOM_GetClass Macro

SOM_GetClass Macro

Returns the class object of which a SOM object is an instance.
Syntax
SOMClass SOM_GetClass (SOMObject objPtr);
Description

The SOM_GetClass macro returns the class object of which obj is an instance. This is
done without recourse to a method call on the object. The somGetClass method
introduced by SOMObiject is also intended to return the class of which an object is an
instance, and the default implementation provided for this method by SOMObject uses the

macro.

It is generally recommended that the somGetClass method call be used, since it cannot be
known whether the class of an object wishes to provide special handling when its address
is requested from an instance. But, there are (rare) situations where a method call cannot
be made, and this macro can then be used. If you are unsure as to whether to use the

method or the macro, you should use the method.
Parameters

objPtr
A pointer to the object whose class is needed.

C++ Example

#include <somcls.xh>
#include <animal.xh>
main ()
{
Animal *a = new Animal;
SOMClass clsl = SOM GetClass(a) ;
SOMClass cls2 = a->somGetClass() ;
if (clsl == cls2)
printf (“macro and method for getClass the
else
printf ("macro and method for getClass not

Related Information

somGetClass Method

62 Programmer’s Reference for SOM and DSOM

same for Animal\n”) ;

same for Animal\n”) ;

SOM_InitEnvironment Macro

SOM_InitEnvironment Macro

Syntax

Description

Parameters

Expansion

C Example

Initializes a local Environment structure.
void SOM_InitEnvironment (Environment *ev);

The SOM_InitEnvironment macro initializes a locally declared Environment structure.
This Environment structure can then be passed to methods as the Environment
argument so that exception information can be returned without affecting the global
environment.

The SOM_InitEnvironment macro differs from the SOM_CreateLocalEnvironment
macro in how the local Environment structure is created. If the local Environment structure
is to be created on the stack, use the SOM_InitEnvironment macro to initialize it. If the
local Environment structure is to be created on the heap, use the
SOM_CreateLocalEnvironment macro to create and initialize it.

ev
A pointer to the Environment structure to be initialized.

The SOM_InitEnvironment macro initializes an Environment structure to zero.

Environment ev;
SOM_InitEnvironment (&ev) ;
_myMethod (obj, &ev);

SOM_UninitEnvironment (&ev) ;

Related Information

SOM_CreatelLocalEnvironment Macro
SOM_DestroyLocalEnvironment Macro
SOM_UninitEnvironment Macro
somGetGlobalEnvironment Function

Chapter 1. SOM Kernel 63

SOM_NoTrace Macro

SOM_NoTrace Macro

Turns off method debugging.

Syntax
SOM_NoTrace (<token> className, <token> methodName);
Description
The SOM_NoTrace macro is used to turn off method debugging. Within an implementation
file for a class, before #including the implementation (.ih or .xih) header file for the class,
#define the classNameMethodDebug macro to be SOM_NoTrace. Then,
classNameMethodDebug will have no effect.
Parameters
className
The name of the class for which tracing will be turned off, given as a simple token
rather than a string.
methodName
The name of the method for which tracing will be turned off, given as a simple token
rather than a string.
Expansion
The SOM_NoTrace macro has a null (empty) expansion.
Example

Within an implementation file:

#define AnimalMethodDebug(c,m) SOM_NoTrace (c,m)
#include <animal.ih>
/* Now AnimalMethodDebug does nothing */

64 Programmer’s Reference for SOM and DSOM

SOM_ParentNumResolve Macro

SOM_ParentNumResolve Macro

Syntax

Description

Parameters

Expansion

Example

Obtains a pointer to a method procedure from a list of method tables. Used by C and C++
implementation bindings to implement parent method calls.

somMethodPtr SOM_ParentNumResolve (
<token> introClass,
long parentNum,
somMethodTabs parentMtabs,
<token> methodName);

The SOM_ParentNumResolve macro invokes the somParentNumResolve function to
obtain a pointer to the static method procedure that implements the specified method for
the specified parent. The method is specified by indicating the introducing class, IntroClass,
and the method name, methodName.

introClass
The name of the class that introduces methodName. This name should be given as a
simple token, rather than a quoted string.

parentNum
The position of the desired parent. The first (leftmost) parent of a class has position 1.

parentMtabs
A list of parent method tables that the CClassData.parentMtab field points to.

methodName
The name of the method to be resolved. This name should be a simple token, rather
than a quoted string.

The expansion of the macro produces an expression that is appropriately typed for
application of the evaluated result to the indicated method’s arguments.

#include <somcls.h>

main ()

{

SOMClassMgr cm = somEnvironmentNew () ;

SOM_ParentNumResolve (SOMObject, 1, somClassCClassData.parentMtab,
somDumpSelfInt)
(_soMClass, 1) ;

}

Related Information

somParentResolve Function

Chapter 1. SOM Kernel 65

SOM_Resolve Macro

SOM_Resolve Macro

Syntax

Description

Parameters

Expansion

Example

Obtains a pointer to a static method procedure.

somMethodPtr SOM_Resolve (
SOMObject objPtr,
<token> className,
<token> methodName);

SOM_Resolve invokes somResolve to obtain a pointer to the static method procedure that
implements the specified method for the specified object. This pointer provides for efficient
repeated casted invocations on instances of the class of the object on which the resolution
is done. You must know the class name that introduces the method and the method name
to use this macro. Otherwise, use somResolveByName, somFindMethod or
somFindMethodOk. SOM_Resolve can only obtain a method procedure for a static
method. Unlike SOM_ResolveNoCheck, SOM_Resolve performs several consistency
checks on the objected pointed to by objPtr.

objPtr
A pointer to the object to which the resolved method procedure will be applied.

className
The name of the class that introduces methodName. This nhame should be a simple
token, rather than a quoted string.

methodName
The name of the method to be resolved. This name should be a simple token, rather
than a quoted string.

SOM_Resolve uses the className and methodName to construct the method token for
the specified method, then invokes the somResolve function. The macro expands to an
expression that represents the entry-point address of the method procedure. This value can
be stored in a variable and used for subsequent invocations of the method.

Animal myObj = AnimalNew() ;

somMethodProc *procPtr;

procPtr = SOM Resolve (myObj, Animal, setSound) ;

/* note that procPtr will need to be typecast when used */

Related Information

SOM_ResolveNoCheck Macro
somcClassResolve Function
somResolve Function
somResolveByName Function
somClassDispatch Method
somFindMethod(Ok) Methods

66 Programmer’s Reference for SOM and DSOM

SOM_ResolveNoCheck Macro

SOM_ResolveNoCheck Macro

Obtains a pointer to a static method procedure without performing consistency checks.
Syntax

somMethodPtr SOM_ResolveNoCheck (
SOMObject object,
<token> className,
<token> methodName);

Description

SOM_ResolveNoCheck invokes the somResolve function to obtain a pointer to the
method procedure that implements the specified method for the specified object. Use this
pointer for efficient repeated invocations of the same method on the same type of objects.
The name of the class that introduces the method and the name of the method must be
known at compile time. Otherwise, use somFindMethod or somFindMethodOk.

SOM_ResolveNoCheck can only be used to obtain a method procedure for a static
method (one defined in the IDL specification for a class) and not a method added to a class
at run time. Unlike the SOM_Resolve macro, the SOM_ResolveNoCheck macro does not
perform any consistency checks on the object pointed to by objPtr.

Parameters

objPtr
A pointer to the object that the resolved method procedure will be applied.

className
The name of the class that introduces methodName. This name should be a simple
token, rather than a quoted string.

methodName
The name of the method to be resolved. This name should be a simple token, rather
than a quoted string.

Expansion

SOM_ResolveNoCheck uses the className and methodName to construct an expression
whose value is the method token for the specified method, then invokes somResolve. The
macro expands to an expression that represents the entry-point address of the method
procedure. This value can be stored in a variable and used for subsequent invocations.

Example

Animal myObj = AnimalNew() ;
somMethodProc *procPtr;
procPtr = SOM ResolveNoCheck (myObj, Animal, setSound)

Related Information
SOM_Resolve Macro
somClassResolve Function
somResolve Function
somResolveByName Function
somClassDispatch Method
somFindMethod(Ok) Methods

Chapter 1. SOM Kernel 67

SOM_SubstituteClass Macro

SOM_SubstituteClass Macro

Provides a convenience macro for invoking the somSubstituteClass method.

Syntax
long SOM_SubstituteClass (
<token> oldClass,
<token> newClass);
Description
The method somSubstituteClass requires existing class objects as arguments. Therefore,
the macro SOM_SubstituteClass first assures that the classes named oldClass and
newClass exist, and then calls the method somSubstituteClass with these class objects
as arguments.
Parameters
oldClass
The name of the class to be substituted, given as a simple token rather than a quoted
string.
newClass
The name of the class that will replace oldClass, given as a simple token rather than a
quoted string.
Example

See somSubstituteClass Method on page 129.
Related Information

somSubstituteClass Method

68 Programmer’s Reference for SOM and DSOM

SOM_Test Macro

SOM_Test Macro

Tests whether a boolean condition is true; if not, a fatal error is raised.

Syntax
void SOM_Test (boolean expression);
Description
The SOM_Test macro tests the specified boolean expression:
» If expression is TRUE and SOM_AssertLevel is set to a value greater than zero, then
an information message is output.
» If expression is FALSE, an error message is output and the process is terminated.
The SOM_TestC macro is similar, except that it only outputs a warning message in this
situation.
Parameters
expression

The boolean expression to test.
External (Global) Data
long SOM AssertLevel; /* default is 0 */
C Example

#include <som.h>
main ()

{

SOM_AssertLevel = 1;
SOM_Test (1=1) ;

}
Related Information

SOM_Assert Macro
SOM_Expect Macro
SOM_TestC Macro

Chapter 1. SOM Kernel 69

SOM_TestC Macro

SOM_TestC Macro

Tests whether a boolean condition is true; if not, a warning message is output.

Syntax
void SOM_TestC (boolean expression);
Description
The SOM_TestC macro tests the specified boolean expression:
» If expression is TRUE and SOM_AssertLevel is set to a value greater than zero, then
an information message is output.
e If expression is FALSE and SOM_WarnLevel is set to a value greater than zero, then a
warning message is output.
The SOM_Test macro is similar, except that it raises a fatal error in this situation.
Parameters

expression
The boolean expression to test.

External (Global) Data

long SOM AssertLevel; /* default is 0 */
long SOM WarnLevel; /* default is 0 */

C Example

#include <som.h>
main ()

{

SOM_WarnLevel = 1;
SOM_TestC(1=1);

}
Related Information

SOM_Assert Macro
SOM_Expect Macro
SOM_TestC Macro

70 Programmer’s Reference for SOM and DSOM

SOM_UninitEnvironment Macro

SOM_UninitEnvironment Macro

Uninitializes a local Environment structure.
Syntax
void SOM_UninitEnvironment (Environment *ev);
Description

The SOM_UninitEnvironment macro uninitializes a locally declared Environment
structure.

Parameters

ev
A pointer to the Environment structure to be uninitialized.

Expansion

The SOM_UninitEnvironment invokes the somExceptionFree Function on the specified
Environment structure.

C Example

Environment ev;
SOM_InitEnvironment (&ev) ;
_myMethod (obj, &ev);

:;:éb}[_UninitEnvironment (&ev) ;
Related Information

SOM_DestroyLocalEnvironment Macro
SOM_InitEnvironment Macro

Chapter 1. SOM Kernel 71

SOM_WarnMsg Macro

SOM_WarnMsg Macro

Reports a warning message.
Syntax
void SOM_WarnMsg (string msgQ);
Description

If SOM_WarnLevel global variable is set to a value greater than zero, the SOM_WarnMsg
macro prints the specified message, along with the filename and line number where the
macro was invoked.

Parameters

msg
The warning message to be output.

Related Information
SOM_Error Macro

72 Programmer’s Reference for SOM and DSOM

SOMClass Class

SOMClass Class

File Stem

Base

Metaclass

SOMClass is the root class for all SOM metaclasses. That is, all SOM metaclasses must
be subclasses of SOMClass or some other class derived from it. It defines the essential
behavior common to all SOM classes. It provides a suite of methods for initializing class
objects, generic methods for manufacturing instances of those classes, and methods that
dynamically obtain or update information about a class and its methods at run time.

Just as all SOM classes are expected to have SOMObject as their base class, all SOM
classes are expected to have SOMClass or a class derived from SOMClass as their
metaclass. Metaclasses define class methods (sometimes called factory methods or
constructors) that manufacture objects from any class object that is defined as an instance
of the metaclass.

To define your own class methods, define your own metaclass by subclassing SOMClass
or one of its subclasses. Three methods that SOMClass inherits and overrides from
SOMObject are typically overridden by any metaclass that introduces instance data:
somDefaullnit, somDestruct and somDumpSelfint. The new methods introduced in
SOMClass that are frequently overridden are somNew, somRenew and somClassReady.

Other reasons for creating a new metaclass include tracking object instances, automatic
garbage collection, interfacing to a persistent object store or providing/managing
information that is global to a set of object instances.

somcls

SOMObject Class

SOMClass

Note: SOMCIlass is the only class with itself as metaclass.

Ancestor Classes

Types

SOMObject Class

typedef sequence <SOMClass> SOMClassSequence;

struct somOffsetInfo {
SOMClass cls;
long offset
}i

typedef sequence <somOffsetInfo> SOMOffsets;

C++ Example

#include <somcls.xh>

main ()
int i;
SOMClassMgr *scm = somEnvironmentNew () ;
somOffsets so = SOMClass-> get somInstanceDataOffsets() ;

for (i=0; i<so. length; i++)
printf (“In an instance of SOMClass, %s data starts at %d\n”,
so. buffer[i] ->cls->somGetName () ,

Chapter 1. SOM Kernel 73

SOMClass Class

so. buffer[i] ->offset);

New Attributes

readonly attribute somOffsets somInstanceDataOffsets
_get_somlinstanceDataOffsets returns a sequence of structures, each of which
indicates an ancestor of the receiver class (or the receiver class itself) and the offset to
the beginning of the instance data introduced by the indicated class in an instance of
the receiver class. The somOffsets information can be used in conjunction with
information derived from calls to a SOM Interface Repository to completely determine
the layout of SOM objects at runtime.

New Methods

The SOMClass Class introduces the following groups for methods. These method groups
are Instance Creations (Factory), Initialization and Termination, Access, Testing and
Dynamic.

Group: Instance Creation
somAllocate Method
somDeallocate Method
somNew(Nolnit) Methods
somRenew(NolnitNoZero) Methods

Group: Initialization/Termination

somAddDynamicMethod Method
somClassReady Method

Group: Access
somGetinstancePartSize Method
somGetinstanceSize Method
somGetinstanceToken Method
somGetMemberToken Method
somGetMethodData Method
somGetMethodDescriptor Method
somGetMethodIndex Method
somGetMethodToken Method
somGetName Method
somGetNthMethodData Method
somGetNthMethodInfo Method
somGetNumMethods Method
somGetNumStaticMethods Method
somGetParents Method
somGetVersionNumbers Method

Group: Testing

somCheckVersion Method

74 Programmer's Reference for SOM and DSOM

somDescendedFrom Method
somSupportsMethod Method

Group: Dynamic

somDefinedMethod Method
somFindMethod(Ok) Methods
somFindSMethod(Ok) Method
somLookupMethod Method

Overridden Methods

somDefaultlnit Method
somDestruct Method
sombDumpSelfint Method

Deprecated Methods

Use of the following methods is discouraged:

somAddStaticMethod
somGetApplyStub
somGetClassData
somGetClassMtab
somGetinstanceOffset
somGetMethodOffset
somGetParent

somGetPClIsMtab
somGetPClIsMtabs

somGetRdStub

sominitClass

somiInitMIClass

somOverrideMtab
somOverrideSMethod
somSetClassData
somSetMethodDescriptor
_get_sombDirectInitClasses attribute
_set_somDirectInitClasses attribute

SOMClass Class

Chapter 1. SOM Kernel 75

SOMClass Class

For these reasons:

These methods are used in constructing classes, and this capability is provided by the
somBuildClass Function. Class construction in SOM is currently a fairly complex
activity, and it is likely to become even more so as the SOMObijects kernel evolves. To
avoid breaking source code that constructs classes, you are advised to always use
somBuildClass to build SOM classes. The SOM language bindings always use
somBuildClass.

These methods are used for customizing aspects of SOM classes, such as method
resolution and object creation. Doing this requires that metaclasses override various
methods introduced by SOMClass. However, if this is done without the Cooperation
Framework that implements the SOM Metaclass Framework, SOMObjects cannot
guarantee that applications will function correctly. Unfortunately, the Cooperation
Framework (while available to SOM users as an experimental feature) is not officially
supported by the SOMObjects Toolkit. So, this is another reason why the following
methods are deprecated.

Some of these methods are now obsolete. Their use is discouraged.

76 Programmer’s Reference for SOM and DSOM

somAddDynamicMethod Method

somAddDynamicMethod Method

IDL Syntax

Description

Parameters

C Example

Adds a new dynamic instance method to a class. Dynamic methods are not part of the
declared interface to a class of objects, and are therefore not supported by implementation
and usage bindings. Instead, dynamic methods provide a way to dynamically add new
methods to a class of objects during execution. SOM provides no standard protocol for
informing a user of the existence of dynamic methods and the arguments they take.
Dynamic methods must be invoked using name-lookup or dispatch resolution.

void somAddDynamicMethod (
in somld methodld,
in somld methodDescriptor,
in somMethodPtr method,
in somMethodPtr applyStub);

The somAddDynamicMethod method adds a new dynamic instance method to the
receiving class. This involves recording the method'’s ID, descriptor, method procedure
(specified by method), and apply stub in the receiving class’s method data.

The arguments to somAddDynamicMethod should be non-null and obey the requirements
expressed below. This is the responsibility of the implementor of a class, who in general
has no knowledge of whether clients of this class will require use of the applyStub
argument.

receiver
A pointer to a SOM class object.

methodld
A somld that names the method.

methodDescriptor
A somld appropriate for requesting information concerning the method from the SOM
IR. This is currently of the form <className>::<methodName>.

method
A pointer to the procedure that will implement the new method. The first argument of
this procedure is the address of the object on which it is being invoked.

applyStub

A pointer to a procedure that returns nothing and receives as arguments: a method
receiver; an address where the return value from the method call is to be stored; a
pointer to a method procedure; and a va_list containing the arguments to the method.
The applyStub procedure (which is usually called by somClassDispatch Method)
must unload its va_list argument into separate variables of the correct type for the
method, invoke its procedure argument on these variables, and then copy the result of
the procedure invocation to the address specified by the return value argument.

/* New dynamic method ”"newMethodl” for class "XXX" */
static char *somMN newMethodl = "newMethodl”;

static somId somId newMethodl &somMN_newMethodl;
static char *somDS_newMethodl "XXX::newMethodl” ;
static somId somDI_newMethodl &somDS newMethodl;
static void SOMLINK somAP_ newMethodl (SOMObject somSelf,

Chapter 1. SOM Kernel 77

somAddDynamicMethod Method

void * retVal,
somMethodProc * methodPtr,
va_ list _ ap)

void* somSelf = va arg(_ ap, SOMObject);

int argl = va_arg(__ap, int);

SOM_IgnoreWarning(retVal);

((somTD_SOMObject newMethodl) _ methodPtr) (_ somSelf, argl);

}

main ()

{
__somAddDynamicMethod (
XXXClassData.classObject, /* Receiver (class object) */

somId newMethodl, /* method name somId */
somDI_newMethodl, /* method descriptor somId */
(somMethodProc *) newMethodl, /* method procedure */

(somMethodProc *) somAP newMethodl); /* method apply stub */

Original Class
SOMClass Class

Related Information
somGetMethodDescriptor Method

78 Programmer’s Reference for SOM and DSOM

somAllocate Method

somAllocate Method

Supports class-specific memory allocation for class instances. Cannot be overridden.
IDL Syntax
string somAllocate (in long size);
Description

When building a class, the somBuildClass Function is responsible for registering the
procedure that will be executed when this method is invoked on the class. The default
procedure registered by somBuildClass uses the SOMMalloc Function, but the IDL
modifier somallocate can be used in the SOM IDL class implementation section to indicate
a different procedure. Users of this method should be sure to use the dual method,
somDeallocate, to free allocated storage. Also, if the IDL modifier somallocate is used to
indicate a special allocation routine, the IDL modifier somdeallocate should be used to
indicate a dual procedure to be called when the somDeallocate method is invoked.

Parameters

receiver
A pointer to the class object whose memory allocation method is desired.

size
The number of bytes to be allocated.

string
A pointer to the first byte of the allocated memory region, or NULL if sufficient memory
is not available.

C++ Example

#include <som.xh>
#include <somcls.xh>
main ()

SOMClassMgr *cm = somEnvironmentNew () ;

/* Use SOMClass’s instance allocation method */
string newRegion = SOMClass->somAllocate(20);

}
Original Class

SOMClass Class
Related Information

somDeallocate Method

Chapter 1. SOM Kernel 79

somCheckVersion Method

somCheckVersion Method

IDL Syntax

Description

Parameters

Checks a class for compatibility with the specified major and minor version numbers. Not
generally overridden.

boolean somCheckVersion (
In long majorVersion,
In long minorVersion);

somCheckVersion checks the receiving class for compatibility with the specified major and
minor version humbers. An implementation is compatible with the specified version
numbers if it has the same major and a minor version number that is equal to or greater
than minorVersion. The version number pair (0,0) is considered to match any version.

This method is called automatically after creating a class object to verify that a dynamically
loaded class definition is compatible with a client application.

receiver
A pointer to the SOM class whose version information should be checked.

majorVersion

This value usually changes only when a significant enhancement or incompatible
change is made to a class.

minorVersion
This value changes whenever minor enhancements or fixes are made to a class. Class
implementors usually maintain downward compatibility across changes in the
minorVersion number.

Return Value

C Example

Returns 1 (true) if the implementation of this class is compatible with the specified major
and minor version humber, and 0 (false) otherwise.

#include <animal.h>
main ()
{
Animal myAnimal;
myAnimal = AnimalNew () ;
if (_somCheckVersion(Animal, 0, 0))
somPrintf ("Animal IS compatible with 0.0\n”);
else
somPrintf (“Animal IS NOT compatible with 0.0\n”);
if (_somCheckVersion(Animal, 1, 1))
somPrintf ("Animal IS compatible with 1.1\n”);
else
somPrintf (“Animal IS NOT compatible with 1.1\n”);
__somFree (myAnimal) ;

Assuming that the implementation of Animal is version 1.0, this program produces the
following output:

Animal IS compatible with 0.0
Animal IS NOT compatible with 1.1

80 Programmer’s Reference for SOM and DSOM

somCheckVersion Method

Original Class
SOMClass Class

Chapter 1. SOM Kernel 81

somClassReady Method

somClassReady Method

Indicates that a class has been constructed and is ready for normal use. Designed to be
overridden.

IDL Syntax
void somClassReady ();
Description

somClassReady is invoked by the somBuildClass Function after constructing and
initializing a class object. The default implementation of this method provided by SOMClass
simply registers the newly constructed class with SOMClassMgrObject. Metaclasses can
override this method to augment class construction with additional registration protocol.

To have special processing done when a class object is created, you must define a
metaclass for the class that overrides somClassReady. The final statement in any
overriding method should invoke the parent method to ensure that the class is properly
registered with SOMClassMgrObject. Users of the C and C++ implementation bindings for
SOM classes should never invoke the somClassReady method directly; it is invoked
automatically during class construction.

Parameters

receiver
A pointer to the class object that should be registered.

Original Class
SOMClass Class

82 Programmer’s Reference for SOM and DSOM

somDeallocate Method

somDeallocate Method

Frees memory originally allocated by the somAllocate method from the same class object.
Cannot be overridden.

IDL Syntax
void somDeallocate (in string memPtr);
Description

The somDeallocate method is intended for use to free memory allocated using its dual
method, somAllocate. When building a class, the somBuildClass Function is responsible
for registering the procedure that will be executed when this method is invoked on the
class. The default procedure registered by somBuildClass uses the SOMFree Function,
but the IDL modifier somdeallocate can be used in the SOM IDL class implementation
section to indicate a different procedure. Users of this method should be sure that the dual
method, somAllocate, was originally used to allocate storage. Also, if the IDL modifier
somdeallocate is used to indicate a special deallocation routine, the IDL modifier
somallocate should be used to indicate a dual procedure to be called when somAllocate
is invoked.

Parameters

receiver
A pointer to the class object whose somAllocate was originally used to allocate the
memory now to be freed.

memPtr
A pointer to the first byte of the region of memory that is to be freed.

Original Class
SOMClass Class
Related Information

somAllocate Method

Chapter 1. SOM Kernel 83

somDefinedMethod Method

somDefinedMethod Method

Determines whether a class defines an implementation for a method.
IDL Syntax

somMethodPtr somDefinedMethod (in somMToken method);
Note: This method does not take an Environment pointer.

Description

If the class that executes this method defines an implementation for the indicated method
(because the class either introduces the method, or overrides it), a pointer to code that
invokes this implementation is returned. Otherwise, NULL is returned.

Parameters

receiver
A pointer to a class.

method
A method token.

Return Value

A pointer to code that invokes the implementation defined by the receiver for the indicated
method. Or, if the receiver does not define an implementation for the method, a null code
pointer is returned.

C++ Example

#include <somcm.xh>
#include <somcls.xh>
void main ()

{

SOMClassMgr *cmObject = somEnvironmentNew(); // the cm
SOMClass *cmClass = cmObject->somGetClass(); // the cm class
SOMClass *cmMeta = cmClass->somGetClass() ; // SOMClass
somTD_SOMObject somPrintSelf fp = (somTD SOMObject somPrintSelf)
cmMeta->somDefinedMethod (SOMObjectClassData.somPrintSelf) ;
if (fp)

fp(cmClass); // output: {The class "SOMClassMgr"}

}
Original Class

SOMClass Class

84 Programmer’s Reference for SOM and DSOM

somDescendedFrom Method

somDescendedFrom Method

Tests whether one class is derived from another. Not generally overridden.
IDL Syntax

boolean somDescendedFrom (in SOMClass aClassObj);

Description
Tests whether the receiver class is derived from a given class. For programs that use

classes as types, this method can be used to ascertain whether the type of one object is a
subtype of another. This method considers a class object to be descended from itself.

Parameters

receiver
A pointer to the class object to be tested.

aClassObj
A pointer to the potential ancestor class.

Return Value

Returns 1 (true) if receiver is derived from aClassObj, and O (false) otherwise.
C Example

#include <dog.h>

AnimalNewClass (0,0) ;
DogNewClass (0,0) ;

if (somDescendedFrom (Dog, Animal))
somPrintf ("Dog IS descended from Animal\n”) ;
else
somPrintf ("Dog is NOT descended from Animall\n”) ;
if (somDescendedFrom (_ Animal, Dog))
somPrintf ("Animal IS descended from Dog\n”) ;
else

somPrintf ("Animal is NOT descended from Dog\n”) ;
This program produces the following output:

Dog IS descended from Animal
Animal is NOT descended from Dog

Original Class
SOMClass Class
Related Information
somlsA Method

somlsinstanceOf Method

Chapter 1. SOM Kernel 85

somFindMethod(Ok) Methods

somFindMethod(Ok) Methods

Finds the method procedure for a method and indicates whether it represents a
static method or a dynamic method. Not generally overridden.

IDL Syntax

boolean somFindMethod (
in somld methodld,
out somMethodPtr m);
boolean somFindMethodOk (
in somld methodld,
out somMethodPtr m);

Description

The somFindMethod and somFindMethodOk methods perform name-lookup method
resolution, determine the method procedure appropriate for performing the indicated
method on instances of the receiving class, and load m with the method procedure
address. For static methods, method procedure resolution is done using the instance
method table of the receiving class.

Name-lookup resolution must be used to invoke dynamic methods. Also, name-lookup can
be useful when different classes introduce methods of the same name, signature, and
desired semantics, but it is not known until runtime which of these classes should be used
as a type for the objects on which the method is to be invoked. If the signature of a method
is a not known, then method procedures cannot be be used directly, and the somDispatch
method can be used after dynamically discovering the signature to allow the correct
arguments can be placed on a va_list.

As with any methods that return procedure pointers, these methods allow repeated
invocations of the same method procedure to be programmed. If this is done, it up to the
programmer to prevent runtime errors by assuring that each invocation is performed either
on an instance of the class used to resolve the method procedure or of some class derived
from it. Whenever using SOM method procedure pointers, it is necessary to indicate the
arguments to be passed and the use of system linkage to the compiler, so it can generate a
correct procedure call. The way this is done depends on the compiler and the system being
used. However, C and C++ usage bindings provide an appropriate typedef for static
methods. The name of the typedef is based on the name of the class that introduces the
method, as illustrated in the example below.

Unlike the somFindMethod method, if the class does not support the specified method, the
somFindMethodOk method raises an error and halts execution.

If the class does not support the specified method, then *m is set to NULL and the return
value is meaningless. Otherwise, the returned result is true if the indicated method was a
static method.

Parameters

receiver
A pointer to the class object whose method is desired.

methodld
An ID that represents the name of the desired method. The somIldFromString
Function can used to obtain an ID from the method’s name.

86 Programmer’s Reference for SOM and DSOM

m

somFindMethod(Ok) Methods

A pointer to the location in memory where a pointer to the specified method’s
procedure should be stored. Both methods store a NULL pointer in this location (if the
method does not exist) or a value that can be called.

Return Value

The somFindMethod and somFindMethodOk methods return TRUE when the
method procedure can be called directly and FALSE when the method procedure is a
dispatch function.

Example

Assuming that the Animal class introduces the method set Sound, the type name for the
setSound method procedure type will be somTD Animal setSound, as shown below:

Original Class

#include <animal.h>
void main ()

{

/*

}
/*

Animal myAnimal;

somId somId setSound;

somTD_Animal setSound methodPtr;

Environment *ev = somGetGlobalEnvironment () ;

myAnimal = AnimalNew () ;

Note: Next three statements are equivalent to
_setSound (myAnimal, ev, "Roar!!!”);

somId setSound = somIdFromString(”setSound”) ;
__somFindMethod (somGetClass (myAnimal),

somId setSound, &methodPtr) ;
methodPtr (myAnimal, ev, “Roar!!!”);

_display(myAnimal, ev);
__somFree (myAnimal) ;

Program Output:
This Animal says
Roar!!!

*/

SOMClass Class

Related Information
somFindSMethod(Ok) Method
somSupportsMethod Method

somClassDispatch Method

somApply Function

somResolve Function

somClassResolve Function

somResolveByName Function

somParentNumResolve Function
SOM_Resolve Macro
SOM_ResolveNoCheck Macro

Chapter 1. SOM Kernel 87

somFindMethod(Ok) Methods

SOM_ParentNumResolve Macro

88 Programmer’s Reference for SOM and DSOM

somFindSMethod(Ok) Method

somFindSMethod(Ok) Method

Finds the method procedure for a static method. Not generally overridden.

IDL Syntax

somMethodPtr somFindSMethod (in somld methodlId);
somMethodPtr somFindSMethodOk (in somld methodld);

Description

somFindSMethod and somFindSMethodOk perform name-lookup resolution in a similar
fashion to somFindMethod and somFindMethodOKk, but are restricted to static methods.
See the description of somFindMethod for a discussion of name-lookup method
resolution. Because these methods are restricted to resolving static methods, their interface
is slightly different from the somFindMethod interfaces; a method procedure pointer is
returned when lookup is successful; otherwise NULL is returned.

somFindSMethodOk is identical to somFindSMethod except that an error is raised if the
indicated static method is not defined for the receiving class, and execution is halted.

Parameters

receiver
A pointer to a class object.

methodId
A somld representing the name of the desired method.

Return Value

The somFindSMethod and somFindSMethodOk methods return a pointer to the method
procedure that supports the specified method for the class.

Example

See somFindMethod(Ok) Methods on page 86.
Original Class

SOMClass Class
Related Information

somFindMethod(Ok) Methods

Chapter 1. SOM Kernel 89

somGetlnstancePartSize Method

somGetinstancePartSize Method

Returns the total size of the instance data structure introduced by a class. Not generally

overridden.
IDL Syntax
long somGetinstancePartSize ();
Description
somGetinstancePartSize returns the amount of space needed in an object of the specified
class or any of its subclasses to contain the instance variables introduced by the class.
Parameters

receiver
A pointer to the class object whose instance data size is desired.

Return Value

Returns the size (in bytes) of the instance variables introduced by this class, not its
ancestor or descendent classes. If a class introduces no instance variables, 0 is returned.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew () ;
animalClass = somGetClass (myAnimal) ;
instanceSize = somGetInstanceSize (animalClass);
instancePartSize = _somGetInstancePartSize (animalClass) ;
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal) ;

l,

Output from this program:

Instance Size: 8

Instance Offset: 0

Instance Part Size: 4

*/
Original Class
SOMClass Class
Related Information

somGetinstanceSize Method

90 Programmer’s Reference for SOM and DSOM

somGetlnstanceSize Method

somGetlnstanceSize Method

Returns the size of an instance of a class. Not generally overridden.

IDL Syntax

long somGetinstanceSize ();

Description

The somGetlinstanceSize method returns the total amount of space needed in an instance
of the specified class.

Parameters

receiver
A pointer to the class object whose instance size is desired.

Return Value

The somGetinstanceSize method returns the size, in bytes, of each instance of this class.
This includes the space required for instance variables introduced by this class and all of its
ancestor classes.

C Example

#include <animal.h>
main ()
{
Animal myAnimal;
SOMClass animalClass;
int instanceSize;
int instanceOffset;
int instancePartSize;

myAnimal = AnimalNew () ;
animalClass = somGetClass (myAnimal) ;
instanceSize = somGetInstanceSize (animalClass);
instancePartSize = _somGetInstancePartSize (animalClass) ;
somPrintf (”Instance Size: %d\n”, instanceSize);
somPrintf (”Instance Part Size: %d\n”, instancePartSize);
_somFree (myAnimal) ;

l,

Output from this program:

Instance Size: 8

Instance Offset: 0

Instance Part Size: 4

*/
Original Class
SOMClass Class
Related Information

somGetinstancePartSize Method

Chapter 1. SOM Kernel 91

somGetlnstanceToken Method

somGetinstanceToken Method

IDL Syntax

Description

Parameters

Returns a data access token for the instance data introduced by a class. Not generally
overridden.

somDToken somGetinstanceToken ();

Returns a data token pointing to the beginning of the instance data introduced by the
receiving class. This token can be passed to the function somDataResolve to locate this
instance data within an an instance of the receiver class or any class derived from it. The
instance data token for a class can be passed to the class method somGetMemberToken
to get a data token for a specific instance variables introduced by the class if the relative
offset of this instance variable is known. This approach is used by C and C++
implementation bindings to support public instance data for OIDL classes (IDL classes
currently have no public instance data).

A data token for the instance data introduced by a class is required by method procedures
that access data introduced by the method procedure’s defining class. For classes declared
using OIDL and IDL, the needed token is stored in the auxiliary class data structure, which
is an external data structure made statically available by the C and C++ language bindings
as <className>CClassData.instanceToken. Thus, this method call is not generally used
by C and C++ class implementors of classes declared using OIDL or IDL.

receiver
A pointer to a SOMClass object.

Return Value

Returns a data token for the beginning of the instance data introduced by the receiver.

Original Class

SOMClass Class

Related Information

somDataResolve Function
somGetinstancePartSize Method
somGetinstanceSize Method
somGetMemberToken Method

92 Programmer’s Reference for SOM and DSOM

somGetMemberToken Method

somGetMemberToken Method

Returns an access token for an instance variable. This is method is not generally

overridden.
IDL Syntax
somDToken somGetMemberToken (
long memberOffset,
somDToken instanceToken);
Description

The somGetMemberToken method returns an access token for the data member at offset
memberOffset within the block of instance data identified by instanceToken. The returned
token can subsequently be passed to the somDataResolve function to locate the data
member.

Typically, only the code that implements a class declared using OIDL requires access to this
method, and this code is normally provided by implementation bindings. Thus C and C++
programmers do not normally invoke this method.

Parameters

receiver
A pointer to a SOMClass object.

memberOffset
A 32-bit integer representing the offset of the required data member.

instanceToken

A token, obtained from somGetinstanceToken, that identifies the introduced portion of
the class.

Return Value

Returns an access token for the specified data member.
Original Class

SOMClass Class
Related Information

somDataResolve Function
somGetinstancePartSize Method
somGetinstanceSize Method
somGetinstanceToken Method

Chapter 1. SOM Kernel 93

somGetMethodData Method

somGetMethodData Method

Returns method information for a specified method, which must have been introduced by
the receiver class or an ancestor of that class. Not generally overridden.

IDL Syntax

boolean somGetMethodData (
in somld methodld,
out somMethodData md);

Description

The somGetMethodData method loads a somMethodData structure with data describing
the method identified by the passed methodld. If methodld does not identify a method
known to the receiver, then false is returned; otherwise, true is returned after loading the
somMethodData structure with data corresponding to the indicated method.

Parameters

receiver
A pointer to the class that produced the index value.

methodld
A somld for the method’s name.

md
A pointer to a somMethodData structure.

Return Value
Boolean true if successful; otherwise false.
C++ Example

#include <somcls.xh>
main

{

somEnvironmentNew () ;

somId gmiId = somIdFromString (”somGetMethodIndex”) ;
somMethodData md;

boolean rc = SOMClass->somGetMethodData (gmiId, &md) ;
SOM Test (rc && somCompareIds (gmiId, md.id)) ;

}
Related Information

somGetMethodData Method
somGetMethodIndex Method
somGetNthMethodInfo Method
somMethodData (somapi.h)

94 Programmer’s Reference for SOM and DSOM

somGetMethodDescriptor Method

somGetMethodDescriptor Method

Returns the method descriptor for a method. Not generally overridden.
IDL Syntax
somld somGetMethodDescriptor (in somld methodld);
Description

The somGetMethodDescriptor method returns the method descriptor for a specified
method of a class. (A method descriptor is a somld that represents the identifier of an
attribute definition or a method definition in the SOM Interface Repository. It contains
information about the method’s return type and the types of its arguments.) If the class
object does not support the indicated method, NULL is returned.

Parameters

receiver
A pointer to a SOMClass object.

methodId
A somld method descriptor.

Return Value
The somGetMethodDescriptor method returns a somld method descriptor.
Example

somId myMethodDescriptor;

myMethodDescriptor = somGetMethodDescriptor (Animal,
somIdFromString (“setSound”)) ;

/* after last use of myMethodDescriptor */

SOMFree (myMethodDescriptor)

Original Class
SOMClass Class
Related Information

somAddDynamicMethod Method
somGetMethodData Method
somGetNthMethodData Method
somGetNthMethodInfo Method

Chapter 1. SOM Kernel 95

somGetMethodIndex Method

somGetMethodIndex Method

IDL Syntax

Description

Parameters

Returns a class-specific index for a method. Not generally overridden.

long somGetMethodIndex (in somld methodld);

The somGetMethodIndex method returns an index that can be used in subsequent calls to
the same receiving class to determine information about the indicated (static or dynamic)
method, via the methods somGetNthMethodData and somGetNthMethodInfo. The
method must be appropriate for use on an instance of the receiver class; otherwise, a -1 is
returned. The index of a method can change over time if dynamic methods are added to the
receiver class or its ancestors. Thus, in dynamic multi-threaded environments, a critical
region should be used to bracket the use of this method and of subsequent requests for
method information based on the returned index.

receiver
A pointer to a SOMClass object.

methodld
A somld method ID.

Return Value

The somGetMethodIndex method returns a positive long if successful, and a -1 otherwise.

C++ Example

#include <somcls.xh>
main
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;

long index = _SOMClass->somGetMethodIndex (gmiId) ;
somMethodData md;
boolean rc = SOMClass->somGetNthMethodData (index, &md) ;

SOM Test (rc && somComparelIds (gmiId, md.id));

Original Class

SOMClass Class

Related Information

somGetNthMethodData Method
somGetNthMethodInfo Method
somMethodData (somapi.h)

96 Programmer’s Reference for SOM and DSOM

somGetMethodToken Method

somGetMethodToken Method

Returns a method access token for a static method. Not generally overridden.
IDL Syntax

somMToken somGetMethodToken (
in somld methodld);

Description

somGetMethodToken returns a method access token for a static method with the specified
ID that was introduced by the receiver class or an ancestor of the receiver class. This
method token can be passed to the somResolve function to select a method procedure
pointer from a method table of an object whose class is the same as, or is derived from the
class that introduced the method.

Parameters
receiver
A pointer to a SOMClass object.
methodld
A somld identifying a method.
Return Value
The somGetsMethodToken method returns a somMToken method-access token.
C Example

Assuming that the class Animal introduces the method setSound,

#include <animal.h>
main()
somMToken tok;
Animal myAnimal;
somTD_Animal setSound methodPtr; /* use typedef from animal.h */
Environment *ev = somGetGlobalEnvironment () ;
myAnimal = AnimalNew () ;

/*next 3 lines equivalent to _setSound(myAnimal, ev, “Roar!!!”);*/
tok = somGetMethodToken(Animal, somIdFromString(“setSound”)) ;
methodPtr = (somTD Animal setSound)somResolve (myAnimal, tok);

methodPtr (myAnimal, ev, “Roar!!!”);
_display(myAnimal, ev);
_somFree (myAnimal) ;

}
Original Class

SOMClass Class
Related Information

somClassResolve Function
somParentResolve Function
somResolve Function
somGetMethodData Method
somGetNthMethodInfo Method

Chapter 1. SOM Kernel 97

somGetName Method

somGetName Method

Returns the name of a class. Not generally overridden.
IDL Syntax
string somGetName ();
Description

somGetName returns the address of a zero-terminated string that gives the name of the
receiving class. This name may be used as a Repositoryld in the Repository lookup_id
method to obtain the IDL interface definition that corresponds to the receiving class.

The returned name is not necessarily the same as the statically known class name used by
a programmer to gain access to the class object because the method somSubstituteClass
may have been used to shadow the class having the static name used by the programmer.

Also, when the interface to a class’s instances is defined within an IDL module, the returned
name will not directly correspond to the names of the procedures and macros made
available by C and C++ usage bindings for accessing class objects (for example, the
classNameNewClass procedure, or the _className macro). This is because the
className token used in constructing the names of these procedures and macros uses an
underscore character to separate the module name from the interface name, while the
actual name of the corresponding class uses two colon characters instead of an underscore
for this purpose.

The somGetName method is not generally overridden. The returned address is valid until
the class object is unregistered or freed.

Parameters

receiver
The class whose name is desired.

Return Value

The somGetName method returns a pointer to the name of the class.

Note: The return value of a remote object should be freed using ORBFree() and the
return value of a local object should not be freed using SOMFree(). While
seemingly inconsistent, this was done to maintain backwards compatibility. To
simplify coding, invoke ORBFree() to free the result whether the object is remote or
not (as ORBFree() is a no-op in cases where it shouldn’t be called).

C++ Example
#include <animal.xh> /* assume Animal defined in the Zoo

module */
#include <string.h>

main ()
string className = Zoo AnimalNewClass(0,0)->somGetName () ;
SOM Test (!strcmp (className, “Zoo::Animal”));

}
Original Class

SOMClass Class
Related Information
lookup_id Method

98 Programmer’s Reference for SOM and DSOM

somGetName Method

somFindClass Method
somSubstituteClass Method

Chapter 1. SOM Kernel 99

somGetNthMethodData Method

somGetNthMethodData Method

Returns method information for the nth (static or dynamic) method known to a given class.
Not generally overridden.

IDL Syntax
boolean somGetNthMethodData (
in long index,
out somMethodData md)
Description
The somGetNthMethodData method loads a somMethodData structure with data
describing the method identified by the passed index. The index must have been produced
by a previous call to exactly the same receiver class; the same method will in general have
different indexes in different classes. If the index does not identify a method known to this
class, then false is returned; otherwise, true is returned after loading the somMethodData
structure with data corresponding to the indicated method.
Parameters

receiver
A pointer to the class that produced the index value.

index
An index returned as a result of a previous call of somGetMethodIndex.

md
A pointer to a somMethodData structure.

Return Value
Boolean true if successful; otherwise, false.
C++ Example

#include <somcls.xh>
main
somEnvironmentNew () ;
somId gmiId = somIdFromString (”somGetMethodIndex”) ;

long index = _SOMClass->somGetMethodIndex (gmiId) ;
somMethodData md;
boolean rc = _SOMClass->somGetNthMethodData (index, &md) ;

SOM_Test (rc && somCompareIds (gmiId, md.id)) ;

}
Related Information

somGetMethodData Method
somGetMethodIndex Method
somGetNthMethodInfo Method
somMethodData (somapi.h)

100 Programmer’s Reference for SOM and DSOM

somGetNthMethodInfo Method

somGetNthMethodInfo Method

Returns the somld of the nth (static or dynamic) method known to a given class. Also loads
a somld with a descriptor for the method. Not generally overridden.

IDL Syntax

somld somGetNthMethodInfo (
in long index,
out somld descriptor);

Description

The somGetNthMethodInfo method returns the identifier of a method, and loads the
somld whose address is passed with the somld of the method descriptor. Method
descriptors are used to support access to information stored in a SOM Interface Repository.

Parameters

receiver
A pointer to the class from which the index was obtained using method
somGetMethodIndex.

index
The nth method known to this class, whose method descriptor is desired.

descriptor
A pointer to a somld that will be loaded with a somld for the descriptor.

Return Value

The somld for the indicated method, if a method with the indicated index is known to the
receiver; otherwise, NULL.

C++ Example

#include <somcls.xh>
main ()
somEnvironmentNew () ;
somId descriptor, icId = somIdFromString (“somNew”) ;

long ndx = _SOMClass->somGetMethodIndex (icId) ;
somId methodId = SOMClass->somGetNthMethodInfo (ndx,
&descriptor) ;

SOM_Test (somComparelIds (icId, methodId)) ;
SOMFree (icId) ;
SOMFree (methodId) ;
SOMFree (descriptor) ;
Original Class
SOMClass Class
Related Information

somGetMethodIndex Method
somGetNthMethodData Method
Repository (repostry.idl)

Chapter 1. SOM Kernel 101

somGetNumMethods Method

somGetNumMethods Method

Returns the number of methods available for a class. Not generally overridden.
IDL Syntax
long somGetNumMethods ();
Description

The somGetNumMethods method returns the number of methods currently supported by
the specified class, including inherited methods (both static and dynamic).

The value that the somGetNumMethods method returns is the total number of methods
currently known to the receiving class as being applicable to its instances. This includes
both static and dynamic methods, whether defined in this class or inherited from an
ancestor class.

Parameters

receiver
A pointer to the class whose instance method count is desired.

Return Value

The somGetNumMethods method returns the total number of methods that are currently
available for the receiving class.

C Example

#include <animal.h>
main ()

{

int numMethods;

AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;

numMethods = somGetNumMethods (Animal) ;
somPrintf (“Number of methods supported by class: %$d\n”,
numMethods) ;

Original Class
SOMClass Class

Related Information
somGetNumStaticMethods Method

102 Programmer’s Reference for SOM and DSOM

somGetNumStaticMethods Method

somGetNumStaticMethods Method

Obtains the number of static methods available for a class. Not generally overridden.
IDL Syntax
long somGetNumStaticMethods ();
Description

The somGetNumStaticMethods method returns the number of static methods available in
the specified class, including inherited ones. Static methods are those that are represented
by entries in the class’s instance method table, and which can be invoked using method
tokens and offset resolution.

Parameters

receiver
A pointer to the class whose static method count is desired.

Return Value

The somGetNumStaticMethods method returns the total number of static methods that
are available for instances of the receiving class.

C Example

#include <animal.h>
main ()

long numMethods;
AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;
numMethods = somGetNumStaticMethods(Animal) ;

somPrintf (“Number of static methods supported by class:
%$d\n” ,numMethods) ;

Original Class
SOMClass Class

Related Information
somGetNumMethods Method

Chapter 1. SOM Kernel 103

somGetParents Method

somGetParents Method

Gets a pointer to a class’s parent (direct base) classes. Not generally overridden.

IDL Syntax

SOMClassSequence somGetParents ();

Description

The somGetParents method returns a sequence containing pointers to the parents of the
receiver.

Parameters

receiver
A pointer to the class whose parent (base) classes are desired.

Return Value

The somGetParents method returns a sequence of pointers to the parents of the receiver,
or NULL otherwise (in the case of SOMObject). The sequence of parents is in left-to-right
order.

C Example

/* Note: Dog is a single-inheritance subclass of Animal. */
#include <dog.h>
main ()
{
Dog myDog;
SOMClass dogClass;
SOMClassSequence parents;
char *parentName;
int i;

myDog = DogNew () ;
dogClass = _somGetClass (myDog) ;
parents = _somGetParents (dogClass) ;
for (i=0; i<parents. length; i++)
somPrintf (“-- parent %d is %s\n”, i,
_somGetName (parents. buffer([i])) ;
__somFree (myDog) ;
}
/*
Output from this program:
-- parent 0 is Animal

*/
Original Class
SOMClass Class
Related Information
somGetClass Method

104 Programmer’s Reference for SOM and DSOM

somGetVersionNumbers Method

somGetVersionNumbers Method

Gets the major and minor version numbers of a class’s implementation code. Not generally
overridden.

IDL Syntax

void somGetVersionNumbers (
out long majorVersion,
out long minorVersion);

Description

The somGetVersionNumbers method returns, via its output parameters, the major and
minor version humbers of the class specified by receiver. The class object must have
already been created (because the class object is the receiver of the method).

Parameters

receiver
A pointer to a class object.

majorVersion
A pointer where the major version number is to be stored.

minorVersion
A pointer where the minor version number is to be stored.

C Example
#include <som.h>
main()

long major, minor;
SOMClass myClass;

somEnvironmentNew () ;
myClass = _somFindClass (SOMClassMgrObject,
somIdFromString (“*Animal”), 0, 0);
_somGetVersionNumbers (myClass, &major, &minor) ;
somPrintf (“The version numbers are %i and %i.\n”,
major, minor) ;
Original Class
SOMClass Class
Related Information

somCheckVersion Method

Chapter 1. SOM Kernel 105

somLookupMethod Method

somLookupMethod Method

IDL Syntax

Description

Parameters

Performs name-lookup method resolution. Not generally overridden.

somMethodPtr somLookupMethod (in somlid methodlId);

The somLookupMethod method uses name-lookup resolution to return the address of the
method procedure that supports the indicated method on instances of the receiver class.
The method may be static or dynamic. The SOM C and C++ usage bindings support
name-lookup method resolution by invoking somLookupMethod on the class of the object
on which a name-lookup method invocation is made.

somLookupMethod is like somFindSMethodOK except that dynamic methods can also
be returned. If the method is not supported by the receiving class, then an error is returned
and execution is halted. Use somFindMethod to check the existence of a method.

To use a method procedure pointer as that returned by somLookupMethod, itis
necessary to typecast the procedure pointer so the compiler can create the procedure call.
A programmer making explicit use of this method must know the signature of the identified
method, and from this create a typedef indicating system linkage and the appropriate
argument and return types, or make use of an existing typedef provided by C or C++ usage
bindings for a SOM class that introduces a static method with the desired signature.

receiver
A pointer to the class whose instance method for the indicated method is desired.

methodId
A somld of the method whose method-procedure pointer is needed.

Return Value

A pointer to the method procedure that supports the method indicated by methodld. Or, if
the method is not supported by the receiving class, then an error is returned and execution
is halted.

C++ Example

#include <somcls.xh>

#include <somcm.xh>

void main ()

{
somId fcpId = somIdFromString(“somFindClass”)
somId animalId = somIdFromString(“Animal”) ;
SOMClassMgr *cm = somEnvironmentNew () ;
somTD_SOMClassMgr_somFindClass findclassproc =

(somTD_SOMClassMgr somFindClass)
__SOMClassMgr->somLookupMethod (fcpId) ;

SOMClass *aCls = findclassproc(cm,animalId,0,0) ;

somFree (fcpId) ;
somFree (animalId) ;

Original Class

SOMClass Class

106 Programmer’s Reference for SOM and DSOM

somLookupMethod Method

Related Information

somFindMethod(Ok) Methods
somFindSMethod(Ok) Method

Chapter 1. SOM Kernel 107

somNew(Nolnit) Methods

somNew(Nolnit) Methods

Creates a new instance of a class.

IDL Syntax

SOMObject somNew ();
SOMObject somNewNolnit ();

Description

somNew and somNewNolnit create a new instance of the receiving class. Space is
allocated as necessary to hold the new object.

When either of these methods is applied to a class, the result is a new instance of that
class. If the receiver class is SOMClass, or a class derived from SOMClass, the new
object will be a class object; otherwise, the new object will not be a class object. The
somNew method invokes the somDefaultinit method on the newly created object. The
somNewNolnit method does not.

The SOM Compiler generates convenience macros for creating instances of each class, for
use by C and C++ programmers. These macros can be used in place of this method.

Parameters

receiver
A pointer to the class object that is to create a new instance.

Return Value

A pointer to the newly created SOMClass object, or if either of these methods faisl to
allocate enough memory for the new object, NULL is returned.

Example

#include <animal.h>

void main ()

{ Animal myAnimal;

/* ___

Note: next 2 lines are functionally equivalent to
myAnimal = AnimalNew () ;

/* Create class object:. */
AnimalNewClass (Animal MajorVersion, AnimalMinorVersion) ;

myAnimal = somNew(Animal) ; /* Create instance of Animal
cls */

VAV

__somFree (myAnimal) ; /* Free instance of Animal */

}
Original Class

SOMClass Class
Related Information

somDefaultinit Method
somRenew(NolnitNoZero) Methods

108 Programmer’s Reference for SOM and DSOM

somRenew(NolnitNoZero) Methods

somRenew(NolnitNoZero) Methods

Creates a new object instance using a passed block of storage.

IDL Syntax
SOMObject somRenew (in somToken memPtr);
SOMObject somRenewNolnit (in somToken memPtr);
SOMObject somRenewNolnitNoZero (in somToken memPtr);
SOMObject somRenewNoZero (in somToken memPtr);
Description

The somRenew method creates a new instance of the receiving class by setting the
appropriate location in the passed memory block to the receiving class’s instance method
table. Unlike somNew, these methods use the space pointed to by memPtr rather than
allocating new space for the object. The somRenew method automatically re-initializes the
object by first zeroing the object's memory, and the invoking somDefaultInit;
somRenewNolnit zeros memory, but does not invoke somDefaultInit,
somRenewNolnitNoZero only sets the method table pointer, somRenewNoZero calls
somDefaultlnit, but does not zero memory first.

No check is made to ensure that the passed pointer addresses enough space to hold an
instance of the receiving class. The caller can determine the amount of space necessary by
using the somGetinstanceSize method.

The C bindings produced by the SOM Compiler contain a macro that is a convenient
shorthand for _somRenew(_className).

Parameters

receiver
A pointer to the class object that is to create the new instance.

memPtr
A pointer to the space to be used to construct a new object.

Return Value
The value of newObiject is returned, which is now a pointer to a valid, initialized object.
Example

#include <animal.h>

main ()
void *myAnimalCluster;
Animal animals([5];
SOMClass animalClass;
int animalSize, 1i;

animalClass =
AnimalNewClass (Animal MajorVersion,Animal MinorVersion) ;

animalSize = somGetInstanceSize (animalClass) ;
/* Round up to double-word multiple */
animalSize = ((animalSize+3)/4)*4;
/*

* Next line allocates room for 5 objects

* in a &odg.cluster™ with a single memory-

* allocation operation.

*

/

myAnimalCluster = SOMMalloc (5*animalSize);

Chapter 1. SOM Kernel 109

somRenew(NolnitNoZero) Methods

Original Class

/*
* The for-loop that follows creates 5 initialized
* Animal instances within the memory cluster.
*/
for (i=0; i<5; 1i++)
animals[i] =
__somRenew (animalClass, myAnimalCluster+ (i*animalSize)) ;
/* Uninitialize the animals explicitly: */
for (i=0; 1<5; i++)
_somUninit (animals[i]) ;
/*
* Finally, the next line frees all 5 animals
* with one operation.
*/
SOMFree (myAnimalCluster) ;

SOMClass Class
Related Information

somDefaultlnit Method

somGetInstanceSize Method

somNew(Nolnit) Methods

110 Programmer's Reference for SOM and DSOM

somSupportsMethod Method

somSupportsMethod Method
Returns a boolean indicating if instances of a class support a static or dynamic method.

IDL Syntax

boolean somSupportsMethod (in somid methodlId);

Description
The somSupportsMethod method determines if instances of the specified class support
the specified (static or dynamic) method.

Parameters

receiver
A pointer to the class object to be tested.

methodId
An ID that represents the name of the method.

Return Value

The somSupportsMethod method returns 1 (true) if instances of the specified class
support the specified method, and 0 (false) otherwise.

Example

Note: animal supports a setSound method;
animal does not support a doTrick method.

#include <animal.h>
main ()

{

SOMClass animalClass;

char *methodNamel = “setSound”;
char *methodName2 = “doTrick”;
animalClass =

AnimalNewClass (Animal MajorVersion, Animal MinorVersion) ;
if (_somSupportsMethod (animalClass,
somIdFromString (methodNamel)))
somPrintf (“Animals respond to %$s\n”, methodNamel) ;
if (_somSupportsMethod (animalClass,
somIdFromString (methodName2)))
somPrintf (“Animals respond to %$s\n”, methodName2) ;
J,
Output from this program:
Animals respond to setSound

*/
Original Class
SOMClass Class

Related Information
somRespondsTo Method

Chapter 1. SOM Kernel 111

SOMClassMgr Class

SOMClassMgr Class

File Stem

Base

Metaclass

One instance of SOMClassMgr is created automatically during SOM initialization. This
instance (pointed to by SOMClassMgrObject) acts as a run-time registry for all SOM class
objects that exist within the current process and assists in the dynamic loading and
unloading of class libraries.

You can subclass SOMClassMgr to augment the functionality of its registry. For a sublcass
instance to replace the SOM-supplied SOMClassMgrObject, use somMergelnto to place
the current registry information from SOMClassMgrObject into your new class-manager
object.

Note: SOMClassMgrObject is one of the primitive SOM classes. SOMClassMgrObject
is the instance of SOMClassMgr that is generated during SOM initialization that
maintains a registry of SOM classes and assists in the dynamic loading and
unloading of class libraries.

somcm

SOMObject Class

SOMClass Class

Ancestor Classes

Types

Attributes

SOMObject Class

Interface Repository
SOMClass
*SOMClassArray

Listed below is each available attribute with its corresponding type in parentheses, followed
by a description of its purpose.

sominterfaceRepository (Repository)
The SOM Interface Repository object. If the Interface Repository is unavailable or
cannot be initialized, this attribute returns NULL. When your program finishes using the
Repository object, it should call the somDestruct method to release the reference,
using a non-zero value for the doFree parameter.

112 Programmer's Reference for SOM and DSOM

SOMClassMgr Class

somRegisteredClasses (sequence<SOMClass>
This is a readonly attribute that returns a sequence containing all of the class
objects registered in the current process. When you have finished using the returned
sequence, you should free the sequence’s buffer using SOMFree Function. Here is a
fragment of code written in C that illustrates the proper use of this attribute:

sequence (SOMClass) clsList;

clsList = SOMClassMgr get somRegisteredClasses (SOMClassMgrObject) ;
somPrintf (“Currently registered classes:\n”);
for (i=0; i<clsList. length; i++)

somPrintf (“\t%s\n”, SOMClass_ somGetName (clsList. buffer[il));

SOMFree (clsList. buffer);

New Methods

The new methods introduced by the SOMClassMgr Class belong to the following groups.

Group: Basic Functions

somLoadClassFile Method
somLocateClassFile Method
somRegisterClass Method
somUnloadClassFile Method
somUnregisterClass Method

Group: Access

somGetlnitFunction Method
somGetRelatedClasses Method

Group: Dynamic

somClassFromld Method
somFindClass Method
somFindClsinFile Method
somMergelnto Method
somSubstituteClass Method

Overridden Methods

somDumpSelfint Method
somDefaultlnit Method
somDestruct Method

Chapter 1. SOM Kernel 113

somClassFromld Method

somClassFromld Method

Finds a class object, given its somld, if it already exists. Does not load the class.
IDL Syntax
SOMClass somClassFromld (in somld classld);
Description

Finds a class object, given its somld, If it already exists, it does not load the class. Use the
somClassFromld method instead of somFindClass when you do not want the class to
automatically load if it does not already exist in the current process.

Parameters

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

classld
The somld of the class. This can be obtained from the name of the class using the
somldFromString Function.

Return Value
Returns a pointer to the class, or NULL if the class object does not yet exist.
C Example

#include <som.h>
main () {
SOMClass myClass;
char *myClassName = “Animal”;
somId animalId;
somEnvironmentNew () ;
animalId = somIdFromString (myClassName) ;
myClass = SOMClassMgr somClassFromId (SOMClassMgrObject,
animalId) ;
if (!myClass)
somPrintf (“Class %s has not been loaded.\n”,
myClassName) ;
SOMFree (animallId) ;

This program produces the following output:
Class Animal has not yet been loaded.

Original Class
SOMClassMgr Class
Related Information

somFindClass Method
somFindClsInFile Method

114 Programmer's Reference for SOM and DSOM

somFindClass Method

somFindClass Method

Purpose

Finds the class object for a class.
IDL Syntax

SOMClass somFindClass (
in somld classld,
in long majorVersion,
in long minorVersion);

Description

The somFindClass method returns the class object for the specified class. This method
first uses somLocateClassFile to obtain the name of the file where the class’s code
resides, then uses somFindClsInFile.

If the requested class has not yet been created, the somFindClass method attempts to
load the class dynamically by loading its dynamically linked library and invoking its new
class procedure.

The somLocateClassFile method uses the following steps:

« If the entry in the Interface Repository for the class specified by classld contains a
dliname modifier, this value is used as the file name for loading the library. For
information about the dliname modifier, see “Modifier Statements” on page 133 in
Programmer’s Guide for SOM and DSOM.

* Inthe absence of a dlilname maodifier, the class name is assumed to be the file name
for the library. Use the somFindClsInFile method if you wish to explicitly pass the file
name as an argument.

If majorVersion and minorVersion are not both zero, they are used to check the

class version information against the caller’'s expectations. An implementation is compatible
with the specified version numbers if it has the same major version number and a minor
number that is equal to or greater than minorVersion.

Parameters

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClasssMgr).

classld
The somld representing the name of the class.

majorVersion
The class’s major version number.

minorVersion
The class’s minor version number.

Return Values
A pointer to the requested class object, or NULL if the class could not be found or created.
C Example
#include <som.h>
/*

* This program creates a class object (from DLL)
* without requiring the usage binding file

Chapter 1. SOM Kernel 115

somFindClass Method

* (.h or .xh) for the class.
*/
void main ()
{
SOMClass myClass;
somId animalId;
somEnvironmentNew () ;
animalId = somIdFromString (“Animal”) ;
/* The next statement is equivalent to:
#include “animal.h”
myClass = AnimalNewClass (0, 0);

myClass = SOMClassMgr_ somFindClass (SOMClassMgrObject,
animalId, 0, 0);
if (myClass)
somPrintf (“myClass: %$s\n”, SOMClass somGetName (myClass)) ;
else
somPrintf (“Class %s could not be dynamically loaded\n”,
somStringFromId (animallId)) ;
SOMFree (animallId) ;

This program produces the following output:
myClass: Animal
Original Class
SOMClassMgr Class
Related Information

somFindClsInFile Method
somLocateClassFile Method

116 Programmer's Reference for SOM and DSOM

somFindClsInFile Method

somFindClsinFile Method

Finds the class object for a class, given a filename that can be used for dynamic loading.
IDL Syntax

SOMClass somFindClsiInFile (
in somld classld,
in long majorVersion,
in long minorVersion,
in string file);

Description

The somFindClsInFile method returns the class object for the specified class. This method
is the same as somFindClass except that the caller provides the filename to be used if
dynamic loading is needed.

If the requested class has not yet been created, the somFindClsInFile method attempts to
load the class dynamically by loading the specified library and invoking its new class
procedure.

If majorVersion and minorVersion are not both zero, they are used to check the class
version information against the caller's expectations. An implementation is compatible
with the specified version numbers if it has the same major version number and a minor
number that is equal to or greater than minorVersion.

Parameters

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

classld
The somld representing the name of the class.

majorVersion
The class’s major version number.

minorVersion
The class’s minor version number.

file
The name of the dynamically linked library file containing the class. The name can be
either a simple, unqualified name (without any extension) or a fully qualified (or path)
file name, as appropriate for your operating system. For example, on OS/2, file could
be ¢: \myhome\myapp\basename.dll or else basename (but not basename.dl1).

Return Value
A pointer to the requested class object, or NULL if the class could not be found or created.
C Example

#include <som.hs>

/*

* This program loads a class and creates an instance
* of ot without requiring the binding (.h) file

* for the class.

*/

void main ()

SOMObject myAnimal;

Chapter 1. SOM Kernel 117

somFindClsInFile Method

SOMClass animalClass;
char *animalName = “Animal”;

* Filenames will differ based on platform
* Set animalfile to “C:\\MYDLLS\\ANIMAL.DLL” for 0S/2 and NT.
Set animalfile to “/mydlls/animal.dll” for AIX.

*
*/
char *animalFile = “/mydlls/animal.dll”; /* AIX filename */

somEnvironmentNew () ;

animalClass = somFindClsInFile (SOMClassMgrObject,
somIdFromString
(animalName) , 0, O,
animalFile) ;
myAnimal = somNew (animalClass) ;

somPrintf (“The class of myAnimal is %s.\n”,
__somGetClassName (myAnimal)) ;
_somFree (myAnimal) ;

}

/*

Output from this program:

The class of myAnimal is Animal.

*/
Original Class
SOMClassMgr Class
Related Information
somFindClass Method

118 Programmer's Reference for SOM and DSOM

somGetlnitFunction Method

somGetlnitFunction Method

IDL Syntax

Description

Parameters

Obtains the name of the function that initializes the SOM classes in a class library.

string somGetInitFunction ();

The somGetlnitFunction method supplies the name of the initialization function for class
libraries (DLLs) that contain more than one SOM class. The default implementation returns
the value of the global variable SOMClasslInitFuncName, which by default is set to the
value “SOMInitModule”.

If a class library (DLL) has been constructed with a DLL initialization function assigned by
the linker, you can choose to invoke the classNameNewClass functions for all of the
classes in the DLL during DLL initialization. In this case, there is no need to export a
SOMiInitModule function. On the other hand, if your compiler does not provide a
convenient mechanism for creating a DLL initialization function, you can elect to export a
function named SOMInitModule (or whatever name is ultimately returned by the
somGetlnitFunction method).

The SOMClassMgrObject, after loading a class library, will invoke the method
somGetlnitFunction to obtain the name of a possible initialization function. If this name
has been exported by the class library just loaded, the SOMClassMgrObject calls this
function to initialize the classes in the library. If the name has not been exported by the
DLL, the SOMClassMgrObject then looks for an exported name of the form
classNameNewClass, where className is the name of the class supplied with the method
that caused the DLL to be loaded. If the DLL exports this name, it is invoked to create the
named class.

Regardless of the technique employed, the SOMClassMgrObject expects that all classes
packaged in a single class library will be created during this sequence.

This method is generally not invoked directly by users. User-defined subclasses of
SOMClassMgr, however, can override this method.

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

Return Value

Returns a string that names the initialization function of class libraries. By default, this name
is the value of the global variable SOMClassInitFuncName whose value is
SOMInitModule.

Original Class

SOMClassMgr Class

Related Information

somFindClass Method
somFindClsInFile Method
SOMInitModule Function

Chapter 1. SOM Kernel 119

somGetRelatedClasses Method

somGetRelatedClasses Method

IDL Syntax

Description

Parameters

Returns an array of class objects that were all registered during the dynamic loading of a
class.

SOMClass * somGetRelatedClasses (in SOMClass classObj);

somGetRelatedClasses returns an array of class objects that were all registered during
the dynamic loading of the specified class. These classes are considered to define an
affinity group. Any class is a member of at most one affinity group. The affinity group
returned by this call is the one containing the class identified by the classObj parameter.

The first element in the array is either the class that caused the group to be loaded, or the
special value -1, which means that the class manager is currently in the process of
unregistering and deleting the affinity group (only class-manager objects would ever see
this value). The remainder of the array consists of pointers to class objects, ordered in
reverse chronological sequence to that in which they were originally registered. This list
includes the given argument, classObj, as one of its elements, as well as the class that
caused the group to be loaded (also given by the first element of the array). The array is
terminated by a NULL pointer as the last element.

Use the SOMFree Function to release the array when it is no longer needed. If the
supplied class was not dynamically loaded, it is not a member of any affinity group and
NULL is returned.

receiver
Usually a pointer to SOMClassMgrObject, or a pointer to an instance of a user-defined
subclass of SOMClassMgr.

classObj
A pointer to a SOMClass object.

Return Value

Example

120

The somGetRelatedClasses method returns a pointer to an array of pointers to class
objects, or NULL, if the specified class was not dynamically loaded.

#include <som.h>
SOMClass myClass, *relatedClasses;
string className;

long 1i;
className = SOMClass_ somGetName (myClass)) ;
relatedClasses =

SOMClassMgr somGetRelatedClasses
(SOMClassMgrObject, myClass) ;
if (relatedClasses && *relatedClasses)

somPrintf (“Class=%s, related classes are: ”,
className) ;
for (i=1; relatedClasses[i]; i++)
somPrintf (“%s ”,SOMClass_somGetName (relatedClasses[i]));
somPrintf (“\n”);
somPrintf (“Class that caused loading was %s\n”,
relatedClasses[0] == (SOMClass) -1 ? “-1"

SOMClass_ somGetName (relatedClasses[0]));
SOMFree (relatedClasses) ;

Programmer’s Reference for SOM and DSOM

somGetRelatedClasses Method

} else
somPrintf (“No classes related to %s\n”, className) ;

Original Class
SOMClassMgr Class
Related Information

somGetlnitFunction Method

Chapter 1. SOM Kernel 121

somLoadClassFile Method

somLoadClassFile Method

IDL Syntax

Description

Parameters

Dynamically loads a class.

SOMClass somLoadClassFile (
in somld classld,
in long majorVersion,
in long minorVersion,
in string file);

The SOMClassMgr object uses somLoadClassFile to load a class dynamically during the
execution of somFindClass or somFindClsiInFile. A SOM class object representing the
class is expected to be created and registered as a result of this method.

somLoadClassFile can be overridden to load or create classes dynamically using your
own mechanisms. If you simply wish to change the name of the procedure that is called to
initialize the classes in a library, override somGetInitFunction instead.

This method is provided to permit user-created subclasses of SOMClassMgr to handle the
loading of classes by overriding this method. Do not invoke this method directly; instead,
use somFindClass or somFindClsInFile.

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

classld
The somld representing the name of the class to load.

majorVersion
The major version number used to check the compatibility of the class’s implementation
with the caller’s expectations.

minorVersion
The minor version number used to check the compatibility of the class’s implementation
with the caller’s expectations.

file
The name of the dynamically linked library file containing the class. The name can be
either a simple, unqualified name (without any extension) or a fully qualified (or path)
file name, as appropriate for your operating system. For example, on OS/2, file could
be c¢: \myhome\myapp\basename.dll or else basename (but not basename.dl11).

Return Value

The somLoadClassFile method returns a pointer to the class object, or NULL if the class
could not be loaded or the class object could not be created.

Original Class

SOMClassMgr Class

Related Information

122

somFindClass Method
somFindClsInFile Method

Programmer’s Reference for SOM and DSOM

somLoadClassFile Method

somGetlnitFunction Method
somUnloadClassFile Method

Chapter 1. SOM Kernel 123

somLocateClassFile Method

somLocateClassFile Method

Determines the file that holds a class to be dynamically loaded.
IDL Syntax

string somLocateClassFile (
in somld classld,
in long majorVersion,
in long minorVersion);

Description

The SOMClassMgr object uses somLocateClassFile when executing somFindClass to
obtain the name of a file to use when dynamically loading a class. The default
implementation consults the Interface Repository for the value of the dliname modifier of
the class; if no dllname modifier was specified, the method simply returns the class name
as the expected filename.

If you override the somLocateClassFile method in a user-supplied subclass of
SOMClassMgr, the name you return can be either a simple, unqualified name without any
extension or a fully qualified file name. Generally speaking, you would not invoke this
method directly. It is provided to permit customization of subclasses of SOMClassMgr
through overriding.

Parameters

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

classld
The somld representing the name of the class to locate.

majorVersion
The major version number used to check the compatibility of the class’s implementation
with the caller's expectations.

minorVersion
The minor version number used to check the compatibility of the class’s implementation
with the caller’s expectations.

Return Value

The somLocateClassFile method returns the name of the file containing the class.
Original Class

SOMClassMgr Class
Related Information

somFindClass Method

somFindClsInFile Method

somGetlnitFunction Method

somLoadClassFile Method

somUnloadClassFile Method

124 programmer’s Reference for SOM and DSOM

somMergelnto Method

somMergelnto Method

IDL Syntax

Description

Parameters

Transfers SOM class registry information to another SOMClassMgr instance.

void somMergelnto (in SOMClassMgr target);

somMergelnto transfers the SOMClassMgr registry information from one object to
another. The target object is required to be an instance of SOMClassMgr or one of its
subclasses. At the completion of this operation, the target object can function as a
replacement for the receiver. The receiver object (which is then in a new uninitialized state)
is placed in a mode where all methods invoked on it will be delegated to the target object. If
the receiving object is the instance pointed to by the global variable SOMClassMgrObject,
then SOMClassMgrObject is reassigned to point to the target object.

Subclasses of SOMClassMgr that override somMergelnto should transfer their section of
the class manager object from the target to the receiver, then invoke their parent’s
somMergelnto method as the final step.

Invoke this method only if you are creating your own subclass of SOMClassMgr. You
caninvoke somMergelnto from an initializer for your new class manager.

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

target
A pointer to another instance of SOMClassMgr or one of its subclasses.

C++ Example

// === IDL For the New Class Manager ===
#include <somcm.idl>
interface NewCM : SOMClassMgr {
implementation {
somDefaultInit: override;
i
i

// === C++ implementation for NewCM ===

#define SOM Module merge Source

#include "merge.xih”

SOM_Scope void SOMLINK somDefaultInit (NewCM *somSelf,
somInitCtrl* ctrl)

{

NewCMData *somThis; /* set in BeginInitializer */
somInitCtrl globalCtrl;
somBooleanVector myMask;
NewCMMethodDebug ("NewCM” , “somDefaultInit”) ;
NewCM_ BeginInitializer somDefaultInit;
NewCM Init SOMClassMgr somDefaultInit (somSelf, ctrl);
/*
* local NewCM initialization code added by programmer
*/
SOMClassMgrObject->somMergeInto (somSelf) ;
// === C++ test program ===
#include <merge.xh>
main ()

Chapter 1. SOM Kernel 125

somMergelnto Method

NewCM *ncm = new NewCM;
SOMClassMgrObject->somDumpSelf (0) ;

=== Output from test program ===
n instance of class NewCM at address 20084388
classIdSpaceSize: 3200

classIdHashTableSize: 397

loadAffinity: O

nextLoadAffinity: 1

IR Class: 00000000, IR Object: 00000000

-Class-- -Token-- Aff Seqg ---Id--- Name

0] 20077A48 00000000 000 001 2008260C SOMObject
1] 2007FB38 00000000 000 000 200825EC SOMClassMgr
2] 20083B08 00000000 000 004 2008436C NewCM

3] 20077BD8 00000000 000 002 2008262C SOMClass
[4] 20082668 00000000 000 003 2008315C
SOMParentDerivedMetaclass

}

}
/
{

PRRPRERRRERRERERER DN

Original Class
SOMClassMgr Class

126 Programmer’s Reference for SOM and DSOM

somRegisterClass Method

somRegisterClass Method

Adds a class object to the SOM run-time class registry.
IDL Syntax
void somRegisterClass (in SOMClass classObj);
Description

somRegisterClass adds a class object to the SOM run-time class registry maintained by
SOMClassMgrObject.

All SOM run-time class objects should be registered with the SOMClassMgrObject. This is
done automatically during the execution of the somClassReady Method as class objects
are created.

Parameters

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

classObj
A pointer to the class object to add to the SOM class registry.

Original Class
SOMClassMgr Class
Related Information

somUnregisterClass Method

Chapter 1. SOM Kernel 127

somRegisterClassLibrary Method

somRegisterClassLibrary Method

IDL Syntax

Description

Parameters

Provided for use in SOM Class libraries on platforms that have loader-invoked entry points
associated with shared libraries (DLLS).

This function registers a SOM Class Library with the SOM Kernel. The library is identified
by its file name and a pointer to its initialization routine. Since this call can occur prior to the
invocation of somEnvironmentNew, its actions are deferred until the SOM environment
has been initialized. At that time, the SOMClassMgrObject is informed of all pending
library initialization via the _somRegisterClassLibrary method. The actual invocation of
the library’s initialization routine occurs during the execution of the somFindClass method
(for libraries that are dynamically loaded).

void somRegisterClass (in SOMClass classObj);

somRegisterClass adds a class object to the SOM runtime class registry maintained by
SOMClassMgrObject.

All SOM runtime class objects should be registered with the SOMClassMgrObject. This is
done automatically during the execution of the somClassReady Method as class objects
are created.

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

classObj
A pointer to the class object to add to the SOM class registry.

Original Class

SOMClassMgr Class

Related Information

somUnregisterClass Method

128 Programmer’s Reference for SOM and DSOM

somSubstituteClass Method

somSubstituteClass Method

IDL Syntax

Description

Parameters

Causes the somFindClass, somFindClsInFile and somClassFromld methods to
substitute one class for another.

long somSubstituteClass (
in string origClassName,
in string newClassName);

somSubstituteClass causes the somFindClass, somFindClsiInFile and
somClassFromld methods to return the class named newClassName whenever they
would normally return the class named origClassName. This effectively results in class
newClassName replacing or substituting for class origClassName. For example, the
origClassNameNew macro will subsequently create instances of newClassName.

Some restrictions are enforced to ensure that this works well. Both class origClassName

and class newClassName must have been already registered before issuing this method,
and newClassName must be an immediate child of origClassName. In addition (although
not enforced), no instances should exist of either class at the time this method is invoked.

A convenience macro (SOM_SubstituteClass) is provided for C or C++ users. In one
operation, it creates both the old and the new class and then substitutes the new one in
place of the old. The use of both the somSubstituteClass method and the
SOM_SubstituteClass macro is illustrated in the example below.

receiver
Usually SOMClassMgrObject or a pointer to an instance of a user-defined subclass of
SOMClassMgr.

origClassName
A NULL terminated string containing the old class name.

newClassName
A NULL terminated string containing the new class name.

Return Value

C Example

The somSubstituteClass method returns a value of zero to indicate success; a non-zero
value indicates an error was detected.

#include “student.h”

#include “mystud.h”

/* Macro form */

SOM_SubstituteClass (Student, MyStudent) ;

/* Direct use of the method, equivalent to

* the macro form above.

*/

{
SOMClass origClass, replacementClass;
origClass = StudentNewClass (Student MajorVersion,

Student MinorVersion) ;
replacementClass = MyStudentNewClass (MyStudent MajorVersion,
MyStudent MinorVersion) ;

SOMClassMgr_somSubstituteClass (

Chapter 1. SOM Kernel 129

somSubstituteClass Method

SOMClass_somGetName (origClass),
SOMClass_ somGetName (replacementClass)) ;
Original Class
SOMClassMgr Class
Related Information

somClassFromld Method
somFindClass Method
somFindClsinFile Method
somMergelnto Method
SOM_SubstituteClass Macro

130 Programmer’s Reference for SOM and DSOM

somUnloadClassFile Method

somUnloadClassFile Method

IDL Syntax

Description

Parameters

Unloads a dynamically loaded class and frees the class’s object.

long somUnloadClassFile (in SOMClass class);

The somUnregisterClass method uses the somUnloadClassFile method to unload a
dynamically loaded class. This releases the class’s code and unregisters all classes in the
same affinity group. (Use somGetRelatedClasses to find out which other classes are in
the same affinity group.)

The class object is freed whether or not the class’ s shared library could be unloaded. If the
class was not registered, an error condition is raised and the SOMError Function is
invoked. This method is provided to permit user-created subclasses of SOMClassMgr to
handle the unloading of classes by overriding this method. Do not invoke this method
directly; instead, invoke somUnregisterClass.

receiver
Usually SOMClassMgrObject (or a pointer to an instance of a user-su

plied subclass of SOMClassMgr).

class
A pointer to the class to be unloaded.

Return Value

The somUnloadClassFile method returns 0 if the class was successfully unloaded;
otherwise, it returns a system-specific non-zero error code from either the OS/2
DosFreeModule or the AlX unload or NT FreeLibrary system call .

Original Class

SOMClassMgr Class

Related Information

somGetRelatedClasses Method
somLoadClassFile Method
somRegisterClass Method
somUnregisterClass Method

Chapter 1. SOM Kernel 131

somUnregisterClass Method

somUnregisterClass Method

Removes a class object from the SOM run-time class registry.
IDL Syntax

long somUnregisterClass (in SOMClass class);

Description

somUnregisterClass unregisters a SOM class, frees the class object, and unloads the
class’s dynamically linked library using somUnloadClassFile. For every class that was
loaded using somFindClass or somFindClsInFile, you should call somUnregisterClass
when the class is no longer required.

Parameters

receiver

Usually SOMClassMgrObject (or a pointer to an instance of a user-supplied subclass
of SOMClassMgr).

class

A pointer to the class to be unregistered.

Return Value

The somUnregisterClass method returns O for a successful completion, or non-zero to
denote failure.

Example

#include <som.h>
void main ()

{

Original Class

long rc; /* Return code */

SOMClass animalClass;

/* The next 2 lines declare a static form of somId */

string animalClassName = “Animal”;

somId animalId = &animalClassName;

somEnvironmentNew () ;

animalClass = SOMClassMgr somFindClass (SOMClassMgrObject,
animalId, 0, 0);

if (lanimalClass)
gsomPrintf (“Could not load class.\n”);
return;

}
rc = SOMClassMgr somUnregisterClass (SOMClassMgrObject,
animalClass) ;
if (xc)
somPrintf (“Could not unregister class, error code:
$1d.\n”,rc) ;
else
somPrintf (“Class successfully unloaded.\n”) ;

SOMClassMgr Class

Related Information

somFindClass Method
somFindClsInFile Method

132 Programmer’s Reference for SOM and DSOM

somUnregisterClass Method

somLoadClassFile Method
somRegisterClass Method
somUnloadClassFile Method

Chapter 1. SOM Kernel 133

SOMObject Class

SOMODbiject Class

File Stem

Metaclass

SOMObject is the root class for all SOM classes. All SOM classes must be subclasses of
SOMObject or of some other class derived from SOMObject. SOMObject introduces no
instance data, so objects whose classes inherit from SOMObject incur no size increase.
They do inherit a suite of methods that provide the behavior required of all SOM objects.
Three of these methods are typically overridden by any subclass that has instance data:
somDefaultlnit, somDestruct and somDumpSelfint.

somobj

SOMClass Class

New Methods

The new methods introduced by the SOMObject Class belong to the following groups.
Group: Initialization/Termination

somDefaultlnit Method
somDefaultAssign Method
somDefaultConstAssign Method
somDefaultConstCopylnit Method
somDefaultCopylnit Method
somDestruct Method

somFree Method

Group: Access

somGetClass Method
somGetClassFromMToken Method
somGetSize Method

Group: Testing

somlsA Method

somlsinstanceOf Method
somRespondsTo Method
Group: Dynamic

somCastObj Method
somClassDispatch Method
somResetObj Method

Group: Development Support
somDumpSelf Method
somDumpSelfint Method
somPrintSelf Method

134 Pprogrammer’s Reference for SOM and DSOM

SOMObject Class

Deprecated Methods
Use of the following methods is discouraged:
somDispatchX methods
somlnitMethod

somUninit

Chapter 1. SOM Kernel 135

somCastObj Method

somCastObj Method

Changes the behavior of an object to that of any ancestor of the true class of the object.
IDL Syntax
boolean somCastObj (in SOMClass ancestor);
Description

somCastObj changes the behavior of an object so it will be that of an instance of the
indicated ancestor class. The behavior of the object on methods not supported by the
ancestor remains unchanged.

This operation changes the class of the object. The name of the new class is derived from
the initial name of the object’s class and that of the ancestor class.

somCastObj may be used on an object repeatedly with the restriction that the ancestor
class whose behavior is chosen is an ancestor of the true (original) class of the object.

Parameters

receiver
A pointer to an object of type SOMObject.

ancestor
A pointer to a class that is an ancestor of the actual class of the receiver.

Return Value

Returns 1 (TRUE) if the operation is successful and 0 (false) otherwise. The operation fails if
ancestor is not actually an ancestor of the class of the object.

Example

#include <som.h>
main ()

SOMClassMgr cm = somEnvironmentNew () ;

SOM _Test (1 == _somCastObj (cm, _SOMObject)) ;
__somDumpSelf (cm, 0));
SOM Test (1 == _somResetObj (cm)) ;

__somDumpSelf (cm, 0);

}

/* output:

* {An instance of class SOMClassMgr->SOMObject

* at address 20061268

*)

* {An instance of class SOMClassMgr at address 20061268
* ... <SOMClassMgr State Informations> ...

*)

*/

Original Class
SOMObject Class
Related Information
somResetObj Method

136 Programmer’s Reference for SOM and DSOM

somDefaultAssign Method

somDefaultAssign Method

IDL Syntax

Description

Parameters

Example

Provides support for an object-assignment operator. May be overridden, but, if appropriate,
somDefaultConstAssign should be overridden instead.

void somDefaultAssign (inout somInitCtrl ctrl,
in SOMObject fromObj);

In C++, assignment to an object of class X is accomplished by using the assignment
operator provided by X. To make assignment available on all SOM objects, SOMObject
provides somDefaultAssign and somDefaultConstAssign. The default behavior of these
methods is that they do a shallow copy of data from one object to another. Users should
generally use the somDefaultAssign method for doing object assignment.

When a shallow copy is not appropriate for the data introduced by a class, and it is possible
to perform the copy without modifying fromObj, it is recommended that the class
implementor override the somDefaultConstAssign method for that class.

The considerations important to overriding somDefaultConstAssign are similar to those
for overriding somDefaultlnit. See “Initializing and Uninitializing Objects” on page 195 of
Programmer’s Guide for SOM and DSOM for additional information.

The difference between somDefaultinit and somDefaultAssign is that the latter method
takes an object (fromObj) as a source argument for assignment of values to the receiver.

receiver
A pointer to an object of an arbitrary SOM class, S.

ctrl
A pointer to a somInitCtrl structure, or NULL.

fromObj
A pointer to an object of class S or some class descended from S.

// C++ SOMObjects Toolkit Code
#include <Y.xh>

main ()
{
X *x new X;
Y *y = new Y; // assume Y is derived from X
x->somDefaultAssign (0,Vy)
// the x object has now been assigned values from y

Original Class

SOMObject Class

Related Information

somDefaultAssign Method
somDefaultConstCopylnit Method
somDefaultCopylInit Method

Chapter 1. SOM Kernel 137

somDefaultAssign Method

somDefaultlnit Method

138 Programmer’s Reference for SOM and DSOM

somDefaultConstAssign Method

somDefaultConstAssign Method

IDL Syntax

Description

Parameters

Example

Provides support for a “const” object-assignment operator. Designed to be overridden.

void somDefaultConstAssign (inout somInitCtrl ctrl,
in SOMObject fromObj);

In C++, assignments to an object of class X is accomplished by using an appropriate
overloading of the assignment operator provided by X. To make assignment available on all
SOM objects, SOMObject introduces somDefaultAssign and somDefaultConstAssign.
The default behavior of these methods is to perform a shallow copy of data from one object
to another. When this default is not appropriate for a class, and it is possible to perform the
copy without modifying fromObj, it is recommended that the class implementor override the
somDefaultConstAssign method.

Generally, an object user should use the somDefaultAssign method to perform object
assignment.

The considerations important to overriding somDefaultConstAssign are similar to those
for overriding somDefaultlnit. See “Initializing and Uninitializing Objects” on page 195 of
Programmer’s Guide for SOM and DSOM for additional information.

The basic difference between somDefaultinit and somDefaultConstAssign is that the
latter method takes an object (fromObj) as an argument that is to be copied.

receiver
A pointer to an object of an arbitrary SOM class, S.

ctrl
A pointer to a somInitCtrl structure, or NULL.

fromObj
A pointer to an object of class S or some class descended from S.

// IDL for a class that overrides somDefaultConstAssign
#include <X.idls>
interface Y : X {
implementation
somDefaultConstAssign: override;
}

Original Class

SOMObject Class

Related Information

somDefaultAssign Method
somDefaultConstCopylnit Method
somDefaultCopylnit Method
somDefaultlnit Method

Chapter 1. SOM Kernel 139

somDefaultConstCopyInit Method

somDefaultConstCopylnit Method

IDL Syntax

Description

Parameters

Example

Provides support for passing objects as call-by-value object parameters. Designed to be
overridden.

void somDefaultConstCopylnit (inout somInitCtrl ctrl, in SOMObject fromObj);

somDefaultConstCopyInit would be called a copy constructor in C++. In SOM, this
concept is supported using an object initializer that accepts the object to be copied as an
argument. Copy constructors are used in C++ to pass objects by value. They initialize one
object by making it be a copy of another object. In SOM, objects are always passed by
reference.

The default behavior of somDefaultConstCopylnit is to shallow copy each ancestor
class’s introduced instance variables. The object being copied is not changed. When a
shallow copy is not appropriate, and it is possible to avoid changing fromObj, a class
implementor should override somDefaultConstCopylnit, but should respect the constraint
of not modifying the object being copied.

In general, object users should use somDefaultCopylnit to copy an object.

The considerations important to overriding somDefaultConstCopylnit are similar to those
for overriding somDefaultlnit. See “Initializing and Uninitializing Objects” on page 195 of
Programmer’s Guide for SOM and DSOM for additional information.

The basic difference between somDefaultinit and somDefaultConstCopylnit is that the
latter method takes an object (fromQObj) as an argument that is to be copied.

receiver
A pointer to an uninitialized object of an arbitrary SOM class, S.

ctrl
A pointer to a somInitCtrl structure, or NULL.

fromObj
A pointer to an object of class S or some class descended from S.

// IDL for a class that overrides somDefaultConstCopyInit
interface X : SOMObject

{

implementation {
somDefaultConstCopyInit: override, init;

bi

Original Class

SOMObject Class

Related Information

somDefaultAssign Method
somDefaultConstAssign Method

somDefaultCopylnit Method

140 Programmer’s Reference for SOM and DSOM

somDefaultConstCopyInit Method

somDefaultlnit Method

Chapter 1. SOM Kernel 141

somDefaultCopylnit Method

somDefaultCopylnit Method

IDL Syntax

Description

Parameters

Example

Provides support for call-by-value object parameters. May to be overridden, but, if
appropriate, somDefaultConstCopyInit should be overridden instead.

void somDefaultCopylnit (inout somInitCtrl ctrl, in SOMObject fromQObj);

The somDefaultCopylnit method would be called a copy constructor in C++. In SOM, this
concept is supported using an object initializer that accepts the object to be copied as an
argument. Copy constructors are used in C++ to pass objects by value. They initialize one
object by making it be a copy of another object. In SOM, objects are always passed by
reference.

The default behavior provided by somDefaultCopylnit is to do a shallow copy of each
ancestor class’s introduced instance variables. However, a class may always override this
default behavior (for example, to do a deep copy for certain variables). If it is possible to
avoid modification of fromObj when doing the copy, the method somDefaultConstCopyInit
should be overridden for this purpose. Only if this is not possible (and a shallow copy is not
appropriate) would it be appropriate to override somDefaultCopyInit.

The considerations important to overriding somDefaultCopylInit are similar to those
described in Programmer’s Guide for SOM and DSOM for overriding somDefaultInit. See
Initializing and Uninitializing Objects on page 195.

The basic difference between somDefaultinit and somDefaultCopylnit is that the latter
method takes an object (fromObj) as an argument that is to be copied.

receiver
A pointer to an uninitialized object of an arbitrary SOM class, S.

ctrl
A pointer to a somInitCtrl structure, or NULL.

fromObj
A pointer to an object of class S or some class descended from S.

// IDL produced for C++ class interface X : SOMObject
{
void foo(in SOMClass arg) ;
implementation {
foo: cxxdecl = ”"void foo(SOMClass arg)”; // !! call-by-value

}i

Vi

// C++ SOMObjects Toolkit Code

#include <X.xh>

#include <somcls.xh>

main ()

{
X *xX = new X;
SOMClass *arg = _SOMClass->somNewNoInit () ;
// make arg be a copy of the X class object
arg->sombDefaultCopyInit (0, X);
x->foo(arg); // call foo with the copy

142 programmer’s Reference for SOM and DSOM

somDefaultCopylnit Method

Original Class
SOMObject Class
Related Information

somDefaultAssign Method
somDefaultConstAssign Method
somDefaultConstCopylnit Method
somDefaultlnit Method

Chapter 1. SOM Kernel 143

somDefaultInit Method

somDefaultlnit Method

Initializes instance variables and attributes in a newly created object. Replaces sominit as
the preferred method for default object initialization. For performance reasons, it is
recommended that somDefaultinit always be overridden by classes.

IDL Syntax
void somDefaultlnit (inout somInitCtrl ctrl);
Description

Every SOM class is expected to support a set of initializer methods. This set always include
somDefaultlnit, whether or not the class explicitly overrides somDefaultInit. All other
initializer methods for a class must be explicitly introduced by the class. See “Initializing and
Uninitializing Objects” on page 195 of Programmer’s Guide for SOM and DSOM for
complete information on introducing new initializers.

The purpose of an initializer method supported by a class is first to invoke initializer
methods of ancestor classes (those ancestors that are the class’s directinitclasses) and
then to place the instance variables and attributes introduced by the class into some
consistent state by loading them with appropriate values. The result is that, when an object
is initialized, each class that contributes to its implementation will run some initializer
method. The somDefaultinit method may or may not be among the initializers used to
initialize a given object, but it is always available for this purpose.

Thus, the somDefaultinit method may be invoked on a newly created object to initialize its
instance variables and attributes. The somDefaultinit method is more efficient than (the
method it replaces), and it also prevents multiple initializer calls to ancestor classes. The
somlnit method is now considered obsolete when writing new code, although sominit is
still supported.

To override somDefaultlnit, the implementation section of the class’s .idl file should
include somDefaultinit with the override and init modifiers specified. (The init modifier
signifies that the method is an initializer method.) No additional coding is required for the
resulting somDefaultlnit stub procedure in the implementation template file, unless the
class implementor wishes to customize object initialization in some way.

If the .idl file does not explicitly override somDefaultinit, then by default a generic method
procedure for somDefaultinit will be provided by the SOMobjects Toolkit. If invoked, this
generic method procedure first invokes somDefaultinit on the appropriate ancestor
classes, and then (for consistency with earlier versions of SOMobjects) calls any sominit
code that may have been provided by the class (if somInit was overridden). Because the
generic procedure for somDefaultInit is less efficient than the stub procedure that is
provided when somDefaultinit is overridden, it is recommended that the .idl file always
override somDefaultinit.

Note: It is not appropriate to override both somDefaultinit and somlnit. If this is done,
the somInit code will not be executed. The best way to convert an old class that
overrides somlInit to use of the more efficient somDefaultInit (if this is desired) is
as follows:

* Replace the somlInit override in the class’s .idl file with an override for
somDefaultinit

* Run the implementation template emitter to produce a stub procedure for
somDefaultinit

« simply call the class’s somInit procedure directly from the somDefaultlnit
method procedure

144 Programmer's Reference for SOM and DSOM

somDefaultInit Method

As mentioned above, the object-initialization framework supported by SOMobjects allows a
class to support additional initializer methods besides somDefaultinit. These additional
initializers will typically include special-purpose arguments, so that objects of the class can
be initialized with special capabilities or characteristics. For each new initializer method, the
implementation section must include the method name with the init modifier. Also, the
directinitclasses modifier can be used if, for some reason, the class implementor wants to
control the order in which ancestor initializers are executed.

Note: Itis recommended that the method name for an initializer method include the class
name as a prefix. A newly defined initializer method will include an implicit
Environment argument if the class does not use a callstyle=oidl modifier.

Parameters
receiver
A pointer to an object.
ctrl
A pointer to a somInitCtrl data structure. SOMobjects uses this data structure to
control the initialization of the ancestor classes, thereby ensuring that no ancestor class
receives multiple initialization calls.
Example

// SOM IDL
#include <Animal.idl>

interface Dog : Animal

{

implementation {
releaseorder: ;
somDefaultInit: override, init;
}i

Vi
Original Class
SOMObject Class
Related Information

somDestruct Method

Chapter 1. SOM Kernel 145

somDestruct Method

somDestruct Method

IDL Syntax

Description

Parameters

Uninitializes the receiving object, and, if so directed, frees object storage after
uninitialization has been completed. Replaces somUninit as the preferred method for
uninitializing objects. For performance reasons, it is recommended that somDestruct
always be overridden. Not normally invoked directly by object clients.

void somDestruct (in octet dofree, inout somDestructCtrl ctrl);

Every class must support the somDestruct method. This is accomplished either by
overriding somDestruct (in which case a specialized stub procedure will be generated
in the implementation template file), or else SOMobjects will automatically provide a generic
procedure that implements somDestruct for the class. The generic procedure calls
somUninit (if this was overridden) to perform local uninitialization, then completes
execution of the method appropriately.

Because the specialized stub procedure generated by the template emitter is more efficient
than the generic procedure provided when somDestruct is not overridden, it is
recommended that somDestruct always be overridden. The stub procedure that is
generated in this case requires no modification for correct operation. The only modification
appropriate within this stub procedure is to uninitialize locally introduced instance variables.
See “Initializing and Uninitializing Objects” on page 195 of Programmer’s Guide for SOM
and DSOM for further details.

Uninitialization with somDestruct executes as follows: For any given class in the ancestor
chain, somDestruct first uninitializes that class’s introduced instance variables (if this is
appropriate), and then calls the next ancestor class’s implementation of somDestruct,
passing O (that is, false) as the interim dofree argument. Then, after all ancestors of the
given class have been uninitialized, if the class’s own somDestruct method were originally
invoked with dofree as 1 (that is, true), then that object’s storage is released.

It is not appropriate to override both somDestruct and somUninit. If this is done, the
somUninit code will not be executed. The best way to convert an old class that overrides
somUninit to use of the more efficient somDestruct (if this is desired) is as follows:

» Replace the somUninit override in the class’s .idl file with an override for
somDestruct

* Run the emitter to produce a stub procedure for somDestruct in the
implementation template file

» Call the class’s somUninit procedure directly (not using a method invocation)
from the somDestruct procedure

receiver
A pointer to an object.

dofree
A boolean indicating whether the caller wants the object storage freed after
uninitialization of the current class has been completed. Passing 1 (TRUE) indicates
the object storage should be freed.

146 Programmer’s Reference for SOM and DSOM

somDestruct Method

ctrl
A pointer to a somDestructCtrl data structure. SOMobjects uses this data structure to
control the uninitialization of the ancestor classes, thereby ensuring that no ancestor
class receives multiple uninitialization calls. If a user invokes somDestruct on an
object directly, a NULL (that is, zero) ctrl pointer can be passed. This instructs the
receiving code to obtain a somDestructCtrl data structure from the class of the object.

Example

// SOM IDL
#include <Animal.idls>
interface Dog : Animal

{

implementation {
releaseorder: ;
somDesgtruct: override;
Vi

Original Class
SOMObject Class
Related Information

somDefaultlnit Method

Chapter 1. SOM Kernel 147

somClassDispatch Method

somClassDispatch Method

IDL Syntax

Description

Parameters

Invokes a method using dispatch method resolution. The somDispatch method is
designed to be overridden. The somClassDispatch method is not generally overridden.

boolean somDispatch (
out somToken retValue,
in somld methodld,
in va_list args);
boolean somClassDispatch (
in SOMClass clsObj,
out somToken retValue,
in somld methodld,
in va_list args);

Both somDispatch and somClassDispatch perform method resolution to select a method
procedure, and then invoke this procedure on args. The “somSelf” argument for the
selected method procedure (called the target object, below, to distinguish it from the
receiver of the somDispatch or somClassDispatch method call) is the first argument
included in the va_list, args.

For somDispatch, method resolution is performed using the class of the receiver; for
somClassDispatch, method resolution is performed using the argument class, clsOb;j.
Because somClassDispatch uses clsObj for method resolution, a programmer invoking
somDispatch or somClassDispatch should assure that the class of the target object is
either derived from or is identical to the class used for method resolution; otherwise, a run-
time error will likely result when the target object is passed to the resolved procedure.
Although not necessary, the receiver is usually also the target object.

The somDispatch and somClassDispatch methods supersede the somDispatchX
methods. Unlike the somDispatchX methods, which are restricted to few return types, the
somDispatch and somClassDispatch methods make no assumptions concerning the
result returned by the method to be invoked. Thus, somDispatch and somClassDispatch
can be used to invoke methods that return structures. The somDispatchX methods now
invoke somDispatch, so overriding somDispatch serves to override the somDispatchX
methods as well.

receiver
A pointer to the object whose class will be used for method resolution by somDispatch.

clsObj
A pointer to the class that will be used for method resolution by somClassDispatch.

retValue
The address of the area in memory where the result of the invoked method procedure
is to be stored. The caller is responsible for allocating enough memory to hold the
result of the specified method. When dispatching methods that return no result (that is,
void), a NULL may be passed as this argument.

methodId
A somld identifying the method to be invoked. A string representing the method name
can be converted to a somld using the somldFromString Function.

148 Programmer’s Reference for SOM and DSOM

somClassDispatch Method

args
A va_list containing the arguments to be passed to the method identified by methodid.
The arguments must include a pointer to the target object as the first entry. As a
convenience for C and C++ programmers, SOM’s language bindings provide a varargs
invocation macro for va_list methods (such as somDispatch and somClassDispatch).

Return Value

Returns a boolean representing if the method was successfully dispatched. somDispatch
and somClassDispatch use somApply to invoke the resolved method procedure.
somApply requires an apply stub for successful execution. In support of old class binaries,
SOM does not consider a NULL apply stub to be an error and somApply might fail. If this
happens, then false is returned; otherwise true is returned.

Example

Given class Key with an attribute keyval of type long and an overridden method for
somPrintSelf that prints the value of the attribute, the following client code invokes
methods on Key objects using somDispatch and somClassDispatch. The Key class was
defined with the callstyle=oidl class modifier, so the Environment argument is not
required of its methods.

#include <key.h>
main ()
{
SOMObject obj;
long k1 = 7, k2;
Key *myKey = KeyNew () ;
somVaBuf vb;
va_list push, args;
somId setId = somIdFromString(“ set keyval”);
somId getId = somIdFromString(“ get keyval”);
somId prtId = somIdFromString (“somPrintSelf”) ;
vb = (somVaBuf)somVaBuf create (NULL, O0);
somVaBuf add(vb, (char *)&myKey, tk ulong) ;
somVaBuf add(vb, (char *)&kl, tk_long);
somVaBuf get valist (vb, &args);
/* va_list invocation of setkey and getkey */
SOMObject somDispatch (myKey, (somToken *)0, setId, args);
somVaBuf get valist (vb, &args);
SOMObject somDispatch(myKey, (somToken *)&k2, getId, args);
printf(“va_list _set keyval and _get keyval: %i\n”, k2);
/* varargs invocation of setkey and getkey */
_somDispatch (myKey, (somToken *)0, setId, myKey, kl);
_somDispatch (myKey, (somToken *)&k2, getId, myKey);
printf (“varargs _set keyval and _get keyval: %$i\n”, k2);
/* illustrate somclassDispatch “casting” (use varargs form) */
printf (“somPrintSelf on myKey as a Key:\n”);
_somClassDispatch(myKey, Key, (somToken *)&obj, prtId, myKey,
0);
printf (“*somPrintSelf on myKey as a SOMObject:\n”);
_somClassDispatch (myKey, SOMObject, (somToken *)&obj,
prtId, myKey, O0);
SOMFree (setId) ;
SOMFree (getId) ;
SOMFree (prtId) ;
_somFree (myKey) ;
somVaBuf destroy (vb) ;

This program produces the following output:

va_list _set keyval and _get keyval: 7
varargs _set keyval and _get keyval: 7

Chapter 1. SOM Kernel 149

somClassDispatch Method

somPrintSelf on myKey as a Key:

{An instance of class Key at address 2005B2F8}
-- with key value 7

somPrintSelf on myKey as a SOMObject:

{An instance of class Key at address 2005B2F8}

Original Class
SOMObject Class
Related Information

somApply Function

150 Programmer’s Reference for SOM and DSOM

somDumpSelf Method

somDumpSelf Method

Writes out a detailed description of the receiving object. Intended for use by object clients.
Not generally overridden.

IDL Syntax
void somDumpsSelf (in long level);
Description
somDumpSelf performs some initial setup, and then invokes somDumpsSelfint to write a
detailed description of the receiver, including its state.
Parameters
receiver
A pointer to the object to be dumped.
level
The nesting level for describing compound objects. It must be greater than or equal to
0. All lines in the description will be preceded by “2 * level” spaces.
Example

See somDumpSelfint Method on page 152.
Original Class

SOMObject Class
Related Information

somDumpSelfint Method

Chapter 1. SOM Kernel 151

sombDumpSelfint Method

somDumpSelfint Method

Outputs the internal state of an object. Intended to be overridden by class implementors.

Not intended to be directly invoked by object clients.
IDL Syntax
void somDumpSelfint (in long level);

Description

The somDumpSelfint method should be overridden by a class implementor, to write out
the instance data stored in an object. This method is invoked by the somDumpSelf

method, which is used by object clients to output the state of an object.

The procedure used to override this method for a new class should begin by calling the
parent class form of this method on each of the class parents, and should then write a
description of the instance variables introduced by new class. This will result in a
description of all the class’s instance variables. The C and C++ implementation bindings

provide a convenient macro for performing parent method calls on all parents.

The character output routine pointed to by SOMOutCharRoutine Function should be used
for output. The somLPrintf Function is convenient for this, since level is handled

appropriately.
Parameters

receiver
A pointer to the object to be dumped.

level

The nesting level for describing compound objects. It must be greater than or equal to

0. All lines in the description should be preceded by “2 * level” spaces.

C Example

Below is a method overriding somDumpSelfint for class “List”, which has two

attributes, val (which is a long) and next (which is a pointer to a “List” object).

SOM_Scope void SOMLINK somDumpSelfInt (List somSelf, int level)

{

ListData *somThis = ListGetData (somSelf) ;
Environment *ev = somGetGlobalEnvironment () ;
List parents somDumpSelfInt (somSelf, level) ;

somLPrintf (level, ”This item: %i\n”, _ get val (somSelf, ev);
somLPrintf (level, ”"Next item: \n”);

if (_ get next (somSelf, ev) != (List) NULL)
somDumpSelfInt (get next (somSelf, ev), level+l);

else

somLPrintf (level+1l, ”NULL\n”) ;

Below is a client program that invokes the somDumpSelf method on “List” objects:

#include <list.h>
main ()
{
List L1, L2;
long x = 7, y = 13;
Environment *ev = somGetGlobalEnvironment () ;
L1l = ListNew() ;
L2 = ListNew() ;
__set val(Ll, ev, Xx);
___set next(Ll, ev, (List) NULL);

152 Programmer’s Reference for SOM and DSOM

__set val(L2, ev, y);
___set next (L2, ev, L1);
__somDumpSelf (L2, 0) ;
__somFree (L1) ;

__somFree (L2) ;

Below is the output produced by this program:

{An instance of class List at 0x2005EA8
This item: 13
Next item:
1 This item: 7
1 Next item:
2 NULL

Original Class
SOMObject Class
Related Information

somDumpSelf Method
somPrintSelf Method

sombumpSelfint Method

Chapter 1. SOM Kernel 153

somFree Method

somFree Method

Releases the storage used by an object and frees the object. Intended for use by object
clients. Not generally overridden.

IDL Syntax
void somkFree ();
Description
somFree calls somDestruct to allow storage pointed to by the object to be freed. The
somDestruct method releases the storage containing the receiver object by calling the
somDeallocate Method. No future references should be made to the receiver.
somFree should not be called on objects created by somRenew(NolnitNoZero) Methods,
the method is normally used only by code that also created the object.
Note: SOM supplies the SOMFree function to free a block of memory. Do not use that
function on objects.
Parameters
receiver
A pointer to the object to be freed.
C Example

#include <animal.h>
void main ()

{

Animal myAnimal;

/*

* Create an object.

*/
myAnimal = AnimalNew () ;
/* ... %/

/* Free it when finished. */
_somFree (myAnimal) ;

}
Original Class

SOMObject Class
Related Information
somDestruct Method

somNew(Nolnit) Methods
SOMFree Function

154 Programmer's Reference for SOM and DSOM

somGetClass Method

somGetClass Method

Returns a pointer to an object’s class object. Not generally overridden.
IDL Syntax

SOMClass somGetClass ();
Description

somGetClass obtains a pointer to the receiver’s class object. The somGetClass method is
typically not overridden.

For C and C++ programmers, SOM provides a SOM_GetClass macro that performs the
same function. This macro should only be used only when absolutely necessary (that is,
when a method call on the object is not possible), since it bypasses whatever semantics
may be intended for the somGetClass method by the implementor of the receiver’s class.
Even class implementors do not know whether a special semantics for this method is
inherited from ancestor classes. If you are unsure of whether the method or the macro is
appropriate, you should use the method call.

Parameters

receiver
A pointer to the object whose class is desired.

Return Value

A pointer to the object’s class object. This return value is cast as a SOMClass *. In C++,

you may have to explicitly cast this to a pointer of a specific class type when different from
SOMClass.

C Example

#include <animal.h>
main ()

{

Animal myAnimal;

int numMethods;
SOMClass animalClass;
myAnimal = AnimalNew () ;

animalClass = somGetClass (myAnimal) ;
SOM Test (animalClass == _Animal) ;

Original Class
SOMObject Class
Related Information
SOM_GetClass Macro

Chapter 1. SOM Kernel 155

somGetClassFromMToken Method

somGetClassFromMToken Method

Provides a public API for determining the introducting class of a method that is indicated by
a method token.

IDL Syntax
string somGetClassFromMToken ();
Description

The somGetClassFromMToken method returns a pointer to a zero-terminated string that
gives the name of the class of an object.

Parameters

receiver
A pointer to the object whose class name is desired.

Return Value

The somGetClassFromMToken method returns a pointer to the name of the class.
Original Class

SOMObject Class
Related Information

somGetName Method

156 Programmer’s Reference for SOM and DSOM

somGetSize Method

somGetSize Method

Returns the size of an object. Not generally overridden.
IDL Syntax
long somGetSize ();
Description

The somGetSize method returns the total amount of contiguous space used by the
receiving object.

The value returned reflects only the amount of storage needed to hold the SOM
representation of the object. The object might actually be using or managing additional
space outside of this area.

Parameters

receiver
A pointer to the object whose size is desired.

Return Value
The somGetSize method returns the size, in bytes, of the receiver.
C Example

#include <animal.h>
void main ()
{
Animal myAnimal;
long animalSize;

myAnimal = AnimalNew () ;
animalSize = somGetSize (myAnimal) ;
somPrintf (”Size of animal (in bytes): %d\n”, animalSize) ;

_somFree (myAnimal) ;

}

/*

Output from this program:
Size of animal (in bytes): 8
*/

Original Class
SOMObject Class
Related Information

somGetinstancePartSize Method
somGetlnstanceSize Method

Chapter 1. SOM Kernel 157

somisA Method

somlsA Method

Tests whether an object is an instance of a given class or a subclasse. Not generally
overridden.

IDL Syntax
boolean somlisA (in SOMClass aClass)
Description

Use the somIsA method to determine if an object can be treated like an instance of
aClass. SOM guarantees that if somIsA returns true, then the receiver will respond to all
methods supported by aClass.

Parameters

receiver
A pointer to the object to be tested.

aClass
A pointer to the class that the object should be tested against.

Return Value

The somIsA methods returns TRUE if the receiving object is an instance of the specified
class or (unlike somlsinstanceOf) of any of its descendant classes, and FALSE otherwise.

Example

In this example, Dog is derived from Animal.

#include <dog.h>
main ()
{
Animal myAnimal;
Dog myDog;
SOMClass animalClass;
SOMClass dogClass;

myAnimal = AnimalNew () ;
myDog = DogNew () ;

animalClass = somGetClass (myAnimal) ;
dogClass = _somGetClass (myDog) ;
if (_somIsA (myDog, animalClass))
somPrintf ("myDog IS an Animal\n”) ;
else
somPrintf (”myDog IS NOT an Animal\n”) ;
if (_somIsA (myAnimal, dogClass))
gsomPrintf (”myAnimal IS a Dog\n”) ;
else

somPrintf (”"myAnimal IS NOT a Dog\n”) ;
_somFree (myAnimal) ;
_somFree (myDog) ;

!

/* Output from this program:
myDog IS an Animal
myAnimal IS NOT a Dog */

Original Class
SOMObject Class

158 Programmer’s Reference for SOM and DSOM

somlsA Method

Related Information
somDescendedFrom Method
somlsinstanceOf Method
somRespondsTo Method
somSupportsMethod Method

Chapter 1. SOM Kernel 159

somlsinstanceOf Method

somlsinstanceOf Method

IDL Syntax

Description

Parameters

Determines whether an object is an instance of a specific class. Not generally overridden.

boolean somlsinstanceOf (in SOMClass aClass);

Use the somlisinstanceOf method to determine if an object is an instance of a specific
class. This method tests an object for inclusion in one specific class. It is equivalent to the
expression:

(aClass == somGetClass (receiver))

receiver
A pointer to the object to be tested.

aClass
A pointer to the class that the object should be an instance of.

Return Value

C Example

The somlisinstanceOf method returns 1 (true) if the receiving object is an instance of the
specified class, and O (false) otherwise.

In this example, Dog is derived from Animal.

#include <dog.hs>
main ()
{
Animal myAnimal;
Dog myDog;
SOMClass animalClass;
SOMClass dogClass;

myAnimal = AnimalNew () ;
myDog = DogNew () ;
animalClass = somGetClass (myAnimal) ;
dogClass = _somGetClass (myDog) ;
if (_somIsInstanceOf (myDog, animalClass))
somPrintf (”myDog is an instance of Animal\n”);
if (somIsInstanceOf (myDog, dogClass))
somPrintf (“myDog is an instance of Dog\n”) ;

if (_somIsInstanceOf (myAnimal, animalClass))
somPrintf ("myAnimal is an instance of Animal\n”);
if (_somIsInstanceOf (myAnimal, dogClass))

somPrintf (”myAnimal is an instance of Dog\n”) ;
_somFree (myAnimal) ;
_somFree (myDog) ;
}
/* Output from this program:
myDog is an instance of Dog
myAnimal is an instance of Animal */

Original Class

SOMObject Class

160 Programmer’s Reference for SOM and DSOM

somlisinstanceOf Method

Related Information

somDescendedFrom Method
somlIsA Method

Chapter 1. SOM Kernel 161

somPrintSelf Method

somPrintSelf Method

Outputs a brief description that identifies the receiving object. Designed to be overridden.

IDL Syntax

Description

SOMObject somPrintSelf ();

somPrintSelf should output a brief string containing key information useful to identify the
receiver object, rather than a complete dump of the receiver object state as provided by
somDumpSelfint. The somPrintSelf method should use the character output routine
SOMOutCharRoutine Function (or any of the somPrintf Function) for this purpose. The
default implementation outputs the name of the receiver object’s class and the receiver’'s
address in memory.

Because the most specific identifying information for an object will often be found within
instance data introduced by the class of an object, it is likely that a class implementor that
overrides this method will not need to invoke parent methods in order to provide a useful
string identifying the receiver object.

Parameters

receiver

Return Value

A pointer to the object to be described.

The somPrintSelf method returns a pointer to the receiver object as its result.

C Example

Original Class

#include <animal.h>

main ()

{
Animal myAnimal;
myAnimal = AnimalNew () ;
/* ... %/
_somPrintSelf (myAnimal);
_somFree (myAnimal) ;

}

/*

Output from this program:

{An instance of class Animal at address 0001CECO}
*/

SOMObject Class

Related Information

somDumpSelf Method

somDumpSelfint Method

162 Programmer’s Reference for SOM and DSOM

somResetObj Method

somResetObj Method

Resets an object’s class to its true class after use of the somCastObj method.
IDL Syntax
boolean somResetObj ();
Description

The somResetObj method resets an object’s class to its true class after use of the
somCastsObj method.

Parameters

receiver
A pointer to a SOM object.

Return Value
The somResetObj method returns 1 (TRUE) always.
Example

#include <som.h>
main ()

{

SOMClassMgr cm = somEnvironmentNew () ;

SOM_Test (1 == _somCastObj (cm, _SOMObject)) ;
_sombumpSelf (cm, 0));
SOM_Test (1 == _somResetObj (cm)) ;

__somDumpSelf (cm, 0);

}

/* output:

* {An instance of class SOMClassMgr->SOMObject

* at address 20061268

*)

* {An instance of class SOMClassMgr at address 20061268
* ... <SOMClassMgr State Informations> ...

*)

*

/
Original Class

SOMObject Class
Related Information
somCastObj Method

Chapter 1. SOM Kernel 163

somRespondsTo Method

somRespondsTo Method

Tests whether the receiving object supports a given method. Not generally overridden.

IDL Syntax
boolean somRespondsTo (in somid methodlId);
Description
The somRespondsTo method tests whether a specific (static or dynamic) method can be
invoked on the receiver object. This test is equivalent to determining whether the class of
the receiver supports the specified method on its instances.
Parameters
receiver
A pointer to the object to be tested.
methodId

A somld that represents the name of the desired method.
Return Value

The somRespondsTo method returns TRUE if the specified method can be invoked on the
receiving object, and FALSE otherwise.

C Example

Note: Animal supports a setSound method;
Animal does not support a doTrick method.

#include <animal.h>
main ()
Animal myAnimal;
char *methodNamel
char *methodName2

"setSound” ;
"doTrick” ;

myAnimal = AnimalNew () ;
if (_somRespondsTo (myAnimal, SOM_IdFromString (methodNamel)))
somPrintf ("“myAnimal responds to %$s\n”, methodNamel) ;
if (_somRespondsTo (myAnimal, SOM IdFromString (methodName2)))
somPrintf ("“myAnimal responds to %$s\n”, methodName2) ;
__somFree (myAnimal) ;
!
/*
Output from this program:
myAnimal responds to setSound

*/
Original Class
SOMObject Class
Related Information
somSupportsMethod Method

164 Programmer’s Reference for SOM and DSOM

Chapter 2. DSOM Framework

SOMOb|ect
-
@ Implu@hnmr @ W 50\':"_“__5:;“' Sﬂ\i::lf}pd
S S
Comext ImplRepozHory ORB Aequeel| SOMDSarvarigr
N N St
@ SOMDOClientProxy
Legerd
I:{:} claes

— Inarhte frome

Figure 2. DSOM Framework Organization.

Chapter 2. DSOM Framework 165

Notes About DSOM and CORBA

Notes About DSOM and CORBA

DSOM is a framework which supports access to objects in a distributed application. DSOM
can be viewed as both:

e an extension to basic SOM facilities

e animplementation of the Object Request Broker (ORB) technology defined by the
Object Management Group (OMG), in the Common Object Request Broker
Architecture (CORBA) specification and standard, Revision 1.1. The CORBA 1.1
specification is published by x/Open and the OMG.

One of the primary contributions of CORBA 1.1 is the specification of basic runtime
interfaces for writing portable, distributable object-oriented applications. SOM and DSOM
implement those runtime interfaces according to the CORBA 1.1 specification.

In addition to the published CORBA 1.1 interfaces, it was necessary for DSOM to introduce
several of its own interfaces, in those areas where:

* CORBA 1.1 did not specify the full interface (for example, ImplementationDef Class,
Principal Class)

« CORBA 1.1 did not address the function specified by the interface.
» The functionality of a CORBA 1.1 interface has been enhanced by DSOM.
Any such interfaces have been noted on the reference page for each DSOM class.

Method Naming Conventions

166

The SOM Toolkit frameworks, including DSOM, and CORBA 1.1 have slightly different
conventions for naming methods. Methods introduced by the SOM Toolkit frameworks use
prefixes to indicate the framework to which each method belongs, and use capitalization to
separate words in the method names (for example, somdDispatchMethod). Methods
introduced by CORBA 1.1 have no prefixes, are all lower case, and use underscores to
separate words in the method names (such as, impl_is_ready).

DSOM, more than the other SOM Toolkit frameworks, uses a mix of both conventions. The
method and class names introduced by CORBA 1.1 are implemented as specified, for
application portability. Methods introduced by DSOM to enhance a CORBA 1.1-defined
class also use the CORBA 1.1 naming style. The SOM Toolkit convention for method
naming is used for non-CORBA 1.1 classes which are introduced by DSOM.

Programmer’s Reference for SOM and DSOM

get_next_response Function

get_next_response Function

Returns the next Request Class object to complete, after starting multiple requests in

parallel.
C Syntax
ORBStatus get_next_response (
Environment* ev,
Flags response_flags,
Request *req);
Description
The get_next_response function returns a pointer to the next Request object to complete
after starting multiple requests in parallel. This is a synchronization function used in
conjunction with the send_multiple_requests function. There is no specific order in which
requests will complete.
If the response_flags field is set to 0, this function will not return until the next request
completion. If the caller does not want to become blocked, the RESP_NO_WAIT flag
should be specified.
This function is described in Deferred Synchronous Routines, of the CORBA 1.1
specification.
Parameters

ev
A pointer to the Environment structure for the caller.

response_flags
A Flags (unsigned long) variable, used to indicate whether the caller wants to wait for
the next request to complete (0), or not wait (RESP_NO_WAIT).

req
A pointer to a Request object variable. The address of the next Request object which
completes is returned in the Request variable.

Return Value

The get_next_response function may return a non-zero ORBStatus value, which
indicates a DSOM error code. (DSOM error codes are listed in “Error Codes” on page 399
of Programmer’s Guide for SOM and DSOM.)

Example
See send_multiple_requests Function on page 170.
Related Information

send_multiple_requests Function
get_response Method

invoke Method

send Method

Chapter 2. DSOM Framework 167

ORBfree Function

ORBfree Function

C Syntax

Description

Parameters

Frees memory allocated in a DSOM client by DSOM for out arguments and certain return
values from remote method calls. Also frees memory returned from methods invoked on the
ORB object.

void ORBfree (void * ptr);

The purpose of ORBfree is to recursively free all of the storage associated with out
parameters or certain return values from remote method calls. Such storage is allocated by
the DSOM run time in the client’s address space on behalf of the remote object. Storage so
allocated must be given special treatment by the user, specifically pointers within it may not
be modified nor freed using SOMFree. They must be freed using ORBfree.

By default, for remote method calls all out parameters and the following types of return
values must be freed with ORBfree:

returned strings

returned pointers (that is, all “*” types)
returned arrays

returned sequences

If there are object references or TypeCode references within the storage, ORBfree will
appropriately release the references. If a given out parameter requires no allocation by
DSOM (as is the case for an out long parameter, for example), it is unnecessary but has
no effect to call ORBfree on it.

ORBfree does not apply to object-owned parameters, in or inout parameters, or return
values of types not listed above. These must always be freed by using SOMFree on each
of the contained pointers. SOMD_FreeType can help with this. ORBfree never applies to
parameters of local method calls nor to memory allocated by the application itself.

The need for ORBfree can be disabled by calling the function SOMD_NoORBfree prior to
making the remote method call. SOMD_NoORBfree allows an application to achieve local/
remote transparency. If SOMD_NoORBfree has been called, an application can free
results of both local and remote method calls in the same way (using SOMFree or
SOMD_FreeType).

The ORBfree function is used to free the storage returned from certain ORB methods,
including object_to_string and list_initial_services.

ptr
A pointer to memory that has been allocated by DSOM for an out argument or a
method return value. Since ORBfree applies to a whole parameter, the ptr argument is
the top-level pointer used to return the parameter (as required by CORBA 1.1, section
5.16, pg 96). Specifically, for out parameters the ptr argument to ORBfree is the
pointer used to return the out parameter. For return values (except sequences), the ptr
argument is the returned pointer or object references. For returned sequences, the
argument to ORBfree should be the _buffer field of the sequence.

168 Programmer’s Reference for SOM and DSOM

ORBfree Function

Return Value

None. There is currently no way to determine whether a given pointer corresponds to a
parameter that ORBfree should free (whether the call was successful) because the
signature of ORBfree is specified by CORBA 1.1.

Example

#include <somd.h>
#include <myobject.h> /* provided by user */

MyObject obj;

Environment ev;

string strl, str2;

MyStruct m;

/* Assume the following appears in the IDL for the

* MyObject interface:
*

* struct MyStruct {
* long 1i;
* long j;
* },.
*
* string myMethod (out string s, out MyStruct m);
*
/

SOM_InitEnvironment (&ev) ;
/* Assume obj is a proxy for a remote MyObject */
strl = myMethod(obj, &ev, &str2, &m);

/* Free storage */

ORBfree (strl); /* argument is the returned pointer */
ORBfree (&str2); /* argument is ptr used to return out */
ORBfree (&m) ; /* unnecessary, but has no effect */

Related Information
SOMD_FreeType Function
SOMD_NoORBfree Function
SOMD_QueryORBfree Function
SOMD_YesORBfree Function
SOMFree Function
list_initial_services Method
object_to_string Method

This function is described in "Argument Passing Considerations" and section 5.17, “Return
Result Passing Considerations,” of the CORBA 1.1 specification.

Chapter 2. DSOM Framework 169

send_multiple_requests Function

send_multiple_requests Function

Initiates multiple Request Class in parallel.

C Syntax
ORBStatus send_multiple_requests (
Request reqgs]],
Environment* ev,
long count,
Flags invoke_flags);
Description
The send_multiple_requests function initiates multiple Request in parallel. (The actual
degree of parallelism is system dependent.) Each Request object is created using the
create_request Method method, defined on SOMDClientProxy Class. Like the send
method, this function returns to the caller immediately without waiting for the Request to
finish. The caller waits for the request responses using the get_next_response function.
Parameters

reqs
The address of an array of Request objects which are to be initiated in parallel.

ev
A pointer to the Environment structure for the caller.

count
The number of Request objects in reqs.

invoke_flags
A flags (unsigned long) value, used to indicate the following options:

INV_NO_RESPONSE Indicates the caller does not intend to get any
results or out parameter values from any of the requests. The
requests can be treated as if they are oneway operations.

INV_TERM_ON_ERR If one of the requests causes an error, the
remaining requests are not sent.

The above flag values may be “or”-ed together.
Return Value

The send_multiple_requests function may return a non-zero ORBStatus value, which
indicates a DSOM error code. (DSOM error codes are listed in “Error Codes” on page 399
of Programmer’s Guide for SOM and DSOM.)

Example
#include <somd.h>

/* sum a set of values in parallel */
int parallel sum(Environment *ev, int n, SOMDObject *objs)

int index, sum = O0;
Request *next;

Request *reqgs = (Request*) SOMMalloc (
n * sizeof (Request)) ;
NamedValue *results = (NamedValue¥)

SOMMalloc (n * sizeof (Namedvalue)) ;

170 Programmer’s Reference for SOM and DSOM

send_multiple_requests Function

for (i=0; 1 < n; 1i++)
(void) _create request ((Context *)NULL,
" _get_ count”, NULL,
& (result[i]), &(regs[i]),
(Flags)0) ;

(void) send multiple requests(regs, ev, n, (Flags)O);

for (i=0, i < n; i++) {
(void) get next response(ev, (Flags)O0, &next);
index = (next - reqgs);
sum += *((int*)results[index] .argument. value) ;

}

return (sum) ;

}

Related Information
get_next_response Function
get_response Method
invoke Method
send Method

This function is described in section 6.3, “Deferred Synchronous Routines”, of the
CORBA 1.1 specification.

Chapter 2. DSOM Framework 171

somdCreate Function

somdCreate Function

Requests creation of an object of a specified class, by any available factory.
C Syntax

SOMObject * somdCreate (
Environment *ev,
Identifier className
boolean init);

Description

The somdCreate function is provided as a convenience function for object creation; it
searches for any factory that knows how to create objects of the requested class and asks
the factory to create such an object. The somdCreate function calls find_any requesting
that property class be set to the input className. The function call also specifies the
method that should be used for object creation: somNew or somNewNolnit.

Parameters
ev
A pointer to the Environment structure used to return errors.

className
The class name of the object to be created. The className parameter must match the
class name as specified when the class was associated with some server (for example,
via the regimpl tool).

init
A boolean value that specifies how to create the object; TRUE means to call somNew,
or FALSE means to call somNewNolnit.

Return Value

The somdCreate function returns a pointer to the newly created object of the specified
class.

Example

#include <somd.h>

#include <car.h>

Environment ev;

SOM_InitEnvironment (&ev) ;

/* create an instance of class ”“Car” using somNew */
car = somdCreate (&ev, “Car”, TRUE) ;

Related Information

somNew(Nolnit) Methods
find_any Method

172 Programmer’s Reference for SOM and DSOM

somdCreateDynProxyClass Function

somdCreateDynProxyClass Function

C Syntax

Description

Parameters

Return Value

Creates a DSOM proxy class.

SOMClass * somdCreateDynProxyClass (string targetClassName)

This method creates a DSOM proxy class for the specified target class which is useful
when implementing a factory that controls memory allocation for both local objects and
proxies for remote objects. See “Designing Local/Remote Transparent Programs” on
page 271 for more information.

For more details about constructing DSOM proxy classes, see “Object References and
Proxy Objects” on page 329.

ev
A pointer to the Environment structure for the method caller.

targetClassName
The name of a SOM class from which the proxy class will be derived. The proxy class
inherits both interface and implementation from the SOMDClientProxy class, and
inherits interface only from the class specified by targetClassName.

If the IDL for the specified targetClassName designates an application-specific
baseproxyclass, that proxy base class is used as the parent class instead of
SOMDClientProxy.

Returns the constructed proxy class object named with the targetClassName concatenated
with the literal string Proxy. The returned class object name appears as
targetClassName__ Proxy: note the double underscore between targetClassName and
Proxy. If a class with the same name already exists, that constructed proxy class object is
returned.

If the proxy class cannot be constructed, a system exception is returned in the
Environment. For example, if the class for the specified targetClassName cannot be
created because its DLL cannot be loaded by somFindClass, a system exception is
returned.

Chapter 2. DSOM Framework 173

somdDaemonReady Function

somdDaemonReady Function

Checks whether somdd, the DSOM daemon, is running.
C Syntax

boolean somDaemonReady (
Environment *ev,
long timeout);

Description

The somdDaemonReady function checks whether the DSOM daemon, somdd, is running
and ready to accept requests. The function checks for a somdd executable active on the
same system as the query.

If the daemon is not running, somdDaemonReady checks the status of the daemon for
timeout seconds. A message is displayed periodically while waiting for the daemon to
become active.

Parameters

ev
A pointer to the Environment structure used to return errors.

timeout
The number of seconds to wait for the caller.

Return Value

The function returns TRUE if the DSOM daemon is running and ready to accept requests. If
the daemon is not running FALSE is returned and an exception is returned in ev.

Example

#include <somd.h>

Environment ev;
SOM_InitEnvironment (&ev) ;

if (somdDaemonReady (&ev, 0) {
/* somdd is up and running */

}

174 Programmer's Reference for SOM and DSOM

somdExceptionFree Function

somdExceptionFree Function

C Syntax

Description

Parameters

Example

Frees the memory held by the exception structure within an Environment structure that
was returned from a remote method invocation.

void somdExceptionFree (Environment *ev);

The somdExceptionFree function frees the memory held by the exception structure within
an Environment structure that was returned from a remote method invocation.

When a DSOM client program invokes a remote method and the method returns an
exception in the Environment structure, it is the client’s responsibility to free the exception.
This is done by calling either exception_free or somdExceptionFree on the Environment
structure in which the exception was returned. These two functions are equivalent. The
exception_free function name is #defined in the som.h or som.xh file to provide strict
CORBA 1.1 compliance of function names.

The somdExceptionFree function does a recursive (deep) free of the exception’s
parameters (similar to ORBfree Function for method return results), unless
SOMD_NoORBfree Function was invoked prior to the remote call or the exception was
returned from a local call. The exception name is also freed, and the Environment
structure’s fields are reset to indicate no exception.

This function should not be invoked on irOpenError exceptions returned from the Interface
Repository framework because the Interface Repository framework allocates all exception
parameters from a single block of memory; therefore, these exception parameters should
not be recursively freed, but should instead be freed using somExceptiomFree or a single
call to SOMFree.

If SOMD_NoORBfree has been invoked, or if the exception was returned from a local
(non-remote) method call, then somdExceptionFree performs only a shallow free. If the
exception parameters contain embedded memory blocks, then the application should
explicitly free the additional memory using calls to SOMFree Function for each memory
block contained therein. If the exception parameters consist of a single block of memory,
then the exception will be completely freed by somdExceptionFree or exception_free.

A similar function, somExceptionFree, is available for SOM applications (those that do not
include DSOM header files). For SOM programmers, exception_free is #defined to
somExceptionFree rather than somdExceptionFree. The somExceptionFree function
(like somdExceptionFree when SOMD_NoORBfree has been invoked, and like
somdExceptionFree when invoked on an exception returned from a local method call)
does not do a deep free (under any circumstances), and thus does not completely free
exceptions whose parameters contain multiple blocks of memory.

ev
The Environment structure whose exception information is to be freed. If ev is NULL,
then the global Environment’s exception structure is freed. It is an error to invoke this
function on an Environment structure that does not contain an exception.

X foo(x, ev, 23); /* make a remote method call */
if (ev->major != NO EXCEPTION)

{

Chapter 2. DSOM Framework 175

somdExceptionFree Function

printf (*foo exception = %s\n”, somExceptionId(ev)) ;
/* ... handle exception ... */

somdExceptionFree (ev); /* free exception */

}
Related Information

somdExceptionFree Function
somExceptionld Function
somExceptionValue Function
somSetException Function
Environment (som.h)

176 Programmer’s Reference for SOM and DSOM

SOMD_FlushinterfaceCache Function

SOMD_FlushinterfaceCache Function

Removes entries from DSOM'’s internal cache of Interface Repository entries.
C Syntax

SOMEXTERN void SOMLINK SOMD_FlushinterfaceCache (
Environment *ev,
string name);

Description

DSOM maintains an internal cache of the Interface Repository entries that it references, in
addition to the caching done by the Interface Repository framework itself. The function
SOMD_FlushinterfaceCache allows users to purge this cache, either entirely or for
selected items. This function complements the Repository::release_cache method that
purges the cache maintained by the Interface Repository framework. The
SOMD_FlushinterfaceCache function invokes Repository::release_cache before
returning, to ensure that updated information in the IR will be used when DSOM
subsequently accesses the IR.

Parameters

ev
A pointer to an Environment structure in which exception information is returned.

name
The name of the Interface Repository entry (interface name, method name, or attribute
name) to be removed from DSOM's internal cache. If this name is not specified, then all
entries in DSOM'’s internal cache are purged.

Example
SOMD_FlushInterfaceCache (ev, ”changedMethod”) ;
Related Information

release_cache Method

Chapter 2. DSOM Framework 177

SOMD_FreeType Function

SOMD_FreeType Function

C Syntax

Description

Parameters

Example

Deep frees memory for an instance of a specified type.

void SOMD_FreeType (
Environment * ev,
void * valptr,
TypeCode type);

SOMD_FreeType takes a pointer to a value, together with the TypeCode for its type, and
frees all the freeable storage occupied by the value. SOMD_FreeType does not free the
storage pointed to by valptr itself, since that may not be freeable (see the Example that
follows).

SOMD_FreeType executes by “walking” the value and calling SOMFree on each contained
block of memory (as well as calling the appropriate release method on each contained
object or pseudo-object reference). Thus, SOMD_FreeType is applicable to any storage
that was allocated using the standard means, but not to storage that must be freed with
ORBfree.

SOMD_FreeType can return an exception in ev, usually because the provided TypeCode
does not match the value. If SOMD_FreeType returns an exception, the storage for the
value is left in an undefined state.

ev
A pointer to the Environment structure for the caller, where SOMD_FreeType may
return an exception.

valptr
A pointer to the value whose storage is to be freed.

type
The TypeCode for the type of the value to be freed. TypeCodes can be obtained via
the Interface Repository framework.

#include <somd.h>

#include <myobject.h> /* provided by user */

MyObject obj;

Environment ev;

any a;

MyRec m;

/* Assume the following appears in the IDL for the
* MyObject interface:

*
* struct MyRec {
* string name;
* string address;
* },.
*
* any myMethod (out MyRec 1) ;
*
/

SOM_InitEnvironment (&ev) ;
/* Assume that the IDL was compiled with -mtcconsts,
* so that TC_MyObject MyRec is the TypeCode for MyRec.

178 Programmer’s Reference for SOM and DSOM

SOMD_FreeType Function

*

* Assume that MyObject is local, or that SOMD NoORBfree
* is in effect (so that memory allocation is standard) .

*/
a = myMethod(obj, &ev, &m);

/* Free strings in m */

SOMD_FreeType (&ev, &m, TC MyObject MyRec) ;

/* Free the storage in the value of the any a */
SOMD_FreeType (&ev, a._value, a. type);

/* Free the storage a. value points to (not freed above) */
SOMFree (a. value) ;

/* Free the type field of a */
TypeCode free(a. type, ev);

Related Information

ORBfree Function
SOMFree Function

Chapter 2. DSOM Framework 179

SOMD_Init Function

SOMD _In

C Syntax

Description

Parameters

Example

it Function

Initializes DSOM in the calling process.

Note: This function employs reference counting which means that calling SOMD_Init
multiple times will increment the count.

void SOMD_Init (Environment* ev);

Initializes DSOM in the calling process. This function should be called before any other
DSOM functions or methods. This function should only be invoked:

e atthe beginning of a DSOM program (client or server), to initialize the program

« after SOMD_Uninit Function has been invoked, to reinitialize the program. If the
program has already been initialized with SOMD _Init, then invoking SOMD_ Init again
has no effect.

An effect of calling SOMD_Init is that the global variable SOMD_ORBObject is initialized
with a pointer to the (single) instance of the ORB object. Also the global variable
SOMD_ImplRepObiject is initialized with a pointer to the (single) instance of the
ImplRepository Class.

ev
A pointer to the Environment structure for the caller.

#include <somd.h>

Environment ev;

/* initialize Environment */
SOM_InitEnvironment (&ev) ;

/* initialize DSOM runtime */
SOMD_Init (&ev) ;

/* Free DSOM resources */
SOMD_Uninit (&ev) ;

Related Information

See “Distributed SOM” on page 229 in Programmer’s Guide for SOM and DSOM.

180 Programmer’s Reference for SOM and DSOM

SOMD_NoORBfree Function

SOMD_NoORBfree Function

C Syntax

Description

Example

Lets client programs free memory returned from method calls without knowing which calls
are local versus remote. Specifies to DSOM that it should not use special allocation
techniques to allocate storage for caller-owned out parameters and certain return values of
remote method calls. Specifies to DSOM that the client program will use SOMFree rather
than ORBfree to free memory allocated by DSOM. Also specifies that exception_free
(somdExceptionFree Function) will not deep-free exceptions.

Note: exception_free and somdExceptionFree are equivalent. exception_free name is
#defined in the som.h or som.xh file to provide strict CORBA 1.1 compliance of
function names.

void SOMD_NoORBfree ();

SOMD_NoORBfree allows client programs to free memory returned from a method call
whether the memory is remote versus local. SOMD_NoORBfree specifies to DSOM that it
should not use special allocation techniques to allocate storage for caller-owned out
parameters and certain return values for remote method calls, and that ORBfree will not be
called by the application. Issuing SOMD_NoORBfree is an indication that the client
program wants to treat storage for these parameters uniformly with storage allocated by the
program and intends to free it with SOMFree or SOMD_FreeType. Consequently, calling
ORBfree has no effect on memory returned when SOMD_NoORBfree is in effect.

Similarly, SOMD_NoORBfree indicates that DSOM should not use special allocation for
exceptions, and that the client will take responsibility for freeing any exception params.
When SOMD_NoORBfree is in effect, somdExceptionFree has the same behavior as
somdExceptionFree Function.

By default, a DSOM client program must use SOMFree to free memory returned by local
method calls and ORBfree to free certain memory returned from remote method calls. Also
by default, somdExceptionFree will shallow free exceptions returned from local calls, and
will deep free exceptions from remote calls. By contrast, SOMD_NoORBfree allows
programmers to treat memory and exceptions returned from remote method calls uniformly
with locally allocated memory (that is, to free memory with SOMFree or SOMD_FreeType) .

SOMD_NoORBfree can be called any time after SOMD_Init Function. However, it will
affect the process global state; thus you must exercise caution when using it in
multi-threaded clients. The simplest usage is to call SOMD_NoORBfree after SOMD_Init.

SOMD_Init (ev) ;
SOMD_NoORBfree () ;
/* rest of client program */

Related Information

ORBfree Function
SOMD_FreeType Function
SOMD_QueryORBfree Function
SOMD_YesORBfree Function
SOMFree Function

Chapter 2. DSOM Framework 181

SOMD_QueryORBfree Function

SOMD_QueryORBfree Function

Queries to determine whether SOMD_NoORBfree is in effect.
C Syntax
boolean SOMD_QueryORBfree ();
Description

SOMD_QueryORBfree queries the process global state. Programmers must exercise
caution when using it in multi-threaded clients. In a multi-threaded client, this function (like
the SOMD_NoORBfree and SOMD_YesORBfree functions) must be treated as a shared
resource and protected by a mutex semaphore.

Return Value

SOMD_QueryORBfree returns TRUE if DSOM is in its default state for allocation of certain
parameters of remote calls, or FALSE if the SOMD_NoORBfree function is in effect.

Example

/* Assume that this program is single-threaded */
SOMD_1Init (ev) ;

/* next call returns TRUE */
b = SOMD QueryORBfree() ;
SOMD_NoORBfree () ;

/* next call returns FALSE */
b = SOMD QueryORBfree() ;
SOMD_YesORBfree() ;

/* next call returns TRUE */
b = SOMD QueryORBfree() ;

Related Information
ORBfree Function
SOMD_FreeType Function
SOMD_NoORBfree Function
SOMD_YesORBfree Function
SOMFree Function

182 Programmer’s Reference for SOM and DSOM

SOMD_Uninit Function

SOMD_Uninit Function

C Syntax

Description

Parameters

Example

Frees system resources allocated for use by DSOM.

Note: This function employs reference counting which means that SOMD_Uninit does
not free system resources until the count reaches zero.

void SOMD_Uninit (Environment* ev);

Frees system resources (shared memory segments, semaphores, and so forth) allocated to
the calling process for use by DSOM. This function should be called before a process exits,
to ensure system resources are reused.

No DSOM functions or methods should be called after SOMD_Uninit has been called. After
SOMD_Uninit is called, the program can be reinitialized by calling SOMD _Init Function.
(SOMD_Uninit would then need to be called again before program termination to
uninitialize the program.)

ev
A pointer to the Environment structure for the method caller.

#include <somd.h>
Environment ev;

/* initialize Environment */
SOM_InitEnvironment (&ev) ;

/* initialize DSOM runtime */
SOMD_Init (&ev) ;

/* Free DSOM resources */
SOMD_Uninit (&ev) ;

Related Information

See “Distributed SOM” on page 229 in Programmer’s Guide for SOM and DSOM.

Chapter 2. DSOM Framework 183

SOMD_YesORBfree Function

SOMD_YesORBfree Function

Undoes the effect of SOMD_NoORBfree.
C Syntax
void SOMD_YesORBfree ();
Description

The SOMD_YesORBfree function negates the effect of the SOMD_NoORBfree function,
and thus returns DSOM to its default behavior for allocating certain parameters on remote
method calls. (For details, see the descriptions of the ORBfree and SOMD_NoORBfree
functions.)

Calling SOMD_YesORBfree without having first called SOMD_NoORBfree has no effect.

SOMD_YesORBfree affects the process global state; thus programmers must exercise
caution when using it in multi-threaded clients. Essentially, in a multi-threaded client
SOMD_YesORBfree (as well as SOMD_NoORBfree and SOMD_QueryORBfree) must be
treated as a shared resource and protected by a mutex semaphore.

Example

#include <somd.h>
#include <myobject.h> /* provided by user */

MyObject obj;

Environment ev;

string strl, str2;

/* Assume the following appears in the IDL for the
* MyObject interface:
* void myMethod (out string s);
* Assume also that obj is a proxy for a remote MyObject,
* and that this program is single-threaded.
*
/

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

SOMD_NoORBfree () ;

_myMethod (obj, &ev, &strl);
SOMD_YesORBfree() ;

_myMethod (obj, &ev, &str2);

/* Free storage */
SOMFree (strl) ;
ORBfree (&str2) ;

Related Information
ORBfree Function
SOMD_FreeType Function
SOMD_NoORBfree Function
SOMD_QueryORBfree Function
SOMFree Function

184 Programmer’s Reference for SOM and DSOM

Context_delete Macro

Context_delete Macro

Deletes a Context Class object.

Syntax
ORBStatus Context_delete (
Context ctxobj,
Environment *ev,
Flags del_flag);
Description
The Context_delete macro deletes the specified Context object. This macro maps to the
destroy method of the Context class.
Parameters
ctxobj
A pointer to the Context object to be deleted.
ev
A pointer to the Environment structure for the caller.
del_flag
A bitmask (unsigned long). If the flag CTX_DELETE_DESCENDANTS is specified, the
macro deletes the specified Context object and all of its descendant Context objects.
A zero value indicates that the flag is not set.
Expansion
Context_destroy (ctxobj, ev, del_flag)
Example

#include <somd.h>

Environment ev;

Context cxt, newcxt;

long rc;
SOM_InitEnvironment (&ev) ;

/* get the process’ default Context */
rc = get default context (SOMD_ORBObject, &ev, &cxt);

/* make newcxt a child Context of the default Context (cxt) */
rc = _create _child(cxt, &ev, "myContext”, &newcxt) ;

/* assuming no descendent Contexts have been created
* from newcxt, we can destroy newcxt with flags=0
*/

rc = Context delete(newcxt, &ev, (Flags) 0);

Related Information
destroy Method

Chapter 2. DSOM Framework 185

Request_delete Macro

Request_delete Macro

Deletes the memory allocated by the ORB for a Request Class object.

Syntax
ORBStatus Request_delete (
Request reqobj,
Environment *ev);
Description
The Request_delete macro deletes the specified Request object and all associated
memory. This macro maps to the destroy method of the Request class.
Parameters
reqobj
A pointer to the Request object to be deleted.
ev
A pointer to the Environment structure for the caller.
Expansion
Request_destroy (reqobj, ev)
Example

#include <somd.h>

#include <repostry.h>

#include <intfacdf.hs>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:
* long methodLong (in long inLong, inout long inoutLong) ;
* then this code sends a request to execute the call:

* result = methodLong(fooObj, &ev, 100,200) ;

* using the DII without waiting for the result. Then,
* later, waits for and then uses the result.

*/

Environment ev;

NVList arglist;

long rc;

Foo fooObj;

Request reqObj;

NamedValue result;

SOM_InitEnvironment (&ev) ;

/* see the Example code for invoke to
* gsee how the request is built

*/
/* Create the Request, regObj */
rc = create request (fooObj, &ev, (Context *)NULL,

"methodLong”, arglist, &result,
&reqgObj, (Flags)O0);
/* Finally, send the request */
rc = send(reqgObj, &ev, (Flags)O);
/* do some work, i.e. don’'t wait for the result */
/* wait here for the result of the request */

rc = get response(reqObj, &ev, (Flags)O);
/* use the result */
if (result-sargument. value == 9600) {...}

/* throw away the reqObj */
Request delete (reqgObj, &ev);

186 Programmer’s Reference for SOM and DSOM

Request_delete Macro

Related Information
destroy Method

Chapter 2. DSOM Framework 187

BOA Class

BOA Class

The Basic Object Adapter (BOA) defines the basic interfaces that a server process uses to
access services of an Object Request Broker like DSOM. The BOA defines methods for
creating and exporting object references, registering implementations, activating
implementations and authenticating requests. The methods of BOA are intended to be
called from a user-written server program (such as, deactivate_impl and impl_is_ready),
from a user-written subclass of SOMDServer (such as, create, dispose, and get_id), or
from an application object running within a server (for example, set_exception and
get_principal).

For more information on the Basic Object Adapter, refer to Chapter 9 in the
CORBA 1.1 specification.

Note: DSOM treats the BOA interface as an abstract class, which merely defines basic
runtime interfaces (introduced in the CORBA 1.1 specification) but does not
implement those interfaces. Thus, there is no point in instantiating a BOA object. If
a BOA obiject is created, any methods invoked on it will return a NO_IMPLEMENT
exception. Instead, the SOM Object Adapter (SOMOA) subclass provides DSOM
implementations for BOA methods. When a BOA method is invoked on the
SOMOA obiject, the desired behavior will occur.

File Stem

boa
Base

SOMObject Class
Metaclass

SOMMSinglelnstance Metaclass

Ancestor Classes
SOMObject Class

Subclasses
SOMOA Class

New Methods
change_implementation Method
create Method
deactivate_impl Method
deactivate_obj Method
dispose Method
get_id Method
get_principal Method
impl_is_ready Method
obj is_ready Method
set_exception Method

188 Programmer’s Reference for SOM and DSOM

change_implementation Method

change_implementation Method

IDL Syntax

Description

Parameters

Note: This method is not implemented.
Changes the implementation definition associated with the referenced object.

void change_implementation (
in SOMDObject obj,
in ImplementationDef impl);

The change_implementation method is defined by the CORBA 1.1 specification, but has
a null implementation in DSOM. This method always returns a NO_IMPLEMENT exception.
In CORBA 1.1, the change_implementation method is provided to allow an application to
change the implementation definition of an object.

However, in DSOM, the ImplementationDef Class identifies the server which implements
an object. In these terms, changing an object’'s implementation would result in a change in
the object’s location. In DSOM, moving objects from one server to another is considered an
application-specific task, and hence, no default implementation is provided.

It is possible, however, to change the program which implements an object’s server, or
change the class library which implements an object’s class. To modify the program
associated with an ImplementationDef, use the update_impldef Method defined on
ImplRepository Class. To change the implementation of an object’s class, replace the
corresponding class library with a new (upward-compatible) one.

receiver
A pointer to a BOA (SOMOA) object for the server.

ev
A pointer to the Environment structure for the method caller.

obj
A pointer to the SOMDObject Class object which refers to the application object whose
implementation is to be changed.

impl
A pointer to the ImplementationDef object representing the new implementation of
the application object.

Return Value

The SOMOA Class implementation always returns a NO_IMPLEMENT exception, with a
minor code of SOMDERROR_Notimplemented.

Original Class

BOA Class

Chapter 2. DSOM Framework 189

create Method

create Method

IDL Syntax

Description

Parameters

Creates a “reference” for a local application object that can be exported to remote clients.

typedef sequence<octet,1024> ReferenceData; /l'in somdtype.idl
SOMDObject create (

in ReferenceData id,

in InterfaceDef intf,

in ImplementationDef impl);

The create method creates a SOMDObject Class which is used as a “reference” to a local
application object. An object reference is simply an object which is used to refer to another
target object: think of it as an “id”, “link” or “handle.” Object references are important in
DSOM in that their values can be externalized (that is, can be represented in a string form)
for transmission between processes, storage in files, and so on. In DSOM, the proxy objects
in client processes are remote object references.

This method is intended to be called primarily from user-written subclasses of
SOMDServer Class, within overrides of the somdRefFromSOMObj method.

To create an object reference, the caller specifies the ImplementationDef Class of the
calling process, the InterfaceDef Class of the target application object, and up to 1024
bytes of ReferenceData which is used by the application to identify and activate the
application object. When subsequent method calls specify the object reference as a
parameter, the application will use the reference to find and/or activate the referenced
object.

Note that (as specified in CORBA 1.1) each call to create returns a unique object
reference, even if the same parameters are used in subsequent calls.

Ownership of the returned SOMDObject is transferred to the caller.

In DSOM 2.x, the create and create_constant methods served different purposes. In the
current release, however, the methods are equivalent, except for servers whose
ImplementationDef object (from the Implementation Repository) specifies an object
reference table filename. (To retain the DSOM 2.x semantics for the create method, simply
specify a reference table filename for the server using the regimpl -f filename argument.
Otherwise, SOMOA's implementation of the create method will simply invoke
SOMOA::create_constant.) In addition, the DSOM 2.x methods SOMOA::change_id and
SOMOA::create_constant, and the use of the Object Reference Table, have been
deprecated. (They are supported in this release, but may be eliminated in a future release.)

Eventually, the non-CORBA-compliant SOMOA::create_constant will be eliminated in
favor of the CORBA 1.1-compliant create method. Servers that need persistent storage of
object-reference data, such as that previously provided by the Object Reference Table,
should implement it in an application-specific subclass of SOMDServer, or use the
somQOS::Server class for this purpose.

receiver
A pointer to a BOA (SOMOA) object for the server.

ev
A pointer to the Environment structure for the method caller.

190 Programmer’s Reference for SOM and DSOM

id

impl
A pointer to the ImplementationDef object that describes the application (server)
process that implements the target object (usually the global variable
SOMD_ ImplDefObject).

Return Value

create Method

A pointer to the ReferenceData structure containing application-specific information
describing the target object.

intf
A pointer to the InterfaceDef object that describes the interface of the target object,
obtained from the Interface Repository.

The create method returns a pointer to a SOMDObject which refers to a local application

object.

Example

Original Class

/* Inside an implementation of somdRefFromSOMObj
* in a user-defined subclass of SOMDServer: */

#include <repostry.hs>
#include <intfacdf.hs>

Environment ev;

ReferenceData id;

InterfaceDef intfdef;

SOMDObject objref;

string fname; /* a file name to be saved with reference */

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* create the id for the reference */

id. maximum = id. length = strlen(fname)+1;

id. buffer = (string) SOMMalloc (strlen (fname)+1) ;
strcpy (id. buffer, fname) ;

/* get the interface def object for interface Foo*/
intfdef = lookup 1d(SOM_ InterfaceRepository, &ev, "Foo”);

objref = create(SOMD_SOMOAObject,
&ev, id, intfdef, SOMD ImplDefObject) ;

BOA Class

Related Information

create_constant Method
create_SOM_ref Method
dispose Method

get_id Method
somdRefFromSOMObj Method

Chapter 2. DSOM Framework 191

deactivate_impl Method

deactivate_impl Method

Indicates that a server implementation is no longer ready to process requests.

IDL Syntax
void deactivate_impl (in ImplementationDef impl);
Description
The deactivate_impl method indicates that the implementation is no longer ready to
process requests. This method should be invoked by every server process prior to
termination (whether normal or abnormal) once that server has called impl_is_ready. If
impl_is_ready has not yet been invoked when the server terminates, then the server
should invoke activate_impl_failed instead.
Parameters
receiver
A pointer to a BOA (SOMOA) object for the server.
ev
A pointer to the Environment structure for the method caller.
impl
A pointer to the ImplementationDef object representing the implementation to be
deactivated usually the SOMD_ImplDefObject global variable.
Example

#include <somd.h>

Environment ev;
ORBStatus rc;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* server initialization code ... */

/* signal DSOM that server is ready */

_impl is ready (SOMD SOMOAObject, &ev, SOMD ImplDefObject) ;

for(rc = 0;rc==0;)

rc = execute next request (SOMD SOMOAObject, &ev, waitFlag);
/* perform app specific code between messages here, e.g.,*/
numMessagesProcessed++;

}

/* signal DSOM that server is deactivated */
_deactivate impl (SOMD_SOMOAObject, &ev, SOMD ImplDefObject) ;

Original Class
BOA Class
Related Information

activate_impl_failed Method
execute_request_loop Method
execute_next_request Method
impl_is_ready Method

192 Programmer’s Reference for SOM and DSOM

deactivate_obj Method

deactivate_obj Method

IDL Syntax

Description

Parameters

Indicates that an object server is no longer ready to process requests.
Note: Not implemented.

void deactivate_obj (in SOMDObject obj);

The deactivate_obj method is defined by the CORBA 1.1 specification, but has a null
implementation in DSOM. This method always returns a NO_IMPLEMENT exception.

CORBA 1.1 distinguishes between servers that implement many objects (“shared”), versus
servers that implement a single object (“unshared”). The deactivate_obj method is meant
to be used by unshared servers, to indicate that the object (that is, server) is no longer
ready to process requests.

DSOM does not distinguish between servers that implement a single object versus servers
that implement multiple objects, so this method has no implementation.

receiver
A pointer to a BOA (SOMOA) object for the server.

ev
A pointer to the Environment structure for the method caller.
obj
A pointer to a SOMDObject which identifies the object (server) to be deactivated.

Original Class

BOA Class

Related Information

deactivate_impl Method
impl_is_ready Method
obj is_ready Method

Chapter 2. DSOM Framework 193

dispose Method

dispose Method

Destroys an object reference.

IDL Syntax
void dispose (in SOMDObject obj);
Description
The dispose method disposes of an object reference. This removes data for the object
reference from the Object Reference Table (if necessary) and releases the object reference.
Parameters
receiver
A pointer to a BOA object for the server.
ev
A pointer to the Environment structure for the method caller.
obj
A pointer to the object reference to be destroyed.
Example

#include <somd.h>
#include <repostry.hs>
#include <intfacdf.h>

Environment ev;
SOMDObject objref;
ReferenceData 1id;
InterfaceDef intfdef;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

.../*server initialization code*/

objref =

_create (SOMD_SOMOAObject, &ev, id, intfdef, SOMD ImplDefObject) ;

;&ispose(SOMD_SOMOAObject, &ev, objref);
Original Class
BOA Class
Related Information

create Method
create_constant Method
create_SOM_ref Method
get_id Method

194 Programmer’s Reference for SOM and DSOM

get_id Method

get_id Method

IDL Syntax

Description

Parameters

Returns reference data associated with the referenced object.

ReferenceData get_id (
in SOMDObject obj);

The get_id method returns the reference data associated with the referenced object (as
specified to the call to create or create_constant method when the object reference was
created). This is useful in subclasses of SOMDServer Class, in overrides of the
somdSOMObjFromRef method.

This method should not be invoked on OBJECT_NIL, on a proxy object, or on an object for
which SOMOA::is_SOM_ref returns TRUE. In other words, a subclass of SOMDServer
should only invoke get_id on a SOMDObject that it initially created in its own override of
the somdRefFromSOMObj method.

receiver
A pointer to a BOA (SOMOA) object for the server.

ev
A pointer to the Environment structure for the method caller.

obj
A pointer to a SOMDObject Class object for which to return the ReferenceData. This
should not be NULL, OBJECT_NIL, an instance of SOMDClientProxy Class, or an
object reference that was not created using either the create or create_constant
method.

Return Value

Example

The get_id method returns a ReferenceData structure associated with the referenced
object. The caller receives ownership of the _buffer member of this structure, and should
free it using SOMFree when finished using it.

SOM_Scope SOMObject SOMLINK
somdSOMObjFromRef (SOMPServer somSelf,
Environment *ev,
SOMDObject objref)
{ soMObject obj;

/* test if objref is mine */
if (! is nil(objref, ev) && _somIsA(objref, SOMDObject) &&
! is proxy(objref, ev) && ! is SOM ref (objref, ev)) {
/* objref was mine, activate persistent object myself */
ReferenceData rd = get id(SOMD_SOMOAObject, ev, objref);
obj = get object from refdata(ev, &rd);
SOMFree (rd. buffer) ;
} else
/* it’s not one of mine, let parent activate object */
obj = parent somdSOMObjFromRef (somSelf, ev, objref);
return obj;

Chapter 2. DSOM Framework 195

get_id Method

Original Class
BOA Class
Related Information

create Method
create_constant Method
dispose Method
somdSOMObjFromRef Method

196 Programmer’s Reference for SOM and DSOM

get_principal Method

get_principal Method

Returns the ID of the principal that issued the request.

IDL Syntax
Principal get_principal (
in SOMDObject obj,
in Environment* req_ev);
Description
The get_principal method returns the ID of the principal that issued a request.
Parameters

receiver
A pointer to a BOA (SOMOA) object for the server.

ev
A pointer to the Environment structure for the method caller.

obj
A pointer to the object reference that is the target of the method call.

req_ev
A pointer to the Environment object passed as input to the request, or the global
environment (obtained via somGetGlobalEnvironment) if the request was for a
method that has no Environment parameter.

Return Value

The get_principal method returns a pointer to a Principal object which identifies the user
and host from which a request originated. The caller should not free this object.

Example

#include <somd.h>

/* assumed context: inside a method implementation */
void methodBody (SOMObject *somSelf, Environment *ev, ...)
SOM_Scope void SOMLINK m2 (Stack somSelf, Environment *ev,
SOMObject d,

SOMObject c)
{
Principal p;
SOMDObject selfRef;
Environment localev;
somPrintf (“Enter - m2: d = $x ¢ = %x\n”, 4, c);
SOM_InitEnvironment (&localev) ;
/* get a reference to myself from the server object */

selfRef = somdRefFromSOMObj (SOMD ServerObject, &ev, somSelf) ;
/* get principal information from the SOMOA */

p = _get principal (SOMD SOMOAObject, &localev, selfRef, ev);

somPrintf (“userName = %s, hostName = %s\n”,

__get userName (p, ev),et hostName(p, ev));

}
Original Class

BOA Class

Chapter 2. DSOM Framework 197

get_principal Method

Related Information

Principal Class

198 Programmer’s Reference for SOM and DSOM

impl_is_ready Method

impl_is_ready Method

Indicates that a server is ready to process requests.

IDL Syntax
void impl_is_ready (
in ImplementationDef impl);
Description
The impl_is_ready method indicates that a server is ready to process requests. If the call
fails, the server should invoke activate_impl_failed before terminating. Otherwise, the
server should call deactivate_impl prior to termination (normal or abnormal).
When the server invokes impl_is_ready on a instance of DSOM’s SOMOA Class, if the
server’'s ImplementationDef::config_file attribute differs from the current SOMENV setting,
the contents of the configuration file named by ImplementationDef::config_file will be
read, any DSOM run-time initialization performed during SOMD_Init Function will be
refreshed, and for the duration of the server process the setting of
ImplementationDef::config_file will be prepended to the current SOMENV setting.
A server program should not attempt to export object references or use any other Object
Adapter services until it has invoked impl_is_ready, as some crucial server initialization
steps are performed at that time. The only exception is SOMOA::activate_impl_failed.
Parameters
receiver
A pointer to a BOA (SOMOA) object for the server.
ev
A pointer to the Environment structure for the method caller.
impl
A pointer to the ImplementationDef object indicating which server is ready.
Example

/* A server program that takes an ImplId as the first argument */
#include <somd.h> /* needed by all servers */
main (int argc, char **argv)
{
Environment ev;
SOM_InitEnvironment (&ev) ;
/* Initialize the DSOM run-time environment */
SOMD_Init (&ev) ;
SOMD_SOMOAObject = SOMOANew () ;
/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =
_find impldef (SOMD_ImplRepObject, &ev, argv[1l]);
/* Tell DSOM that the server is ready to process requests */
_impl is ready (SOMD SOMOAObject, &ev, SOMD ImplDefObject) ;

}
Original Class

BOA Class
Related Information

activate_impl_failed Method

Chapter 2. DSOM Framework 199

impl_is_ready Method

deactivate_impl Method
execute_next_request Method
execute_request_loop Method
obj_is_ready Method

200 Programmer's Reference for SOM and DSOM

obj_is_ready Method

obj_is_ready Method

IDL Syntax

Description

Parameters

Note: This method is not implemented.
Indicates that an object (server) is ready to process requests.

void obj_is_ready (
in SOMDObject obj,
in ImplementationDef impl);

The obj_is_ready method is defined by the CORBA 1.1 specification, but has a null
implementation in DSOM. This method always returns a NO_IMPLEMENT exception.

CORBA 1.1 distinguishes between servers that implement many objects (“shared”), versus
servers that implement a single object (“unshared”). obj_is_ready is meant to be used by
unshared servers, to indicate that the object (that is, server) is ready to process requests.

DSOM does not distinguish between servers that implement a single object versus servers
that implement multiple objects, so this method has no implementation.

receiver
A pointer to a BOA (SOMOA) object for the server.

ev
A pointer to the Environment structure for the method caller.
obj
A pointer to a SOMDObiject Class which identifies the object (server) which is ready.
impl
A pointer to the ImplementationDef object representing the object that is ready.

Original Class

BOA Class

Related Information

activate_impl_failed Method
deactivate_impl Method
deactivate_obj Method
impl_is_ready Method

Chapter 2. DSOM Framework 201

set_exception Method

set_exception Method

Returns an exception to a client.
IDL Syntax

void set_exception (
in exception_type major,
in string except_name,
in void* param);
Description

The set_exception method sets an exception in an Environment structure, by calling the
somSetException Function. The major parameter can have one of three possible values:

NO_EXCEPTION
a normal outcome of the operation. It is not necessary to invoke set_exception to
indicate a normal outcome; it is the default behavior if the method simply returns.

USER_EXCEPTION
a user-defined exception.

SYSTEM_EXCEPTION
a system-defined exception.

Parameters

receiver
A pointer to a BOA (SOMOA) object for the server.

ev
A pointer to the Environment structure for the method caller.
major
An exception types: NO_EXCEPTION, USER_EXCEPTION or SYSTEM_EXCEPTION.

except_name
A string representing the exception type identifier.

param
A pointer to the associated data. Ownership of this data structure is passed to the
Environment and should not be subsequently changed or freed by the caller.

Example

#include <somd.hs>
#include <myobject.h> /* provided by user */

/* assuming following IDL declarations in the MyObject
* interface:

* exception foo;

* void myMethod () raises (BadCall) ;

* then within the implementation of myMethod, the

* following call can raise a BadCall exception:

*

/

_set_exception(SOMD_SOMOAObject, ev, USER_EXCEPTION,
ex MyObject BadCall, NULL) ;

Original Class
BOA Class

202 Programmer's Reference for SOM and DSOM

Context Class

Context Class

File Stem

Base

Metaclass

The Context class implements the CORBA 1.1 Context object described in section 6.5
beginning on page 116 of CORBA 1.1. A Context object contains a list of properties, each
consisting of a name and a string value associated with that name. Context objects are
created/accessed by the get_default_context Method defined in the ORB object. They
are to be passed as the third parameter to any method whose IDL definition specifies that a
context is required.

Note: The Context class is not thread-safe. Multi-threaded applications must be careful
that only one thread modifies the state of a given Context object. For example, one
thread can not add context property values while another thread is deleting
property values.

See the discussion of IDL context expressions in “Context Expression” on page 132 of
Programmer’s Guide for SOM and DSOM.

cntxt

SOMObject Class

SOMClass Class

Ancestor Classes

SOMObject Class

New Methods

create_child Method
delete_values Method
destroy Method*
get_values Method
set_one_value Method
set_values Method

* The destroy method was defined as delete in CORBA 1.1, which conflicts with the delete
operator in C++. There is a Context_delete Macro defined for CORBA 1.1 compatibility.

Overridden Methods

somDefaultlnit Method
somDestruct Method

Chapter 2. DSOM Framework 203

create_child Method

create_child Method

Creates a child of a Context object.

IDL Syntax

ORBStatus create_child (
in Identifier ctx_name,
out Context child_ctx);

Description

The create_child method creates a child Context object.

The returned Context object is chained to its parent. That is, searches on the child Context
object will look in the parent (and so on, up the Context tree), if necessary, for matching
property names.

Parameters

receiver
A pointer to the Context object for which a child is to be created.

ev
A pointer to the Environment structure for the method caller.

ctx_name
The name of the child Context to be created.

child_ctx
The address where a pointer to the created child Context object will be stored.
Ownership of the child_ctx parameter is transferred to the caller, who is responsible for
destroying it using the destroy Method (either on the child Context object itself or via
a call to Context::destroy on its parent Context using the flag
CTX_DELETE_DESCENDANTS).

Return Value

The create_child method returns an ORBStatus value representing the return code from
the operation.

Example

#include <somd.h>

Environment ev;

Context cxt, newcxt;

long rc;
SOM_InitEnvironment (&ev) ;

/* get the process’ default Context */

rc = get default context (SOMD_ORBObject, &ev, &cxt);
/* make newcxt a child Context of the default Context (cxt) */
rc = create_child(cxt, &ev, ”"myContext”, &newcxt);

Original Class

204

Context Class

Programmer’s Reference for SOM and DSOM

delete_values Method

delete_values Method

Deletes property values.

IDL Syntax
ORBStatus delete_values (
in Identifier prop_name);
Description
The delete_values method deletes the specified property values from a Context object. If
prop_name has a trailing wildcard character (**"), then all property names that match will
be deleted.
Search scope is always limited to the specified Context object.
If no matching property is found, an exception is returned.
Parameters

receiver
A pointer to the Context object from which values will be deleted.

ev
A pointer to the Environment structure for the method caller.

prop_name
An identifier specifying the property value(s) to be deleted.

Return Value

The delete_values method returns an ORB Status value representing the return code from
the operation.

Example

#include <somd.h>

Environment ev;

Context cxt, newcxt;

long rc;
SOM_InitEnvironment (&ev) ;

/* get the process’ default Context */
rc = get default context (SOMD_ORBObject, &ev, &cxt);
/* make newcxt a child Context of the default Context (cxt) */

rc = create_child(cxt, &ev, ”"myContext”, &newcxt);
rc = _set one value(newcxt, &ev, ”“username”, ”joe”);
rc = delete values(newcxt, &ev, ”username”) ;

Original Class
Context Class
Related Information

get_values Method
set_one_value Method

set_values Method

Chapter 2. DSOM Framework 205

destroy Method

destroy Method

Deletes a Context object.

IDL Syntax
ORBStatus destroy (
in Flags del_flag);
Description
The destroy method deletes the specified Context object.
This method is called “delete” in the CORBA 1.1 specification. However, the word “delete”
is a reserved operator in C++, so the name “destroy” was chosen as an alternative. For
CORBA 1.1 compatibility, a macro defining Context_delete as an alias for destroy has
been included in the C header files.
Parameters

receiver
A pointer to the Context object to be deleted.

ev
A pointer to the Environment structure for the method caller.

del_flag
A bitmask (unsigned long). If the option flag CTX_DELETE_DESCENDENTS is
specified, the method deletes the indicated Context object and all of its descendent
Context objects. Or, a zero value indicates the flag is not set.

Return Value

The destroy method returns an ORB Status value representing the return code from the
operation.

Example
#include <somd.h>
Environment ev;
Context cxt, newcxt;

long rc;
SOM_InitEnvironment (&ev) ;

/* get the process’ default Context */

rc = get default context (SOMD ORBObject, &ev, &cxt);
/* make newcxt a child Context of default Context (cxt) */
rc = _create child(cxt, &ev, "myContext”, &newcxt) ;

/* assuming no descendent Contexts have been created
* from newcxt, we can destroy newcxt with flags=0
*/

rc = _destroy(newcxt, &ev, (Flags) 0);

Original Class

Context Class

206 Programmer's Reference for SOM and DSOM

get_values Method

get values Method

IDL Syntax

Description

Parameters

Retrieves the specified property values.

ORBStatus get_values (
in Identifier start_scope,
in Flags op_flags,
in Identifier prop_name,
out NVList values);

The get_values method retrieves the specified Context property values. If prop_name has
a trailing wildcard character(**”), then all matching properties and their values are returned.
OWNERSHIP of the returned NVList Class object is transferred to the caller.

If no properties are found, an error is returned and no property list is returned.

Scope indicates the level at which to initiate the search for the specified properties. If a
property is not found at the indicated level, the search continues up the Context object tree
until a match is found or all Context objects in the chain have been exhausted.

If scope name is omitted, the search begins with the specified Context object. If the
specified scope name is not found, an exception is returned.

receiver
A pointer to the Context object from which the properties are to be retrieved.

ev
A pointer to the Environment structure for the method caller.

start_scope
An Identifier specifying the name of the Context object at which search for the
properties should commence.

op_flags
This parameter supports the CTX_RESTRICT_SCOPE flag; callers also can pass zero.

prop_name
An Identifier specifying the name of the property value(s) to return.

values
The address to store a pointer to the resulting NVList object.

Return Value

Example

The get_values method returns an ORBStatus value representing the return code from
the operation.

#include <somd.h>

Environment ev;

Context cxtl, cxt2;

string *cxtlprops;

long rc, i, numprops;
NVList nvp;
SOM_InitEnvironment (&ev);

Chapter 2. DSOM Framework 207

get_values Method

for (i= numprops; i > 0; i--) {

/* get the value of the *cxtlprops property from cxtl */

rc = get values(cxtl, &ev, NULL, (Flags) 0, *cxtlprops, &nvp);
/* and if found update cxt2 with that name-value pair */

if (rc == 0) rc = _set values(cxt2, &ev, nvp);

_free (nvp, &ev) ;

cxtlprops++;

}
Original Class

Context Class
Related Information

delete_values Method
set_one_value Method
set_values Method

208 Programmer's Reference for SOM and DSOM

set_one_value Method

set_one value Method

Adds a single property to the specified Context object.

IDL Syntax

ORBStatus set_one_value (

Description

in Identifier prop_name,
in string value);

The set_one_value method adds a single property to the specified Context object.

Parameters

receiver

A pointer to the Context object to which the value is to be added.

ev

A pointer to the Environment structure for the method caller.

prop_name
The name of the property to be added. The prop_name should not end in an asterisk

(*)-

value

The value of the property to be added.

Return Value

The set_one_value method returns an ORBStatus value representing the return code
from the operation.

Example

#include <somd.h>

Environment ev;

Context cxt, newcxt;

long rc;
SOM_InitEnvironment (&ev) ;

/*

rc
/*
rc
rc

Original Class

get the process’ default Context */

= get default context (SOMD ORBObject, &ev, &cxt) ;

make newcxt a child Context of default Context (cxt) */
_create _child(cxt, &ev, "myContext”, &newcxt);
_set_one value (newcxt, &ev, ”“username”, ”joe”);

Context Class

Related Information

delete_values Method

get_values Method

set_values Method

Chapter 2. DSOM Framework 209

set_values Method

set_values Method

Adds or changes one or more property values in the specified Context object.
IDL Syntax

ORBStatus set_values (
in NVList values);

Description

The set_values method sets one or more property values in the specified Context object.
In the NVList Class, the flags field must be set to zero, and the TypeCode field
associated with an attribute value must be TC_string.

Note: TypeCode constants have the form TC_typename. Thus, TC_string denotes a
string constant in the TypeCode field.

Parameters

receiver
A pointer to the Context object for which the properties are to be set.

ev
A pointer to the Environment structure for the method caller.

values
A pointer to an NVList object containing the properties to be set. The property names
in the NVList should not end in an asterisk (*).

Return Value

The set_values method returns an ORBStatus value representing the return code from
the operation.

Example

#include <somd.h>

Environment ev;

Context cxtl, cxt2;

string *cxtlprops;

long rc, 1, numprops;
NVList nvp;
SOM_InitEnvironment (&ev) ;

for (i= numprops; i > 0; i--) {

/* get the value of the *cxtlprops property from cxtl */

rc = get values(cxtl, &ev, NULL, (Flags) 0, *cxtlprops, &nvp);
/* and if found update cxt2 with that name-value pair */

if (rc == 0) rc = _set values(cxt2, &ev, nvp);

_free (nvp, &ev) ;

cxtlprops++;

}
Original Class

Context Class
Related Information

delete_values Method
get_values Method

210 Programmer's Reference for SOM and DSOM

set_values Method

set_one_value Method

Chapter 2. DSOM Framework 211

ImplementationDef Class

ImplementationDef Class

The ImplementationDef class defines attributes necessary for the DSOM daemon to find
and activate a server and for a server to initialize itself. ImplementationDef objects are
stored in the Implementation Repository, represented by an object of class ImplRepository.

Note: The ImplementationDef class is not thread-safe. Multi-threaded applications must
be careful that only one thread modifies the attributes of a given
ImplementationDef object.

File Stem
impldef
Base

CosStream::Streamable

Metaclass
SOMClass Class

Ancestor Classes
SOMObject Class
CosStream::Streamable

Attributes

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

impl_id (string)
Contains the DSOM-generated identifier for a server implementation. This identifier is
unique throughout the network and can be used as a key into the Implementation
Repository. The string returned by the _get_impl_id method must be freed by the
caller; the input parameter to the _set_impl_id method should be freed by the caller if
its space was allocated out of the heap.

impl_alias (string)
Contains the “alias” (user-friendly name) for a server implementation, specified by the
system administrator when registering the server (such as, via regimpl). This alias
must be unique within a particular Implementation Repository (and can be used as a
key), but is not necessarily unique throughout the network. The string returned by the
_get_impl_alias method must be freed by the caller; the input parameter to the
_set_impl_alias method should be freed by the caller if its space was allocated out of
the heap.

impl_program (string)
Contains the name of the program or command file to be executed when a process for
this server is started automatically by somdd. If the full pathname is not specified, the
directories specified in the PATH environment variable will be searched for the named
program or command file. This attribute need not be unique for different
ImplementationDef objects. For example, many servers are registered to use the
DSOM default server program, somdsvr.

212 Programmer's Reference for SOM and DSOM

ImplementationDef Class

Optionally, the server program can be run under control of a “shell” or debugger, by
specifying the shell or debugger name first, followed by the name of the server
program. (A space separates the two program names.) For example, on OS/2

icsdebug myserver

will start myserver under the control of the icsdebug debugger. Servers that are started
automatically by somdd will always be passed their impl_id as the first parameter.

The string returned by the _get_impl_program method must be freed by the caller; the
input parameter to the _set_impl_alias method should be freed by the caller if its
space was allocated out of the heap.

impldef_class (string)
Contains the class name of the implementation definition. Class must inherit from
ImplementationDef, which is the default value. The string returned by the
_get_impldef_class method must be freed by the caller; the input parameter to the
_set_impldef_class method should be freed by the caller if its space was allocated out
of the heap.

impl_flags (Flags)
Contains a hit-vector of flags used to identify server options. Currently, the flags are as
follows (other flag bits are reserved for use by IBM):

- IMPLDEF_MULTI_THREAD flag indicates that each request should be executed on a
separate thread.

- IMPLDEF_IMPLID_SET indicates that the impl_id attribute has been set when the
ImplementationDef object is passed to the add_impldef Method. The
ImplRepository::add_impldef method normally generates the impl_id attribute
before storing the ImplementationDef object in the Implementation Repository.
The add_impdef method will remove the IMPLDEF_IMPLID_SET flag, if set, prior
to storing the ImplementationDef object in the Implementation Repository.

- IMPLDEF_SECUREMODE indicates that the server accepts requests from
authenticated clients only.

The string returned by the _get_impl_flags method must be freed by the caller; the
input parameter to the _set_impl_flags method should be freed by the caller if its
space was allocated out of the heap.

impl_server_class (string)
Contains the name of the SOMDServer Class or subclass to be instantiated by the
server process, to yield the server’s “server object”. The string returned by the
_get_impl_server_class method must be freed by the caller; the input parameter to
the _set_impl_server_class method should be freed by the caller if its space was
allocated out of the heap.

config_file (string)
Contains the config file location of the server, if different from the SOMENYV setting of
the process or shell starting the server (for example, the DSOM daemon). The string
returned by the _get_config_file method must be freed by the caller; the input
parameter to the _set_config_file method should be freed by the caller if its space was
allocated out of the heap.

Chapter 2. DSOM Framework 213

ImplementationDef Class

Notes

The following table depicts the maximum length of attributes as stored in the
Implementation Repository:

Maximum
Attribute Description Attribute Byte Length
File names 255
config_file
Alias names impl_alias 255
Class names impldef_class, 255
impl_server_class
Implementation ID impl_id 255
Program name impl_program 255

Table 1. Length of attributes stored in the Implementation Repository

214 Programmer's Reference for SOM and DSOM

ImplRepository Class

ImplRepository Class

File Stem

Base

Metaclass

The ImplRepository class defines operations necessary to query and update the DSOM
Implementation Repository, which is a collection of ImplementationDef objects. After a
DSOM process invokes SOMD_Init, the global variable SOMD_ImplRepObject points to
the ImplRepository object for the process.

In addition to updating the Implementation Repository, methods on ImplRepository also
update the Naming Service. Whereas the DSOM daemon and servers refer directly to the
Implementation Repository, DSOM clients obtain information about servers from the
Naming Service. Hence, when a server is registered (or updated or deleted) in the
Implementation Repository, corresponding information is registered in the Naming Service
for use by the DSOM Factory Service on behalf of clients.

The Implementation Repository is described in concept in the CORBA 1.1 specification, but
no standard interfaces have been defined. These interfaces have all been introduced by
DSOM. In addition to using the following interfaces, the DSOM Implementation Repository
can be queried and updated using the regimpl tool.

implrep

SOMObject Class

SOMClass Class

Ancestor Classes

SOMObject Class

New Methods

add_class_to_all Method
add_class_to_impldef Method
add_class_with_properties Method
add_impldef Method
delete_impldef Method
find_all_aliases Method
find_all_impldefs Method
find_classes_by_impldef Method,
find_impldef Method
find_impldef_by_alias Method
find_impldef_by_class Method
remove_class_from_all Method
remove_class_from_impldef Method
update_impldef Method

Chapter 2. DSOM Framework 215

ImplRepository Class

Overridden Methods

somDefaultlnit Method
somDestruct Method

216 Programmer's Reference for SOM and DSOM

add_class_to_all Method

add_class_to_all Method

Associates the class name with all ImplementationDef Class objects.
IDL Syntax
ORBStatus add_class_to_all (in string className);
Description

The add_class_to_all method associates the specified className with all of the
ImplementationDef objects currently in the Implementation Repository. (This association
does not extend to ImplementationDef objects added to the Implementation Repository at
a later time.) The new association is stored in the Naming Service for use by the DSOM
Factory Service.

Parameters

receiver
A pointer to the implRepository object (usually the global variable
SOMD_ImplIRepObject).

env
A pointer to the Environment structure for the method caller.

className
A string identifying the class name.

Return Value
A zero is returned to indicate success; otherwise, a DSOM error code is returned.
Example

#include <somd.h>

Environment ev;

ORBStatus rc;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

rc = add class_to_all(SOMD_ImplRepObject, &ev, "MyClass”) ;

Original Class

ImplRepository Class

Chapter 2. DSOM Framework 217

add_class_to_impldef Method

add_class_to_impldef Method

IDL Syntax

Description

Parameters

Associates a class, identified by name, with a server, identified by its Implid.

void add_class_to_impldef (
in Implld implid,
in string className);

add_class_to_impldef associates a class with a server that indicates that the server
implements the named class. This type of association looks up server implementations via
the find_impldef_by_class Method and is used by the DSOM Factory Service. The new
association is stored in the Naming Service.

The className can be a fully scoped class name or an unscoped class name, provided
that clients use the same form when requesting a factory for the class using the DSOM
Factory Service. Use the fully scoped form when the unscoped form is ambiguous.

For a server to create any class whose DLL can be loaded, use the className keyword
_ANY. For a class that can be instantiated locally within any client process running on the
same host, use the implid keyword LOCAL.

receiver
A pointer to the ImplRepository object, usually the variable SOMD_ImpIRepObject.

env
A pointer to the Environment structure for the method caller.

implid
The Impl_id attribute for the ImplementationDef of the desired server.

className
A string identifying the class name. The className parameter must match the class
name as specified when the class was associated with some server (for example, via
regimpl).

Return Value

Example

An exception is returned if there was an error updating the Naming Service.

#include <somd.h>
Environment ev;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

implid = get impl id(SOMD_ ImplDefObject, &ev) ;
_add_class_to_ impldef (SOMD_ ImplRepObject, &ev,implid, "Queue”) ;

Original Class

ImplRepository Class

218 Programmer's Reference for SOM and DSOM

add_class_with_properties Method

add_class_with_properties Method

Associates a class name and specific property and value pairs with an object.

IDL Syntax

ORBStatus add_class_with_properties (
in Implld implid,
in string className,
in PVList pvl);

Description

add_class_with_properties associates a className with an ImplementationDef whose
impl_id attribute is implid. This is done to indicate that the server (specified by the
ImplementationDef) implements the named class. The optional PVList sequence can
associate the specified properties and values with a class. The new association is stored in

the Naming Service.

To indicate that a server can create any class whose DLL can be loaded, use the
className keyword _ANY. To indicate that a class can be instantiated locally within any
client process running on the same host, use the implid keyword _LOCAL.

Parameters

receiver

A pointer to the ImplRepository object (usually the global variable

SOMD_ImplRepObiject).

env

A pointer to the Environment structure for the method caller.

implid

The Implid identifier for the ImplementationDef of the desired server.

className
A string identifying the class name.

pvl

A sequence of PVList containing optional property and value pairs. If no additional
properties are to be associated with this class, then this parameter should be NULL.

Return Value

A zero is returned to indicate success; otherwise, a DSOM error code is returned.

Example

#include <somd.h>

Environment ev;
ORBStatus rc;

IDL_ SEQUENCE ImplRepository PV pvl;

ImplId implid;
ImplementationDef impldef;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

impldef = find impldef by name (SOMD ImplRepObject, &ev,

"stackServer”) ;

implid = get impl id(impldef, &ev);

Chapter 2. DSOM Framework 219

add_class_with_properties Method

pvl. maximum = 1;
pvl. length = 1;
pvl. buffer = (ImplRepository PV *)
SOMMalloc (sizeof (ImplRepository PV)) ;
pvl. buffer[0] .name = ”PropertyName”;
pvl. buffer[0] .value = ”"PropertyValue”;
rc = add class with properties(SOMD ImplRepObject, &ev,implid,

"MyClass”, &pvl);
Original Class

ImplRepository Class

220 Programmer's Reference for SOM and DSOM

add_impldef Method

add_impldef Method

Adds an implementation definition to the Implementation Repository.

IDL Syntax
void add_impldef (in ImplementationDef impldef);
Description
The add_impldef method adds the specified ImplementationDef object to the
Implementation Repository. This is equivalent to registering the server using the regimpl
tools. In addition to updating the Implementation Repository, add_impldef also updates the
Naming Service for the DSOM Factory Service. If the Naming Service cannot be updated, if
it has not been configured or somdd is not running, then an exception will be returned .
All attributes of the input ImplementationDef object are optional, with the exception of the
impl_alias. Unless the impl_flags attribute of the given ImplementationDef object
contains the IMPLDEF_IMPLID_SET flag, the impl_id attribute of the ImplementationDef
object is ignored, and a new impl_id value is created for the newly added
ImplementationDef object.
Parameters
receiver
A pointer to the ImplRepository object (usually the global variable
SOMD_ImplRepObiject).
env
A pointer to the Environment structure for the method caller.
impldef
A pointer to the ImplementationDef object to add to the Implementation
Repository.
Example

#include <somd.h>
Environment ev;
ImplementationDef impldef;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

impldef = ImplementationDefNew () ;

__set_impl program(impldef, &ev,”/u/servers/myserver”) ;

/* set more of the impldef’s attributes here */

_add_impldef (SOMD_ ImplRepObject, &ev,impldef) ;
Original Class

ImplRepository Class

Chapter 2. DSOM Framework 221

delete_impldef Method

delete_impldef Method

IDL Syntax

Description

Parameters

Deletes an implementation definition from the Implementation Repository.

void delete_impldef (in Implid implid);

The delete_impldef method deletes the specified ImplementationDef Class object from
the Implementation Repository. In addition to updating the Implementation Repository,
delete_impldef also updates the Naming Service for use by the DSOM Factory Service. If
the Naming Service cannot be updated, if it has not been configured or somdd is not
running, then an exception will be returned.

receiver
A pointer to the ImplRepository object (usually the global variable
SOMD_ImplRepObject).

env
A pointer to the Environment structure for the method caller.

implid
The Implid that identifies the server implementation of interest (the impl_id attribute of
the ImplementationDef object to be deleted).

Return Value

Example

An exception is returned if there was an error updating the Implementation Repository.

#include <somd.h>
Environment ev;
ImplementationDef impldef;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

impldef = find impldef by name (SOMD_ ImplRepObject, &ev,
"stackServer”) ;
_delete_impldef (SOMD_ ImplRepObject, &ev, get impl id(impldef, &ev)) ;

Original Class

ImplRepository Class

222 Programmer's Reference for SOM and DSOM

find_all_aliases Method

find_all _aliases Method

Returns a sequence of all server aliases registered in the Implementation Repository.
IDL Syntax
ORBStatus find_all_aliases (out sequence<string> impl_aliases);
Description

The find_all_aliases method searches the Implementation Repository and returns a
sequence containing the impl_alias name of each ImplementationDef object in it.

Parameters

receiver
A pointer to an object of class implRepository (usually the global variable
SOMD_ImplRepObject).

ev
A pointer to the Environment structure for the calling method.

impl_aliases
A sequence containing the impl_alias attribute of each ImplementationDef object in
the Implementation Repository. The structure representing the sequence is created by

the caller. The receiver allocates storage for the _buffer field in the sequence, and the
caller is responsible for freeing it.

Return Value
A zero is returned to indicate success; otherwise, a DSOM error code is returned.
Example

#include <somd.h>

Environment ev;

sequence <string> implaliases;

SOM_InitEnvironment (&ev) ;

SOMD_1Init (&ev) ;

find all aliases(SOMD_ImplRepObject, &ev, &implaliases);

Original Class

ImplRepository Class

Chapter 2. DSOM Framework 223

find_all_impldefs Method

find_all_impldefs Method

Returns all the implementation definitions in the Implementation Repository.
IDL Syntax
ORBStatus find_all_impldefs (out sequence<implementationDef> outimpldefs);
Description

The find_all_impldefs method searches the Implementation Repository and returns all the
ImplementationDef objects in it.

Parameters

receiver
A pointer to an object of class ImplRepository (usually the global variable
SOMD_ImplIRepObject).

ev
A pointer to the Environment structure for the calling method.

outimpldefs
A sequence of ImplementationDef objects is returned. The structure representing the
sequence is created by the caller. The receiver allocates stroage for the _buffer field in
the sequence, and the caller is responsible for freeing it.

Return Value
A zero is returned to indicate success; otherwise, a DSOM error code is returned.
Example

#include <somd.h>

Environment ev;

sequence <ImplementationDef> impldefs;
SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

find all impldefs(SOMD ImplRepObject, &ev, &impldefs);
Original Class

ImplRepository Class

224 Programmer's Reference for SOM and DSOM

find_classes_by_impldef Method

find_classes_by impldef Method

Returns a sequence of class names associated with a server.
IDL Syntax
sequences<string> find_classes_by_impldef (in Implld implid);
Description

The find_classes_by_impldef method returns the sequence of class names supported by
a server with the specified implid, as registered via the regimpl or using the
add_class_to_impldef Method.

Parameters

receiver
A pointer to the ImplRepository object (usually the global variable
SOMD_ImplRepObject).

env
A pointer to the Environment structure for the method caller.

implid
The Implid that identifies the server implementation of interest (the impl_id attribute of
the server's ImplementationDef object).

Return Value

A sequence of strings is returned. Ownership of the sequence structure, the string array
buffer, and the strings themselves is transferred to the caller.

An exception is returned if there was an error reading the Implementation Repository.
Example

#include <somd.h>

Environment ev;
ImplementationDef impldef;
ImplId implid;
sequence<string> classes;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

impldef = find impldef by alias (SOMD_ ImplRepObject, &ev,
“stackServer”) ;

implid = get impl id(impldef, &ev) ;

classes = find classes by impldef (SOMD_ ImplRepObject, &ev, implid) ;

Original Class

ImplRepository Class

Chapter 2. DSOM Framework 225

find_impldef Method

find_impldef Method

Returns a server implementation definition given its ID.
IDL Syntax
ImplementationDef find_impldef (in Implld implid);
Description

Finds in the Implementation Repository the ImplementationDef object whose impl_id
attribute is implid.

Parameters

receiver
A pointer to the ImplRepository object (usually the global variable
SOMD_ImplRepObject).

env
A pointer to the Environment structure for the method caller.

implid
The impl_id attribute of the desired ImplementationDef.
Return Value

A copy of the desired ImplementationDef object is returned. Ownership of the object is
transferred to the caller.

An exception is returned if there was an error reading the Implementation Repository.

Example

#include <somd.h>

main (int argc, char **argv)

{

Environment ev;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject=_find impldef (SOMD ImplRepObject, &ev, argv[1l]);

/* Tell DSOM that the server is ready to process requests */
impl is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject) ;

Original Class

ImplRepository Class

226 Programmer's Reference for SOM and DSOM

find_impldef_by_alias Method

find_impldef by _alias Method

Returns a server implementation definition given its user-friendly alias.

IDL Syntax

ImplementationDef find_impldef_by_alias (in string alias_name);

Description

Finds in the Implementation Repository the ImplementationDef object whose impl_alias
attribute is alias_name.

Parameters

receiver

A pointer to the ImplRepository object (usually the global variable
SOMD_ImplIRepObject).

env
A pointer to the Environment structure for the method caller.

alias_name

User-friendly name used to identify the implementation (the impl_alias attribute of the
desired ImplementationDef object).

Return Value

A copy of the desired ImplementationDef object is returned, and ownership of the object
is transferred to the caller. Or, if the specified alias is not found in the Implementation
Repository, NULL is returned.

An exception is returned if there was an error reading the Implementation Repository.
Example

#include <somd.h>

Environment ev;
ImplementationDef impldef;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
impldef =
_find impldef by alias(SOMD_ImplRepObject, &ev,”stackServer”) ;

Original Class

ImplRepository Class

Chapter 2. DSOM Framework 227

find_impldef_by_class Method

find_impldef by class Method

IDL Syntax

Description

Parameters

Returns a sequence of implementation definitions for servers that are associated with a
specified class.

sequence<implementationDef> find_impldef_by class (in string className);

Returns a sequence of implementationDefs for those servers that have registered an
association with a specified class. Typically, a server is associated with the

classes it knows how to implement by registering its known classes via the
add_class_to_impldef Method or by using the regimpl tool.

receiver
A pointer to the implRepository object (usually the global variable
SOMD_ImplIRepObject).

env
A pointer to the Environment structure for the method caller.

className
A string whose value is the class name of interest.

Return Value

Example

Copies of all ImplementationDef objects are returned in a sequence. Ownership of the
sequence structure, the object array buffer, and the objects themselves is transferred to the
caller.

An exception is returned if there was an error reading the Implementation Repository.

#include <somd.h>

Environment ev;
sequence<ImplementationDef> impldefs;

SOM_InitEnvironment [&ev];
SOMD_Init [&ev];
impldefs = find impldef by class(SOMD ImplRepObject, &ev,”Stack”) ;

Original Class

ImplRepository Class

228 Programmer's Reference for SOM and DSOM

remove_class_from_all Method

remove_class_from_all Method

Removes the association of a particular class from all servers.

IDL Syntax
void remove_class_from_all (in string className);
Description
The remove_class_from_all method removes the association of a particular class with all
servers currently registered in the Implementation Repository. Typically, a server is
associated with the classes it knows how to implement by registering its known classes via
the add_class_to_impldef Method or by using the regimpl tool.
remove_class_from_all also removes the association from the Naming Service. If the
Naming Service cannot be updated, if it has not be configured using som_cfg, or if somdd
is not running, then an exception will be returned but the Implementation Repository will still
be updated.
Parameters
receiver
A pointer to an object of class ImplRepository (usually the global variable
SOMD_ImplRepObject).
ev
A pointer to the Environment structure for the calling method.
className
A string whose value is the class nhame of interest.
Example

#include <somd.h>
Environment ev;
SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;
remove class_ from all (SOMD ImplRepObject, &ev, “Stack”);

Original Class

ImplRepository Class

Chapter 2. DSOM Framework 229

remove_class_from_impldef Method

remove_class_from_impldef Method

Removes the association of a particular class with a server.
IDL Syntax

void remove_class_from_impldef (
in Implld implid,
in string className);

Description

Removes the specified class hame from the set of class names associated with the server
implementation identified by implid. Typically, a server is associated with the classes it
knows how to implement by registering its known classes via the add_class_to_impldef
Method or by using the regimpl tool.

Parameters

receiver
A pointer to the ImpIRepository object (usually the global variable
SOMD_ImplIRepObject).

env
A pointer to the Environment structure for the method caller.

implid
The impl_id attribute of the ImplementationDef object of the desired server.

className
A string whose value is the class nhame of interest.

Return Value
An exception is returned if there was an error updating the Implementation Repository.
Example

#include <somd.h>
Environment ev;
ImplementationDef impldef;
ImplId implid;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

impldef = _find impldef by alias (SOMD_ImplRepObject, &ev,
“stackServer”) ;
implid = get impl id(impldef, &ev) ;

_remove_class_from_ impldef (SOMD_ImplRepObject, &ev,implid, "Queue”) ;
Original Class

ImplRepository Class

230 Programmer's Reference for SOM and DSOM

update_impldef Method

update_impldef Method

Updates an implementation definition in the Implementation Repository.
IDL Syntax
void update_impldef (in ImplementationDef impldef);
Description

The update_impldef method replaces the state of the specified ImplementationDef object
in the Implementation Repository. The impl_id attribute of impldef determines which object
gets updated in the Implementation Repository. In addition to updating the Implementation
Repository, update_impldef also updates the Naming Service for use by the DSOM
Factory Service. If the Naming Service cannot be updated, if it has not been been
configured or somdd is not running, then an exception will be returned. However, the
Implementation Repository will still be updated provided no information was previously
stored in the Naming Service for the given ImplementationDef. The next time the server's
Implementation Repository entry is updated, DSOM will attempt to update the Naming
Service.

Parameters

receiver
A pointer to the implRepository object (usually the global variable
SOMD_ImplRepObject).

env
A pointer to the Environment structure for the method caller.

impldef
A pointer to an ImplementationDef object, whose values are to be updated in the
Implementation Repository.

Return Value
An exception is returned if there was an error updating the Implementation Repository.
Example

#include <somd.h>
#include <implrep.h>

Environment ev;
ImplementationDef impldef;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

impldef = _find impldef by alias (SOMD_ImplRepObject, &ev,
“stackServer”)

__set_impl program(impldef, &ev,”/u/joe/bin/myserver”) ;
_update_impldef (ir, &ev, impldef) ;

Original Class

ImplRepository Class

Chapter 2. DSOM Framework 231

NVList Class

NVList Class

Description

File Stem

Base

Metaclass

The type NamedValue is a standard data type defined in CORBA (see somdtype.idl or the
CORBA 1.1 specification, page 106). NamedValue can be used either as a parameter type
or as a mechanism for describing arguments to a request. The NVList class implements
the NVList object used for constructing lists composed of NamedValues. NVLists can be
used to describe arguments passed to Request operations or to pass lists of property
names and values to Context object routines.

Note: The NVList class is not thread-safe. Multi-threaded applications must be careful
that only one thread modifies the state of a given NVList object. For example, one
thread cannot add items to an NVList while another thread is attempting to free it.

Additional information about NVList is contained in “Dynamic Invocation Interface” on
page 311 of Programmer’s Guide for SOM and DSOM and in Chapter 6 of the CORBA 1.1
specification.

nvlist

SOMObject Class

SOMClass Class

Ancestor Classes

SOMObject Class

New Methods

add_item Method

free Method

free_memory Method

get_count Method

get_item Method*

set_item Method*

(* These methods were added by DSOM to supplement CORBA 1.1 methods.)

Overridden Methods

somDefaultlnit Method
somDestruct Method

232 Programmer's Reference for SOM and DSOM

add_item Method

add_item Method

Adds an item to the specified NVList.

IDL Syntax
ORBStatus add_item (
in Identifier item_name,
in TypeCode item_type,
in void* value,
in long value_len,
in Flags item_flags);
Description
The add_item method adds an item to the end of the specified list.
Parameters
receiver
A pointer to the NVList object to which the item will be added.
env

A pointer to the Environment structure for the method caller.

item_name
The name of the item to be added.

item_type
The data type of the item to be added.

value
A pointer to the value of the item to be added. This value is not copied unless
item_flags is setto IN_COPY_VALUE.

value_len
The length of the item value to be added.

item_flags
A Flags bitmask (unsigned long). The item_flags can be one of the following values to
indicate parameter direction:

ARG_IN The argument is input only.
ARG_OUT The argument is output only.
ARG_INOUT The argument is input/output.

In addition, item_flags may also contain the following values:

IN_COPY_VALUE An internal copy of the argument is made and used.
(Currently DSOM has the limitation that only a shallow copy is made.)

DEPENDENT_LIST Indicates that a specified sublist must be freed when
the parent list is freed.

Return Value

The add_item method returns an ORBStatus value representing the return code from
the operation.

Chapter 2. DSOM Framework 233

add_item Method

Example

#include <somd.h>

Environment ev;
NVList plist;
ORBStatus rc;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

rc = create list (SOMD ORBObject, &ev, 0, &plist);

rc = add item(plist, &ev, ”"firstname”, TC string,
"Joe"”, 3, 0);

rc = add item(plist, &ev, ”lastname”, TC string,

"Schmoe”, 5, O) i

Original Class

NVList Class
Related Information

create_list Method

free Method

free_memory Method

get_count Method

get_item Method

set_item Method

234 Programmer's Reference for SOM and DSOM

free Method

free Method

Frees a specified NVList.

IDL Syntax
ORBStatus free ();

Description

The free method frees a n NVList object and any associated memory. It makes an implicit
call to the free_memory method.

Parameters

receiver
A pointer to the NVList object to be freed.

env
A pointer to the Environment structure for the method caller.

Return Value
The method returns an ORBStatus value representing the return code from the operation.
Example

#include <somd.h>
Environment ev;
long nargs;
NVList arglist;
ORBStatus rc;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

rc = create list (SOMD ORBObject, &ev, nargs, &arglist);
fé; _free(arglist, &ev) ;
Original Class
NVList Class

Related Information
ORBfree Function

free_memory Method

Chapter 2. DSOM Framework 235

free_memory Method

free_memory Method

Frees any dynamically allocated out-arg memory associated with the specified list.
IDL Syntax
ORBStatus free_memory ();
Description

The free_memory method frees any dynamically allocated out-arg memory associated
with the specified list, without freeing the list object itself. This would be useful when
invoking a DIl request multiple times with the same NVList.

Parameters

receiver
A pointer to the NVList object whose out-arg memory is to be freed.

env
A pointer to the Environment structure for the method caller.

Return Value

The free_memory method returns an ORBStatus value representing the return code from
the operation.

Example

#include <somd.h>

#include <repostry.h>

#include <intfacdf.hs>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:
long methodLong (in long inLong,

inout long inoutLong) ;

then the following code repeatedly invokes a request:
result = methodLong(fooObj, &ev, 100, 200);

using the DII.

/

*

L I

Environment ev;

NVList arglist;

NamedValue result;

long rc;

Foo fooObj;

Request reqObj;

/* See example code for ”"invoke” to see how the argList
is built */

/* Create the Request, regObj */

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

rc = create request (fooObj, &ev, (Context *)NULL,
"methodLong”, arglist, &result,
®Obj, (Flags)O0);

/* Repeatedly invoke the Request */

for (;;) {
rc = _invoke(reqgObj, &ev, (Flags)O);
rc= free memory(arglist,&ev); /* free out args */

236 Programmer's Reference for SOM and DSOM

Original Class
NVList Class
Related Information

ORBfree Function
free Method

free_memory Method

Chapter 2. DSOM Framework 237

get_count Method

get_count Method

Returns the total number of items allocated for a list.

IDL Syntax
ORBStatus get_count (out long count);
Description
The get_count method returns the total number of allocated items in the specified list.
Parameters

receiver
A pointer to the NVList object on which count is desired.

env
A pointer to the Environment structure for the method caller.

count
A pointer to where the method will store the long integer count value.

Return Value

The get_count method returns an ORBStatus value representing the return code from the
operation.

Example

#include <somd.h>

Environment ev;

long nargs, list size;
NVList arglist;
ORBStatus rc;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

rc = create list (SOMD ORBObject, &ev, nargs, &arglist);
fé': _get_count (arglist, &ev, &list size);
Original Class
NVList Class

Related Information

add_item Method
create_list Method
get_item Method
set_item Method

238 Programmer's Reference for SOM and DSOM

get_item Method

get_item Method

IDL Syntax

Description

Parameters

Returns the contents of a specified list item.

ORBStatus get_item (
in long item_number,
out Identifier item_name,
out TypeCode item_type,
out void* value,
out long value_len,
out Flags item_flags);

The get_item method gets an item from the specified list. Items are numbered beginning
at zero. Ownership of all the out parameters is not transferred to the caller.

receiver
A pointer to an NVList object.

env
A pointer to the Environment structure for the method caller.

item_number
The position (index) of the desired item in the list. The item_number ranges from 0 to n-
1, where n is the total number of items in the list.

item_name
A pointer to where the name of the item should be returned.

item_type
A pointer to where the data type of the item should be returned.

value
A pointer to where a pointer to the value of the item should be returned.

value_len
A pointer to where the length of the item value should be returned.

item_flags
A flags bitmask (unsigned long). The item_flags can be one of the following values
indicating parameter direction.

ARG_IN The argument is input only.

ARG_OUT The argument is output only.

ARG _INOUT The argument is input/output.
In addition, item_flags can have the following values:

IN_COPY_VALUE Indicates a copy of the argument is contained and
used by the NVList.

DEPENDENT_LIST Indicates that a specified sublist must be freed when
the parent list is freed. (This setting is not currently supported.)

Chapter 2. DSOM Framework 239

get_item Method

Return Value

Returns 0 for success, or a DSOM error code for failure (often because item_number+1
exceeds the number of items in the list).

Example

#include <somd.h>

Environment ev;
long i, nArgs;
ORBStatus rc;
Identifier name;
TypeCode typeCode;
void *value;

long len;

Flags flags;
NVList arglList;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev) ;
/* get number of args */

rc = get count(argList, &ev, &nArgs) ;
for (i = 0; i < nArgs; i++) {
/* get item description */
rc = get item(arglList, &ev, i, &name, &typeCode, &value, &len,
&flags) ;
}
Original Class
NVList Class

Related Information

add_item Method
create_list Method
set_item Method

240 Programmer's Reference for SOM and DSOM

set_item Method

set_item Method

Sets the contents of an item in a list.
IDL Syntax

ORBStatus set_item (
in long item_number,
in Identifier item_name,
in TypeCode item_type,
in void* value,
in long value_len,
in Flags item_flags);

Description
The set_item method sets the contents of an item in the list.
Parameters

receiver
An NVList object.

ev
The Environment structure for the method caller.

item_number
The position (index) of the desired item in the list. The item_number ranges from 0 to n-
1, where n is the total number of items in the list.

item_name
The name of the item.

item_type
The data type of the item.

value
The value of the item.

value_len
The length of the item value.

item_flags
A Flags bitmask (unsigned long). The item_flags can be one of the following values
indicating parameter direction.

ARG_IN The argument is input only.

ARG_OUT The argument is output only.

ARG _INOUT The argument is input/output.
In addition, item_flags can have the following values:

IN_COPY_VALUE Indicates a copy of the argument is contained and
used by the NVList.

DEPENDENT_LIST Indicates that a specified sublist must be freed when
the parent list is freed. (This setting is not currently supported.)

Return Value

Returns 0 on successful completion or a DSOM error code upon failure (often because
item_number+1 exceeds the number of items in the list).

Chapter 2. DSOM Framework 241

set_item Method

Example
#include <somd.h>

Environment ev;
long i, nArgs;
ORBStatus rc;
Identifier name;
TypeCode typeCode;
void *value;

long len;

Flags flags;
NVList argList;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* get number of args */

rc = _get count (argList, &ev,

for (I = 6; i < nArgs; 1++)

{

/* change item description */
rc = set item(arglList, &ev,1i,

}
Original Class

NVList Class
Related Information

add_item Method
create_list Method
get_item Method

242 Programmer's Reference for SOM and DSOM

&nArgs) ;

typeCode,

value,

len,

flags) ;

ObjectMgr Class

ObjectMgr Class

File Stem

Base

Metaclass

All methods of this class have been deprecated. Use of this class is discouraged. While the
methods of this class are supported in the current release of SOMobjects, IBM may remove
this class from a subsequent release.

The ObjectMgr class provides a uniform, universal abstraction for any sort of object
manager. Object Request Brokers, persistent storage managers and OODBMSs are
examples of object managers.

This is an abstract base class, which defines the core interface for an object manager. It
provides basic methods that:

» Create a new object of a certain class,
» Return a (persistent) ID for an object,
» Return areference to an object associated with an ID,

» Free an object (that is, release any local memory associated with the object without
necessarily destroying the object itself), or

» Destroy an object.

The ObjectMgr is an abstract class and should not be instantiated. Any subclass of
ObjectMgr must provide implementations for all ObjectMgr methods. In DSOM, the class
SOMDObjectMgr provides a DSOM-specific implementation.

om

SOMObject Class

SOMMSinglelnstance Metaclass

Ancestor Classes

SOMObject Class

Subclasses

SOMDObjectMgr Class

Deprecated Methods

IBM discourages using the following ObjectMgr methods. While these methods still are
supported in this release of SOMobjects, IBM may remove these methods from subsequent
releases.

somdDestroyObject*
somdGetldFromObject*
somdGetObjectFromld*
somdNewObject*
somdReleaseObject*

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

Chapter 2. DSOM Framework 243

ORB Class

ORB Class

The ORB class implements the CORBA ORB object described in Chapter 8 of the CORBA
1.1 specification. The ORB class defines operations for converting object references to
strings and converting strings to object references. The ORB defines operations used by
the Dynamic Invocation Interface for creating lists and determining the default context. In
addition, ORB provides initialization methods that list and retrieve references to basic
object services.

After a DSOM process invokes SOMD _Init Function, the global variable
SOMD_ORBObject points to the single instance of ORB for that process.

File Stem

orb

Base
SOMObject Class

Metaclass

SOMMSinglelnstance Metaclass

Ancestor Classes
SOMObject Class

New Methods
create_list Method
create_operation_list Method
get_default_context Method
list_initial_services Method
object_to_string Method
resolve_initial_references Method
string_to_object Method

244 Programmer's Reference for SOM and DSOM

create_list Method

Creates an NVList of the specified size.

IDL Syntax

Description

ORBStatus create_list (

in long count,
out NVList new_list);

create_list Method

Creates an NVList list of the specified size, typically for use in Requests. Ownership of the
allocated new_list is transferred to the caller.

Parameters

receiver

env
A pointer to the Environment structure for the method caller.

count
An integer representing the number of elements to allocate for the list.

new_list

Return Value

A pointer to the ORB obiject (referred to by the global variable SOMD_ORBObject).

A pointer to the address where the method will store a pointer to the allocated NVList
object.

Returns an ORBStatus value representing the return code of the operation.

Example

Original Class

#include <somd.h>

Environment ev;
long nargs = 5;
NVList arglist;
ORBStatus rc;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

rc = create list (SOMD ORBObject, &ev, nargs,

ORB Class

Related Information

create_operation_list Method
NVList Class
Request Class

&arglist) ;

Chapter 2. DSOM Framework 245

create_operation_list Method

create_operation_list Method

Creates an NVList initialized with the argument descriptions for a given operation.
IDL Syntax

ORBStatus create_operation_list (
in OperationDef oper,
out NVList new_list);

Description

Creates an NVList list for the specified operation, for use in Requests invoking that
operation. Ownership of the allocated new_list is transferred to the caller.

Parameters

receiver
A pointer to the ORB obiject (referred to by the global variable SOMD_ORBObject).

env
A pointer to the Environment structure for the method caller.

oper
A pointer to the OperationDef object representing the operation for which the NVList is
to be initialized, looked up in the Interface Repository.

new_list
A pointer to where the method will store a pointer to the resulting argument list.

Return Value
Returns an ORBStatus value representing the return code of the operation.
Example

#include <somd.h>

Environment ev;
OperationDef opdef;
NVList arglist;
long rc;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* Get the OperationDef from the Interface Repository. */
opdef = lookup i1d(SOM_InterfaceRepository,
&ev, "Foo:methodLong”) ;
/* Create a NamedValue list for the operation. */
rc = create operation list (SOMD ORBObject, &ev,opdef, &arglist);

Original Class
ORB Class
Related Information

create_list Method
NVList Class
Repository Class
Request Class

246 Programmer's Reference for SOM and DSOM

get_default_context Method

get _default_context Method

Returns the default process Context object.
IDL Syntax
ORBStatus get_default_context (out Context ctx);
Description

The get_default_context method gets the default process Context object. Ownership of
the allocated Context object is transferred to the caller.

Parameters

receiver
A pointer to the ORB object (referred to by the global variable SOMD_ORBODbiject).

env
A pointer to the Environment structure for the method caller.

ctx
A pointer to where the method will store a pointer to the returned Context object.

Return Value

Returns an ORBStatus return code: O indicates success, while a non-zero value is a
DSOM error code (see “Error Codes” on page 399 of Programmer’s Guide for SOM and
DSOM).

Example
#include <somd.h>

Environment ev;
Context cxt;
long rc;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

rc = get default context (SOMD ORBObject, &ev, &cxt);
Original Class

ORB Class

Chapter 2. DSOM Framework 247

list_initial_services Method

list_initial_services Method

Lists the run-time objects available by calling the resolve_initial_references method.
IDL Syntax
ObjectldList list_initial_services ();
Description

Returns a list of well-known strings (Objectlds) that each specifies an object service
available by calling ORB::resolve_initial_references. Ownership of allocated memory is
transferred to the caller. The caller should free the _buffer of the returned sequence and
each of the strings contained in the _buffer using the SOMFree Function. Three Objectlds
are defined: InterfaceRepository, NameService and FactoryService.

Parameters

receiver
A pointer to an object of class ORB (referred to by the global variable
SOMD_ORBObiject.)

ev
A pointer to the Environment structure for the calling method.

Return Value
Returns a sequence of strings.
Example

#include <somd.h>

Environment ev;

ObjectIdList services;

int i;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

services = list initial services(SOMD ORBObject, &ev);

Original Class
ORB Class
Related Information

resolve_initial_references Method

248 Programmer's Reference for SOM and DSOM

object_to_string Method

object_to_string Method

IDL Syntax

Description

Parameters

Converts an object reference to an external form that can be stored outside the ORB.

string object_to_string (in SOMObject obj);

The object_to_string method converts the object reference to a form (string) which can be
stored externally. This string can then be passed to string_to_object to recover the
original object reference.

If the object reference is a local object, rather than a proxy, and the calling process has
server capability, then the somdRefFromSOMODbj Method will be invoked on the server
object to generate a SOMDODbject Class corresponding to the local object; that
SOMDObject will then be converted to string form. The resulting string form can be passed
to string_to_object either to retrieve the pointer to the original local object if invoked from
within the same server process or to construct a valid proxy object for the object .

If the object reference is a local object, rather than a proxy object, but the calling process
does not have server capability, then the result of object_to_string is valid only within the
calling process for the duration of that process and as long as the input object resides in the
address space of that process.

Ownership of allocated memory is transferred to the caller. The caller should free the result
using the SOMFree Function.

Note:

In DSOM 2.x, string_to_object invocation within the server process in which the
object resided, returned a SOMDObject rather than the object. object_to_string
required an input SOMDObject rather than a SOMObject Class. In this release, to
increase local and remote transparency, string_to_object and object_to_string
map between a SOMObject and the string form of a reference to that object.
Server code does not need to invoke SOMDServer::somdRefFromSOMODb)
before object_to_string nor invoke SOMDServer::somdSOMObjFromRef after
string_to_object.

receiver
A pointer to the ORB obiject (referred to by the SOMD_ORBObiject global variable).

env

A pointer to the Environment structure for the method caller.

obj

A pointer to a SOMObject object representing the reference to be converted. This can
be either a local or a proxy object.

Return Value

Example

Returns a string representing the external form of the referenced object.

#include <somd.h>
#include <car.h>
Environment ev;

Car car;

string objrefstr;
SOM_InitEnvironment (&ev) ;

Chapter 2. DSOM Framework 249

object_to_string Method

SOMD_Init (&ev) ;

/* create a remote Car object */

car = somdCreate (&ev, “Car”, TRUE) ;

/* save the reference to the object */

objrefstr = object to string(SOMD ORBObject, &ev, car);
FileWrite (”/u/joe/mycar”, objrefstr) ;

SOMFree (objrefstr) ;

Original Class
ORB Class

Related Information
string_to_object Method

250 Programmer's Reference for SOM and DSOM

resolve_initial_references Method

resolve_initial _references Method

IDL Syntax

Description

Parameters

Returns an object reference for the requested object service.

SOMObject resolve_initial_references (
in Objectld identifier)
raises (InvalidName);

resolve_initial_references takes a single Objectld and returns an appropriate object
reference for the requested object service. This method may be called during client
initialization to get a handle to a basic run-time object. Objectlds can be retrieved by calling
ORB::list_initial_services. There are three Objectlds: InterfaceRepository, NameService
and FactoryService. Calling with Objectld set as InterfaceRepository returns an object of
type Repository, a local instance of the Interface Repository; as NameService, type
ExtendedNaming_ExtendedNamingContext, the root context of the local nhaming tree;
and as FactoryService, type ExtendedNaming_ExtendedNamingContext, the naming
context where SOM object factories are stored.

Ownership of the returned object is transferred to the caller who should free the result using
somFree Method.

receiver
A pointer to an object of class ORB.

ev
A pointer to the Environment structure for the calling method.
identifier
A string representing a basic object service:

"InterfaceRepository” Returns an object of type Repository, a local
instance of the Interface Repository.

"NameService" Returns an item of type
ExtendedNaming::ExtendedNamingContext, the root context of the
local naming tree

"FactoryService" Returns an item of type
ExtendedNaming::ExtendedNamingContext, the naming context
where SOM object factories are stored.

Return Value

Example

It must be cast to the actual object class. If an exception occurs, OBJECT_NIL is returned.

#include <somd.h>
#include <repostry.h>

Environment ev;

Repository repo;

SOM_InitEnvironment (&ev);

SOMD_1Init (&ev) ;

repo = (Repository) _resolve initial references(
SOMD_ORBObject, &ev, "InterfaceRepository”) ;

Chapter 2. DSOM Framework 251

resolve_initial_references Method

Original Class
ORB Class
Related Information

list_initial_services Method

252 Programmer's Reference for SOM and DSOM

string_to_object Method

string_to_object Method

Converts an externalized form of an object reference into an object reference.
IDL Syntax
SOMObject string_to_object (in string str);
Description

The string_to_object method converts the externalized form of an object reference
produced by object_to_string into an object reference.

Note: In DSOM 2.x, string_to_object invocation within the object server process
returned a SOMDobject rather than the object. object_to_string required an input
SOMDObiject rather than a SOMObiject. In this release string_to_object and
object_to_string map between a SOMObject and the string form of the reference.
Server code does not need to invoke somdRefFromSOMObj Method before
object_to_string nor somdSOMObjFromRef after string_to_object.

The caller should invoke the release Method on this object reference when the calling
process finishes.

Parameters

receiver
A pointer to the ORB object (referred to by the global variable SOMD_ORBODbiject).

env
A pointer to the Environment structure for the method caller.

str
A pointer to a character string representing the externalized form of the object
reference.

Return Value
Returns a SOMobject object.
Example

#include <somd.h>
#include <car.h>

Environment ev;
Car car;
string objrefstr;

SOM_InitEnvironment (&ev);

SOMD_Init (&ev) ;

/* restore proxy from its string form */

FileRead (”/u/joe/mycar”, &objrefstr);

car = _string to object (SOMD ORBObject, &ev, objrefstr);
Original Class

ORB Class

Related Information

object_to_string Method

Chapter 2. DSOM Framework 253

Principal Class

Principal

File Stem
Base

Metaclass

Class

The Principal class defines attributes which identify the user ID and host name of the
originator of a specific request. This information is typically used for access control within a
server.

A Principal object is returned by the SOMOA::get_principal method. The parameters of
the get_principal method identify the environment and target object associated with a
particular request. The object adapter uses this information to create a Principal object that
identifies the caller.

Note: The Principal class is not thread-safe. However, users should not set the
userName and hostName attributes. The DSOM run time will properly initialize
these values.

Details of the Principal object are not defined in the CORBA 1.1 specification; the attributes
defined are required by DSOM.

principal

SOMObject Class

SOMClass Class

Ancestor Classes

Attributes

SOMObject Class

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

userName (string)
Identifies the name of the user associated with the request invocation. The value of the
userName attribute is the user name with which the client logged in on the client’s
machine. If the user has not logged in (or if LOGIN_INFO_SOURCE is not set in the
SOMobijects configuration file), the user is treated as an unauthenticated user and the
userName attribute will be an empty string (*”). The result of calling _get_userName
should not be freed by the caller.

hostName (string)
Identifies the name of the host from where the request originated. Currently, this value
is obtained from the HOSTNAME environment variable or the HOSTNAME setting in
the [somd] stanza of the configuration file in the process that invoked the request. If,
however, the client is not authenticated, the hostName attribute will be set to
LOCALHOST. The result of calling _get_hostName should not be freed by the caller.

Overridden Methods

somDefaultlnit Method
somDestruct Method

254 Programmer's Reference for SOM and DSOM

Request Class

Request Class

The Request class implements the CORBA Request object described in section 6.2 on
page 108 of CORBA 1.1. The Request object is used by the Dynamic Invocation Interface
to dynamically create and issue a request to a remote object. Request objects are created
by the create_request method in SOMDODbject.

Note: The Request class is not thread-safe. A Request object should not be modified
once it is initialized. Multi-threaded applications must be written to ensure that
Request objects are used properly. For example, it is invalid to invoke on a
Request object, then change the Request object before receiving the response to
the initial invocation.

File Stem

request

Base
SOMObject Class

Metaclass
SOMClass Class

Ancestor Classes
SOMObject Class

New Methods
add_arg Method
destroy Method*
get_response Method
invoke Method
send Method

(* The destroy method was defined as delete in CORBA 1.1, which conflicts with the delete
operator in C++. However, there is a Request_delete Macro defined for CORBA
compatibility.)

Overridden Methods

somDefaultlnit Method

somDestruct Method

Chapter 2. DSOM Framework 255

add_arg Method

add_arg Method

Incrementally adds an argument to a Request object.
IDL Syntax

ORBStatus add_arg (
in Identifier name,
in TypeCode arg_type,
in void* value,
in long len,
in Flags arg_flags);

Description

The add_arg method incrementally adds an argument to a Request object. The Request
object must have been created using the create_request Method with an empty argument
list.

Parameters

receiver
A pointer to a Request object.

ev
A pointer to the Environment structure for the method caller.

name
An identifier representing the name of the argument to be added.

arg_type
The typecode for the argument to be added.

value
A pointer to the argument value to be added.

len
The length of the argument.

arg_flags
A Flags bitmask (unsigned long). The arg_flags parameter may take one of the
following values to indicate parameter direction:

ARG_IN The argument is input only.

ARG_OUT The argument is output only.

ARG_INOUT The argument is input/output.
In addition, arg_flags can have the following values:

IN_COPY_VALUE Indicates a copy of the value is stored in this Request
object. This flag is ignored for INOUT and OUT arguments.

DEPENDENT_LIST Not currently supported.
Return Value

The add_arg method returns an ORBStatus value representing the return code of the
operation.

Example

#include <somd.h>
#include <repostry.h>

256 Programmer's Reference for SOM and DSOM

#include <intfacdf.h>
#include <foo.h>
/*

* long methodLong

add_arg Method

/* provided by user */
assume following method declaration in interface Foo:
(in long inLong, inout long inoutLong) ;

* then this code builds a request to execute the call:

* result = methodLong (fooObj, &ev,
* using the DII.
*/

Environment ev;

OperationDef opdef;
Description desc;
OperationDescription *opdesc;
long rc;

long valuel =
long value2 =
Foo fooObj;
Request reqObj;
NamedValue result;
SOM_InitEnvironment
SOMD_Init (&ev) ;

100;
200;

(&ev) ;

100,200) ;

/* Get the OperationDef from the Interface Repository. */
opdef = lookup 1d(SOM_InterfaceRepository,
&ev, "Foo::methodLong”) ;
/* Get the operation description structure. */
desc = describe (opdef, &ev);
opdesc = (OperationDescription *) desc.value. value;
/* Fill in the TypeCode field for result. */
result.argument. type = opdesc->result;
/* Create the Request, regObj */
rc = create request (fooObj, &ev, (Context *)NULL, “methodLong”,
(NVList *)NULL, &result,
®Obj, (Flags)O0);
/* Add argl info onto the request */
_add_arg(reqgObj, &ev, ”inLong”,
TC long, &valuel, sizeof (long), (Flags)O);
/* Add arg2 info onto the request */
_add_arg(regObj, &ev, ”inoutLong”,
TC long, &value2, sizeof (long), (Flags)O);

Original Class

Request Class

Chapter 2. DSOM Framework 257

destroy Method

destroy Method

IDL Syntax

Description

Parameters

Return Value

Example

Original Class

Deletes the memory allocated by the ORB for a Request object.

ORBStatus destroy ();

destroy deletes the Request object and all associated memory. destroy is the same as
the delete method in the CORBA 1.1 specification. However, the word “delete” is a
reserved operator in C++. For CORBA compatibility, Request_delete Macro, an alias for
destroy, has been included in the C header files.

receiver
A pointer to a Request object.

A pointer to the Environment structure for the method caller.

The destroy method returns an ORBStatus value representing the return code.

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

#include <foo.h> /* provided by user */
/* assume following method declaration in interface Foo:
* long methodLong (in long inLong, inout long inoutLong) ;

* then this code sends a request to execute the call:
* result = methodLong(fooObj, &ev, 100,200) ;
* using the DII without waiting for the result. Then,
* later, waits for and then uses the result.
*/
Environment ev;
NVList arglist;
long rc;
Foo fooObj;
Request reqObj;
NamedValue result;
/* see the Example code for invoke to see how the request is built
*
/
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* Create the Request, regObj */
rc = create request (fooObj, &ev, (Context *)NULL, "“methodLong”,
arglist, &result, &reqObj, (Flags)O);
/* Finally, send the request */

rc = send(regObj, &ev, (Flags)O);

rc = get response(reqObj, &ev, (Flags)O);
/* use the result */

if (result-sargument. value == 9600) {...}

/* throw away the reqObj */
_destroy(reqgObj, &ev);

Request Class

258 Programmer's Reference for SOM and DSOM

destroy Method

Related Information

get_response Method
invoke Method
send Method

Chapter 2. DSOM Framework 259

get_response Method

get_response Method

Determines whether an asynchronous Request has completed.
IDL Syntax
ORBStatus get_response (in Flags response_flags);
Description

The get_response method determines whether the asynchronous Request has
completed.

Parameters

receiver
A pointer to a Request object.

ev
A pointer to the Environment structure for the method caller.

response_flags
A Flags bitmask (unsigned long) containing control information for the get_response
method. The response_flags argument may have the value RESP_NO_WAIT that
Indicates the caller does not want to wait for a response.

Return Value

The get_response method returns an ORBStatus value representing the return code of the
operation.

Example

#include <somd.h>

#include <repostry.h>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:
* long methodLong (in long inLong, inout long inoutLong) ;
* then this code sends a request to execute the call:

* result = methodLong(fooObj, &ev, 100,200) ;

* using the DII without waiting for the result. Then,
* later, waits for and then uses the result.

*/

Environment ev;

NVList arglist;

long rc;

Foo fooObj;

Request reqObj;

NamedValue result;

/*See the example code for invoke to see how the request is built.*/

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* Create the Request, reqObj */

rc = create request (fooObj, &ev, (Context *)NULL,

"methodLong”, arglist, &result,
&reqgObj, (Flags)oO);

/* Finally, send the request */

rc = send(reqgObj, &ev, (Flags)O);

/* do some work, i.e. don’t wait for the result */

/* wait here for the result of the request */

rc = get response(reqObj, &ev, (Flags)O);
/* use the result */
if (result-sargument. value == 9600) {...}

260 Programmer's Reference for SOM and DSOM

Original Class
Request Class
Related Information

invoke Method
send Method
Request_delete Macro

get_response Method

Chapter 2. DSOM Framework 261

invoke Method

invoke Method

Invokes a Request synchronously, waiting for the response.

IDL Syntax
ORBStatus invoke (in Flags invoke_flags);
Description
The invoke method sends a Request synchronously, waiting for the response.
Parameters

receiver
A pointer to a Request object.

ev
A pointer to the Environment structure for the method caller.

invoke_flags
A Flags bitmask (unsigned long) representing control information for the invoke
method. There are currently no flags defined for the invoke method.

Return Value

Returns an ORBStatus value representing the return code of the operation.

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

#include <foo.h> /* provided by user */
/* assume following method declaration in interface Foo:
* long methodLong (in long inLong, inout long inoutLong) ;

* then the following code builds and then invokes

* a request to execute the call:

* result = methodLong(fooObj, &ev, 100,200) ;

* using the DII.

*/
Environment ev;
OperationDef opdef;
Description desc;
OperationDescription *opdesc;
NVList arglist;
long rc;
long valuel = 100;
long value2 200;
Foo fooObj;
Request reqObj;
NamedValue result;
Identifier name;
TypeCode tc;
void *dummy;
long dummylen;
Flags flags;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* Get the OperationDef from the Interface Repository. */
opdef = lookup 1d(SOM_InterfaceRepository,

&ev, "Foo::methodLong”) ;
/* Create a NamedValue list for the operation. */
rc= create operation list (SOMD ORBObject, &ev, opdef, &arglist) ;
/* Insert argl info into arglist */
_get _item(arglist, &ev,
0, &name, &tc, &dummy, &dummylen, &flags);

262 Programmer's Reference for SOM and DSOM

invoke Method

_set_item(arglist, &ev,0, name, tc, &valuel, sizeof(long), flags);
/* Insert arg2 info into arglist */
_get_item(arglist, &ev,

1, &name, &tc, &dummy, &dummylen, &flags);

_set_item(arglist, &ev,1, name, tc, &value2, sizeof(long), flags);
/* Get the operation description structure. */

desc = describe (opdef, &ev);

opdesc = (OperationDescription *) desc.value. value;

/* Fill in the TypeCode field for result. */
result.argument. type = opdesc->result;
/* Create the Request, reqObj */
rc = create request (fooObj, &ev, (Context *)NULL, “methodLong”,
arglist, &result, &reqObj, (Flags)O);
/* Finally, invoke the request */
rc = _invoke(regObj, &ev, (Flags)O);
/* Print results */
printf (“result: %d, value2: %d\n”,
* (long*) (result.argument. value), value2);

Original Class
Request Class
Related Information

get_response Method
send Method
Request_delete Macro

Chapter 2. DSOM Framework 263

send Method

send Method

Invokes a Request asynchronously.
IDL Syntax
ORBStatus send (in Flags invoke_flags);
Description

The send method invokes the Request asynchronously. The response must eventually be
checked by invoking either the get_response method or the get_next_response
Function.

Parameters

receiver
A pointer to a Request object.

ev
A pointer to the Environment structure for the method caller. This environment
structure is used only to record system exceptions encountered during the sending of
the request. Exceptions raised by the target method invocation, and system exceptions
raised during the receiving of the response, are stored in the Environment structure
provided to the subsequent get_response method.

invoke_flags
A Flags bitmask (unsigned long) containing send method control information. The
argument invoke_flags can have the following value.

INV_NO_RESPONSE Indicates that the invoker does not intend to wait for
a response, nor does it expect any of the output arguments (inout or
out) to be updated.

Return Value
Returns an ORBStatus value representing the return code from the operation.
Example

#include <somd.h>

#include <repostry.hs>

#include <intfacdf.h>

#include <foo.h> /* provided by user */

/* assume following method declaration in interface Foo:
* long methodLong (in long inLong, inout long inoutLong) ;
* then the following code sends
* a request to execute the call:

* result = methodLong (fooObj, &ev, 100,200) ;
* using the DII.
*/

Environment ev;

NVList arglist;

long rc;

Foo fooObj;

Request reqObj;

NamedValue result;

/* see the Example code for invoke to see how the request is built

*

/

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* Create the Request, reqObj */

rc = create request (fooObj, &ev, (Context *)NULL,

264 Programmer's Reference for SOM and DSOM

"methodLong”, arglist,
&reqgObj, (Flags)O0);

/* Finally, send the request */

rc = send(reqgObj, &ev, (Flags)O);

Original Class
Request Class
Related Information

get_response Method
invoke Method

Request_delete Macro

send Method

&result,

Chapter 2. DSOM Framework 265

SOMDClientProxy Class

SOMDClientProxy Class

266

The SOMDClientProxy class implements DSOM proxy objects in clients. It is intended that
the implementation of this “generic” proxy class will be used to derive specific proxy classes
via multiple inheritance. The remote dispatch method is inherited from this client proxy
class, while the desired interface and language bindings (but not the implementation) are
inherited from the target class.

SOMDCIlientProxy inherits from the metaclass SOMMProxyForObject, which is a base
class for creating proxies. Every proxy contains the sommProxyDispatch method, inherited
from SOMMProxyForObject. This method is used to dynamically dispatch a method on an
object, and it can also be overridden with application-specific dispatching mechanisms. In
SOMDClientProxy, the sommProxyDispatch method is overridden to forward method
calls to the corresponding remote target object. (For more information, see
“SOMMProxyForObject Class” on page 368. For additional information and an example,
see “Creating User-Supplied Proxies” on page 319 of SOMobjects Developer’s Toolkit
Programmer’s Guide.

Note: The SOMDCIientProxy class is thread-safe. Multiple threads may simultaneously
send requests and receive responses on the same proxy. It is still the class
implementor’s responsibility to ensure the thread-safety of the target object. Also,
one thread should not change the state of the proxy (for example, by calling
somdReleaseResources or somdProxyFree) while other threads are still using
the proxy.

Almost all methods invoked on a default proxy are simply forwarded and invoked on the
remote object. This is true for all methods introduced by the target class. However, some
methods introduced by SOMDCIlientProxy have special behavior. A number of methods
are not forwarded to the remote object because their definition makes more sense in the
local context.

Following is a complete list of methods that are executed on the local proxy:

create_request somdReleaseResources
create_request_args somDumpSelf
duplicate somDumpSelfint
is_proxy somGetSize

release somisA
somClassDispatch somlsinstanceOf
somdProxyGetClass somPrintSelf
somdProxyGetClassName somRespondsTo

SOMDClientProxy introduces a few methods that forward other methods to the remote
object:

e somdTargetFree invokes somFree on the target object.
 somdTargetGetClass invokes somGetClass on the target object.
* somdTargetGetClassName invokes somGetClassName on the target object.

A small number of methods execute both on the proxy and the remote object. Most of these
methods deal with proxy destruction, as follows:

Programmer’s Reference for SOM and DSOM

SOMDClientProxy Class

somDefaultinit Method
If the proxy has not been initialized yet, somDefaultInit initializes the proxy. If the
proxy is already initialized, somDefaultlnit is forwarded to the target object. (Proxy
objects that DSOM creates will be initialized upon creation automatically.)

somDestruct Method
If the proxy is still initialized, somDestruct is forwarded to the target object, then the
proxy is uninitialized and destroyed. If the proxy is no longer initialized, somDestruct
destroys the proxy.

somFree Method
Invokes somFree on the target object then calls release to uninitialize and destroy the
proxy.

File Stem

somdcprx

Base
SOMDObject Class

Metaclass
SOMClass Class

Ancestor Classes
SOMMProxyForObject Class
SOMDObject Class

New Methods
somdProxyGetClass Method*
somdProxyGetClassName Method*
somdReleaseResources Method*
somdTargetFree Method*
somdTargetGetClass Method*
somdTargetGetClassName Method*

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

Deprecated Method

somdProxyFree*

Overridden Methods

create_request Method
create_request_args Method
duplicate Method

is_proxy Method
is_SOM_ref Method

release Method
somDefaultlnit Method

Chapter 2. DSOM Framework 267

SOMDClientProxy Class

somDestruct Method
som(Class)Dispatch Method
sombDumpSelf Method
somDumpSelfint Method
somFree Method
sommProxyDispatch Method
somPrintSelf Method

268 Programmer's Reference for SOM and DSOM

somdProxyGetClass Method

somdProxyGetClass Method

Returns the class object for the local proxy object.

IDL Syntax

Description

SOMClass somdProxyGetClass ();

The somdProxyGetClass method returns a pointer to the proxy’s class object. This
method has been provided for when the application program wants to be explicit about
getting the class object for the proxy object versus the target object.

Parameters

receiver

ev

Return Value

A pointer to the SOMDClientProxy object. When invoking this method on an object
using the C++ bindings, if the object has not been declared to be of type
SOMDClientProxy (or some derived type), then it is necessary to explicitly cast the
object to SOMDClientProxy.

A pointer to the Environment structure for the method caller.

The somdProxyGetClass method returns a pointer to the class object for the local proxy

object.

Example

Original Class

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

SOMClass carProxyClass;
string somdObjectId;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* restore proxy from its string form */
FileRead (" /u/joe/mycar”, &somdObjectId) ;

car = _string to object (SOMD_ORBObject, &ev, somdObjectId) ;

carProxyClass = _somdProxyGetClass(car, &ev);

SOMDClientProxy Class

Chapter 2. DSOM Framework 269

somdProxyGetClassName Method

somdProxyGetClassName Method

IDL Syntax

Description

Parameters

Returns the class name for the local proxy object.

string somdProxyGetClassName ();

The somdProxyGetClassName method returns the proxy’s class name. This method has
been provided for when the application program wants to be explicit about getting the class

name of the proxy object versus the target object.

receiver

A pointer to the SOMDClientProxy object for the desired remote target object. When
invoking this method on an object using the C++ bindings, if the object has not been
declared to be of type SOMDClientProxy (or some derived type), then it is necessary

to explicitly cast the object to SOMDClientProxy).

ev
A pointer to the Environment structure for the method caller.

Return Value

Example

The somdProxyGetClassName method returns a string containing the class name of the

local proxy object. This string should not be freed by the caller.

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string carProxyClassName;
string somdObjectId;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* restore proxy from its string form */
FileRead (" /u/joe/mycar”, &somdObjectId) ;

car = _string to object (SOMD _ORBObject, &ev, somdObjectId) ;

carProxyClassName = _somdProxyGetClassName (car,

Original Class

SOMDClientProxy Class

270 Programmer's Reference for SOM and DSOM

somdReleaseResources Method

somdReleaseResources Method

Instructs a proxy object to release any memory it is holding as a result of a remote method
invocation in which a parameter or result was designated as object-owned.

IDL Syntax
void somdReleaseResources ();
Description

somdReleaseResources instructs a proxy object to release any memory it is holding from
a remote method invocation where a parameter or result was designated as object-owned.

When a DSOM client program makes a remote invocation via a proxy, and the invocation
has an object-owned parameter or return result, the client-side memory of the parameter/
result is owned by the proxy, and the server-side memory is owned by the remote object.
The memory owned by the proxy is freed when the proxy is released by the client program.

A DSOM client can instruct a proxy object to free all memory it owns for the client without
releasing the proxy by invoking somdReleaseResources on the proxy object. Calling
somdReleaseResources can prevent unused memory from accumulating in a proxy. If a
client program repeatedly invokes a remote get_string that returns an object-owned string.
The proxy will store the memory associated with all of the returned strings until the proxy is
released. If the client program only uses the last result returned from get_string, then the
unused memory accumulates in the proxy. To prevent accumulation invoke
somdReleaseResources on the proxy object periodically.

Parameters

receiver
A pointer to the SOMDClientProxy object to release resources. With C++ bindings, the
object is explicitly casted to SOMDClientProxy, unless otherwise stated.

ev
A pointer to the Environment structure for the method call.

Example
string mystring;
/* remote invocation of get string on proxy x,

* where method get string has the SOM IDL modifier
* “object_owns_result”.

*/
mystring = X get string(x, ev);
/* ... use mystring ... */

/* when finished using mystring, instruct the
* proxy that it can free it.
*/

_somdReleaseResources (x, ev);

Original Class
SOMDClientProxy Class
Related Information

release Method

Chapter 2. DSOM Framework 271

somdTargetFree Method

somdTargetFree Method

Forwards the somFree method call to the remote target object.

IDL Syntax
void somdTargetFree ();
Description
somdTargetFree forwards the somFree method call to the remote target object, but the
proxy object is not destroyed. This method is for when you want to be explicit about freeing
the remote target object and not the proxy object.
Parameters
receiver
A pointer to the SOMDClientProxy object for the desired remote target object. When
invoking this method on an object using the C++ bindings, if the object has not been
declared to be of type SOMDClientProxy (or some derived type), then it is necessary
to explicitly cast the object to SOMDClientProxy *.
ev
A pointer to the Environment structure for the method caller.
Example

#include <somd.h>
#include <car.h>

Environment ev;
Car car;
string somdObjectId;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* restore proxy from its string form */

FileRead (" /u/joe/mycar”, &somdObjectId) ;

car = _string to_object (SOMD_ORBObject, &ev, somdObjectId) ;

;éédeargetFree (car, &ev);
Original Class
SOMDClientProxy Class
Related Information

release Method
somDestruct Method
SOMFree Function

272 Programmer's Reference for SOM and DSOM

somdTargetGetClass Method

somdTargetGetClass Method

Returns a proxy for the class object for the remote target object.

IDL Syntax

Description

SOMClass somdTargetGetClass ();

The somdTargetGetClass method forwards the somGetClass Method call to the
remote target object and returns a pointer to the class object for that object. This method
has been provided for when the application program wants to be explicit about getting
the class object for the remote target object versus the local proxy.

Parameters

receiver

ev

Return Value

A pointer to the SOMDClientProxy object for the desired remote target object. When
invoking this method on an object using the C++ bindings, if the object has not been

declared to be of type SOMDClientProxy (or some derived type), then it is necessary
to explicitly cast the object to SOMDClientProxy *.

A pointer to the Environment structure for the method caller.

The somdTargetGetClass method returns a proxy to the remote class object for the
remote target object. The proxy should be released when the caller is finished using it. (Do
not invoke somFree or somDestruct on the result.)

Example

Original Class

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

SOMClass carClass;
string somdObjectId;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* restore proxy from its string form */
FileRead (”/u/joe/mycar”, &somdObjectId) ;

car = _string to_object (SOMD_ORBObject, &ev,

carClass = _somdTargetGetClass (car, &ev);

SOMDClientProxy Class

Related Information

somdProxyGetClass Method

somdObjectId) ;

Chapter 2. DSOM Framework 273

somdTargetGetClassName Method

somdTargetGetClassName Method

Returns the class name for the remote target object.

IDL Syntax

Description

string somdTargetGetClassName ();

The somdTargetGetClassName method forwards the somGetClassName Method call to
the remote target object and returns the class name for that object. This method has been
provided when the application program wants to be explicit about getting the class name of
the remote target object versus the proxy object.

Parameters

receiver

ev

Return Value

A pointer to the SOMDClientProxy object for the desired remote target object. When
invoking this method on an object using the C++ bindings, if the object has not been
declared to be of type SOMDClientProxy (or some derived type), then it is necessary
to explicitly cast the object to SOMDClientProxy *.

A pointer to the Environment structure for the method caller.

The somdTargetGetClassName method returns a string containing the class nhame of the
remote target object. Ownership of this string is given to the caller.

Example

Original Class

#include <somd.h>
#include <car.h>

Environment ev;

Car car;

string carClassName;
string somdObjectId;

SOM_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* restore proxy from its string form */
FileRead (" /u/joe/mycar”, &somdObjectId) ;

car = _string to object (SOMD_ORBObject, &ev, somdObjectId) ;

carClassName = _somdTargetGetClassName (car, &ev);

SOMDClientProxy Class

Related Information

somdProxyGetClassName Method

274 Programmer's Reference for SOM and DSOM

SOMDONbject Class

SOMDODbject Class

The SOMDODbject class implements the methods that can be applied to all CORBA object
references; such as, duplicate, get_implementation, get_interface, is_nil and release.
In the CORBA 1.1 specification, these methods are described in Chapter 8.

In DSOM, there is a subclass of SOMDObject called SOMDClientProxy. This subclass
inherits the implementation of SOMDObject, but extends it by overriding
sommProxyDispatch with a “remote dispatch” method, and caches the binding to the
server process. Whenever a remote object is accessed, it is represented in the client
process by a SOMDClientProxy object.

File Stem

somdobj

Base
SOMObject Class

Metaclass
SOMClass Class

Ancestor Classes
SOMObject Class

New Methods
create_request Method
create_request_args Method*
duplicate Method
get_implementation Method
get_interface Method
is_nil Method
is_proxy Method*
is_SOM_ref Method*
release Method

(* These methods were added by DSOM to supplement the published CORBA 1.1
interfaces.)

Deprecated Method
is_constant
Overridden Methods

somDefaultlnit Method
somDestruct Method
somDumpSelfint Method

Chapter 2. DSOM Framework 275

create_request Method

create request Method

Creates a request to execute a particular operation on the referenced object.
IDL Syntax

ORBStatus create_request (
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags);

Description

The create_request method creates a request to execute a particular operation on the
referenced object. Ownership of each input parameter to this method is transferred to the
receiver. Hence, the input arguments should not be subsequently freed by the caller.

Parameters

receiver
A pointer to a SOMODbject object. Even though this method has been introduced by
SOMDObiject, it can be invoked on any SOMObject object. When invoking this method
on an object using the C++ bindings, if the object has not been declared to be of type
SOMDObject (or some derived type), then it is necessary to explicitly cast the object to
SOMDObject *.

ev
A pointer to the Environment structure for the method caller. This structure is used
only to store exceptions raised during the creation of the Request object, and not
exceptions raised subsequently when invoking the Request.

ctx
A pointer to the Context object of the requested operation.

operation
The name of the operation to be performed on the target object, receiver.

arg_list
A pointer to a list of arguments (NVList Class). If this argument is NULL, the argument
list can be assembled by repeated calls to the add_arg Method on the Request object
created by calling this method.

result
A pointer to a NamedValue structure where the result of applying operation to receiver
should be stored.

request
A pointer to storage for the address of the created Request object. Ownership of this
parameter is transferred to the caller, which is responsible for destroying it using the
destroy Method or using somDestruct Method, somFree Method or the C++ delete
operator.

req_flags
A Flags bitmask (unsigned long), which is currently unused.

Return Value

Returns an ORBStatus value as the status code for the request.

276 Programmer's Reference for SOM and DSOM

create_request Method

Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

#include <foo.h> /* provided by user */
/* assume following method declaration in interface Foo:
* long methodLong (in long inLong, inout long inoutLong) ;

* then this code builds a request to execute the call:
* result = methodLong (fooObj, &ev, 100,200) ;
* using the DII.
*/
Environment ev;
OperationDef opdef;
Description desc;
OperationDescription *opdesc;
NVList arglist;
long rc;
long valuel 100;
long value2 = 200;
Foo fooObj;
Request reqObj;
NamedValue result;
Identifier name;
TypeCode tc;
void *dummy;
long dummylen;
Flags flags;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* Get the OperationDef from the Interface Repository. */
opdef = lookup i1d(SOM_InterfaceRepository, &ev, ”Foo::methodLong”) ;
/* Create a NamedValue list for the operation. */
rc= create operation list (SOMD _ORBObject, &ev, opdef, &arglist);
/* Insert argl info into arglist */
_get_item(arglist, &ev, 0, &name, &tc, &dummy, &dummylen, &flags);
_set_item(arglist, &ev,0, name, tc, &valuel, sizeof(long), flags);
/* Insert arg2 info into arglist */
_get_item(arglist, &ev, 1, &name, &tc, &dummy, &dummylen, &flags);

_set_item(arglist, &ev,1l, name, tc, &value2, sizeof(long), flags);
/* Get the operation description structure. */

desc = describe (opdef, &ev);

opdesc = (OperationDescription *) desc.value. value;

/* Fill in the TypeCode field for result. */

result.argument. type = opdesc->result;

/* Finally, create the Request, reqObj */

rc = create request (fooObj, &ev, (Context *)NULL,
"methodLong”, arglist, &result,
&reqgObj, (Flags)O0);

Original Class
SOMDObject Class
Related Information

create_request_args Method
create_list Method
create_operation_list Method

Chapter 2. DSOM Framework 277

create_request_args Method

create request_args Method

IDL Syntax

Description

Parameters

Creates an argument list appropriate for the specified operation.

ORBStatus create_request_args (
in Identifier operation,
out NVList arg_list.
out NamedValue result);

The create_request_args method creates the appropriate arg_list (NVList Class) for the
specified operation. It is similar in function to the create_operation_list method. Its value is
that it also creates the result structure whereas create_operation_list does not.

receiver
A pointer to a SOMODbject object. Even though this method has been introduced by
SOMDObiject, it can be invoked on any SOMObject object. When invoking this method
on an object using the C++ bindings, if the object has not been declared to be of type
SOMDObject (or some derived type), then it is necessary to explicitly cast the object to
SOMDObject *.

ev
A pointer to the Environment structure for the method caller.

operation
The Identifier of the operation for which the argument list is being created.

arg_list
A pointer to the location where the method will store a pointer to the resulting argument
list. Ownership of this parameter is transferred to the caller, which is responsible for
destroying it using the release Method or using somDestruct Method, somFree
Method or the C++ delete operator.

result
A pointer to the NamedValue structure which will be used to hold the result. The result
type field is filled in with the TypeCode of the expected result.

Return Value

Example

Returns an ORBStatus value representing the return code of the request.

#include <somd.h>
#include <repostry.hs>
#include <intfacdf.h>

#include <foo.h> /* provided by user */
/* assume following method declaration in interface Foo:
* long methodLong (in long inLong, inout long inoutLong) ;

* then this code builds a request to execute the call:
* result = methodLong (fooObj, &ev, 100,200) ;
* using the DII.
*/
Environment ev;
OperationDef opdef;
Description desc;
OperationDescription *opdesc;

278 Programmer's Reference for SOM and DSOM

create_request_args Method

NVList arglist;
long rc;
long valuel = 100;
long value2 = 200;
Foo fooObj;
Request reqObj;
NamedValue result;
Identifier name;
TypeCode tc;
void *dummy;
long dummylen;
Flags flags;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* Get the OperationDef from the Interface Repository. */
opdef = lookup id(SOM_InterfaceRepository,

&ev, "Foo::methodLong”) ;
/* Create a NamedValue list for the operation. */
rc= _create request_args (fooObj, &ev,

"methodLong”, &arglist, &result);

/* Insert argl info into arglist */
_get_item(arglist, &ev, 0, &name, &tc, &dummy, &dummylen, &flags) ;
_set_item(arglist, &ev,0, name, tc, &valuel, sizeof(long), flags);
/* Insert arg2 info into arglist */
_get_item(arglist, &ev, 1, &name, &tc, &dummy, &dummylen, &flags) ;

_set_item(arglist, &ev,1, name, tc, &value2, sizeof(long), flags);
/* Finally, create the Request, reqObj */
rc = create request (fooObj, &ev, (Context *)NULL,

"methodLong”,

arglist, &result,
&reqObj, (Flags)oO);

Original Class
SOMDObject Class
Related Information

duplicate Method
create_operation_list Method
create_request Method
release Method

Chapter 2. DSOM Framework 279

duplicate Method

duplicate Method

Makes a duplicate of an object reference.
IDL Syntax
SOMDObject duplicate ();
Description

The duplicate method makes a duplicate of the object reference. Ownership of the
returned object is transferred to the caller. The caller should subsequently call the release
method on this object reference.

Parameters

receiver
A pointer to a SOMODbject object. Even though this method has been introduced by
SOMDObject, it can be invoked on any SOMObject object. When invoking this method
on an object using the C++ bindings, if the object has not been declared to be of type
SOMDObject (or some derived type), then it is necessary to explicitly cast the object to
(SOMDObject *).

ev
A pointer to the Environment structure for the method caller.
Return Value

Returns a SOMDObiject that is a duplicate of the receiver.

If this method is invoked on a proxy object, a new (distinct) proxy object is returned. If the
method is invoked on a local SOMObject, a pointer to the same object is returned.

Example

#include <somd.h>
Environment ev;

SOMObject obj;

SOMDObject objrefl, objref2;

/* initialization code */
objrefl _create SOM ref (SOMD_SOMOAObject, &ev, obj);
objref?2 _duplicate (ocbjrefl, &ev) ;

_release (objref2, &ev) ;
Original Class
SOMDObject Class
Related Information

create Method
create_constant Method
create_ SOM_ref Method
release Method

280 Programmer's Reference for SOM and DSOM

get_implementation Method

get_implementation Method

Returns the implementation definition for the referenced object.
IDL Syntax
ImplementationDef get_implementation ();
Description

The get_implementation method returns a reference to the implementation definition
object for the server in which the object referenced by receiver resides. If invoked on an
object that is not a proxy or does not reside in a DSOM server process, NULL is returned.
When invoked on a proxy object, this method results in a remote invocation and returns a
proxy to the remote implementation definition object. Ownership of the returned object is
transferred to the caller.

Parameters

receiver
A pointer to a SOMODbject object. Even though this method has been introduced by
SOMDObject, it can be invoked on any SOMObject object. When invoking this method
on an object using the C++ bindings, if the object has not been declared to be of type
SOMDObject (or some derived type), then it is necessary to explicitly cast the object to
SOMDObject *.

ev
A pointer to the Environment structure for the method caller.

Return Value

Returns a reference to the ImplementationDef object for the server in which the remote
object referenced by receiver resides. NULL is returned if invoked on an object that is not a
proxy and does not reside in a DSOM server process.

Example

#include <somd.h>

long flags;

Environment ev;

SOMDObject objref;
ImplementationDef impldef;

éé)D}I_InitEnvironment (&ev) ;

SOMD_Init (&ev) ;

/* code to get objref */

impldef = get implementation (objref, &ev) ;

flags = get impl flags(impldef, &ev) ;
Original Class

SOMDObject Class

Related Information

get_interface Method

Chapter 2. DSOM Framework 281

get_interface Method

get_interface Method

Returns the interface definition object for the referenced object.
IDL Syntax
InterfaceDef get_interface ();
Description

The get_interface method returns the interface definition (InterfaceDef) object for the
referenced object.

Parameters

receiver
A pointer to a SOMODbject object. Even though this method has been introduced by
SOMDObiject, it can be invoked on any SOMObject object. When invoking this method
on an object using the C++ bindings, if the object has not been declared to be of type
SOMDObject (or some derived type), then it is necessary to explicitly cast the object to
SOMDObject *.

ev
A pointer to the Environment structure for the method caller.
Return Value

The get_interface method returns a pointer to the InterfaceDef object associated with the
reference receiver, obtained from the Interface Repository. Ownership of the InterfaceDef
object is passed to the caller.

If receiver is a proxy object, this method results in a remote invocation and returns a proxy
to a remote InterfaceDef object. Otherwise, if a local Interface Repository is accessible, a
local InterfaceDef object is returned.

Example

#include <somd.h>
#include <repostry.h>
#include <intfacdf.h>

Environment ev;

SOMDObject objref;
InterfaceDef intf;
SOM_InitEnvironment (&ev);
SOMD_Init (&ev) ;

/* code to get objref */
intf = get interface(objref, &ev) ;

Original Class
SOMDObject Class
Related Information

get_implementation Method

282 Programmer's Reference for SOM and DSOM

is_nil Method

is_nil Method
Tests to see if the object reference is nil.
IDL Syntax
boolean is_nil ();
Description
The is_nil method tests to see if the specified object reference is nil.
Parameters
receiver
A pointer to any object, either a SOMObject or a SOMDObject. The pointer can be
NULL.
ev

A pointer to the Environment structure for the method caller.
Return Value

is_nil returns TRUE if the object reference does not refer to any object (if receiver is NULL,
OBJECT _NIL, or a SOMDObject with no associated server object). Otherwise, is_nil
returns FALSE.

Example

ReferenceData id;

/* This code might be part of the code that overrides the
* gsomdSOMObjFromRef method, i.e. in an implementation
* of a subclass of SOMDServer called myServer
*
/
if (_is nil(objref, ev) ||
_somIsA(objref, SOMDClientProxyNewClass (0, 0)) ||
_is SOM ref (objref, ev)) {
somobj = myServer parent SOMDServer somdSOMObjFromRef
(somSelf, ev, objref) ;

else {
/* do the myServer-specific stuff to create/find somobj here */

}

return somobj;
Original Class
SOMDObject Class
Related Information

create Method
is_proxy Method
is_SOM_ref Method

Chapter 2. DSOM Framework 283

is_proxy Method

Is_proxy Method

Tests to see if the object reference is a proxy.

IDL Syntax

Description

boolean is_proxy();

The is_proxy method tests to see if the specified object reference is a proxy object.

Parameters

receiver

ev

Return Value

A pointer to a SOMODbject object. Even though this method has been introduced by
SOMDObiject, it can be invoked on any SOMObject object. When invoking this method
on an object using the C++ bindings, if the object has not been declared to be of type
SOMDObject (or some derived type), then it is necessary to explicitly cast the object to
SOMDObject *.

A pointer to the Environment structure for the method caller.

The is_proxy method returns TRUE if the object reference is a proxy object. Otherwise (if
receiver is a local object or a SOMDObject but not a SOMDClientProxy object), is_proxy
returns FALSE.

Example

Original Class

#include <somd.h>

SOMDObject objref;
Environment ev;
Context ctx;
NVlist arglist;
NamedValue result;
Request reqObj;

SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* code to get objref */
if (_is proxy(objref, &ev)) {
/* create a remote request for target object */

/* code to create arglist */
rc = create request (obj, &ev, ctx,
"testMethod”, arglist,
&result, &reqObj, (Flags)O) ;

SOMDObject Class

Related Information

is_nil Method
is_SOM_ref Method
string_to_object Method

284 Programmer's Reference for SOM and DSOM

is_SOM_ref Method

Is_SOM_ref Method

Tests to see if the object reference is a simple reference to a SOM object. This method can
only be called from a server.

IDL Syntax
boolean is_SOM ref ();
Description

The is_SOM_ref method tests to see if the specified object reference is a simple (transient)
reference to a SOM object (created via SOMOA::create_SOM_ref). This method can only
be called from a server; attempting to call is_SOM_ref from the client will raise an error.

Parameters

receiver
A pointer to a SOMDObject object.

ev
A pointer to the Environment structure for the method caller.

Return Value

The is_SOM_ref method returns TRUE if the object reference is a simple (transient)
reference to a SOM object (created via SOMOA::create_ SOM_ref). Otherwise,
is_SOM _ref returns FALSE. An error is raised if is_ SOM_ref is called from the client.

Example

/* inside an override of somdSOMObjFromRef */
SOMObject obj;

1f (_is _SOM ref (objref, ev))
/* we know objref is a simple reference, so we can ... */
obj = _get SOM object (SOMD_ SOMOAObject, ev, objref);
Original Class
SOMDObject Class
Related Information
create_ SOM_ref Method
get_SOM_object Method
is_proxy Method
is_nil Method

Chapter 2. DSOM Framework 285

release Method

release Method

Releases the memory associated with the specified object reference.

IDL Syntax
void release ();
Description
The release method releases the memory associated with the object reference. When
invoked on a local object, this method has no effect.
Parameters
receiver
A pointer to a SOMODbject object. Even though this method has been introduced by
SOMDObiject, it can be invoked on any SOMObject object. When invoking this method
on an object using the C++ bindings, if the object has not been declared to be of type
SOMDObject (or some derived type), then it is necessary to explicitly cast the object to
SOMDObject *).
ev
A pointer to the Environment structure for the method caller.
Example

#include <somd.h>

SOMDObject objref;
Environment ev;
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;

);'code to get objref */
release(objref, &ev);
Original Class
SOMDObject Class
Related Information

duplicate Method

create Method

create_constant Method
create_SOM_ref Method
somdReleaseResources Method

286 Programmer's Reference for SOM and DSOM

SOMDObjectMgr Class

SOMDODbjectMgr Class

File Stem

Base

Metaclass

The SOMDODbjectMgr class is derived from ObjectMgr class and provides the DSOM
implementations for the ObjectMgr methods. This class and all of its methods have been
deprecated. Use of the methods is discouraged, but the methods are supported in the
current release of SOMobjects.

somdom

ObjectMgr Class

SOMMSinglelnstance Metaclass

Ancestor Classes

Attribute

ObjectMgr Class
SOMObject Class

Listed below is an available SOMDObjectMgr attribute, with its corresponding type in
parentheses, followed by a description of its purpose:

somd2lsomFree (boolean)
Determines whether or not somFree Method, when invoked on a proxy object, will free
the proxy object along with the remote object. The default value is TRUE, indicating
that both the remote object and the proxy object are freed. Setting this attribute to
FALSE as part of client-program initialization, for example:

__set somd2lsomdFree (SOMD_ObjectMgr, ev, FALSE) ;
restores the DSOM 2.x default semantics in which the remote object is freed but the

proxy is not.

Deprecated Methods

Use of the SOMDObjectMgr methods listed below is discouraged.
somdFindAnyServerByClass*

somdFindServer

somdFindServersByClass

somdFindServerByName*

Overridden Methods

somDefaultlnit Method

Chapter 2. DSOM Framework 287

SOMDServer Class

SOMDServer Class

The SOMDServer class is a base class that defines and implements methods for managing
objects in a DSOM server process. This includes methods for mapping between object
references and SOM objects, dispatching methods on objects, and creating factories in
servers.

This class should be subclassed in order to customize the creation of object references and
to facilitate object activation, method dispatching, and factory creation. The
ImplementationDef object of a server indicates which type of server object (which
subclass of SOMDServer) the server will use (via the impl_server_class attribute). After a
server program has invoked impl_is_ready, the SOMD_ServerObject global variable
refers to the server’s server object.

File Stem

somdserv

Base
SOMObject Class

Metaclass

SOMMSinglelnstance Metaclass

Ancestor Classes
SOMObject Class

New Methods
somdCreateFactory Method*
somdDispatchMethod Method*
somdObjReferencesCached Method*
somdRefFromSOMObj Method*
somdSOMObjFromRef Method*

(*This class and its methods were added by DSOM to supplement the published CORBA 1.1
interfaces.)

Deprecated Methods
Use of the SOMDServer methods listed below is discouraged.
somdCreateObj
somdDeleteObj
somdGetClassObj

288 Programmer's Reference for SOM and DSOM

somdCreateFactory Method

somdCreateFactory Method

IDL Syntax

Description

Parameters

Creates a factory object that can create objects of the specified class.

SOMObject somdCreateFactory (
in string className,
in ExtendedNaming::PropertyList props);

The somdCreateFactory method is called by DSOM to dynamically create a factory in the
server. Two kinds of factories can be created and returned by the default implementation of

somdCreateFactory: an application-specific factory or a SOM class object. The default
implementation uses the IDL modifier factory to map from the given class name to an
application-specific factory class name. If this modifier is not specified, the SOM class
object is returned as the default factory.

This method is not intended to be called directly by applications. Rather, it is called by
DSOM and is intended to be overridden in user-defined subclasses of SOMDServer to
customize the way factories are created in a specific server.

receiver
A pointer to an object of class SOMDServer.

ev
A pointer to the Environment structure for the caller.

className
The name of the class for which a factory is needed.

props
A complete list of the Naming Service properties registered in the DSOM Factory
Service for the requested class.

Return Value

Example

The somdCreateFactory method returns a factory object for the specified class.

#include <somd.h>

/* Override somdCreateFactory to customize the way in which
* factories are associated with classes or the way factories
* are created.*/

SOM_Scope SOMObject SOMLINK somdCreateFactory (myServer somSelf,
Environment *ev, string className,

ExtendedNaming PropertyList *props)

somId factoryId;
SOMObject factory;

/* override factory modifier for Animal class */

if (strcmp(className, “Animal”) == 0)
factoryId = somIdFromString(”AnimalFactory”) ;
factory = somFindClass (SOMClassObjectMgr, classId, 0, 0);

SOMFree (factoryId) ;
if (factory)

Chapter 2. DSOM Framework 289

somdCreateFactory Method

return _somNew (factory) ;
else
return NULL;
else {

return myServer parent SOMDServer somdCreateFactory (
somSelf, ev, className, props);

Original Class
SOMDServer Class
Related Information

somdCreate Function

290 Programmer's Reference for SOM and DSOM

somdDispatchMethod Method

somdDispatchMethod Method

Dispatches a method on the specified SOM object.

IDL Syntax
void somdDispatchMethod (
in SOMObject somobj,
out somToken retValue,
in somld methodld,
inva_ list ap);
Description
This method is not intended to be called directly. (It is called by the DSOM run time.)
Instead, it is intended to be overridden by user-defined classes of SOMDServer to
customize method dispatching in a server.
The somdDispatchMethod method intercepts method calls on objects in a server. When a
request arrives in a server, DSOM extracts the request parameters from the message, and
resolves the target object. Then, DSOM dispatches the method call on the target object by
calling the somdDispatchMethod method.
The default implementation calls somDispatch on the target object with the parameters as
specified. This method can be overridden to intercept and process the method calls before
or after they are dispatched.
Parameters

receiver
A pointer to a SOMDServer object.

ev
A pointer to the Environment structure for the method caller.

somobj
A pointer to an object “managed” by the server object.

retValue
A pointer to the storage area allocated to hold the method result value, if any.

methodld
A somld for the name of the method which is to be dispatched.

ap
A pointer to a va_list array of arguments to the method call.

Return Value

The somdDispatchMethod method will return a result, if any, in the storage whose
address is in retValue.

Example

This is an example of overriding SOMDispatchMethod to print a message in the server
before and after dispatching every method.

#include <somd.h>
/* overridden somdDispatchMethod */
void somdDispatchMethod (SOMDServer *somself,

Environment *ev,
SOMObject *somobj,

Chapter 2. DSOM Framework 291

somdDispatchMethod Method

somToken *retValue,
somId methodId,
va_list ap)

printf ("dispatching %s on %$x\n",
somStringFromId (methodId), somobj) ;

SOMObject somDispatch(somobj, ev, retValue,

printf ("finished dispatching %s on %x\n",
somStringFromId (methodId, somobj) ;

}

Original Class

SOMDServer Class

292 Programmer's Reference for SOM and DSOM

methodId,

ap) ;

somdObjReferencesCached Method

somdObjReferencesCached Method

IDL Syntax

Description

Parameters

Indicates whether a server object retains ownership of the object references it
creates via the somdRefFromSOMODbj method.

boolean somdObjReferencesCached ();

The somdObjReferencesCached method indicates whether a server object retains
ownership of the object references it creates via the somdRefFromSOMObj method. The
default implementation returns FALSE, meaning that the server turns over ownership of the
object references it creates to the caller. Subclasses of SOMDServer that implement object
reference caching should override this method to return TRUE.

receiver
A pointer to an object of class SOMDServer.

ev
A pointer to the Environment structure for the calling method.

Return Value

Example

The method returns FALSE by default; overriding implementations may return TRUE to
indicate that a subclass of SOMDServer implements object reference caching.

SOMDobject objref;
objref = somdRefFromSOMObj (SOMD ServerObject, ev, myobj) ;

/* code to use objref */

if (! somdObjReferencesCached (SOMD ServerObject, ev))
_release (objref, ev);

Original Class

SOMDServer Class

Related Information

somdRefFromSOMObj Method

Chapter 2. DSOM Framework 293

somdRefFromSOMObj Method

somdRefFromSOMODbj Method

Returns an object reference corresponding to the specified SOM object.
IDL Syntax

SOMDObject somdRefFromSOMODbj (
in SOMObject somobj);

Description

The somdRefFromSOMODbj method creates a reference to a SOM object in a server, to be
exported to a client as a proxy. This method is called by DSOM as part of converting the
results of a local method call into a result message for a remote client, whenever the result
contains a pointer to an object local to the server. The default implementation creates
simple (transient) references. This method is intended to be overridden in user-defined
subclasses of SOMDServer to customize the creation of object references.

By default the somdRefFromSOMObj method turns over ownership of the object reference
it creates to the caller. However, if a subclass of SOMDServer overrides
somdRefFromSOMODbj to implement object reference caching, then that subclass should
also override the method somdObjReferencesCached to report that caching by returning
TRUE.

Parameters

receiver
A pointer to a SOMDServer object.

ev
A pointer to the Environment structure for the method caller.

somobj
A pointer to the SOM object for which a DSOM reference is to be created.

Return Value

The somdRefFromSOMObj method returns a DSOM reference for the SOM object
specified.

Example

SOM_Scope SOMDObject SOMLINK
somdRefFromSOMObj (SOMPServer somSelf,
Environment *ev,
SOMObject obj)
{
SOMDObject objref;
Repository repo;
repo = SOM InterfaceRepository;
/* 1s obj persistent */
if (object is persistent (obj, ev)) {
/* Create an object reference based on persistent ID. */
ReferenceData rd = create refdata from object (ev, obj);

InterfaceDef intf =
lookup id(repo,ev,
somGetClassName (obj)) ;
objref = create (SOMD_SOMOAObject, ev, &rd,
intf, SOMD ImplDefObject) ;

__somFree (intf) ;

__somFree (repo) ;

SOMFree (rd. buffer) ;

294 Programmer's Reference for SOM and DSOM

somdRefFromSOMObj Method

} else /* obj is not persistent, so get Ref in usual way */
objref = parent somdRefFromSOMObj (somSelf, ev, obj);

return (objref) ;

}
Original Class

SOMDServer Class

Related Information
somdSOMObjFromRef Method
somdObjReferencesCached Method
create Method
create_constant Method
create_ SOM_ref Method

Chapter 2. DSOM Framework 295

somdSOMObjFromRef Method

somdSOMODbjFromRef Method

Returns the SOM object corresponding to the specified object reference.
IDL Syntax

SOMObject somdSOMObjFromRef (
in SOMDObject objref);

Description

The somdSOMObjFromRef method returns the SOM object associated with the DSOM
object reference, objref. This method is called by SOMOA Class as part of converting a
remote request into a local method call on an object in a server. This method is intended to
be overridden in user-defined subclasses of SOMDServer to customize the creation and
resolution of object references.

Parameters

receiver
A pointer to a SOMDServer object.

ev
A pointer to the Environment structure for the method caller.

objref
pointer to the DSOM object reference to the SOM object.

Return Value

The somdSOMObjFromRef method returns the SOM object associated with the
supplied DSOM reference.

Example

SOM_Scope SOMObject SOMLINK
somdSOMObjFromRef (SOMPServer somSelf,
Environment *ev,
SOMDObject objref)
{ soMObject obj;
if (_is nil(objref, ev))
return (SOMObject *) NULL;
/* Make sure this isn’t a local object or proxy: */
if (! somIsA(objref, SOMDObject) || _is proxy (objref, ev))
return objref;

/* test if objref is mine */

if (! is SOM ref (objref, ev)) {
/* objref was mine, activate persistent object myself */
ReferenceData rd = _get id(SOMD_SOMOAObject, ev, objref);

obj = get object from refdata(ev, &rd);
SOMFree (rd. buffer) ;
} else
/* it’s not one of mine, let parent activate object */
obj = parent somdSOMObjFromRef (somSelf, ev, objref);
return obj;

Original Class
SOMDServer Class

296 Programmer's Reference for SOM and DSOM

somdSOMObjFromRef Method

Related Methods

somdRefFromSOMObj Method
get_id Method
is_SOM_ref Method

Chapter 2. DSOM Framework 297

SOMDServerMgr Class

SOMDServerMgr Class

The SOMDServerMgr class provides a programmatic interface to manage server
processes. The server processes that can be managed are limited to those registered in
the DSOM Factory Service through the regimpl or the ImplRepository interface.

File Stem

servmgr

Base
SOMObject Class

Metaclass
SOMClass Class

Ancestor Classes
SOMObject Class

New Methods
somdListServer Method
somdRestartServer Method
somdShutdownServer Method
somdStartServer Method

Deprecated Methods
somdDisableServer
somdEnableServer
somdlsServerEnabled

298 Programmer's Reference for SOM and DSOM

somdListServer Method

IDL Syntax

Description

Queries the state of a server process.

ORBStatus somdListServer (in string server_alias);

somdListServer Method

The somdListServer method queries the status of the server process associated with the
server alias. If multiple servers with the same alias are registered in the Factory Service,
the status of the first one found is queried. If the server process is running, the return code

is 0 indicating success.

Parameters

receiver
A pointer to an object of class SOMDServerMgr.

ev

A pointer to the Environment structure for the calling method.

server_alias
The implementation alias of the server to be listed.

Return Value

Example

Returns 0 if the server process is running; otherwise, a DSOM error code is returned.

#include <somd.h>

#include <servmgr.hs
SOMDServerMgr servmgr;

string server alias = "MyServer”;
ORBStatus rc;

Environment e;
SOM_InitEnvironment (&e) ;
SOMD_Init (&e) ;

servmgr = SOMDServerMgrNew () ;

rc = somdListServer (servmgr, &e,
if (!rc)

rc = _somdShutdownServer (servmgr, &e,
else if (rc == SOMDERROR_ServerNotFound)

server_ alias);
/* server is running */
server_alias) ;

/* server is not running */

rc = somdStartServer (servmgr, &e,

Original Class

SOMDServerMgr Class

server alias);

Chapter 2. DSOM Framework 299

somdRestartServer Method

somdRestartServer Method

IDL Syntax

Description

Parameters

Restarts a server process. The somdRestartServer method should only be called when
the server has finished servicing all outstanding requests.

ORBStatus somdRestartServer (in string server_alias);

The somdRestartServer method is invoked to restart a server process. If the server
process currently exists, it will be stopped and started again. If the server process does not
exist, a new server process will still be started. If the server process cannot be stopped and/
or started for any reason, the method returns a DSOM error code.

If the server is not responding to requests (hung), this method will fail to restart the server
and will return an error after the request has timed out.

If multiple servers with the given server_alias are registered in the Factory Service, this
method attempts to restart the first one found.

receiver
A pointer to an object of class SOMDServerMgr.

ev
A pointer to the Environment structure for the calling method.

server_alias
The implementation alias of the server to be restarted.

Return Value

Example

Returns 0 for success or a DSOM error code for failure.

#include <somd.h>

#include <servmgr.h>

SOMDServerMgr servmgr;

string server alias = "MyServer”;

ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e) ;

SOMD_Init (&e) ;

servmgr = SOMDServerMgrNew () ;

rc = somdRestartServer (servmgr, &e, server alias);

Original Class

SOMDServerMgr Class

300 Programmer's Reference for SOM and DSOM

somdShutdownServer Method

somdShutdownServer Method

IDL Syntax

Description

Parameters

Stops a server process.

ORBStatus somdShutdownServer (in string server_alias);

The somdShutdownServer method is invoked to stop a server process. If the server
process corresponding to the server alias exists, it will be stopped and a code indicating
success is returned.

If the server is not responding to requests (hung), this method will fail to stop the server and
will return an error after the request has timed out.

If multiple servers with the given server_alias are registered in the Factory Service, this
method attempts to stop the first one found.

receiver
A pointer to an object of class SOMDServerMgr.

ev
A pointer to the Environment structure for the calling method.

server_alias
The implementation alias of the server to be stopped.

Return Value

Example

Returns 0 for success or a DSOM error code for failure.

#include <somd.h>

#include <servmgr.h>

SOMDServerMgr servmgr;

string server alias = "MyServer”;

ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e) ;

SOMD_Init (&e) ;

servmgr = SOMDServerMgrNew () ;

rc = somdShutdownServer (servmgr, &e, server alias);

Original Class

SOMDServerMgr Class

Chapter 2. DSOM Framework 301

somdStartServer Method

somdStartServer Method

Starts a server process.

IDL Syntax
ORBStatus somdStartServer (in string server_alias);

Description
The somdStartServer method is invoked to start a server process. If the server process
does not exist, the server process is started and the code indicating success is returned. If
the server process already exists, then the return code will still indicate success and the
server process will be undisturbed.
If multiple servers with the given server_alias are registered in the Factory Service, this
method attempts to start the first one found.

Parameters

receiver
A pointer to an object of class SOMDServerMgr.

ev
A pointer to the Environment structure for the calling method.

server_alias
The implementation alias of the server to be started.

Return Value
Returns 0 for success or a DSOM error code for failure.
Example

#include <somd.h>

#include <servmgr.hs

SOMDServerMgr servmdgr;

string server alias = "MyServer”;

ORBStatus rc;

Environment e;

SOM_InitEnvironment (&e) ;

SOMD_Init (&e) ;

servmgr = SOMDServerMgrNew () ;

rc = somdStartServer (servmgr, &e, server_ alias);

Original Class
SOMDServerMgr Class

302 Programmer’s Reference for SOM and DSOM

SOMOA Class

SOMOA Class

The SOMOA class is DSOM'’s basic object adapter. SOMOA is a subclass of the abstract
BOA class, and provides implementations of all the BOA methods. The SOMOA class also
introduces methods for receiving and dispatching requests on SOM objects. SOMOA
provides some additional methods for creating and managing object references.

Some methods of SOMOA are intended to be called directly from user-written server
programs (for example, activate_impl_failed, execute_next_request, and
execute_request_loop) while others are intended to be called from user-written
subclasses of SOMDServer, create_constant, create_ SOM_ref, and get_ SOM_object).

File Stem

somoa
Base

BOA Class
Metaclass

SOMMSinglelnstance Metaclass

Ancestor Classes
BOA Class
SOMObject Class

New Methods
activate_impl_failed Method*
create_constant Method*
create_ SOM_ref Method*
execute_next_request Method*
execute_request_loop Method*
get_SOM_object Method*

(* This class and its methods were added by DSOM to supplement the published CORBA
1.1 interfaces.)

Overridden Methods

change_implementation Method
create Method

deactivate_impl Method
deactivate_obj Method

dispose Method

get_id Method

get_principal Method
impl_is_ready Method
obj_is_ready Method
obj_is_ready Method

Chapter 2. DSOM Framework 303

SOMOA Class

somDefaultinit Method
somDestruct Method
Deprecated Methods
change_id Method
create_constant
change_id Method

304 Programmer’s Reference for SOM and DSOM

activate_impl_failed Method

activate_impl_failed Method

Sends a message to the DSOM daemon indicating that a server did not activate.

IDL Syntax
void activate_impl_failed (
in ImplementationDef implDef,
in long rc);
Description
The activate_impl_failed method sends a message to the DSOM daemon (somdd)
indicating that the server did not activate. This method should be called from a server
program if the server terminates prior to calling impl_is_ready. After impl_is_ready has
been successfully invoked, servers should invoke deactivate_impl rather than
activate_impl_failed upon termination.
Parameters
receiver
A pointer to the SOMOA object that attempted to activate the implementation.
ev
A pointer to the Environment structure for the method caller.
impl|Def
A pointer to the ImplementationDef object representing the implementation (server)
that failed to activate.
rc
A return code designating the reason for failure.
Example

#include <somd.h> /* needed by all servers */
main (int argc, char **argv)
{
Environment ev;
SOM_InitEnvironment (&ev) ;
/* Initialize the DSOM run-time environment */
SOMD_Init (&ev) ;
/* Retrieve its ImplementationDef from the Implementation
Repository by passing its implementation ID as a key */
SOMD_ImplDefObject =
find impldef (SOMD ImplRepObject, &ev, argv[1l]);
/* create the SOMOA */
SOMD_SOMOAObject = SOMOANew () ;

/* suppose something went wrong with server initialization */
/* tell the daemon (via SOMOA) that activation failed */

_activate impl failed(SOMD SOMOAObject, &ev, SOMD ImplDefObject,
rc);

Original Class
SOMOA Class

Chapter 2. DSOM Framework 305

create_SOM_ref Method

create. SOM_ref Method

Creates a simple, transient DSOM reference to a SOM object in a server.
IDL Syntax

SOMDObject create_ SOM_ref (
in SOMObject somobj,
in ImplementationDef impl);

Description

The create_SOM_ref method creates a simple DSOM reference for a local SOM object in
a server. There is no user-defined ReferenceData associated with the object, and this
object reference is only valid while the target SOM object and the server are active.

The SOMODbject associated with the SOM_ref can be retrieved by using the
get_SOM_object method. The is_SOM_ref method of SOMDObject can be used to
determine whether the reference was created using create_ SOM_ref or not.

Ownership of the new object reference is transferred to the caller.
Parameters

receiver
A pointer to the SOMOA object managing the implementation.

ev
A pointer to the Environment structure for the method caller.

somobj
A pointer to the local SOMObject to be referenced.

impl
A pointer to the ImplementationDef of the calling server process.

Return Value
The create_SOM_ref method returns a pointer to a SOMDObject.
Example
SOMDObject objref;
};.you might want to make this call as part of the code

* that overrides the somdRefFromSOMObj method, i.e.
* in an implementation of a subclass of SOMDServer.

*/
objref = create SOM ref (SOMD_ SOMOAObject, ev, obj,
SOMD_ImplDefObject) ;
Original Class
SOMOA Class

Related Information
create Method
create_constant Method
get_ SOM_object Method
is_SOM_ref Method

306 Programmer’s Reference for SOM and DSOM

execute_next_request Method

execute_next_request Method

Instructs DSOM to receive and execute the next client request.

IDL Syntax
ORBStatus execute_next_request (in Flags waitFlag);

Description
The execute_next_request method receives the next request message, executes the
request, and sends the result to the caller. This method is intended to be called by a server
program, to instruct DSOM to receive and dispatch the next client request.
If the server’'s ImplementationDef indicates the server is multithreaded (the impl_flags
has the IMPLDEF_MULTI_THREAD flag set), each request will be run by SOMOA in a
separate thread.

Parameters

receiver
A pointer to the SOMOA object managing the implementation.

ev
A pointer to the Environment structure for the method caller.

waitFlag
A Flags value (unsigned long) indicating whether the method should block if there is no
message pending (SOMD_WAIT) or return with an error (SOMD_NO_WAIT).

Return Value

The execute_next_request method returns an ORBStatus value representing the return
value for the operation. SOMDERROR_NoMessages is returned if the method is invoked
with SOMD_NO_WAIT and no message is available.

Example

#include <somd.h>

/* server initialization code ... */
SOM_InitEnvironment (&ev) ;
SOMD_Init (&ev) ;
/* code to initialize SOMD_ ImplDefObject */
/* signal DSOM that server is ready */
_impl_is_ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject) ;
while (ev. major == NO EXCEPTION) {
(void) _execute next request (SOMD SOMOAObject, &ev, SOMD WAIT) ;
/* perform appl-specific code between messages here, e.g.,*/
numMessagesProcessed++;
}

Original Class
SOMOA Class
Related Information

execute_request_loop Method

Chapter 2. DSOM Framework 307

execute_request_loop Method

execute _request_loop Method

IDL Syntax

Description

Parameters

Instructs DSOM to repeatedly receive and service client requests.

ORBStatus execute_request_loop (in Flags waitFlag);

execute_request_loop initiates a loop that repeatedly waits for a request message,
executes the request and then returns the result to the client. Server program use this
method to instruct DSOM to receive and dispatch the next client request.

When called with the SOMD_WAIT flag, this method loops infinitely (or until an error or until
the server is terminated).

When called with the SOMD_NO_WAIT flag, this method loops as long as it finds a request
message to process. This is useful when writing event-driven applications where there are
event sources other than DSOM requests, for DSOM cannot be given exclusive control.
Instead, a DSOM event handler can be written using the SOMD_NO_WAIT option to
process all pending requests and then return control to the main application.

If the server’'s ImplementationDef indicates the server is multithreaded each request will
be run by SOMOA in a separate thread.

receiver
A pointer to the SOMOA object managing the implementation.

ev
A pointer to the Environment structure for the method caller.

waitFlag
A Flags bitmask indicating if the method should block (SOMD_WAIT) or return to the
caller (SOMD_NO_WAIT) when there is no request message pending.

Return Value

Example

Returns an OBJ_ADAPTER exception that contains a DSOM error code for the operation. If
the invocation uses SOMD_NO_WAIT and no message is pending, an ORBStatus code
SOMDERROR_NoMessages is returned.

#include <somd.h>
/* server initialization code ... */

_impl is ready (SOMD_SOMOAObject, &ev, SOMD_ImplDefObject) ;

/* turn control over to SOMOA */

(void) _execute request loop (SOMD SOMOAObject, &ev,
SOMD_WAIT) ;

Original Class

SOMOA Class

Related Information

SOMD_RegisterCallback Function
execute_next_request Method

308 Programmer’s Reference for SOM and DSOM

get_SOM_object Method

get SOM_object Method

Gets the SOM object in a server associated with a simple DSOM reference.
IDL Syntax
SOMObject get_ SOM_object (in SOMDObject somref);
Description

The get_SOM_object method returns the SOM object associated with a reference created
by the create_ SOM_ref method. This method should not be invoked on object references
created using create or create_constant. This method can be used in subclasses of
SOMDServer, in the implementation of the somdSOMObjFromRef method, to determine
whether or not to make a parent-method call.

Parameters

receiver
A pointer to the SOMOA object managing the implementation.

ev
A pointer to the Environment structure for the method caller.

somref
A pointer to a SOMDObject created by the create_ SOM_ref method.

Return Value
The get_SOM_object method returns the SOM object associated with the reference.
Example
/* Within somdSOMObjFromRef: */
SOMObject obj;

if (_is_SOM_ref (objref, ev))

/* we know objref is a simple reference, so we can ... */
obj = get SOM object (SOMD SOMOAObject, ev, objref);
Original Class
SOMOA Class

Related Information

create_SOM_ref Method
is_SOM_ref Method

Chapter 2. DSOM Framework 309

get_SOM_object Method

310 Programmer's Reference for SOM and DSOM

Chapter 3. Interface Repository Framework Classes

BSOMOR]act
/_A\
f-_'h\\ f‘-—-“\
Contalhed Contalnat

Nt/
77X

-/
\T/ f

Lejegd

@I clasw

— jtharile irom

Figure 3. Interface Repository Framework Class Organization.

Chapter 3. Interface Repository Framework Classes 311

AttributeDef Class

AttributeDef Class

The AttributeDef class provides the interface for attribute definitions.

File Stem
attribdf

Base
Contained Class

Metaclass
SOMClass Class

Ancestor Classes
Contained Class
SOMObject Class

Types

enum AttributeMode {NORMAL, READONLY};
struct AttributeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
TypeCode type;
AttributeMode mode;

Vi
The describe method, inherited from Contained, returns an AttributeDescription
structure in the value member of the Description structure.

Attributes

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)

The TypeCode of the attribute. The TypeCode returned by the _get_ form of the type
attribute is contained in the receiving AttributeDef object that retains ownership. The
returned TypeCode should not be freed. To obtain a copy, use the TypeCode_copy
operation. The _set_ form of the attribute makes a private copy of the TypeCode you
supply, to keep in the receiving object. You retain ownership of the passed TypeCode.

mode (AttributeMode)
The AttributeMode of the attribute (NORMAL or READONLY).

Overriding Methods
somDefaultlnit Method
somDestruct Method
somDumpSelf Method
sombDumpSelfint Method
describe Method

312 Programmer's Reference for SOM and DSOM

ConstantDef Class

ConstantDef Class

The ConstantDef class provides the interface for constant definitions in the Interface
Repository.

File Stem

constdef

Base

Contained Class

Metaclass
SOMClass Class

Ancestor Classes
Contained Class
SOMObject Class

Types

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
TypeCode type;
any value;

The describe rﬁethod, inherited from Contained, returns a ConstantDescription structure
in the value member of the Description structure.

Attributes

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode of constant. The TypeCode returned by the _get_ form of the type
attribute is contained in the receiving ConstantDef object that retains ownership. The
returned TypeCode should not be freed. To obtain a separate copy, use the
TypeCode_copy operation. The _set_ form of the attribute makes a private copy of the
TypeCode you supply, to keep in the receiving object. You retain ownership of the
passed TypeCode.

value (any)
The value of the constant.

Overriding Methods
somDefaultlnit Method
somDestruct Method
somDumpSelf Method
somDumpSelfint Method
describe Method

Chapter 3. Interface Repository Framework Classes 313

Contained Class

Contained Class

File Stem

Base

Metaclass

The Contained class is the most generic form of interface for objects in SOM’s CORBA-
compliant Interface Repository (IR). All objects contained in the IR inherit this interface.

containd

SOMObject Class

SOMClass Class

Ancestor Classes

Types

Attributes

SOMObject Class

typedef string RepositoryId;

struct Description {
Identifier name;
any value;

All attributes of the class provide access to information kept within the receiving object. The
get form of the attribute returns a memory reference that is only valid as long as the
receiving object has not been freed (using somFree Method). The _set_ form of the
attribute makes a (deep) copy of your data and places it in the receiving object. You retain
ownership of all memory references passed using the _set_ attributes.

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

name (ldentifier)
A simple name that identifies the Contained object within its containment hierarchy.
The name may not be unique outside of the containment hierarchy; thus it may require
gualification by ModuleDef Class name or InterfaceDef Class name.

id (Repositoryld)
The value of the id field of the Contained object. This is a string that uniquely identifies
any object in the IR; thus it needs no qualification. Note that Repositorylds have no
relationship to the SOM type somld.

defined_in (Repositoryld)
The value of the defined_in field of the Contained object. This ID uniquely identifies
the container where the Contained object is defined.Objects without global scope that
do not appear within any other object are, by default, placed in the Repository Class
object.

somModifiers (sequence<somModifier>)
The somModifiers attribute is a sequence containing all modifiers associated with the
object in the implementation section of the SOM IDL file where the receiving object is
defined. This attribute is a SOM-unique extension of the Interface Repository; it is not
stipulated by the CORBA specification.

314 Programmer's Reference for SOM and DSOM

Contained Class

New Methods
within Method
describe Method

Overriding Methods
somDefaultinit Method
somDestruct Method
somDumpSelf Method
somDumpSelfint Method
somFree Method

Chapter 3. Interface Repository Framework Classes 315

describe Method

describe Method

IDL Syntax

Description

Parameters

Returns a structure containing information defined in the IDL specification that corresponds
to a specified Contained object in the Interface Repository.

Description describe ();

The describe method returns a structure containing information defined in the IDL
specification of a Contained object. The specified object represents a component of an IDL
interface (class) definition maintained within the Interface Repository.

When finished using the information in the returned Description structure, the client code
must release the storage allocated for it. To free the associated storage, use a call similar
to this:

if (desc.value. value)
SOMFree (desc.value. value);
The describe method returns pointers to elements within objects (for example, name).

Thus, the somFree method should not be used to release any of these objects while the
describe information is still needed.

receiver
A pointer to the Contained object in the Interface Repository for which a Description
is needed.

ev
A pointer to the Environment structure for the caller.

Return Value

Example

The describe method returns a structure of type Description containing information
defined in the IDL specification of the receiving object.

The name field of the Description is the name of the type of description. The name values
are from the following set: ModuleDescription, InterfaceDescription,
AttributeDescription, OperationDescription, ParameterDescription, TypeDescription,
ConstantDescription, ExceptionDescription.

The value field is a structure of type any whose _value field is a pointer to a structure of the
type named by the name field of the Description. This structure provides all of the
information contained in the IDL specification of the receiver. For example, if the describe
method is invoked on an object of type AttributeDef Class, the name field of the returned
Description will contain the identifier AttributeDescription and the value field will contain
an any structure whose _value field is a pointer to an AttributeDescription structure.

Here is a code fragment written in C that uses the describe method:

#include <containd.h>
#include <attribdf.h>
#include <somtc.h>

AttributeDef attr; /* An AttributeDef object (also Contained) */
Description desc; /* .value field will be an
AttributeDescription */

316 Programmer's Reference for SOM and DSOM

describe Method

AttributeDescription *ad;
Environment *ev;

desc = Contained describe (attr, ev);

ad = (AttributeDescription *) desc.value. value;

printf (”Attribute name: %s, defined in: %s\n”,
ad->name, ad->defined in);

printf (”Attribute type: ”);

TypeCode print (ad->type, ev);

printf (”Attribute mode: %s\n”, ad->mode == AttributeDef READONLY ?
"READONLY” : "NORMAL”") ;
SOMFree (desc.value. value); /* Finished with describe
output */
SOMObject somFree (attr); /* Finished with AttributeDef
object */

Original Class

Contained Class
Related Information

within Method

Chapter 3. Interface Repository Framework Classes 317

within Method

within Method

Returns a list of objects (in the Interface Repository) that contain a specified Contained

object.
IDL Syntax
sequence<Container> within ();
Description
The within method returns a sequence of objects within the Interface Repository that
contain the specified Contained object. If the receiving object is an InterfaceDef Class or
ModuleDef Class, it can only be contained by the object that defines it. Other objects can
be contained by objects that define or inherit them.
If the object is global in scope, the sequence returned by within will have its _length field
set to zero.
When finished using the sequence returned by this method, the client code is responsible
for releasing each of the Containers in the sequence and freeing the sequence buffer. In
C, this can be accomplished as follows:
if (seq. length) {
long 1i;
for (i=0; i<seq. length; i++)
somFree (seq. buffer[i]); /* Release each
Container obj */
SOMFree (seq. buffer); /* Release the sequence buffer */
}
Parameters

receiver
A pointer to a Contained object for which containing objects are needed.

ev
A pointer to the Environment structure for the caller.

Return Value

The within method returns a sequence of Container objects that contain the specified
Contained object.

Example

Here is a code fragment written in C that uses the within method:

#include <containd.h>
#include <containr.h>

Contained anObj;
Environment *ev;
sequence (Container) sc;
long 1i;

sc = Contained within (anObj, ev);
printf (”%s is contained in (or inherited by) :\n”,
Contained get name (anObj, ev));
for (i=0; i<sc. length; i++) ({
printf (”\t%s\n”,
Contained get name ((Contained) sc. buffer([i], ev));
SOMObject somFree (sc. buffer[i]);

318 Programmer’s Reference for SOM and DSOM

if (sc._length)
SOMFree (sc. buffer);

Original Class
Contained Class
Related Information
describe Method

within Method

Chapter 3. Interface Repository Framework Classes 319

Container Class

Container Class

File Stem

Base

Metaclass

The Container class is a generic interface that is common to all of the SOM CORBA-
compliant Interface Repository (IR) objects that can hold or contain other objects. A
Container object can be one of three types: ModuleDef Class, InterfaceDef Class or
OperationDef Class.

containr

SOMObject Class

SOMClass Class

Ancestor Classes

Types

New Methods

contents Method

SOMObject Class

typedef string InterfaceName;
// Valid values for InterfaceName are limited to the following

set:

// {*AttributeDef”, “ConstantDef”, “ExceptionDef”,
“InterfaceDef”,

// “ModuleDef”, “ParameterDef”, “OperationDef”, “TypeDef”,
\\allu}

struct ContainerDescription {
Contained *contained object;
Identifier name;
any value;

}i

lookup_name Method
describe_contents Method

Overriding Methods

somDefaultlnit Method
somDestruct Method
somDumpSelf Method
somDumpSelfint Method

320 Programmer’s Reference for SOM and DSOM

contents Method

contents Method

IDL Syntax

Description

Parameters

Returns a sequence indicating the objects contained within a specified Container
object of the Interface Repository.

sequence<Contained> contents (
in InterfaceName limit_type,
in boolean exclude_inherited);

The contents method returns a list of objects contained by the specified Container object.
Each object represents a component of an IDL interface (class) definition maintained within
the Interface Repository.

The contents method is used to navigate through the hierarchy of objects within the
Interface Repository: Starting with the Repository Class object, this method can list all of
the objects in the Repository, then all of the objects within the ModuleDef Class objects,
then all within the InterfaceDef Class objects, and so on.

If the limit_type is set to all, objects of all interface types are returned; otherwise, only
objects of the requested interface type are returned. Valid values for InterfaceName are
limited to the following set: {AttributeDef, ConstantDef, ExceptionDef, InterfaceDef,
ModuleDef, ParameterDef, OperationDef, TypeDef, all}

If exclude_inherited is set to TRUE, any inherited objects will not be returned.

When finished using the sequence returned by this method, the client code is responsible
for releasing each of the objects in the sequence and freeing the sequence buffer. In C, this
can be accomplished as follows:

if (seq. length) {

long 1i;
for (i=0; i<seq. length; i++)
SOMObject somFree (seq. buffer[i]); /* Release each
object */
SOMFree (seq. buffer); /* Release the buffer */

receiver
A pointer to a Container object whose contained objects are needed.

ev
A pointer to the Environment structure for the caller.

limit_type
The name of one interface type (see the valid list above) or all, to specify what type of
objects the contents method should search for.

exclude_inherited
A boolean value: TRUE to exclude any inherited objects, or FALSE to include all objects.

Return Value

The contents method returns a sequence of pointers to objects contained within the
specified Container object.

Chapter 3. Interface Repository Framework Classes 321

contents Method

Example

Here is a code fragment written in C that uses the contents method:

Original Class

#include <containr.h>

Container anObj;
Environment *ev;
sequence (Contained) sc;

long 1i;
sc = Container contents (anObj, ev, ”all”, TRUE);
printf (”%s contains the following objects:\n”,

SOMObject somIsA (anObj, _Contained) ?
Contained get name ((Contained) anObj, ev)
"The Interface Repository”) ;
for (i=0; i<sc. length; i++) ({
printf (”\t%s\n”,
Contained get name (sc. buffer[i], ev));
SOMObject somFree (sc._ buffer[i]);
}
if (sc._length)
SOMFree (sc. buffer);
else
printf (”\t[nonel\n”) ;

Container Class

Related Information

lookup_name Method

describe_contents Method

322 Programmer's Reference for SOM and DSOM

describe_contents Method

describe_contents Method

IDL Syntax

Description

Parameters

Returns a sequence of descriptions of the objects contained within a specified Container
object of the Interface Repository.

sequence<ContainerDescription> describe_contents (

in InterfaceName limit_type,
in boolean exclude_inherited,
in long max_returned_objs);

The describe_contents method combines the operations of the contents method and the
describe method. That is, for each object returned by the contents operation, the

description of the object is returned by invoking its describe operation. Each
object represents a component of an IDL interface (class) definition maintained within the
Interface Repository.

If the limit_type is set to all, objects of all interface types are returned; otherwise, only
objects of the requested interface type are returned. Valid values for InterfaceName are
limited to the following set: {AttributeDef, ConstantDef, ExceptionDef, InterfaceDef,
ModuleDef, ParameterDef, OperationDef, TypeDef, all}

If exclude_inherited is set to TRUE, any inherited objects will not be returned.

The max_returned_objs argument is used to limit the number of objects that can be
returned. If max_returned_objs is set to -1, the results for all contained objects will be

When finished using the sequence returned by this method, the client code is responsible
for freeing the value_value field in each description, releasing each of the objects in the
sequence, and freeing the sequence buffer. In C, this can be accomplished as follows:

(seq. length) {
long 1i;
for (i=0; i<seq. length; i++) {
if (seq._buffer([i].value._value)
/* Release each description */
SOMFree (seq. buffer[i].value. value) ;
SOMObject somFree (seq. buffer([i].contained object) ;
/* Release each object */
}

SOMFree (seq. buffer); /* Release the buffer */

A pointer to a Container object whose contained object descriptions are needed.
A pointer to the Environment structure for the caller.
The name of one interface type (see the valid list above) or all, to specify what type of

objects the describe_contents method should return.

exclude_inherited
A boolean value: TRUE to exclude any inherited objects, or FALSE to include all

Chapter 3. Interface Repository Framework Classes 323

describe_contents Method

max_returned_objs
A long integer indicating the maximum number of objects to be returned by the method,
or -1 to indicate no limit is set.

Return Value

The describe_contents method returns a sequence of ContainerDescription structures,
one for each object contained within the specified Container object. Each
ContainerDescription structure has a contained_object field, which points to the contained
object, as well as name and value fields, which are the result of the describe method.

Example

Here is a code fragment written in C that uses the describe_contents method:

#include <containr.h>

Container anObj;

Environment *ev;

sequence (ContainerDescription) sc;
long 1i;

sc = Container describe contents (anObj, ev, ”all”,
FALSE, -1L);
printf (”%s defines or inherits the following objects:\n”,
SOMObject somIsA (anObj, _Contained) ?
Contained get name ((Contained) anObj, ev)
"The Interface Repository”) ;
for (i=0; i<sc. length; i++) ({
printf (”\t%s\n”, sc. buffer[i] .name) ;
if (sc. buffer[i].value. value)
SOMFree (sc. buffer[i] .value. value);
SOMObject somFree (sc. buffer[i].contained object);
}
if (sc._length)
SOMFree (sc. buffer);
else
printf (”\t[nonel\n”) ;

Original Class
Container Class
Related Information

contents Method
describe Method
lookup_name Method

324 Programmer's Reference for SOM and DSOM

lookup_name Method

lookup_name Method

IDL Syntax

Description

Parameters

Locates an object by name within a specified Container object of the Interface Repository,
or within objects contained in the Container object.

sequence<Contained> lookup_name (
in Identifier search_name,
in long levels_to_search,
in InterfaceName limit_type,
in boolean exclude_inherited);

The lookup_name method locates an object by name within a specified Container object,
or within objects contained in the Container object. The search_name specifies the name
of the object to be found. Each object represents a component of an IDL interface (class)
definition maintained within the Interface Repository.

The levels_to_search argument controls whether the lookup is constrained to the specified
Container object or whether objects contained within the Container object are also
searched. The levels_to_search value should be -1 to search the Container and all
contained objects; it should be 1 to search only the Container itself.

If limit_type is set to all, the lookup locates an object of the specified name with any
interface type; otherwise, the search locates the object only if it has the designated
interface type. Valid values for InterfaceName are limited to the following set:
AttributeDef, ConstantDef, ExceptionDef, InterfaceDef, ModuleDef, ParameterDef,
OperationDef, TypeDef, all

If exclude_inherited is set to TRUE, any inherited objects will not be returned.

When finished using the sequence returned by this method, the client code is responsible
for releasing each of the objects in the sequence and freeing the sequence buffer. In C, this
can be accomplished as follows:
if (seq. length) {
long 1i;
for (i=0; i<seq. length; i++)
SOMObject_somFree (seq._buffer[i]);
/* Release each object */
SOMFree (seq. buffer); /* Release the buffer */

}

receiver
A pointer to a Container object in which to locate the object.

ev
A pointer to the Environment structure for the caller.

search_name
The name of the object to be located.

levels_to_search
A long having the value 1 or -1.

limit_type
The name of one interface type (see the valid list above) or all, to specify what type of
object to search for.

Chapter 3. Interface Repository Framework Classes 325

lookup_name Method

exclude_inherited
A boolean value: TRUE to exclude an object when it is inherited, or FALSE to return the
object from wherever it is found.

Return Value

The lookup_name method returns a sequence of pointers to objects of the given
name contained within the specified Container object, or within objects contained in the
Container object.

Example

Here is a code fragment written in C that uses the lookup_name method:

#include <containr.h>
#include <containd.h>
#include <repostry.h>

Container repo;
Environment *ev;
sequence (Contained) sc;
long 1i;

Identifier nameToFind;

repo = (Container) RepositoryNew () ;
sc = Container lookup name (repo, ev, nameToFind, -1,
"all”, TRUE) ;
printf (”%d object%s found:\n”,
sc. length, sc. length == 1 ? ”” : ”s");
for (i=0; i<sc. length; i++) ({
printf (”\t%s\n”,
Contained get id (sc. buffer([i], ev));
SOMObject somFree (sc. buffer[i]);

}

if (sc._length)
SOMFree (sc. buffer);

Original Class
Container Class
Related Information

contents Method
describe_contents Method

irindex

326 Programmer’s Reference for SOM and DSOM

ExceptionDef Class

ExceptionDef Class
The ExceptionDef class provides the interface for exception definitions in the Interface
Repository.

File Stem
excptdef

Base

Contained Class

Metaclass
SOMClass Class

Ancestor Classes
Contained Class
SOMObject Class

Types

struct ExceptionDescription {
Identifier name;
RepositoryIdid;
RepositoryIddefined in;
TypeCodetype;

The describe method, inherited from Contained, returns an ExceptionDescription
structure in the “value” member of the Description structure (defined in the Contained
class).

Attributes

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the exception. The TypeCode returned by
the get_form of the type attribute is contained in the receiving ExceptionDef object,
which retains ownership. Hence, the returned TypeCode should not be freed. To obtain
a separate copy, use the TypeCode_copy Function operation. The _set_ form of the
attribute makes a private copy of the TypeCode you supply, to keep in the receiving
object. You retain ownership of the passed TypeCode.

Overriding Methods
somDefaultinit Method
somDestruct Method
sombDumpSelf Method
somDumpSelfint Method
describe Method

Chapter 3. Interface Repository Framework Classes 327

InterfaceDef Class

InterfaceDef Class

File Stem

Base

Metaclass

The InterfaceDef class provides the interface for interface definitions in the Interface
Repository.

intfacdf

Contained Class

Container Class

SOMClass Class

Ancestor Classes

Types

Attributes

Contained Class
Container Class
SOMObject Class

struct FullInterfaceDescription {
Identifier name;
RepositoryIdid;
RepositoryIddefined in;
sequence<OperationDef: :OperationDescription> operation;
sequence<AttributeDef: :AttributeDescription> attributes;
}i
struct InterfaceDescription {
Identifier name;
RepositoryIdid;
RepositoryIddefined in;

bi
The describe method, inherited from Contained, returns an InterfaceDescription
structure in the “value” member of the Description structure.

The describe_contents method, inherited from Container, returns a sequence of these
Description structures, each carrying a reference to an InterfaceDescription structure in
its value member.

Implementation note: The sequences OperationDescription and AttributeDescription
are built dynamically within the FullinterfaceDescription structure, due to the InterfaceDef
class’s inheritance from the Contained class.

All attributes of the InterfaceDef class provide access to information kept within the
receiving InterfaceDef object. The _get_ form of the attribute returns a memory reference
that is only valid as long as the receiving object has not been freed (using somFree
Method). The _set_ form of the attribute makes a (deep) copy of your data and places it in
the receiving InterfaceDef object. You retain ownership of all memory references passed
using the _set_ attribute forms.

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

328 Programmer’s Reference for SOM and DSOM

InterfaceDef Class

base_interfaces (sequence<Repositoryld>)
The sequence of Repositorylds for all of the interfaces that the receiving interface
inherits.

instanceData (TypeCode)
The TypeCode of a structure whose members are the internal instance variables, if
any, described in the SOM implementation section of the interface. This attribute is a
SOM-unique extension of the Interface Repository; it is not stipulated by the CORBA
specifications.

New Methods

describe_interface Method

Overriding Methods
somDefaultlnit Method
somDestruct Method
somDumpSelf Method
sombDumpSelfint Method
within Method
describe Method
describe_contents Method

Chapter 3. Interface Repository Framework Classes 329

describe_interface Method

describe_interface Method

IDL Syntax

Description

Parameters

Returns a description of all the methods and attributes of an interface definition.

FullinterfaceDescription describe_interface ();

describe_interface returns a description of all the methods and attributes of an interface
definition that are held in the Interface Repository. When finished using the
FullinterfaceDescription returned by this method, the client code is responsible for freeing
the _buffer fields of the two sequences it contains. In C, this can be accomplished by:

if (fid.operation. length)

SOMFree (fid.operation. buffer) ; /* Release the buffer */
if (fid.attributes. length)
SOMFree (fid.attributes. buffer); /* Release the buffer */

receiver
A pointer to an object of class InterfaceDef representing the Interface Repository
object where an interface definition is stored.

ev
A pointer where the method can return exception information if an error is encountered.

Return Value

Example

A description of all the methods and attributes of an interface definiitions held in the IR.

A C code fragment that uses describe_interface:

#include <intfacdf.h>

InterfaceDef idef;
Environment *ev;
FullInterfaceDescription fid;
long 1i;

fid = InterfaceDef describe interface (idef, ev);
printf (”The %s interface has the following attributes:\n”,
Contained get name ((Contained) idef, ev));
if (!fid.attributes. length)
printf (”\t[nonel\n”);
else {
for (i=0; i<fid.attributes. length; i++)
printf (”\t%s\n”, fid.attributes. buffer[i] .name) ;
SOMFree (fid.attributes. buffer) ;}
printf (”and the following methods:\n”)
if (!fid.operation. length)
printf (”\t[nonel\n”) ;
else {
for (i=0; i<fid.operation. length; i++)
printf (”\t%s\n”, fid.operation. buffer[i] .name) ;
SOMFree (fid.operation. buffer);

Original Class

InterfaceDef Class

330 Programmer’s Reference for SOM and DSOM

ModuleDef Class

ModuleDef Class

The ModuleDef class provides the interface for module definitions in the Interface
Repository.

File Stem

moduledf

Base
Contained Class

Container Class

Metaclass
SOMClass Class

Ancestor Classes
Contained Class
Container Class
SOMObject Class

Types

struct ModuleDescription {
Identifier name;
RepositoryIdid;
RepositoryIddefined in;

The desi:ribe method, inherited from Contained, returns a ModuleDescription structure
in the value member of the Description structure (defined in the Contained class). The
describe_contents method, inherited from Container, returns a sequence of these
Description structures, each carrying a reference to a ModuleDescription structure in its
value member.

Overriding Methods
somDefaultinit Method
somDestruct Method
sombDumpSelf Method
somDumpSelfint Method
describe Method
describe_contents Method
within Method

Chapter 3. Interface Repository Framework Classes 331

OperationDef Class

OperationDef Class

The OperationDef class provides the interface for operation (method) definitions in the
Interface Repository.

File Stem
operatdf
Base
Contained Class
Container Class
Metaclass

SOMClass Class
Ancestor Classes

Contained Class

Container Class

SOMObject Class
Types

typedef Identifier ContextIdentifier;
enum OperationMode {NORMAL, ONEWAY};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
TypeCode result;
OperationMode mode ;

sequence<ContextIdentifier> contexts;
sequence<ParameterDef: : ParameterDescription> parameter;
sequence<ExceptionDef: :ExceptionDescription> exceptions;

The des}cribe method, inherited from Contained, returns an OperationDescription
structure in the value member of the Description structure (defined in the Contained
class). The describe_contents method, inherited from Container, returns a sequence of
these Description structures, each carrying a reference to an OperationDescription
structure in its value member.

Attributes

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

result (TypeCode)
The TypeCode of the operation (method).The TypeCode returned by the get_ form of
the type attribute is contained in the receiving OperationDef object that retains
ownership. The returned TypeCode should not be freed. To obtain a copy, use the
TypeCode_copy Function operation. The _set_ form of the attribute makes a private
copy of the TypeCode you supply, to keep in the receiving object. You retain ownership
of the passed TypeCode.

mode (OperationMode)
The OperationMode of the operation (method), either NORMAL or ONEWAY.

332 Programmer’s Reference for SOM and DSOM

OperationDef Class

contexts (sequence<Contextldentifier>)
The list of Contextldentifiers associated with the operation (method). The _get_ form of
the attribute returns a sequence whose buffer is owned by the receiving OperationDef
object. You should not free it. The _set_ form of the attribute makes a (deep) copy of
the passed sequence; you retain ownership of the original storage.

Overriding Methods
somDefaultlnit Method
somDestruct Method
somDumpSelf Method
sombDumpSelfint Method
describe Method
describe_contents Method

Chapter 3. Interface Repository Framework Classes 333

ParameterDef Class

ParameterDef Class

The ParameterDef class provides the interface for parameter definitions.

File Stem

paramdef
Base

Contained Class
Metaclass

SOMClass Class

Ancestor Classes
Contained Class
SOMObject Class

Types
enum ParameterMode {IN, OUT, INOUT};
struct ParameterDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;
TypeCode type;
ParameterMode mode;
}i
The describe method, inherited from Contained, returns a ParameterDescription
structure in the value member of the Description structure.
Attributes

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode of the parameter. The TypeCode returned by the _get_ form of the
type attribute is contained in the receiving ParameterDef object that retains ownership.
You should not free the returned TypeCode. To obtain a copy, use the
TypeCode_copy Function operation. The _set_ form of the attribute makes a private
copy of the TypeCode you supply, to keep in the receiving object. You retain ownership
of the passed TypeCode.

mode (ParameterMode)
The ParameterMode of the parameter (IN, OUT, or INOUT).

Overriding Methods
somDefaultlnit Method
somDestruct Method
somDumpSelf Method
sombDumpSelfint Method
describe Method

334 Programmer’s Reference for SOM and DSOM

Repository Class

Repository Class

File Stem

Base

Metaclass

The Repository class provides global access to SOM’s CORBA-compliant Interface
Repository (IR) discussed in “The Interface Repository Framework” on page 339 of
Programmer’s Guide for SOM and DSOM.

repostry

Container Class

SOMClass Class

Ancestor Classes

Types

Container Class
SOMObject Class

struct RepositoryDescription {
Identifier name;
RepositoryId id;
RepositoryId defined in;

The inherited describe_contents method returns an instance of the
RepositoryDescription structure in the value member of the Description structure defined
in the Container interface.

New Methods

lookup_id Method
lookup_modifier Method
release_cache Method

Overriding Methods

describe_contents Method
somDefaultinit Method
somDestruct Method
somFree Method
somDumpSelf Method
somDumpSelfint Method

Chapter 3. Interface Repository Framework Classes 335

lookup_id Method

lookup_id Method

Returns the object having a specified Repositoryld.

IDL Syntax
Contained lookup_id (in Repositoryld search_id);

Description
The lookup_id method returns the object having a Repositoryld given by the specified
search_id argument. The returned object represents a component of an IDL interface
(class) definition maintained within the Interface Repository.
When finished using the object returned by this method, the client code is responsible for
releasing it, using the somFree Method.

Parameters

receiver

A pointer to an object of class Repository representing SOM’s Interface Repository.

ev

A pointer where the method can return exception information if an error is encountered.

search_id

An ID value of type Repositoryld that uniquely identifies the desired object in the

Interface Repository.

Return Value

The lookup_id method returns the Contained Class object that has the specified

Repositoryld.
Example

Here is a code fragment written in C that uses the lookup_id method:

#include <containd.h>
#include <repostry.hs>

Repository repo;
Environment *ev;

Contained c;

RepositoryId objectToFind;
repo =
CcC =
if

RepositoryNew () ;
Repository lookup id (repo, ev,
(e) {
printf (”lookup id found object
named: %s\n”,
Contained__get_name
SOMObject somFree (c);

(c,

Original Class
Repository Class
Related Information

lookup_modifier Method
lookup_name Method

336 Programmer’s Reference for SOM and DSOM

SOMObject

objectToFind) ;

of type: %s,
somGetClassName
ev));

lookup_id Method

contents Method
within Method

Chapter 3. Interface Repository Framework Classes 337

lookup_modifier Method

lookup_modifier Method

IDL Syntax

Description

Parameters

Returns the value of a given SOM modifier for a specified object [that is, for an object that
is a component of an IDL interface (class) definition maintained within the Interface
Repository].

string lookup_modifier (
in Repositoryld id,
in string modifier);

The lookup_modifier method returns the string value of the given SOM maodifier for an
object with the specified Repositoryld within the Interface Repository. For a discussion of
SOM modifiers, see “Modifier Statements” on page 133 in Programmer’s Guide for SOM
and DSOM.

If the object with the given Repositoryld does not exist or does not possess the modifier,
then NULL (or zero) is returned. If the object exists but the specified modifier does not have
a value, a zero-length string value is returned.

The lookup_modifier method is not stipulated by the CORBA specifications; it is a SOM-
unique extension to the Interface Repository.

receiver
A pointer to an object of class Repository representing SOM’s Interface Repository.

ev

A pointer where the method can return exception information if an error is encountered.
id

The Repositoryld of the object whose modifier value is needed.

modifier
The name of a specific (SOM or user-specified) modifier whose string value is needed.

Return Value

Example

The lookup_modifier method returns the string value of the given SOM maodifier for an
object with the specified Repositoryld, if it exists. If an existing modifier has no value, a
zero-length string value is returned. If the object cannot be found, then NULL (or zero) is
returned.

When the string value is no longer needed, client code must free the space for the string
(using somFree Method).

Here is a code fragment written in C that uses the lookup_modifier method:

#include <repostry.h>

Repository repo;
Environment *ev;
RepositoryId objectId;
string filestem;i

repo = RepositoryNew () ;
filestem = Repository lookup modifier (repo, ev, objectId,

338 Programmer’s Reference for SOM and DSOM

lookup_maodifier Method

"filestem”) ;
if (filestem)
printf
("The %s object’s filestem modifier has the value
\"%s\”"\n”,objectId, filestem);
SOMFree (filestem) ;
} else
printf (”No filestem modifier could be found for %s\n”,
objectId) ;

Original Class
Repository Class
Related Information

lookup_id Method
lookup_name Method

Chapter 3. Interface Repository Framework Classes 339

release_cache Method

release _cache Method

Permits the Repository object to release the memory occupied by Interface Repository
objects that have been implicitly referenced.

IDL Syntax
void release_cache ();
Description

This method allows the Repository object to release the memory occupied by implicitly
referenced Interface Repository objects. Some methods (such as describe_contents
Method and lookup_name Method) may cause some objects to be instantiated that are
not directly accessible through object references that have been returned to the user.
These objects are kept in an internal Interface Repository cache until the release_cache
method is used to free them. The internal cache continuously replenishes itself over time as
the need arises.

Parameters

receiver
A pointer to an object of class Repository representing SOM’s Interface Repository.

ev
A pointer where the method can return exception information if an error is encountered.

Example
#include <repostry.h>
Repository repo;
Environment *ev;
sequence (ContainerDescription) scd;
scd = Container describe contents (

(Container) repo, ev, "TypeDef”, TRUE, -1);
Repository release cache (repo, ev);

Original Class
Repository Class
Related Information

See “A Word about Memory Management” on page 348 in Programmer’s Guide for SOM
and DSOM.

340 Programmer's Reference for SOM and DSOM

TypeDef Class

TypeDef Class

The TypeDef class provides the interface for typedef definitions in the Interface
Repository. The TypeCode_xxx function definitions are located in the somtc.h and
somtc .xh header files.

File Stem

typedef
Base

Contained Class
Metaclass

SOMClass Class
Ancestor Classes

Contained Class
SOMObject Class

Types
struct TypeDescription {
Identifier name;
RepositoryIdid;
RepositoryIddefined in;
TypeCodetype;

The describe method, inherited from Contained, returns a TypeDescription structure in
the value member of the Description structure.

Attributes

Listed below is each available attribute, with its corresponding type in parentheses,
followed by a description of its purpose:

type (TypeCode)
The TypeCode that represents the type of the typedef. The TypeCode returned by the
get form of the type attribute is contained in the receiving TypeDef object, which
retains ownership. Hence, the returned TypeCode should not be freed. To obtain a
separate copy, use the TypeCode_copy Function operation. The _set_ form of the
attribute makes a private copy of the TypeCode you supply, to keep in the receiving
object. You retain ownership of the passed TypeCode.

Overriding Methods
somDefaultinit Method
somDestruct Method
sombDumpSelf Method
somDumpSelfint Method
describe Method

Chapter 3. Interface Repository Framework Classes 341

TypeCodeNew Function

TypeCodeNew Function

Creates a new TypeCode instance.

C Syntax
TypeCode TypeCodeNew (TCKind tag, ...);
[The actual parameters indicated by “...” are variable in number and type, depending on the
value of the tag parameter.] There are no implicit parameters to this function.
TypeCodeNew (tk_obijref, string interfaceld);
TypeCodeNew (tk_string, long maxLength);
TypeCodeNew (tk_sequence, TypeCode seqTC, long maxLength);
TypeCodeNew (tk_array, TypeCode arrayTC, long length);
TypeCodeNew (tk_pointer, TypeCode ptrTC);
TypeCodeNew (tk_self, string structOrUnionName);
TypeCodeNew (tk_foreign, string typename, string impCtx, long instSize);
TypeCodeNew (tk_struct, string name,
string mbrName, TypeCode mbrTC, [...,]
[mbrName and mbrTC repeat as needed]
NULL);
TypeCodeNew (tk_union, string name, TypeCode swTC, long flag,
long labelValue, string mbrName, TypeCode mbrTC, [...,]
[flag, labelValue, mbrName and mbrTC repeat as needed]
NULL);
TypeCodeNew (tk_enum, string name,
string enumld, [...,]
[enumlids repeat as needed]
NULL);
TypeCodeNew (TCKind allOtherTagValues);
Description
The TypeCodeNew function creates a new instance of a TypeCode from the supplied
parameters. TypeCodes are complex data structures whose actual representation is
hidden. The number and types of arguments required by TypeCodeNew varies depending
on the value of the first argument. There are no implicit parameters to this function. All
TypeCodes created by TypeCodeNew should be destroyed using TypeCode_free.
This function is a SOM-unique extension to the CORBA standard.
Parameters

tag
The type or category of TypeCode to create.

interfaceld
A string containing the fully-qualified interface name that is the subject of an object
reference type.

name
A string that gives the name of a struct, union or enum.

mbrName
A string that gives the name of a struct or union member element.

enumld
A string that gives the name of an enum enumerator.

342 Programmer’s Reference for SOM and DSOM

TypeCodeNew Function

structOrUnionName
A string that gives the name of a struct or union that has been previously named in the
current TypeCode and is the subject of a self-referential pointer type. See tk_self in
the table given in the TypeCode_kind function description for an example of what this
means and how it is applied.

maxLength
The maximum permitted length of a string or a sequence. The value 0 (zero) means the
string or sequence is considered unbounded.

length
The maximum number of elements that can be stored in an array. All IDL arrays are
bounded, hence a value of zero denotes an array of zero elements.

flag
One of the following constant values used to distinguish a labeled case in an IDL
discriminated union switch statement from the default case:

TCREGULAR_CASE - The value 1
TCDEFAULT_CASE - The value 2

labelValue
The actual value associated with a regular labeled case in an IDL discriminated union
switch statement. If preceded by the argument TCDEFAULT_CASE, the value zero
should be used.

mbrTC
A TypeCode representing the data type of a struct or union member.

swTC
A TypeCode that represents the data type of the discriminator in an IDL union
statement.

seqTC
A TypeCode that describes the data type of the elements in a sequence.

arrayTC
A TypeCode that describes the data type of the elements of an array.

ptrTC
A TypeCode that describes the data type referenced by a pointer.

typename
A string that provides the name of a foreign type.

impCtx
A string that identifies an implementation context where a foreign type is understood.
instSize

A long that holds the size of a foreign type instance. If the size is variable is not known,
the value zero should be used.

allOtherTagValues
One of the values: tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode, or
tk_Principal. All of these tags represent basic IDL data types that do not require any
other descriptive parameters.

Return Value

A new TypeCode instance, or NULL if the new instance could not be created.

Chapter 3. Interface Repository Framework Classes 343

TypeCodeNew Function

Related Information
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

344 Programmer’s Reference for SOM and DSOM

TypeCode_alignment Function

TypeCode_alignment Function

Supplies the alignment value for a given TypeCode.
C Syntax
short TypeCode_alignment ();
Description

This function returns the alignment information associated with the given TypeCode. The
alignment value is a short integer that should evenly divide any memory address where an
instance of the type described by the TypeCode will occur.

Parameters

tc
The TypeCode whose alignment information is desired.

ev
A pointer to an Environment structure.

Return Value
A short integer containing the alignment value.
Related Information
TypeCodeNew Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

Chapter 3. Interface Repository Framework Classes 345

TypeCode_copy Function

TypeCode _copy Function

C Syntax

Description

Parameters

Creates a new copy of a given TypeCode.

TypeCode TypeCode_copy ();

The TypeCode_copy function creates a new copy of a given TypeCode. TypeCodes are
complex data structures whose actual representation is hidden, and may contain internal
references to strings and other TypeCodes. The copy created by this function is
guaranteed not to refer to any previously existing TypeCodes or strings, and hence can be
used long after the original TypeCode is freed or released (TypeCodes are typically
contained in Interface Repository objects whose memory resources are released by the
somFree Method).

All of the memory used to construct the TypeCode copy is allocated dynamically and
should be subsequently freed only by using the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

tc
The TypeCode to be copied.

ev
A pointer to an Environment structure. The CORBA standard mandates the use of this
structure as a standard way to return exception information when an error condition is
detected.

Return Value

A new TypeCode with no internal references to any previously existing TypeCodes or
strings. If a copy cannot be created successfully, the value NULL is returned. No exceptions
are raised by this function.

Related Information

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

346 Programmer’s Reference for SOM and DSOM

TypeCode_equal Function

TypeCode_equal Function

Compares two TypeCodes for equality.
C Syntax

boolean TypeCode_equal (
TypeCode tc2);

Description

The TypeCode_equal function can be used to determine if two distinct TypeCodes
describe the same underlying abstract data type.

Parameters

tc
One of the TypeCodes to be compared.

ev
A pointer to an Environment structure. The CORBA standard mandates the use of
this structure as a standard way to return exception information when an error condition
is detected.

tc2
The other TypeCode to be compared.

Return Value

Returns TRUE (1) if the TypeCodes tc and tc2 describe the same data type, with the same
alignment. Otherwise, FALSE (0) is returned. No exceptions are raised by this function.

Related Information

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

Chapter 3. Interface Repository Framework Classes 347

TypeCode_free Function

TypeCode free Function

C Syntax

Description

Parameters

Destroys a given TypeCode by freeing all of the memory used to represent it.

void TypeCode_free ();

The TypeCode_free function destroys a given TypeCode by freeing all of the memory
used to represent it. TypeCodes obtained from the TypeCode_copy or TypeCodeNew
functions should be freed using TypeCode_free. TypeCodes contained in Interface
Repository objects should never be freed. Their memory is released when a somFree
Method releases the Interface Repository object.

The TypeCode_free operation has no effect on TypeCode constants. TypeCode constants
are static TypeCodes declared in the header file somtcnst.h or generated in files emitted
by the SOM Compiler. Since TypeCode constants may be used interchangeably with
dynamically created TypeCodes, it is not considered an error to attempt to free a
TypeCode constant with the TypeCode_free function.

This function is a SOM-unique extension to the CORBA standard.

tc
The TypeCode to be freed.

ev
A pointer to an Environment structure. The CORBA standard mandates the use of this
structure as a standard way to return exception information when an error condition is
detected.

Related Information

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_equal Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

348 Programmer’s Reference for SOM and DSOM

TypeCode_kind Function

TypeCode_kind Function

Categorizes the abstract data type described by a TypeCode.
C Syntax

TCKind TypeCode_kind ();

enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal,
tk_objref, tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_pointer, tk_self, tk_foreign};

Description

The TypeCode_kind function can be used to classify a TypeCode into one of the
categories listed in the TCKind enumeration. Based on the “kind” classification, a
TypeCode may contain 0 or more additional parameters to fully describe the underlying
data type.

Table 2, TypeCode information per TCKind category, indicates the number and function
of these additional parameters. TCKind entries not listed in the table are basic data types
and do not have any additional parameters. The designation “N” refers to the number of
members in a struct or union, or the number of enumerators in an enum.

Parameters

tc
The TypeCode whose TCKind categorization is requested.

ev
A pointer to an Environment structure. The CORBA standard mandates the use of
this structure as a standard way to return exception information when an error condition
is detected.

Return Value

Returns one of the enumerators listed in the TCKind enumeration shown above. No
exceptions are raised by this function.

Related Information

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

Chapter 3. Interface Repository Framework Classes 349

TypeCode_kind Function

TCKind Parameters Type Function

tk_objref 1 string The ID of the corresponding InterfaceDef in
the Interface Repository

tk_struct 2N+1 string The name of the struct.

----- next 2 repeat for each member -----

string The name of the struct member.
TypeCode The type of the struct member.

tk_union 3N+2 string The name of the union.

TypeCode The type of the discriminator.
----- next 3 repeat for each member -----

long The label value

string The name of the member.

TypeCode The type of the member.
tk_enum N+1 string The name of the enum.

--- next repeats for each enumerator ----

string The name of the enumerator.
tk_string 1 long The maximum string length or 0.
tk_sequence 2 TypeCode The type of element in the sequence.

long The maximum number of elements or 0.
tk_array 2 TypeCode The type of element in the array.

long The maximum number of elements.
tk_pointer [1 TypeCode The type of the referenced datum.
tk_self [1 string The name of the referenced enclosing

struct or union.

tk_foreign [3 string The name of the foreign type.

string The implementation context.

long The size of an instance.

Table 2. TypeCode information per TCKind category

The TCKind values tk_pointer, tk_self and tk_foreign are SOM-unique extensions to the
CORBA standard. They are provided to permit TypeCodes to describe types that cannot
be expressed in standard IDL.

The tk_pointer TypeCode contains only one parameter: a TypeCode which describes the
data type that the pointer references. The tk_self TypeCode is used to describe a “self-
referential” structure or union without introducing unbounded recursion in the TypeCode.
For example, the following C struct:

struct node {
long count;
struct node *next;

could be deséribed with a TypeCode created as follows:

TypeCode tcForNode;
tcForNode = TypeCodeNew (tk struct, ”node”,
"count”, TypeCodeNew (tk long),

"next”, TypeCodeNew (tk pointer,
TypeCodeNew (tk_self, "node”)));

350 Programmer’s Reference for SOM and DSOM

TypeCode_kind Function

The tk_foreign TypeCode provides a more general escape mechanism, allowing
TypeCodes to be created that partially describe non-IDL types. Since these foreign
TypeCodes carry only a partial description of a type, the implementation context parameter
can be used by a non-IDL execution environment to recognize other types that are known
or understood in that environment. See “Using tk_foreign TypeCode” on page 352 in
Programmer’s Guide for SOM and DSOM for more information about using foreign
TypeCodes in SOM IDL files.

The use of self-referential structures, pointers, or foreign types is beyond the scope of the
CORBA standard, and may result in a loss of portability or distributability in client code.

Chapter 3. Interface Repository Framework Classes 351

TypeCode_param_count Function

TypeCode param_count Function

Obtains the number of parameters available in a given TypeCode.

C Syntax
long TypeCode_param_count ();
Description
The TypeCode_param_count function can be used to obtain the actual number of
parameters contained in a specified TypeCode. Each TypeCode contains sufficient
parameters to fully describe its underlying abstract data type. Refer to the table given in the
description of the TypeCode_kind function.
Parameters
tc
The TypeCode whose parameter count is desired.
ev

A pointer to an Environment structure. The CORBA standard mandates the use of this
structure as a standard way to return exception information when an error condition is
detected.

Return Value

Returns the actual number of parameters associated with the given TypeCode, in
accordance with the table shown in the TypeCode_kind description. No exceptions are
raised by this function.

Related Information

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

352 Programmer’s Reference for SOM and DSOM

TypeCode_parameter Function

TypeCode parameter Function

C Syntax

Description

Parameters

Obtains a specified parameter from a given TypeCode.

any TypeCode_parameter (
long index);

The TypeCode_parameter function can be used to obtain any of the parameters contained
in a given TypeCode. Refer to the table shown in the description of the TypeCode_kind
function for a list of the number and type of parameters associated with each category of
TypeCode.

Note: This function should not be used for any of the IDL basic data types (that is, any
types in the TCKind enumeration that are not listed in Table 2, TypeCode
information per TCKind category, under the TypeCode_kind function).

tc
The TypeCode whose parameter is desired.

ev
A pointer to an Environment structure. The CORBA standard mandates the use of this
structure as a standard way to return exception information when an error condition is
detected.

index
he number of the desired parameter. Parameters are numbered from O to N-1, where N
is the value returned by the Typecode_param_count function.

Return Value

Returns the requested parameter in the form of an any. This function raises the Bounds
exception if the value of the index exceeds the number of parameters available in the given
TypeCode. Because the values exist within the specified TypeCode, you should not free
the results returned from this function. A Bounds exception is also raised if this function is
called on any of the IDL basic data types.

An any is a basic IDL data type that is represented as the following structure in C or C++:

typedef struct any {
TypeCode type;
void * _value;
} any;
Since all TypeCode parameters have one of only three types (string, TypeCode, or long),
the _type member will always be setto TC_string, TC_TypeCode or TC_long, as
appropriate. The _value member always points to the actual parameter datum. For
example, the following code can be used to extract the name of a structure from a
TypeCode of kind tk_struct in C:

#include <repostry.h> /* Interface Repository class */

#include <typedef.h> /* Interface Repository TypeDef class */
#include <somtcnst.h> /* TypeCode constants */
TypeCode x;

Environment *ev = somGetGlobalEnvironment () ;
TypeDef aTypeDefObj;

sequence (Contained) sc;

any parm;

Chapter 3. Interface Repository Framework Classes 353

TypeCode_parameter Function

string name;
Repository repo;

/* 1lst, obtain a TypeCode from an Interface Repository

* object, or use a TypeCode constant.
*
/
repo = RepositoryNew () ;
sc = lookup name (repo, ev,
"AttributeDescription”, -1, ”"TypeDef”,
if (sc._length) {
aTypeDefObj = sc. buffer[0];

X = _get type (aTypeDefObj, ev);
}
else
x = TC_AttributeDescription;
if (TypeCode kind (x, ev) == tk_struct) {

parm = TypeCode parameter (x, ev, 0);
if (TypeCode kind (parm. type, ev) !=

TRUE) ;

/* Get structure name */
tk_string) {

printf (”Error, unexpected TypeCode: ") ;
TypeCode print (parm. type, ev);

} else {
name = *((string *)parm. value) ;

printf (”The struct name is %s\n”,

} else {

printf (”"TypeCode is not a tk_struct:

TypeCode print (x, ev);

Related Information

354

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_print Function
TypeCode_setAlignment Function
TypeCode_size Function

Programmer’s Reference for SOM and DSOM

name) ;

"y .
i

TypeCode_print Function

TypeCode print Function

C Syntax

Description

Parameters

Writes all of the information contained in a given TypeCode to “stdout”.

void TypeCode_print ();

The TypeCode_print function can be used during program debugging to inspect the
contents of a TypeCode. It prints (in a human-readable format) all of the information
contained in the TypeCode. The format of the information shown by TypeCode_print is
the same form that could be used by a C programmer to code the corresponding
TypeCodeNew function call to create the TypeCode.

This function is a SOM-unigue extension to the CORBA standard.

tc
The TypeCode to be examined.

ev
A pointer to an Environment structure. The CORBA standard mandates the use of this
structure as a standard way to return exception information when an error condition is
detected.

Related Information

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_setAlignment Function
TypeCode_size Function

Chapter 3. Interface Repository Framework Classes 355

TypeCode_setAlignment Function

TypeCode_setAlignment Function

Overrides the default alignment value associated with a given TypeCode.

C Syntax
void TypeCode_setAlignment (short alignment);
Description
The TypeCode_setAlignment function overrides the default alignment value associated
with a given TypeCode.
Parameters
tc
The TypeCode to receive the new alignment value.
ev
A pointer to an Environment structure.
alignment

A short integer that specifies the alignment value.
Related Information
TypeCodeNew Function
TypeCode_alignment Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_size Function

356 Programmer’s Reference for SOM and DSOM

TypeCode_size Function

TypeCode_size Function

Provides the minimum size of an instance of the abstract data type described by a given

TypeCode.
C Syntax
long TypeCode_size ();
Description
The TypeCode_size function is used to obtain the minimum size of an instance of the
abstract data type described by a given TypeCode.
This function is a SOM-unigue extension to the CORBA standard.
Parameters
tc
The TypeCode whose instance size is desired.
ev

A pointer to an Environment structure. The CORBA standard mandates the use of this
structure as a standard way to return exception information when an error condition is
detected.

Return Value

The amount of memory needed to hold an instance of the data type described by a given
TypeCode. No exceptions are raised by this function.

Related Information

TypeCodeNew Function
TypeCode_alignment Function
TypeCode_copy Function
TypeCode_equal Function
TypeCode_free Function
TypeCode_kind Function
TypeCode_param_count Function
TypeCode_parameter Function
TypeCode_print Function
TypeCode_setAlignment Function

Chapter 3. Interface Repository Framework Classes 357

TypeCode_size Function

358 Programmer’s Reference for SOM and DSOM

Chapter 4. Metaclass Framework Classes

SOMMTraced EOMMProsyFerObject

Legend

metaclass

— Inhwarits from
---— |5 an Inskance of

Figure 4. Metaclass Framework Class Organization

Chapter 4. Metaclass Framework Classes 359

SOMMBeforeAfter Metaclass

SOMMBeforeAfter Metaclass

SOMMBeforeAfter is a metaclass that defines two methods (sommBeforeMethod and
sommAfterMethod) which are invoked before and after each invocation of every instance
method. SOMMBeforeAfter is designed to be subclassed. Within the subclass, each of the
two methods should be overridden with a method procedure appropriate to the particular
application. The before and after methods are invoked on instances (ordinary objects) of a
class whose metaclass is the subclass (or child) of SOMMBeforeAfter, whenever any
method (inherited or introduced) of the class is invoked.

Note: The somDefaultinit and somFree methods are among the methods that get
before/after behavior. This implies that the following two obligations are imposed on
the programmer of a SOMMBeforeAfter class. First, your implementation must
guard against using the object in the sommBeforeMethod before somDefaultinit
has executed, when the object is not yet fully initialized. Second, the
implementation must guard against using the object in sommAfterMethod after
somFree, at which time the object no longer exists.

SOMMBeforeAfter is thread-safe.
File Stem

sombacls
New Methods

sommAfterMethod Method

sommBeforeMethod Method
Overriding Methods

somDefaultlnit Method

somFree Method

360 Programmer’s Reference for SOM and DSOM

sommAfterMethod Method

sommAfterMethod Method

IDL Syntax

Description

Parameters

Example

Specifies a method that is automatically called after execution of each client method.

void sommAfterMethod (
in SOMObject object,
in somld methodld,
in void *returnedvalue,
in va_list ap);

sommAfterMethod specifies a method that is automatically called after execution of each
client method and is not directly called by the user. sommAfterMethod is introduced in the
SOMMBeforeAfter metaclass. The default implementation does nothing. To define the
desired after method, sommAfterMethod must be overridden in a metaclass that is a child
of the SOMMBeforeAfter metaclass.

The somFree Method is among the methods that get before/after behavior, which implies
that the following obligation is imposed on the programmer of a sommAfterMethod.
Specifically, care must be taken to guard against sommAfterMethod using the object after
somFree, at which time the object no longer exists.

Refer to the Example’s diagram for further clarification of these arguments.

receiver
A pointer to an object (class) of metaclass SOMMBeforeAfter representing the class
object that supports the method (such as, myMethod) for which the after method will
apply.

ev
A pointer where the method can return exception information if an error is encountered.
The dispatch method of SOMMBeforeAfter sets this parameter to NULL before
dispatching the first sommBeforeMethod.

object
A pointer to the instance of the receiver on which the method is invoked.

methodId
The SOM ID of the method (such as, myMethod) that was invoked.

returnedvalue
A pointer to the value returned by invoking the method (myMethod) on an object.

ap
The list of input arguments to the method (myMethod).

The following figure shows an invocation of myMethod on myObject. Because myObject
is an instance of a class whose metaclass is a subclass of SOMMBeforeAfter, myMethod
is followed by an invocation of sommAfterMethod (which is shown in smaller type to

Chapter 4. Metaclass Framework Classes 361

sommAfterMethod Method

denote that the user does not actually code the method). The adjacent figure illustrates the
meaning of the parameters to sommAfterMethod.

/7

S0OMMBeforedfter

—r

sommBefareMethod (ieceiver ey, mylbject, ..) a@ss
thad blect, ...
tryhds ‘ (myObjact, ..) M
P -
-
Legsnd

"recelver"

M metazlaes
L7 4 @ class
O oowe

— inhwrits fram

"m','.l"ﬂb]ecl"
——+ igan instance of

Figure 5. sommAfterMethod Invocation on myMethod on MyObject.

Original Class
SOMMBeforeAfter Metaclass
Related Information

sommBeforeMethod Method

362 Programmer’s Reference for SOM and DSOM

sommBeforeMethod Method

sommBeforeMethod Method

Specifies a method that is automatically called before execution of each client method.
IDL Syntax

boolean sommBeforeMethod (
in SOMObject object,
in somld methodld,
in va_list ap);

Description

sommBeforeMethod a method that is automatically called before execution of each client
method and cannot be called directly by the user. To define the desired before method,
sommBeforeMethod must be overridden in a metaclass that is a subclass of
SOMMBeforeAfter. The default implementation does nothing until it is overridden.

The somDefaultinit Method is among the methods that get before/after behavior, which
implies that the following obligation is imposed on the programmer of a
sommBeforeMethod. Specifically, care must be taken to guard against
sommBeforeMethod using the object before the somDefaultinit method has executed
and the object is not yet fully initialized.

Parameters

Refer to the Example’s diagram for further clarification of these arguments.

receiver
A pointer to an object (class) of metaclass SOMMBeforeAfter representing the class
object that supports the method (such as, myMethod) for which the before method will
apply.

ev
A pointer where the method can return exception information if an error is encountered.
The dispatch method of SOMMBeforeAfter sets this parameter to NULL before
dispatching the first sommBeforeMethod.

object
A pointer to the instance of the receiver on which the method is invoked.

methodId
The SOM ID of the method (myMethod) that was invoked.

ap
The list of input arguments to the method (myMethod).

Return Value

A boolean that indicates if before/after dispatching should continue. If the value is TRUE,
normal before/after dispatching continues. If the value is FALSE, the dispatching skips to
the sommAfterMethod associated with the preceding sommBeforeMethod. This implies
that the sommBeforeMethod must do any post-processing that might otherwise be done
by the sommAfterMethod. Because before/after methods are paired within a
SOMMBeforeAfter metaclass, this design eliminates the complexity of communicating to
the sommAfterMethod that the sommBeforeMethod returned FALSE. CORBA specifies
that TRUE is 1.

Chapter 4. Metaclass Framework Classes 363

sommBeforeMethod Method

Example

The following figure shows an invocation of myMethod on myObject. Because myObject
is an instance of a class whose metaclass is a subclass of SOMMBeforeAfter, myMethod
is preceded by an invocation of sommBeforeMethod (which is shown in smaller type to
denote that the user does not actually code the method). The adjacent figure illustrates the
meaning of the parameters to sommBeforeMethod

/7

SCMMBeforeAfter
s
myksthod [myQbject. ...
sommBeforaMethod (recabmr ey, myOblact, ..} ﬂ
aMetaclass
' N
-
A
-
Legsnd
"recelver"

M metazlaes
L7 @ class

7Y () ok
"myQbject"

— inhwrits fram

——+ igan instance of

Figure 6. sommBeforeMethod Invocation on myMethod on MyObject.

Original Class

SOMMBeforeAfter Metaclass
Related Information

sommAfterMethod Method

364 Programmer’s Reference for SOM and DSOM

SOMMProxyFor Metaclass

SOMMProxyFor Metaclass

SOMMProxyFor is the metaclass for creating proxy base classes; it may not be
subclassed. Normally, such a metaclass is not made public; however, there is an exception
in this case, since the method sommMakeProxyClass forces the metaclass to be public.
Note that the SOM kernel does enforce the restriction that SOMMProxyFor may not be
subclassed.

File Stem
somproxy
New Methods
sommMakeProxyClass Method
Overriding Methods
somInitMIClass
somClassReady Method

Chapter 4. Metaclass Framework Classes 365

sommMakeProxyClass Method

sommMakeProxyClass Method

Dynamically creates the proxy class corresponding to a target class.
IDL Syntax

SOMClass sommMakeProxyClass (
in SOMClass targetClass,
in string className);

Description

sommMakeProxyClass invocation creates the proxy class for a specific target class; the
resulting class is registered with the class manager.

Parameters

receiver
A pointer to a subclass of SOMMProxyForObject that will be the base class for a
proxy.

targetClass
The class name of the object for which a proxy is to be created.

className
The name of the resulting proxy class. If this parameter is NULL or the empty string, a
name is constructed of the form ProxyForname-of-targetClass.

Example
Using object Lassie and SOMMProxyFor, SOMMProxyForObject and Dog classes.

ProxyForDog = _sommMakeProxyClass (_SOMMProxyForObject, Dog,NULL) ;
proxyForLassie = _somNew (ProxyForDog) ;
___set sommTarget (proxyForLassie, Lassie);

366 Programmer’s Reference for SOM and DSOM

sommMakeProxyClass Method

AN
SOMMProxyFor
N
X

SOMMProxyForObject 1 “Cog”
1
1

)

"ProxyForDog"

(

LY
A

"proxyForLassle" "Lazshk:"

Legend

metaclass

@ class
O nibyjert

— Inharkts from

——+ Iz an Instance of
— abstract inheritance

Figure 7. sommMakeProxyClass Method

Original Class
SOMMProxyFor Metaclass

Chapter 4. Metaclass Framework Classes 367

SOMMProxyForObject Class

SOMMProxyForObject Class

SOMMProxyForObject is the base class for creating proxy classes. This base class
creates transparent proxies. That is, all methods are forwarded from the proxy to the target
objects except the somGetClass, somGetClassName, somGetSize, somIsA,
somlsinstanceOf and somRespondsTo methods.

The diagram below illustrates the terminology for discussing proxies. It can be created by
the code given in the example of method sommMakeProxyClass. The wavy arrow indicates
abstract inheritance.

7NN

(

S0MObject SOMMProxyFor
=/
-

£ |

|

SOMMProxyForOhbject 1

[

[

baga clees of proxy target class

)

|
|
"ProxyForDog" 1
Nk !
|
oless of prosy target ablsct
"proxyForLassle" "Lagshk"
procy for targat objact
Legend

metaclass

@ clacs
O oityjert
— Inharits from

——+ I3 an Instance of
—+ abstract inheritance

Figure 8. Terminology for discussing Proxies.

The SOMMProxyForObject class can be subclassed to create specialized proxies. All
methods of a subclass are also forwarded unless they are overridden. Overridden methods
can be forwarded with a call to the new method sommProxyDispatch.
sommProxyDispatch can be overridden to enable special ways of dispatching.

When an ordinary object is a SOMMProxyForObject, the target object is set with the
method _set_sommProxyTarget.

Both somFree and somDestruct are forwarded from the proxy to the target. After each,
the proxy object is freed. Because somDestruct is forwarded by default proxies, you must
be careful if target objects are not allocated from the heap (that is, with somNew). There
are two techniques that can be used to handle this situation. The first is to ensure that

368 Programmer’s Reference for SOM and DSOM

SOMMProxyForObject Class

somDestruct does the appropriate action when invoked at the target object. The second is
to create a specialized proxy that does not forward somDestruct.

If a base proxy class is statically created, you can compose the base proxy with a Before/
After Metaclass. For example, the following IDL creates the figure below in a manner
analoguous to the example for sommMakeProxyClass.

interface TracedProxyForObject : SOMMProxyForObject {

interface ({
metaclass = SOMMTraced;

}i

7N AN

SOMObject SOMMProxyFor

\ -/

1
1
SOMMProxyForOhject 1
|
1

target abject

SRS,
"ProxyForDog"
NoA
7N

base class of proxy

class af prowxy » .

"proxyForLassis”

proxy for target object _/ Legend
metaclass

@ class
O nibyjert

— Inharkts from

——+ Iz an Instance of
— abstract inheritance

Figure 9. Proxy Tracing for Forwarded Methods.

Note that, in the case of proxy creation, the metaclass of the target class is not used in
building the proxy class. For example, consider the figure below. ProxyForTracedDog is
different from TracedProxyForDog because tracing occurs only for methods that are
forwarded. This happens because a proxy class only inherits the interface of the target
class, not its metaclass constraints.

Chapter 4. Metaclass Framework Classes 369

SOMMProxyForObject Class

/""'\
SDMMmeyFnr SOMMTraced

W
EDMMmeyFnrDh]eci 'aDerhrel:l Metaclaasa"
Tra(:HdPruxyFuercht

bags class of prouy

target Clags

Larget object

7N

"TracedPraxyForDog"

.

rlass of proxy

"proxyForLassle”
proxy for Ergst obhject

Leqend

@ metacliass

@ class
O nityjert

— Inherts from

——+ I3 an Instance of
—+ abstract inheritance

Figure 10. Proxy Tracing for non-Forwarded Methods.

File Stem
somproxy
Attributes

SOMObject sommProxyTarget
This attribute is a pointer to the target object of the proxy

New Methods
sommProxyDispatch Method
_set_sommProxyTarget
_get_sommProxyTarget
Overriding Methods
somDestruct Method
somFree Method

370 Programmer’s Reference for SOM and DSOM

sommProxyDispatch Method

sommProxyDispatch Method

IDL Syntax

Description

Parameters

Forwards methods from a proxy to a target object.

boolean sommProxyDispatch (
out somToken returnBufferPtr,
in somDispatchinfo dispatchinfo,
in va listap);

This method forwards method invocations to the target object. That is, if a method is
invoked on a proxy, the invocation is redispatched to sommProxyDispatch, which then
forwards the invocation to the target, which must be a local object (in the same address
space). The sommProxyDispatch method can be specialized (overridden) to forward
invocations in different ways (for example, to forward invocations to another address space).

This method is not usually invoked by an application, because sommProxyDispatch
receives the redispatch by default. However, if a method is overridden in a proxy, only the
override is invoked. In order to forward a method invocation from an override,
sommProxyDispatch should be invoked.

receiver
A pointer to a SOMMProxyForObject object representing an object (called the target
object) that responds to the method described in dispatchinfo.

returnBufferPtr
A pointer to the value returned when the method described in dispatchinfo is invoked
on the target object.

dispatchinfo
A pointer to a structure of the following type:
typedef struct ({
somMethodData* md;
somMethodProc* dispatchFcn;
. arbitrary remaining structure known to dispatchFcn
} somDispatchInfo;

ap
The list of input arguments to the method to be forwarded to the target object.

Return Value

A boolean representing whether or not the method was successfully dispatched.

Chapter 4. Metaclass Framework Classes 371

sommProxyDispatch Method

Example

I
I

SOMMProxyForObject | "Cog”
I
I

bags claps of proxy target class

|
|

"ProxyForTracedDog" I
1
1

vless of prosy target abjsct
"proxyForLassle" "Lagsk"

procsy for target objact

Legend

metaclass

@ clacs
O nibyjert
— Inharkts from

——+ Iz an Instance of
— abstract inheritance

Figure 11. somProxyDispatch Creation Relationship

The relationships shown in the figure above can be created as follows:

SOMClass ProxyForDog;
SOMObject proxyForLassie;
Dog Lassie;

Lassie = DogNew () ;

ProxyForDog = sommMakeProxyClass
(_SOMMProxyForObject, Dog, NULL) ;
proxyForLassie = _somNew(ProxyForDog) ;

set sommProxyTarget(proxyForLassie, Lassie);
Following this, any method invoked on proxyForLassie is forwarded as an invocation

on Lassie. Thatis,

_aMethod (proxyForLassie, ...);
causes the following invocation (which is implemented with somDispatch inherited from

Dog):
_aMethod (Lassie, ...);

Original Class
SOMMProxyForObject Class
Related Information

sommMakeProxyClass Method

372 Programmer's Reference for SOM and DSOM

SOMMSinglelnstance Metaclass

SOMMSinglelnstance Metaclass

SOMMSinglelnstance can be specified as the metaclass when a class implementor is
defining a class for which only one instance can ever be created. The first call to
classNameNew in C, the new operator in C++, or the somNew method creates the one
possible instance of the class. Thereafter, any subsequent “new” calls return the first (and
only) instance.

Alternatively, the method sommGetSinglelnstance can be used to accomplish the same
purpose. The method offers an advantage in that the call site explicitly shows that
something special is occurring and that a new object is not necessarily being created.

SOMMSinglelnstance is thread-safe.
File Stem

snglicls
Base Class

SOMClass Class
Metaclass

SOMClass Class
Ancestor Classes

SOMClass Class

SOMObject Class
New Methods

sommGetSinglelnstance Method

Chapter 4. Metaclass Framework Classes 373

sommGetSinglelnstance Method

sommGetSinglelnstance Method

Gets the one instance of a specified class for which only a single instance can exist.

IDL Syntax
SOMObject sommGetSinglelnstance ();
Description

The sommGetSinglelnstance method gets a pointer to the one instance of a class for
which only a single instance can exist. A class can have only a single instance when its
metaclass is the SOMMSinglelnstance metaclass or is a subclass of it.

The first call to classNameNew in C, the new operator in C++, or the somNew method
creates the one possible instance of the class. Thereafter, any subsequent new calls return
the first (and only) instance. Using the sommGetSinglelnstance method offers an
advantage, however, in that the call site explicitly shows that something special is occurring

and that a new object is not necessarily being created. (That is, the

sommGetSinglelnstance method creates the single instance if it does not already exist.)

Parameters

receiver

A pointer to a class object whose metaclass is SOMMSinglelnstance.

ev

A pointer where the method can return exception information if an error is encountered.

Return Value

The sommGetSinglelnstance method returns a pointer to the single instance of the

specified class.

Example

Suppose the class XXX is an instance of SOMMSinglelnstance; then the following C code

fragment passes the assertions.

x1 XXXNew () ;
x2 XXXNew () ;
assert(x1 == x2);

x3 = sommGetSingleInstance(_somGetClass(x1), env);

assert(x2 == x3);

Note that the method sommGetSinglelnstance is invoked on the class object, because
sommGetSinglelnstance is a method introduced by the metaclass SOMMSinglelnstance.

Original Class
SOMMSinglelnstance Metaclass

374 Programmer’s Reference for SOM and DSOM

SOMMTraced Metaclass

SOMMTraced Metaclass

SOMMTraced is a metaclass that facilitates tracing of method invocations. Whenever a
method (inherited or introduced) is invoked on an instance (simple object) of a class whose
metaclass is SOMMTraced, a message prints to standard output giving the method
parameters; then, after completion, a second message prints giving the returned value.

There is one more step for using SOMMTraced: nothing prints unless the environment
variable SOMM_TRACED is set. If it is set to the empty string, all traced classes print. If
the environment variable SOMM_TRACED is not the empty string, it should be set to the
list of names of classes that should be traced. For example, for csh users, the following
command turns on printing of the trace for Collie and Chihuahua, but not for any other
traced class:

setenv SOMM _TRACED “Collie Chihuahua”
SOMMTraced is thread-safe.

File Stem

somtrcls

Base Class
SOMMBeforeAfter Metaclass

Ancestor Classes
SOMMBeforeAfter Metaclass
SOMClass Class
SOMObject Class

Attributes

boolean sommTracelsOn
This attribute indicates whether or not tracing is turned on for a class. This gives
dynamic control over the trace facility.

Overriding Methods
sommBeforeMethod Method
sommAfterMethod Method

Chapter 4. Metaclass Framework Classes 375

SOMMTraced Metaclass

376 Programmer’s Reference for SOM and DSOM

Index

A

activate_impl_failed method 305

add function to somVaBuf (va_list) 41
add_arg method 256
add_class_to_all method 217
add_class_to_impldef method 218
add_class_with_properties method 219
add_impldef method 221

add_item method 233

AttributeDef class 312

B

base_interfaces attribute 329

C

class,TypeDef 341
ConstantDef class 313
Contained class 314

Container class 320

contents method 321

contexts attribute 333

create_list method 245
create_operation_list method 246
create_request method 276
create_request_args method 278
create_SOM_ref method 306

D

defined_in attribute 314
delete_impldef method 222
describe method 316
describe_contents method 323
describe_interface method 330
destroy method (Request object) 258
DSOM Framework
ImplRepository class 215
add_class_to_all method 217
add_class_to_impldef method 218

add_class_with_properties method 219

add_impldef method 221
delete_impldef method 222

find_all_aliases method 223
find_all_impldefs method 224
find_classes_by impldef method 225
find_impldef method 226
find_impldef by alias method 227
find_impldef by class method 228
remove_class_from_all method 229
remove_class_from_impldef method 230
update_impldef method 231
NVList class 232
add_item method 233
free method 235
free_memory method 236
get_count method 238
get_item method 239
set_item method 241
ObjectMgr class 243
ORB class 244
create_list method 245
create_operation_list method 246
get_default_context method 247
list_initial_services method 248
object_to_string method 249
resolve_initial_references method 251
string_to_object method 253
Principal class 254
hostName attribute 254
userName attribute 254
Request class 255
add_arg method 256
destroy method (Request object) 258
get_response method 260
invoke method 262
send method 264
SOMDClientProxy class 266
somdProxyGetClass method 269
somdProxyGetClassName method 270
somdReleaseResources method 271
somdTargetFree method 272
somdTargetGetClass method 273

Index 377

somdTargetGetClassName method
SOMDObject class 275
create_request method 276
create_request_args method 278
duplicate method 280
get_implementation method 281
get_interface method 282
is_nil method 283
is_proxy method 284
is_ SOM_ref method 285
release method 286
SOMDObjectMgr class 287
somd21somFree attribute 287
SOMDServer class 288
somdCreateFactory method 289
somdDispatchMethod method 291

somdObjReferencesCached method 293

somdRefFromSOMODbj method 294
somdSOMODbjFromRef method 296
SOMDServerMgr class 298
somdListServer method 299
somdRestartServer method 300
somdShutdownServer method 301
somdStartServer method 302
SOMOA class 303
activate_impl_failed method 305
create_ SOM_ref method 306
execute_next_request method 307
execute_request_loop method 308
get_ SOM_object method 309
duplicate method 280

E

ExceptionDef class 327
execute_next_request method 307
execute_request_loop method 308

F

find_all_aliases method 223
find_all_impldefs method 224
find_classes_by impldef method 225
find_impldef method 226
find_impldef_by alias method 227
find_impldef_by class method 228
free method 235

free_memory method 236
functions, TypeCode 341

378 Programmer’s Reference for SOM and DSOM

274

G

get target value (va_list) 39
get_count method 238
get_default_context method 247
get_implementation method 281
get_interface method 282
get_item method 239
get_response method 260
get_ SOM_object method 309

H

hostName attribute 254

|
id attribute 314
ImplRepository class 215
initialize va_buf (va_list) 42
initialize va_list from somVaBuf 45
instanceData attribute 329
Interface Repository Framework
AttributeDef class 312
mode attribute 312
type attribute 312
ConstantDef class 313
type attribute 313
value attribute 313
Contained class 314
defined_in attribute 314
describe method 316
id attribute 314
name attribute 314
somModifiers attribute 314
within method 318
Container class 320
contents method 321
describe_contents method 323
lookup_name method 325
ExceptionDef class 327
type attribute 327
InterfaceDef class 328
base_interfaces attribute 329
instanceData attribute 329
ModuleDef class 331
OperationDef class 332
contexts attribute 333
mode attribute 332
result attribute 332

ParameterDef class 334
mode attribute 334
type attribute 334
Repository class 335
lookup_id method 336
lookup_modifier method 338
release_cache method 340
TypeCode_alignment function 345
TypeCode_copy function 346
TypeCode_equal function 347
TypeCode_free function 348
TypeCode_kind function 349
TypeCode_param_count function 352
TypeCode_parameter function 353
TypeCode_print function 355
TypeCode_setAlignment function 356
TypeCode_size function 357
TypeCodeNew function 342
TypeDef class 341
type attribute 341
InterfaceDef class 328
invoke method 262
is_nil method 283
is_proxy method 284
is_SOM_ref method 285

L

list_initial_services method 248
lookup_id method 336
lookup_modifier method 338
lookup_name method 325

M

Metaclass Framework
SOMMBeforeAfter metaclass 360
sommAfterMethod method 361
sommBeforeMethod method 363
SOMMProxyFor metaclass 365
sommMakeProxyClass method 366
SOMMProxyForObject class 368
sommProxyDispatch method 371
SOMMSinglelnstance metaclass 373
sommGetSinglelnstance method 374
SOMMTraced metaclass 375
sommTracelsOn attribute 375
mode attribute 312, 332, 334
ModuleDef class 331

N

name attribute 314

Numerics’0,
NVList class 232

O

object_to_string method 249
ObjectMgr class 243
OperationDef class 332
ORB class 244

P

ParameterDef class 334
Principal class 254

R

release method 286

release_cache method 340
remove_class_from_all method 229
remove_class_from_impldef method 230
Repository class 335

Request class 255
resolve_initial_references method 251
result attribute 332

S

send method 264

set target value (va_list) 40

set_item method 241

SOM kernel

Functions

somBeginPersistentlds function 4
somBuildClass function 5
SOMCalloc function 47
somCheckld function 6
SOMClasslInitFuncName function 48
somClassResolve function 7
somComparelds function 9
somDataResolve functions 10to 11
somDataResolveChk function 10to 11
SOMDeleteModule function 49
somEndPersistentlds function 12
somEnvironmentNew function 13
SOMError function 50
somExceptionFree function 14
somExceptionld function 15
somExceptionValue function 16

Index 379

SOMFree function 51
somGetGlobalEnvironment function 17
somldFromString function 18
SOMInitModule function 52
somlsObj function 19
SOMLoadModule function 53
somLPrintf function 20
somMainProgram function 21
SOMMalloc function 54
SOMOutCharRoutine function 55
somParentNumResolve function 22
somParentResolve function 24
somPrefixLevel function 25
somPrintf function 26
SOMRealloc function 56
somRegisterld function 27
somResolve function 28
somResolveByName function 30
somSetException function 32
somSetExpectedlds function 34
somSetOutChar function 35
somsStringFromld function 36
somTotalReglds function 37
somUniqueKey function 38
somVaBuf_add function 41
somVaBuf_create function 42
somVaBuf_destroy function 44
somVaBuf_get valist function 45
somvalistGetTarget function 39
somvalistSetTarget function 40
somVprintf function 46

Macros

SOM_Assert macro 57

SOM_CreateLocalEnvironment macro 58
SOM_DestroyLocalEnvironment macro 59

SOM_Error macro 60
SOM_Expect macro 61
SOM_GetClass macro 62
SOM_ InitEnvironment macro 63
SOM_NoTrace macro 64
SOM_ParentNumResolve macro 65
SOM_Resolve macro 66
SOM_ResolveNoCheck macro 67
SOM_SubstituteClass macro 68
SOM_Test macro 69
SOM_TestC macro 70

380 Programmer’s Reference for SOM and DSOM

SOM_UninitEnvironment macro 71
SOM_WarnMsg macro 72

SOMClass class 73

somAddDynamicMethod method 77
somAllocate method 79
somCheckVersion method 80
somClassReady method 82
somDeallocate method 83
somDefineMethod method 84
somDescendedFrom method 85
somFindMethod methods 86
somFindSMethod(OK) methods 89
somGetlnstancePartSize method 90
somGetlnstanceSize method 91
somGetinstanceToken method 92
somGetMemberToken method 93
somGetMethodData method 94
somGetMethodDescriptor method 95
somGetMethodIindex method 96
somGetMethodToken method 97
somGetName method 98
somGetNthMethodData method 100
somGetNthMethodIinfo 101
somGetNumMethods method 102
somGetNumStaticMethods method 103
somGetParents methods 104
somGetVersionNumbers method 105
somlinstanceDataOffsets attribute 74
somLookupMethod method 106
somNew(Nolnit) methods 108
somRenew methods 109
somSupportsMethod method 111

SOMClassMgr class 112

somClassFromld method 114
somFindClass method 115
somFindClsInFile method 117
somGetlnitFunction method 119
somGetRelatedClasses method 120
sominterfaceRepository attribute 112
somLoadClassFile method 122
somLocateClassFile method 124
somMergelnto method 125
somRegisterClass method 127to 128
somRegisteredClasses attribute 113
somSubstituteClass method 129
somUnloadClassFile method 131

somUnregisterClass method 132
SOMObiject class

somCastObj method 136

somClassDispatch method 148

somDefaultAssign method 137

somDefaultConstAssign method 139
somDefaultConstCopylnit method 140

somDefaultCopylnit method 142
somDefaultlnit method 144
somDestruct method 146
somDispatch method 148
somDumpSelf method 151
somDumpSelfint method 152
somFree method 154
somGetClass method 155
somGetSize method 157
somiIsA method 158
somlisinstanceOf method 160
SOMObject class 134
somPrintSelf method 162
somResetObj method 163
somRespondsTo method 164
SOM_Assert macro 57
SOM_CreateLocalEnvironment macro 58
SOM_DestroyLocalEnvironment macro 59
SOM_Error macro 60
SOM_Expect macro 61
SOM_GetClass macro 62
SOM _InitEnvironment macro 63
SOM_NoTrace macro 64
SOM_ParentNumResolve macro 65
SOM_Resolve macro 66
SOM_ResolveNoCheck macro 67
SOM_SubstituteClass macro 68
SOM_Test macro 69
SOM_TestC macro 70
SOM_UninitEnvironment macro 71
SOM_WarnMsg macro 72
somAddDynamicMethod method 77
somAllocate method 79
somApply Function 2
somBeginPersistentlds function 4
somBuildClass function 5
SOMCalloc function 47
somCastObj method 136
somCheckld function 6

somCheckVersion method 80
SOMClass class 73
somClassDispatch method 148
somClassFromld method 114
SOMClassInitFuncName function 48
SOMClassMgr class 112
somClassReady method 82
somClassResolve function 7
somComparelds function 9
somd21somFree attribute 287
somDataResolve function 10to 11
somDataResolveChk function 10to 11
SOMDClientProxy class 266
somdCreateFactory method 289
somdDispatchMethod method 291
somDeallocate method 83
somDefaultAssign method 137
somDefaultConstAssign method 139
somDefaultConstCopylnit method 140
somDefaultCopylInit method 142
somDefaultinit method 144
somDefineMethod method 84
SOMDeleteModule function 49
somDescendedFrom method 85
somDestruct method 146
somDispatch method 148
somdListServer method 299
SOMDObject class 275
SOMDObjectMgr class 287
somdObjReferencesCached method 293
somdProxyGetClass method 269
somdProxyGetClassName method 270
somdRefFromSOMObj method 294
somdReleaseResources method 271
somdRestartServer method 300
SOMDServer class 288
SOMDServerMgr class 298
somdShutdownServer method 301
somdSOMObjFromRef method 296
somdsStartServer method 302
somdTargetFree method 272
somdTargetGetClass method 273
somdTargetGetClassName method 274
somDumpSelf method 151
somDumpSelfint method 152
somEndPersistentlds function 12

Index 381

somEnvironmentNew function 13
SOMError function 50
somExceptionFree function 14
somExceptionld function 15
somExceptionValue function 16
somFindClass method 115
somFindClsInFile method 117
somFindMethod method 86
somFindMethodOK method 86
somFindSMethod(OK) methods 89
SOMFree function 51

somFree method 154
somGetClass method 155
somGetGlobalEnvironment function 17
somGetlnitFunction method 119
somGetlnstancePartSize method 90
somGetlnstanceSize method 91
somGetlnstanceToken method 92
somGetMemberToken method 93
somGetMethodData method 94
somGetMethodDescriptor method 95
somGetMethodIindex method 96
somGetMethodToken method 97
somGetName method 98
somGetNthMethodData method 100
somGetNthMethodIinfo method 101
somGetNumMethods method 102
somGetNumStaticMethods method 103
somGetParents methods 104
somGetRelatedClasses method 120
somGetSize method 157
somGetVersionNumbers method 105
somldFromString function 18
SOMInitModule function 52
somlnstanceDataOffsets attribute 74
sominterfaceRepository attribute 112
somlIsA method 158
somlsinstanceOf method 160
somlsObj function 19
somLoadClassFile method 122
SOMLoadModule function 53
somlLocateClassFile method 124
somLookupMethod method 106
somLPrintf function 20
sommAfterMethod method 361
somMainProgram function 21

382 Programmer’s Reference for SOM and DSOM

SOMMalloc function 54
SOMMBeforeAfter metaclass 360
sommBeforeMethod method 363
somMergelnto method 125
sommGetSinglelnstance method 374
sommMakeProxyClass method 366
somModifiers attribute 314
sommProxyDispatch method 371
SOMMProxyFor metaclass 365
SOMMProxyForObject class 368
SOMMSinglelnstance metaclass 373
SOMMTraced metaclass 375
sommTracelsOn attribute 375
somNew method 108
somNew(Nolnit) methods 108
somNewNolnit method 108
SOMOA class 303

SOMObject class 134
SOMOutCharRoutine function 55
somParentNumResolve function 22
somParentResolve function 24
somPrefixLevel function 25
somPrintf function 26
somPrintSelf method 162
SOMRealloc function 56
somRegisterClass method 127to 128
somRegisteredClasses attribute 113
somRegjisterld function 27
somRenew method 109
somRenewNolnit method 109
somRenewNolnitNoZero method 109
somRenewNoZero method 109
somReset Obj method 163
somResolve function 28
somResolveByName function 30
somRespondsTo method 164
somSetException function 32
somSetExpectedlds function 34
somSetOutChar function 35
somsStringFromld function 36
somSubstituteClass method 129
somSupportsMethod method 111
somTotalReglds function 37
somUniqueKey function 38
somUnloadClassFile method 131
somUnregisterClass method 132

somVaBuf_add function 41
somVaBuf_create function 42
somVaBuf_destroy function 44
somVaBuf_get valist function 45
somvalistGetTarget function 39
somvalistSetTarget function 40
somVprintf function 46
string_to_object method 253

T

Tracing methods 375

type attribute 312to 313, 327, 334, 341
TypeCode functions 341
TypeCode_alignment function 345
TypeCode_copy function 346
TypeCode_equal function 347
TypeCode_free function 348
TypeCode_kind function 349
TypeCode_param_count function 352
TypeCode_parameter function 353
TypeCode_print function 355
TypeCode_setAlignment function 356
TypeCode_size function 357
TypeCodeNew function 342
TypeDef class 341

U

update_impldef method 231
userName attribute 254

V

va_buf cleanup (va_list) 44

value attribute 313

Variable argument list
somVaBuf_add 41
somVaBuf _destroy 44
somVaBuf_get valist 45
somvalistGetTarget 39
somvalistSetTarget 40

W
within method 318

Index 383

Printed in U.S.A.

