
newLISP
™

For BSDs, Linux, Mac OS X, Solaris and Win32

Users Manual and Reference v.9.1

Copyright © 2007 Lutz Mueller. www.nuevatec.com. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

The accompanying software is protected by the GNU General Public License V.2, June 1991.

newLISP is a trademark of Lutz Mueller.

http://www.nuevatec.com/
file:///Users/lutz/newlisp/doc/newlisp_manual-8600.doc#GNUGPL
file:///Users/lutz/newlisp/doc/newlisp_manual-8600.doc#GNUFDL

newLISP Users Manual and Reference

2

newLISP Users Manual and Reference

Contents

Contents...3

newLISP Users Manual..15

1. Introduction...15
newLISP-tk ...16
Licensing ..16

2. Deprecated functions and future changes ..16

3. Command-line options and directories ..17
Stack size ..17
Maximum memory usage ...17
Specifiying the working directory ..17
Suppressing the prompt and HTTP processing ...18
HTTP-only server mode ...18
Forcing prompts in pipe I/O mode...19
newLISP as a TCP/IP server ..19
TCP/IP daemon mode ...20
inetd daemon mode..20
Direct execution mode ...22
Logging I/O...22
Command line help summary ...22
The initialization file init.lsp ..23
Directories on Linux, BSD, and Mac OS X ..23
Directories on Win32/newLISP-tk ..23

4. Shared library module for Linux/BSD versions ..24

5. DLL module for Win32 versions ..25

6. Evaluating newLISP expressions ...25
Integer data, floating point data, and operators ...26
Evaluation rules and data types ...27

7. Lambda expressions in newLISP ...30

8. nil, true, cons, and () ..31

9. Arrays ...32

10. Dictionaries (hash tables) ..33

11. Indexing elements of strings, lists, and arrays ...34
Implicit indexing for nth ..34
Implicit indexing and the default functor ...35
Implicit indexing for rest and slice ..35
Implicit indexing for nth-set and set-nth...36

Contents 3

newLISP Users Manual and Reference

12. Destructive versus nondestructive functions ...36

13. Dynamic and lexical scoping ..37

14. Early return from functions, loops, and blocks ...38
Using catch and throw ...38
Using and and or ..39

15. Contexts ..40
Scoping rules for contexts ...40
Changing scoping ...43
Symbol protection ..43
Overwriting global symbols and built-ins ...43
Variables containing contexts ...44
Sequence of creating or loading contexts ..44
Symbol creation in contexts ..45

16. Programming with context objects ..46
Late binding of context symbols ..46
The context default function ..47
Passing objects by reference ..48
Contexts as prototypes ..50
Lexical and static scoping in newLISP ..50
Serializing context objects ..51

17. XML, S-XML, and XML-RPC ...52

18. Customization, localization, and UTF-8 ..54
Switching the locale ...55
Decimal point and decimal comma ...55
Unicode and UTF-8 encoding ...56

19. Commas in parameter lists ...58

20. Linking newLISP source and executable ...58

newLISP Function Reference..61

1. Syntax of symbol variables and numbers..61
Symbols for variable names..61
Numbers...62

2. Data types and names in the reference...63
bool...63
int..63
num...63
matrix..64
str..64
sym..65
context..65
sym-context..65
func...65
list..65
array..66
exp...66

Contents 4

newLISP Users Manual and Reference

body..66
3. Functions in groups..66

List processing, flow control, and integer arithmetic..66
Bit operators...68
Floating point math and special functions...69
Matrix functions...70
Array functions...70
Financial math functions..71
Simulation and modeling math functions..71
Time and date functions..71
String and conversion functions...71
Input/output and file operations..73
Processes, pipes and threads..73
File and directory management..74
Predicates..74
System functions...75
HTTP networking API..75
Socket TCP/IP and UDP network API..76
Importing libraries..76
newLISP internals API..77

Functions in alphabetical order...79

!..79

$...79

+, -, *, / ,%...80

<, >, =, <=, >=, !=..81

<<, >>...82

&..82

|...83

^..83

~..83

abs...83

acos..84

acosh...84

add...84

address..85

amb..85

and...85

append...86

append-file..87

apply..87

Contents 5

newLISP Users Manual and Reference

args..88

array..89

array-list..91

array?...91

asin..92

asinh..92

assoc..92

atan..93

atan2..93

atanh..93

atom?...93

base64-dec..94

base64-enc..94

bayes-query...95
R.A. Fisher Chi² method..96
Chain Bayesian method..97
Specifying probabilities instead of counts..97

bayes-train..98

begin..99

beta..100

betai...100

binomial...101

callback ...101

case..102

catch..102

ceil...103

change-dir...104

char..104

chop...104

clean...105

close...106

command-line...106

cond...106

cons..107

constant...107

context...108

context?..111

copy-file..111

Contents 6

newLISP Users Manual and Reference

cos...111

cosh..112

count..112

cpymem..112

crc32...113

crit-chi2..114

crit-z...114

current-line..114

curry...115

date...115

date-value..118

debug..118

dec..119

define..119

define-macro...120

def-new..122

default..123

delete...124

delete-file...124

det..125

device...125

delete-url...125

difference...126

directory..126

directory?...127

div..128

doargs..128

dolist..129

dotimes..129

dotree...130

do-until..130

do-while...131

dump..131

dup...132

empty?...133

encrypt...133

ends-with...133

Contents 7

newLISP Users Manual and Reference

env...134

erf...135

error-event...135

error-number...136

error-text...136

eval...136

eval-string..137

exec..138

exit...138

exists..139

exp...139

expand...139

explode...141

factor..142

fft..143

file-info..143

file?..144

filter...144

find...145
Find an expressions in a list...145
Find a string in a string..145

find-all...147

first...147

flat..148

fn..148

float..149

float?..149

floor...150

flt..150

for..150

for-all..151

fork...152

format..153

fv..155

gammai..155

gammaln..156

gcd..156

get-char..157

Contents 8

newLISP Users Manual and Reference

get-float..157

get-int..158

get-long..158

get-string..159

get-url..160

global..161

if...162

ifft..163

import..163

inc..165

index..166

int...166

integer?..167

intersect...167

invert...168

irr...168

join...169

lambda...169

lambda-macro...170

lambda?...170

last...170

legal?..170

length..171

let..171

letex..172

letn...173

list..174

list?...174

load..174

local..175

log...175

lookup..176

lower-case..176

macro?..177

main-args...177

make-dir..178

map..178

Contents 9

newLISP Users Manual and Reference

mat...179

match...180

max...181

member..182

min...182

mod..182

mul...183

multiply...183

name..184

NaN?..184

net-accept..185

net-close..185

net-connect..185
UDP communications...186
UDP multicast communications...186
UDP broadcast communications..187

net-error..188

net-eval..188
Raw mode..191

net-listen..192
UDP communications...192
UDP multicast communications...193

net-local...194

net-lookup...194

net-peek...194

net-peer..195

net-ping..195

net-receive...196

net-receive-from..197

net-receive-udp...198

net-select...199

net-send..200

net-send-to...200

net-send-udp...201

net-service...202

net-sessions...202

new..202

nil?...203

not...204

Contents 10

newLISP Users Manual and Reference

normal...204

now..205

null?..206

nper...206

npv..206

nth...207

nth-set...209

number?...211

open..211

or..212

ostype...212

pack..213

parse..214

parse-date..215

peek..216

pipe..216

pmt...217

pop...217

post-url..218
Additional parameters..219

pow..219

pretty-print...220

primitive?..220

print..220

println..221

prob-chi2...221

prob-z..222

process...222

push...224

put-url...225
Additional parameters..227

pv...227

quote..227

quote?..227

rand...228

random..228

randomize...229

read-buffer..229

Contents 11

newLISP Users Manual and Reference

read-char...230

read-file...230

read-key...231

read-line...231

real-path..232

ref..232

ref-all...233

regex..234

remove-dir...236

rename-file..237

replace...237
List replacement...237
List removal..238
String replacement without regular expression..238
Regular expression replacement..239

replace-assoc...240

reset...241

rest...241

reverse...242

rotate...242

round...243

save..243

search..244

seed..245

seek..245

select..246

semaphore...247

sequence..249

series...249

set..249

setq..250

set-locale..251

set-nth...252

sgn...252

share..253

signal...255

silent..256

sin..257

Contents 12

newLISP Users Manual and Reference

sinh..257

sleep...257

slice..258

sort..258

source..259

sqrt..260

starts-with...260

string..261

string?..261

sub...261

swap...262

sym..262

symbol?...264

symbols...264

sys-error..265

sys-info..265

tan...266

tanh...266

throw...266

throw-error..267

time..267

time-of-day..268

timer..268

title-case..269

trace...270

trace-highlight...271

transpose..271

trim..272

true?...272

unicode..273

unify...273

unique..276

unless...276

unpack...277

until...278

upper-case...278

utf8..279

Contents 13

newLISP Users Manual and Reference

utf8len...279

uuid..279

wait-pid...280

while..281

write-buffer..281

write-char..282

write-file..282

write-line...283

xml-error...284

xml-parse..284

xml-type-tags..287

zero?..288

newLISP APPENDIX...289

Error codes..289

TCP/IP and UDP Error Codes..290

GNU Free Documentation License...291

GNU GENERAL PUBLIC LICENSE...297

(∂)

Contents 14

newLISP Users Manual and Reference

newLISP Users Manual

1. Introduction

newLISP focuses on the core components of LISP: lists, symbols, and lambda expressions.
To these, newLISP adds arrays, implicit indexing on lists and arrays, and dynamic and
lexical scoping. Lexical scoping is implemented using separate namespaces called contexts.

The result is an easier-to-learn LISP that is even smaller than most Scheme implementations,
but which still has about 350 built-in functions. Approximately 200k in size, newLISP is built
for high portability using only the most common UNIX system C-libraries. It loads quickly
and has a small memory footprint. newLISP is as fast or faster than other popular scripting
languages and uses very few resources.

newLISP is dynamically scoped inside lexically separated contexts (namespaces). Contexts
can be used to create isolated protected expansion packages and to write prototype-based
object-oriented programs.

Both built-in and user-defined functions, along with variables, share the same namespace
and are manipulated by the same functions. Lambda expressions and user-defined functions
can be handled like any other list expression.

Contexts in newLISP facilitate the development of larger applications comprising
independently developed modules with their own separate namespaces. They can be copied,
dynamically assigned to variables, and passed by reference to functions as arguments. In this
way, contexts can serve as dynamically created objects packaging symbols and methods.
Lexical separation of namespaces also enables the definition of statically scoped functions.

newLISP's efficient red-black tree implementation can handle millions of symbols without
degrading performance. Contexts can hold symbol-value pairs, allowing them to be used as
hash-tables. Functions are also available to iteratively access symbols inside contexts.

newLISP allocates and reclaims memory automatically, without using traditional
asynchronous garbage collection (except under error conditions). All objects — except for
contexts, built-in primitives, and symbols — are passed by value and are referenced only
once. When objects are no longer referenced, their memory is automatically deallocated. This
results in predictable processing times, without the pauses found in traditional garbage
collection. newLISP's unique automatic memory management makes it the fastest interactive
LISP available.

Many of newLISP's built-in functions are polymorphic and accept a variety of data types and
optional parameters. This greatly reduces the number of functions and syntactic forms it is
necessary to learn and implement. High-level functions are available for distributed
computing, financial math, statistics, and AI.

newLISP has functions to modify, insert, or delete elements inside complex nested lists or
multidimensional array structures.

Since strings can contain null characters in newLISP, they can be used to process binary data.

1. Introduction 15

newLISP Users Manual and Reference

newLISP can also be extended with a shared library interface to import functions that access
data in foreign binary data structures. The distribution contains a module for importing
popular database APIs.

newLISP's HTTP, TCP/IP, and UDP socket interfaces make it easy to write distributed
networked applications. Its built-in XML interface, along with its text-processing features —
Perl Compatible Regular Expressions (PCRE) and text-parsing functions — make newLISP a
useful tool for CGI processing. The source distribution includes examples of HTML forms
processing. newLISP can be run a as a CGI capable web server using its built-in http mode
option.

The source distribution can be compiled for Linux, BSDs, Mac OS X/Darwin, Solaris, and
Win32. On 64-bit Linux, SUN Solaris and True64Unix newLISP can be compiled as a 64-bit
LP64 application for full 64-bit memory addressing.

newLISP-tk

newLISP-tk is a graphical user interface (GUI) front-end for newLISP written in Tcl/Tk. With
newLISP-tk, applications can be built based on the host operating system's native GUI.
Third-party interfaces to the GTK libraries and OpenGL graphics library are also available.

Because newLISP and Tcl/Tk are available for most operating systems, newLISP-tk is a
platform-independent solution for writing GUI applications in LISP.

For more information on newLISP-tk, see newlisp-tk.html.

Licensing

newLISP and newLISP-tk are licensed under version 2 of the GPL (General Public License).
Both the newLISP and the newLISP-tk manuals are licensed under the GNU Free
Documentation License. If this license is unsuitable for your application, please contact
http://nuevatec.com for special arrangements.

(§)

2. Deprecated functions and future changes

old
function

new function

integer Use the shorter int. The longer integer will be eliminated.

newlisp -x The -x server mode has been eliminated. Use other server modes like -p,
-d, -c and -http. HTTP mode for serving HTML pages, images and for
doing CGI processing is built into newLISP using the -c and -http

2. Deprecated functions and future changes 16

http://nuevatec.com/
http://newlisp.org/download/newlisp-tk.html

newLISP Users Manual and Reference

command line options.

symbol Use the shorter sym. The longer symbol has been eliminated.

(§)

3. Command-line options and directories

When starting newLISP from the command line, it looks for the initialization file init.lsp
and loads it if present. In this way, one or more options and newLISP source files can be
specified at startup. The options and source files are executed in the order listed in
init.lsp. For options such as -p and -d, it makes sense to load source files first; other
options, like -m and -s, should be specified before the source files. The -e switch is used to
evaluate the program text and then exit; otherwise, evaluation continues interactively (unless
an exit occurs while the files are loading).

Stack size

newlisp -s 4000
newlisp -s 100000 aprog bprog
newlisp -s 6000 myprog

The above examples show starting newLISP with different stack sizes using the -s option, as
well as loading one or more newLISP source files. When no stack size is specified, the stack
defaults to 2048.

Maximum memory usage

newlisp -m 128

This example limits LISP cell memory to 128 megabytes. In 32-bit newLISP, each LISP cell
consumes 16 bytes, so the argument 128 would represent a maximum of 8,388,608 LISP
cells. This information is returned by sys-info as the list's second element. Although LISP cell
memory is not the only memory consumed by newLISP, it is a good estimate of overall
memory usage.

Specifiying the working directory

The -w option specifies the initial working directory for newLISP after startup:

Specifiying the working directory 17

newLISP Users Manual and Reference

newlisp -w /usr/home/newlisp

All file requests without a directory path will now be directed to the path specified with the
-w option.

Suppressing the prompt and HTTP processing

The command-line prompt and initial copyright banner can be suppressed:

newlisp -c

Listen and connection messages are suppressed if logging is not enabled. The -c option is
useful when controlling newLISP from other programs; it is mandatory when setting it up as
a net-eval server.

The -c option also enables newLISP server nodes to answer HTTP GET, PUT, and DELETE
requests, as well as perform CGI processing. Using the -c option, together with the -w and
-d options, newLISP can serve as a standalone httpd webserver:

newlisp -c -d 8080 -w /usr/home/www

When running newLISP as a inetd or xinetd enabled server on UNIX machines, use:

newlisp -c -w /usr/home/www

In -c mode, newLISP processes command-line requests as well as HTTP and net-eval
requests. Running newLISP in this mode is only recommended on a machine behind a
firewall. This mode should not be run on machines open and accessible through the Internet.
To suppress the processing of net-eval and command-line–like requests, use the safer -http
option.

HTTP-only server mode

newLISP can be limited to HTTP processing using the -http option. With this mode, a
secure httpd web server daemon can be configured:

newlisp -http -d 8080 -w /usr/home/www

When running newLISP as an inetd or xinetd-enabled server on UNIX machines, use:

newlisp -http -w /usr/home/www

To further enhance security and HTTP processing, load a program during startup when using
this mode:

newlisp http-conf.lsp -http -w /usr/home/www

HTTP-only server mode 18

file:///Users/lutz/newlisp/doc/net-eval
file:///Users/lutz/newlisp/doc/net-eval

newLISP Users Manual and Reference

Defining a function named httpd-conf in a source file called httpd-conf.lsp can be
used to customize HTTP request processing. The source distribution contains an example
httpd-conf.lsp file. This file shows how to configure redirects and filter unauthorized
requests.

In the HTTP modes enabled by either -c or -http, the following file types are recognized,
and a correctly formatted Content-Type: header is sent back:

file extension media type

.jpg image/jpg

.pgn image/png

.gif image/gif

.pdf application/pdf

.mp3 image/mpeg

.mov image/quicktime

.mpg image/mpeg

any other text/html

Forcing prompts in pipe I/O mode

A capital C forces prompts when running newLISP in pipe I/O mode inside the Emacs editor:

newlisp -C

To suppress return values from evaluations, use silent.

newLISP as a TCP/IP server

newlisp some.lsp -p 9090

This example shows how newLISP can listen for commands on a TCP/IP socket connection.
In this case, standard I/O is redirected to the port specified with the -p option. some.lsp is
an optional file loaded during startup, before listening for a connection begins.

The -p option is also used to control newLISP from another application, such as a newLISP
GUI front-end or a program written in another language.

A telnet application can be used to test running newLISP as a server. First enter:

newlisp -p 4711 &

The & indicates to a UNIX shell to run the process in the background. Now connect with a
telnet application:

newLISP as a TCP/IP server 19

newLISP Users Manual and Reference

telnet localhost 4711

If connected, the newLISP sign-on banner and prompt appear. Instead of 4711, any other
port number could be used.

When the client application closes the connection, newLISP will exit, too.

TCP/IP daemon mode

When the connection to the client is closed in -p mode, newLISP exits. To avoid this, use the
-d option instead of the -p option:

newlisp -d 4711 &

This works like the -p option, but newLISP does not exit after a connection closes. Instead, it
stays in memory, listening for a new connection and preserving its state. An exit issued from
a client application closes the network connection, and the newLISP daemon remains
resident, waiting for a new connection. Any port number could be used in place of 4711.

When running in -p or -d mode, the opening and closing tags [cmd] and [/cmd] must be
used to enclose multiline statements. They must each appear on separate lines. This makes it
possible to transfer larger portions of code from controlling applications. This technique is
used in newLISP-tk, a Tcl/Tk front-end to newLISP. It can also be used in the newLISP shell
console.

The following variant of the -d mode is frequently used in a distributed computing
environment, together with net-eval on the client side:

newlisp -c -d 4711 &

The -c spec suppresses prompts, making this mode suitable for receiving requests from the
net-eval function.

newLISP server nodes running on UNIX like operating systems, will also answer HTTP GET,
PUT and DELETE requests. This can be used to retrieve and store files with get-url, put-url,
delet-url, read-file, write-file and append-file, or to load and save programs using load and
save from and to remote server nodes. See the chapters for the -c and -http options for
more details.

inetd daemon mode

The inetd server running on virtually all Linux/UNIX OSes can function as a proxy for
newLISP. The server accepts TCP/IP or UDP connections and passes on requests via
standard I/O to newLISP. inetd starts a newLISP process for each client connection. When
a client disconnects, the connection is closed and the newLISP process exits.

inetd daemon mode 20

newLISP Users Manual and Reference

inetd and newLISP together can handle multiple connections efficiently because of
newLISP's small memory footprint, fast executable, and short program load times. When
working with net-eval, this mode is preferred for efficiently handling multiple requests in a
distributed computing environment.

Two files must be configured: services and inetd.conf. Both are ASCII-editable and can
usually be found at /etc/services and /etc/inetd.conf.

Put one of the following lines into inetd.conf:

net-eval stream tcp nowait root /usr/bin/newlisp -c

as an alternative, a program can also be preloaded

net-eval stream tcp nowait root /usr/bin/newlisp -c
myprog.lsp

Instead of root, another user and optional group can be specified. For details, see the UNIX
man page for inetd.

The following line is put into the services file:

net-eval 4711/tcp # newLISP net-eval requests

On Mac OS X and some UNIX systems, xinetd can be used instead of inetd. Save the
following to a file named net-eval in the /etc/xinetd.d/ directory:

service net-eval
{
 socket_type = stream
 wait = no
 user = root
 server = /usr/bin/newlisp
 port = 4711
 server_args = -c
 only_from = localhost
}

For security reasons, root should be changed to a different user. The only_from spec can
be left out to permit remote access.

See the man pages for xinetd and xinetd.conf for other configuration options.

After configuring the daemon, inetd or xinetd must be restarted to allow the new or
changed configuration files to be read:

kill -HUP <pid>

Replace <pid> with the process ID of the running xinetd process.

A number or network protocol other than 4711 or TCP can be specified.

newLISP handles everything as if the input were being entered on a newLISP command line
without a prompt. To test the inetd setup, the telnet program can be used:

telnet localhost 4711

inetd daemon mode 21

newLISP Users Manual and Reference

newLISP expressions can now be entered, and inetd will automatically handle the startup
and communications of a newLISP process. Multiline expressions can be entered by
bracketing them with [cmd] and [/cmd] tags, each on separate lines.

newLISP server nodes running on UNIX like operating systems, will also answer simple
HTTP GET and PUT requests. This can be used to retrieve and store files with get-url, put-url,
read-file, write-file and append-file, or to load and save programs using load and save from
and to remote server nodes. On Win32 newLISP server nodes do not answer HTTP requests.

Direct execution mode

Small pieces of newLISP code can be executed directly from the command line:

newlisp -e "(+ 3 4)" 7⇒

The expression enclosed in quotation marks is evaluated, and the result is printed to
standard out (STDOUT). In most UNIX system shells, single quotes can also be used as
command-line delimiters. Note that there is a space between -e and the quoted command
string.

Logging I/O

In any mode newLISP can write a log when started with the -l or -L option. Depending on
the mode newLISP is running, different output is written to the logfile. Both options always
must specify the path of a log-file. The path may be a relative path and can be either attached
or detached to the -l or -L option.

newlisp -l./logfile.txt -c

newlisp -L /usr/home/www/log.txt -http -w /usr/home/www/htpdocs

logging
mode

command line and net-eval with
-c HTTP server with -http

newlisp -l log only input and network connections log only net-work connections
newlisp -L log also newLISP output (w/o prompts) log also HTTP requests

All logging output is written to the file specified after the -l or -L option.

Command line help summary

The -h command-line switch prints a copyright notice and summary of options:

Command line help summary 22

newLISP Users Manual and Reference

newlisp -h

On Linux and other UNIX systems, a newlisp man page can be found:

man newlisp

This will display a man page in the Linux/UNIX shell.

The initialization file init.lsp

On Linux, BSDs, Mac OS X, and Cygwin, the initialization file is installed and expected in
/usr/share/newlisp/init.lsp. newLISP compiled with MinGW or Borland BCC looks
for init.lsp in the same directory where newlisp.exe is installed. Along with any files
specified on the command line, init.lsp is loaded before the banner and prompt are
shown. When newLISP is executed or launched by a program or process other than a shell,
the banner and prompt are not shown, and newLISP communicates by standard I/O.
init.lsp, however, is still loaded and evaluated if present.

While newLISP does not require init.lsp to run, it is convenient for defining functions
and systemwide variables. init.lsp is not included in the newLISP-tk distribution, but it
can be found in the source distribution.

The last part of init.lsp contains OS-specific code, which loads a second .init.lsp
(starting with a dot). On Linux/UNIX, this file is expected in the directory specified by the
HOME environment variable. On Win32, this file is expected in the directory specified by the
USERPROFILE or DOCUMENT_ROOT environment variable.

Directories on Linux, BSD, and Mac OS X

The directory /usr/share/newlisp/ contains modules with useful functions for a variety
of tasks, such as database management with MySQL, procedures for statistics, POP3 mail,
etc. The directory /usr/share/doc/newlisp/ contains documentation in HTML format.

Directories on Win32/newLISP-tk

On Win32 systems, all files are installed in the default directory $PROGRAMFILES\newlisp.
$PROGRAMFILES is a Win32 environment variable that resolves to C:\Program
files\newlisp\ in English language installations. If an init.lsp file is required, it
should be in the same directory where newlisp.exe resides.

(§)

Directories on Win32/newLISP-tk 23

newLISP Users Manual and Reference

4. Shared library module for Linux/BSD versions

newLISP can be compiled as a UNIX shared library called newlisp.dylib on Mac OS X
and as newlisp.so on Linux and BSDs. A newLISP shared library can be used like any
other UNIX shared library.

To use newlisp.so or newlisp.dylib, import the function newlispEvalStr. Like eval-
string, this function takes a string containing a newLISP expression and stores the result in a
string address. The result can be converted using get-string. The returned string is formatted
like output from a command-line session. It contains terminating line-feed characters, but
without the prompt strings.

The first example shows how newlisp.so is imported from newLISP itself.

(import "/usr/lib/newlisp.so" "newlispEvalStr")
(get-string (newlispEvalStr "(+ 3 4)")) "7\n"⇒

The second example shows how to import newlisp.so into a program written in C:

/* libdemo.c - demo for importing newlisp.so
 *
 * compile using:
 * gcc -ldl libdemo.c -o libdemo
 *
 * use:
 *
 * ./libdemo '(+ 3 4)'
 * ./libdemo '(symbols)'
 *
 */
#include <stdio.h>
#include <dlfcn.h>

int main(int argc, char * argv[])
{
void * hLibrary;
char * result;
char * (*func)(char *);
char * error;

if((hLibrary = dlopen("/usr/lib/newlisp.so",
 RTLD_GLOBAL | RTLD_LAZY)) == 0)
 {
 printf("cannot import library\n");
 exit(-1);
 }

func = dlsym(hLibrary, "newlispEvalStr");
if((error = dlerror()) != NULL)
 {
 printf("error: %s\n", error);
 exit(-1);
 }

printf("%s\n", (*func)(argv[1]));

return(0);
}

4. Shared library module for Linux/BSD versions
24

newLISP Users Manual and Reference

/* eof */

This program will accept quoted newLISP expressions and print the evaluated results.

When calling newlisp.so's function newlispEvalStr, output normally directed to the
console (e.g., return values or print statements) is returned in the form of an integer string
pointer. The output can be accessed by passing this pointer to the get-string function. To
silence the output from return values, use the silent function.

(§)

5. DLL module for Win32 versions

On the Win32 platforms, newLISP can be compiled as a DLL (Dynamic Link Library). In this
way, newLISP functions can be made available to other programs (e.g., MS Excel, Visual
Basic, Borland Delphi, or even newLISP itself).

When the DLL is loaded, it looks for the file init.lsp in the current directory of the calling
process.

To access the functionality of the DLL, use newlispEvalStr, which takes a string
containing a valid newLISP expression and returns a string of the result:

(import "newlisp.dll" "newlispEvalStr")
(get-string (newlispEvalStr "(+ 3 4)")) "7"⇒

The above example shows the loading of a DLL using newLISP. The get-string function is
necessary to access the string being returned. Other applications running on Win32 allow the
returned data type to be declared when importing the function.

When using newlisp.so, output normally directed to the console — like print statements or
return values — will be returned in a string pointed to by the call to newlispEvalStr. To
silence the output from return values, use the silent directive.

(§)

6. Evaluating newLISP expressions

The following is a short introduction to LISP statement evaluation and the role of integer and
floating point arithmetic in newLISP.

Top-level expressions are evaluated when using the load function or when entering
expressions in console mode on the command line. As shown in the following snippet from
an interactive session, multiline expressions can be entered by enclosing them between
[cmd] and [/cmd] tags:

> [cmd]
(define (foo x y)
(+ x y))
[/cmd]
(lambda (x y) (+ x y))
> (foo 3 4)
7

6. Evaluating newLISP expressions 25

newLISP Users Manual and Reference

> _

Each [cmd] and [/cmd] tag is entered on a separate line. This mode is useful for pasting
multiline code into the interactive console.

Integer data, floating point data, and operators

newLISP functions and operators accept integer and floating point numbers, converting
them into the needed format. For example, a bit-manipulating operator converts a floating
point number into an integer by omitting the fractional part. In the same fashion, a
trigonometric function will internally convert an integer into a floating point number before
performing its calculation.

The symbol operators (+ - * / % $ ~ | ^ << >>) return values of type integer. Functions and
operators named with a word instead of a symbol (e.g., add rather than +) return floating
point numbers. Integer operators truncate floating point numbers to integers, discarding the
fractional parts.

newLISP has two types of basic arithmetic operators: integer (+ - * /) and floating point
(add sub mul div). The arithmetic functions convert their arguments into types compatible
with the function's own type: integer function arguments into integers, floating point
function arguments into floating points. To make newLISP behave more like other scripting
languages, the integer operators +, -, *, and / can be redefined to perform the floating point
operators add, sub, mul, and div:

(constant '+ add)
(constant '- sub)
(constant '* mul)
(constant '/ div)

;; or all 4 operators at once
(constant '+ add '- sub '* mul '/ div)

Now the common arithmetic operators +, -, *, and / accept both integer and floating point
numbers and return floating point results.

Note that the looping variables in dotimes and for, as well as the result of sequence, use
floating point numbers for their values.

Care must be taken when importing from libraries that use functions expecting integers.
After redefining +, -, *, and /, a double floating point number may be unintentionally
passed to an imported function instead of an integer. In this case, floating point numbers can
be converted into integers by using the function int. Likewise, integers can be transformed
into floating point numbers using the float function:

(import "mylib.dll" "foo") ; importing int foo(int x) from C
(foo (int x)) ; passed argument as integer
(import "mylib.dll" "bar") ; importing C int bar(double y)
(bar (float y)) ; force double float

Integer data, floating point data, and operators 26

newLISP Users Manual and Reference

Some of the modules shipping with newLISP are written assuming the default
implementations of +, -, *, and /. This gives imported library functions maximum speed
when performing address calculations.

The newLISP preference is to leave +, -, *, and / defined as integer operators and use add,
sub, mul, and div when explicitly required. Since version 8.9.7 integer operations in
newLISP are 64 bit operations, while 64 bit double floating point numbers only offer 52 bits
of resolution in the integer part of the number.

Evaluation rules and data types

Evaluate expressions by entering and editing them on the command line. More complicated
programs can be entered using editors like Emacs and VI, which have modes to show
matching parentheses while typing. Load a saved file back into a console session by using the
load function.

A line comment begins with a ; (semicolon) or a # (number sign) and extends to the end of
the line. newLISP ignores this line during evaluation. The # is useful when using newLISP as
a scripting language in Linux/UNIX environments, where the # is commonly used as a line
comment in scripts and shells.

When evaluation occurs from the command line, the result is printed to the console window.

The following examples can be entered on the command line by typing the code to the left of
the symbol. The result that appears on the next line should match the code to the right of⇒
the symbol. ⇒
nil and true are boolean data types that evaluate to themselves:

nil nil⇒
true true⇒

Integers and floating point numbers evaluate to themselves:

123 123⇒
0xE8 232 ; hexadecimal prefixed by 0x⇒
055 45 ; octal prefixed by 0 (zero)⇒
1.23 1.23⇒
123e-3 0.123 ; scientific notation⇒

Integers are 64-bit numbers (including the sign bit, 32-bit before version 8.9.7). Valid
integers are numbers between -9,223,372,036,854,775,808 and
+9,223,372,036,854,775,807. Larger numbers converted from floating point numbers are
truncated to one of the two limits. Integers internal to newLISP, which are limited to 32-bit
numbers overflow to either +2,147,483,647 or -2,147,483,648. Floating point numbers are
IEEE 754 64-bit doubles. Unsigned numbers up to 18,446,744,073,709,551,615 can be
displayed using special formatting characters for format.

Strings may contain null characters and can have different delimiters. They evaluate to
themselves.

"hello" "hello" ⇒
"\032\032\065\032" " A " ⇒

Evaluation rules and data types 27

newLISP Users Manual and Reference

"\x20\x20\x41\x20" " A "⇒
"\t\r\n" "\t\r\n" ⇒
"\x09\x0d\x0a" "\t\r\n"⇒

;; null characters are legal in strings:
"\000\001\002" "\000\001\002"⇒
{this "is" a string} "this \"is\" a string"⇒

;; use [text] tags for text longer than 2048 bytes:
[text]this is a string, too[/text]
 "this is a string, too"⇒

Strings delimited by " (double quotes) will also process the following characters escaped with
a \ (backslash):

escaped
character

description

\" for a double quote inside a quoted string
\n for a line-feed character (ASCII 10)
\r for a return character (ASCII 13)
\t for a TAB character (ASCII 9)
\nnn for a three-digit ASCII number (nnn format between 000 and 255)
\xnn for a two-hex-digit ASCII number (xnn format between x00 and xff)

Quoted strings cannot exceed 2,048 characters. Longer strings should use the [text] and
[/text] tag delimiters. newLISP automatically uses these tags for string output longer than
2,048 characters.

The { (left curly bracket), } (right curly bracket), and [text], [/text] delimiters do not
perform escape character processing.

Lambda and lambda-macro expressions evaluate to themselves:

(lambda (x) (* x x)) (lambda (x) (* x x))⇒
(lambda-macro (a b) (set (eval a) b)) (lambda (x) (* x x))⇒
(fn (x) (* x x)) (lambda (x) (* x x)) ;⇒
an alternative syntax

Symbols evaluate to their contents:

(set 'something 123) 123⇒
something 123⇒

Contexts evaluate to themselves:

(context 'CTX) CTX⇒
CTX CTX⇒

Built-in functions also evaluate to themselves:

add add <B845770D>⇒
(eval (eval add)) add <B845770D>⇒
(constant '+ add) add <B845770D>⇒

Evaluation rules and data types 28

newLISP Users Manual and Reference

+ add <B845770D>⇒

In the above example, the number between the < > (angle brackets) is the hexadecimal
memory address (machine-dependent) of the add function. It is displayed when printing a
built-in primitive.

Quoted expressions lose one ' (single quote) when evaluated:

'something something⇒
''''any '''any⇒
'(a b c d) (a b c d)⇒

A single quote is often used to protect an expression from evaluation (e.g., when referring to
the symbol itself instead of its contents or to a list representing data instead of a function).

In newLISP, a list's first element is evaluated before the rest of the expression (as in
Scheme). The result of the evaluation is applied to the remaining elements in the list and
must be one of the following: a lambda expression, lambda-macro expression, or primitive
(built-in) function.

(+ 1 2 3 4) 10⇒
(define (double x) (+ x x)) (lambda (x) (+ x x))⇒

or

(set 'double (lambda (x) (+ x x)))
(double 20) 40⇒
((lambda (x) (* x x)) 5) 25⇒

For a user-defined lambda expression, newLISP evaluates the arguments from left to right
and binds the results to the parameters (also from left to right), before using the results in
the body of the expression.

Like Scheme, newLISP evaluates the functor (function object) part of an expression before
applying the result to its arguments. For example:

((if (> X 10) * +) X Y)

Depending on the value of X, this expression applies the * (product) or + (sum) function to X
and Y.

Because their arguments are not evaluated, lambda-macro expressions are useful for
extending the syntax of the language. Most built-in functions evaluate their arguments from
left to right (as needed) when executed. Some exceptions to this rule are indicated in the
reference section of this manual. LISP functions that do not evaluate all or some of their
arguments are called special forms.

Arrays evaluate to themselves:

(set 'A (array 2 2 '(1 2 3 4))) ((1 2) (3 4))⇒
(eval A) ((1 2) (3 4))⇒

Shell commands: If an ! (exclamation mark) is entered as the first character on the
command line followed by a shell command, the command will be executed. For example, !
ls on Unix or !dir on Win32 will display a listing of the present working directory. No
spaces are permitted between the ! and the shell command. Symbols beginning with an ! are

Evaluation rules and data types 29

newLISP Users Manual and Reference

still allowed inside expressions or on the command line when preceded by a space. Note: This
mode only works when running in the shell and does not work when controlling newLISP
from another application.

To exit the newLISP shell on Linux/UNIX, press Ctrl-D; on Win32, type (exit) or Ctrl-
C, then the x key.

Use the exec function to access shell commands from other applications or to pass results
back to newLISP.

(§)

7. Lambda expressions in newLISP

Lambda expressions in newLISP evaluate to themselves and can be treated just like regular
lists:

(set 'double (lambda (x) (+ x x))
(set 'double (fn (x) (+ x x)) ; alternative syntax

(last double) (+ x x) ; treat lambda as a list⇒

Note: No ' is necessary before the lambda expression since lambda expressions evaluate to
themselves in newLISP.

The second line uses the keyword fn, an alternative syntax first suggested by Paul Graham
for his Arc language project.

A lambda expression is a lambda list, a subtype of list, and its arguments can associate from
left to right or right to left. When using append, for example, the arguments associate from
left to right:

(append (lambda (x)) '((+ x x))) (lambda (x) (+ x x))⇒

cons, on the other hand, associates the arguments from right to left:

(cons '(x) (lambda (+ x x))) (lambda (x) (+ x x))⇒

Note that the lambda keyword is not a symbol in a list, but a designator of a special type of
list: the lambda list.

(length (lambda (x) (+ x x))) 2⇒
(first (lambda (x) (+ x x))) (x)⇒

Lambda expressions can be mapped or applied onto arguments to work as user-defined,
anonymous functions:

((lambda (x) (+ x x)) 123) 246⇒
(apply (lambda (x) (+ x x)) '(123)) 246⇒
(map (lambda (x) (+ x x)) '(1 2 3)) (2 4 6)⇒

A lambda expression can be assigned to a symbol, which in turn can be used as a function:

(set 'double (lambda (x) (+ x x))) 246⇒

7. Lambda expressions in newLISP 30

newLISP Users Manual and Reference

(double 123) (lambda (x) (+ x x))⇒

The define function is just a shorter way of assigning a lambda expression to a symbol:

(define (double x) (+ x x))) (lambda (x) (+ x x))⇒
(double 123) 246⇒

In the above example, the expressions inside the lambda list are still accessible within
double:

(set 'double (lambda (x) (+ x x))) (lambda (x) (+ x x))⇒
(last double) (+ x x)⇒

A lambda list can be manipulated as a first-class object using any function that operates on
lists:

(set-nth 1 double '(mul 2 x)) (lambda (x) (mul 2 x))⇒
double (lambda (x) (mul 2 x))⇒
(double 123) 246⇒

All arguments are optional when applying lambda expressions and default to nil when not
supplied by the user. This makes it possible to write functions with multiple parameter
signatures.

(§)

8. nil, true, cons, and ()

In newLISP, nil and true represent both the symbols and the boolean values true and
false. Depending on their context, nil and true are treated differently. The following
examples use nil, but they can be applied to true by simply reversing the logic.

Evaluation of nil yields a boolean false and is treated as such inside control flow
expressions, such as if, unless, while, until, and not. Likewise, evaluating true yields
true.

(set 'lst '(nil nil nil)) (nil nil nil)⇒
(map symbol? lst) (true true true)⇒

In the above example, nil represents a symbol. In the following example, nil and true are
evaluated and represent boolean values:

(if nil "no" "yes") "yes"⇒
(if true "yes" "no") "yes"⇒
(map not lst) (true true true)⇒

In newLISP, nil and the empty list () are not the same as in some other LISPs. Only in
conditional expressions are they treated as a boolean false, as in and, or, if, while,
unless, until, and cond.

The expression (list? '()) is true, but (list? nil) is not. This is because in newLISP,
nil results in a boolean false when evaluated.

8. nil, true, cons, and () 31

newLISP Users Manual and Reference

Evaluation of (cons x '()) yields (x), but (cons x nil) yields (x nil) because nil
is treated as a boolean value when evaluated instead of as an empty list. The cons of two
atoms in newLISP does not yield a dotted pair, but rather a two-element list. The predicate
atom? is true for nil, but false for the empty list. The empty list in newLISP is only an
empty list and not equal to nil.

A list in newLISP is a LISP cell of type list. It acts like a container for the linked list of
elements making up the list cell's contents. There is no dotted pair in newLISP because the
cdr (tail) part of a LISP cell always points to another LISP cell and never to a basic data type,
such as a number or a symbol. Only the car (head) part may contain a basic data type. Early
LISP implementations used car and cdr for the names head and tail.

(§)

9. Arrays

newLISP's arrays enable fast element access within large lists. New arrays can be constructed
and initialized with the contents of an existing list using the function array. Lists can be
converted into arrays, and vice versa. Some of the same functions used for modifying and
accessing lists can be applied to arrays, as well. Arrays can hold any type of data or
combination thereof.

In particular, the following functions can be used for creating, accessing, and modifying
arrays:

function description

append appends arrays

array creates and initializes an array with up to 16 dimensions

array-list converts an array into a list

array? checks if expression is an array

det returns the determinant of a matrix

first returns the first row of an array

invert returns the inversion of a matrix

last returns the last row of an array

multiply multiplies two matrices

nth returns an element of and array

nth-set changes the element, returning the old; significantly faster than set-nth
rest returns all but the first row of an array

set-nth changes the element and returns the changed array

slice returns a slice of an array

transpose transposes a matrix

newLISP represents multidimensional arrays with an array of arrays (i.e., the elements of the
array are themselves arrays).

9. Arrays 32

newLISP Users Manual and Reference

When used interactively or with the newLISP-tk front-end, newLISP prints and displays
arrays as lists, with no way of distinguishing between them.

Use the source or save functions to serialize arrays (or the variables containing them). The
array statement is included as part of the definition when serializing arrays.

Like lists, negative indices can be used to enumerate the elements of an array, starting from
the last element.

An out-of-bounds index will cause an error message on an array. In contrast, lists pick the
last or first element when an out-of-bounds occurs.

Arrays can be non-rectangular, but they are made rectangular during serialization when
using source or save. The array function always constructs arrays in rectangular form.

The matrix functions det, transpose, multiply, and invert can be used on matrices built with
nested lists or arrays built with array.

For more details, see array, array?, and array-list in the reference section of this manual.

(§)

10. Dictionaries (hash tables)

newLISP has no built-in hash table data type. Instead, it uses symbols for associative
memory access. Symbols in newLISP are implemented using an efficient red-black tree
algorithm. This algorithm balances the binary symbol tree for faster symbol access. In
newLISP, symbol trees are represented as namespaces called contexts, which are themselves
part of the MAIN namespace.

For a more detailed introduction to namespaces, see the chapter on Contexts.

The context function can be used to make associations. It can also be used to create and
switch contexts.

;; create a symbol and store data into it
(context 'MyHash "John Doe" 123) 123⇒
(context 'MyHash "@#$%^" "hello world") "hello world"⇒

;; retrieve contents from the symbol
(context 'MyHash "John Doe") 123⇒
(context 'MyHash "@#$%^") "hello world"⇒

The first two statements create the symbols "John Doe" and "@#$^", storing the values
123 and "hello world" into them. The hash context named MyHash is created in the first
statement, while the second merely adds the new association to the existing one.

Note that hash symbols can contain spaces or other special characters not typically allowed
in variable names.

Internally, context is just a shorter and faster form of:

;; create a symbol and store the data in it
(set (sym "John Doe" 'MyHash) 123) 123⇒

;; retrieve contents from the symbol
(eval (sym "John Doe" MyHash)) 123⇒

10. Dictionaries (hash tables) 33

newLISP Users Manual and Reference

The context default function can be used for a very short definition of a hash function:

(define (myhash:myhash key value)
 (if value
 (context myhash key value)
 (context myhash key)))

;; create a dictionary key value pair
(myhash "hello" 123) 123⇒

;; retrieve the key value
(myhash "hello") 123⇒

(§)

11. Indexing elements of strings, lists, and arrays

Some functions take array, list, or string elements (characters) specified by one or more int-
index (integer index). The positive indices run 0, 1, …, N-2, N-1, where N is the number
of elements in the list. If int-index is negative, the sequence is -N, -N+1, …, -2, -1.
Adding N to the negative index of an element yields the positive index. Unless a function does
otherwise, an index greater than N-1 returns the last element in a list; it returns the first
element for indices less than -N. An error message is produced for any indexing occurring
outside an array's boundaries.

Implicit indexing for nth

In versions 8.5 and later, implicit indexing can be used instead of nth to retrieve the
characters of a string or the elements of a list or array:

(set 'lst '(a b c (d e) (f g)))

(lst 0) a ; same as (nth 0 lst)⇒
(lst 3) (d e)⇒
(lst 3 1) e ; same as (nth 3 1 lst)⇒
(lst -1) (f g)⇒

(set 'myarray (array 3 2 (sequence 1 6)))

(myarray 1) (3 4)⇒
(myarray 1 0) 3⇒
(myarray 0 -1) 2⇒

("newLISP" 3) "L"⇒

Indices may also be supplied from a list. In this way, implicit indexing works together with
functions that take or produce index vectors, such as push, pop, ref and ref-all.

(lst '(3 1)) e⇒
(set 'vec (ref 'e lst)) (3 1)⇒
(lst vec) e⇒

Implicit indexing for nth 34

newLISP Users Manual and Reference

Implicit indexing is both slightly faster than nth and capable of taking an unlimited number
of indices.

Note that in the UTF-8–enabled version of newLISP, implicit indexing of strings using the
nth function works on character rather than byte boundaries.

Implicit indexing and the default functor

The default functor is a functor inside a context with the same name as the context itself. See
The context default function chapter. A default functor can be used together with implicit
indexing to serve as a mechanism for referencing lists:

(set 'MyList:MyList '(a b c d e f g))

(MyList 0) a⇒
(MyList 3) d⇒
(MyList -1) g⇒

(3 2 MyList) (d e)⇒
(-3 MyList) (e f g)⇒

(set 'aList MyList)

(aList 3) d⇒

In this example, aList references MyList:MyList, not a copy of it. For more information
about contexts, see Programming with context objects.

The default functor can also be used with nht-set as shown in the following example:

(nth-set (MyList 3) 999) d⇒
(MyList 3) 999⇒

Implicit indexing for rest and slice

Implicit forms of rest and slice can be created by prepending a list with one or two numbers
for offset and length:

(set 'lst '(a b c d e f g))
; or as array
(set 'lst (array 7 '(a b c d e f g)))

(1 lst) (b c d e f g)⇒
(2 lst) (c d e f g)⇒
(2 3 lst) (c d e)⇒
(-3 2 lst) (e f)⇒

(set 'str "abcdefg")

(1 str) "bcdefg"⇒
(2 str) "cdefg"⇒

Implicit indexing for rest and slice 35

newLISP Users Manual and Reference

(2 3 str) "cde"⇒
(-3 2 str) "ef"⇒

Implicit indexing for rest works on character rather than byte boundaries when using the
UTF-8–enabled version of newLISP, whereas implicit indexing for slice will always work on
byte boundaries and can be used for binary content.

Implicit indexing for nth-set and set-nth

(set 'aList '(a b c (d e (f g) h i) j k))

(nth-set (aList 0) 1) a⇒

(nth-set (aList 3 2) '(1 2 3 4)) (f g)⇒

(set 'i 3 'j 2 'k 2)

(nth-set (aList i j k) 99) 3⇒

aList
 (1 b c (d e (1 2 99 4) h i) j k)⇒

(set-nth (aList -3 -3 2) 999)
 (1 b c (d e (1 2 999 4) h i) j k)⇒

(§)

12. Destructive versus nondestructive functions

Most of the primitives in newLISP are nondestructive (no side effects) and leave existing
objects untouched, although they may create new ones. There are a few destructive functions,
however, that do change the contents of a list, string, or variable:

function description

constant sets the contents of a variable and protects it

dec decrements the value in a variable

inc increments the value in a variable

net-receive reads into a buffer variable

push pushes a new element onto a list or string

pop pops an element from a list or string

read-buffer reads into a buffer variable

replace replaces elements in a list or string

replace-assoc replaces elements inside a list

12. Destructive versus nondestructive functions 36

newLISP Users Manual and Reference

reverse reverses a list or string

rotate rotates the elements of a list or characters of a string

set, setq sets the contents of a variable

set-nth, nth-set changes an element in a list or string

sort sorts the elements of a list

swap swaps two elements inside a list or string

write-buffer writes to a string buffer or file

write-line writes to a string buffer or file

Note that the last two functions, write-buffer and write-line, are only destructive in one of
their syntactic forms: when taking a string buffer instead of a file handle.

(§)

13. Dynamic and lexical scoping

newLISP uses dynamic scoping inside contexts and lexical scoping outside of them. In this
way, newLISP programs can take advantage of both scoping mechanisms at once.

When the parameter symbols of a lambda expression are bound to its arguments, the old
bindings are pushed on a stack. newLISP automatically restores the original variable
bindings when leaving the lambda function.

The following example illustrates the dynamic scoping mechanism. The text in bold is the
output from newLISP:

> (define (add-three-nums x y z) (print-vars) (+ x y z))
(lambda (x y z) (print-vars) (+ x y z))
> (define (print-vars) (print "X=" x " Y=" y " Z= " z "\n"))
(lambda () (print "X=" x " Y=" y " Z= " z "\n"))
> (set 'x 4)
4
> (set 'y 5)
5
> (set 'z 6)
6
> (print-vars)
X=4 Y=5 Z=6
6
> (add-three-nums 70 80 90)
X=70 Y=80 Z=90
240
> (print-vars)
X=4 Y=5 Z=6
6
> _

The example shows add-three-nums, which returns the sum of its arguments using
print-vars to display the contents of the symbols x, y, and z. Before add-three-nums is
called, the symbols x, y, and z are bound to the values 4, 5, and 6.

13. Dynamic and lexical scoping 37

newLISP Users Manual and Reference

Note: Different values will be printed for x, y, and z depending on where print-vars is
called from. While in the scope of add-three-nums, the symbols x, y, and z have local
bindings. The old bindings are restored after returning from add-three-nums. This is
different from the lexical scoping mechanisms found in languages like C, Java, and most
current LISPs, where the binding of local parameters occurs inside the function only. In
lexically scoped languages like C, print-vars would always print the global bindings of the
symbols x, y, and z (4, 5, and 6).

Be aware that passing quoted symbols to a user-defined function causes a name clash if the
same variable name is used as a function parameter:

(define (inc-symbol x y) (inc x y))
(set 'y 200)
(inc-symbol 'y 123) 246⇒
y 200 ; y is still 200⇒

Since 'y shares the same name as the function's second parameter, inc-symbol returns
246 (123 + 123), leaving 'y unaffected. Dynamic scoping's variable capture can be a
disadvantage when passing symbol references to user-defined functions.

The problem is avoided entirely by grouping related user-defined functions into a context. A
symbol name clash cannot occur when accessing symbols and calling functions from outside
of the defining context.

Contexts should be used to group related functions when creating interfaces or function
libraries. This surrounds the functions with a lexical "fence," thus avoiding variable name
clashes with the calling functions.

newLISP uses contexts for different forms of lexical scoping. See the chapters Contexts and
Programming with context objects, as well as the sections Lexical, static scoping in newLISP
and default functions for more information.

(§)

14. Early return from functions, loops, and blocks

What follows are methods of interrupting the control flow inside both loops and the begin
expression.

The looping functions dolist and dotimes can take optional conditional expressions to leave
the loop early. catch and throw are a more general form to break out of a loop body and are
also applicable to other forms or statement blocks.

Using catch and throw

Because newLISP is a functional language, it uses no break or return statements to exit
functions or iterations. Instead, a block or function can be exited at any point using the
functions catch and throw:

(define (foo x)

Using catch and throw 38

newLISP Users Manual and Reference

 (…)
 (if condition (throw 123))
 (…)
 456)

;; if condition is true

(catch (foo p)) 123⇒

;; if condition is not true

(catch (foo p)) 456⇒

Breaking out of loops works in a similar way:

(catch
 (dotimes (i N)
 (if (= (foo i) 100) (throw i))))
 value of i when foo(i) equals 100⇒

The example shows how an iteration can be exited before executing N times.

Multiple points of return can be coded using throw:

(catch (begin
 (foo1)
 (foo2)
 (if condition-A (throw 'x))
 (foo3)
 (if condition-B (throw 'y))
 (foo4)
 (foo5)))

If condition-A is true, x will be returned from the catch expression; if condition-B is
true, the value returned is y. Otherwise, the result from foo5 will be used as the return value.

As an alternative to catch, the throw-error function can be used to catch errors caused by
faulty code or user-initiated exceptions.

Using and and or

Using the logical functions and and or, blocks of statements can be built that are exited
depending on the boolean result of the enclosed functions:

(and
 (func-a)
 (func-b)
 (func-c)
 (func-d))

The and expression will return as soon as one of the block's functions returns nil or an ()
(empty list). If none of the preceding functions causes an exit from the block, the result of the
last function is returned.

or can be used in a similar fashion:

Using and and or 39

newLISP Users Manual and Reference

(or
 (func-a)
 (func-b)
 (func-c)
 (func-d))

The result of the or expression will be the first function that returns a value which is not nil
or ().

(§)

15. Contexts

In newLISP, symbols can be separated into namespaces called contexts. Each context has a
private symbol table lexically separate from all other contexts. Symbols known in one context
are unknown in others, so the same name may be used in different contexts without conflict.

Contexts are used to build modules of isolated variable and function definitions. They can
also be copied and dynamically assigned to variables or passed as arguments. Because
contexts in newLISP have lexically separated namespaces, they allow programming with
lexical scoping and software object styles of programming.

Contexts are identified by symbols that are part of the root or MAIN context. While context
symbols are uppercased in this chapter, lowercase symbols may also be used.

In addition to context names, MAIN contains the symbols for built-in functions and special
symbols such as true and nil. The MAIN context is created automatically each time
newLISP is run. To see all the symbols in MAIN, enter the following expression after starting
newLISP:

(symbols)

Scoping rules for contexts

Special symbols like nil and true, as well as context and built-in function symbols, are
global (visible to all contexts). Any symbol can be made global by using the global function.

The following simulates a command-line session in newLISP:

> (context 'FOO)
FOO
FOO> _

If the FOO context already exists, newLISP switches to it. Otherwise, the context is created
before the switch occurs. All symbols now read from the command line are created and
known only within the context FOO. Note that the symbol used for the context name must be
quoted ('FOO in this example) the first time a context is created. Subsequent uses of
context do not require the quote. After the switch, the command-line prompt changes to
FOO> :

Scoping rules for contexts 40

newLISP Users Manual and Reference

FOO> (set 'x 123)
123
FOO> (set 'y 456)
456
FOO> (symbols)
(x y)
FOO> _

To switch back to the MAIN context, use:

FOO> (context MAIN)
MAIN
> _

A symbol can be referenced from outside its defining context by prepending a context name
and a colon to it:

> FOO:x
123
> _

The same symbol may also be used in another context:

> (context 'FOO-B)
FOO-B
FOO-B> (set 'x 777)
777
FOO-B> FOO:x
123
> _

When quoting a fully qualified symbol (context:symbol), the quote precedes the context
name:

> (set 'FOO-B:x 555)
555
> _

A context is implicitly created when referring to one that does not yet exist. Unlike the
context function, the context is not switched. The following statements are all executed
inside the MAIN context:

> (set 'ACTX:var "hello")
"hello"
> ACTX:var
"hello"
> _

The same symbol (x in this case) used in a context can also be used in MAIN. Now we have
three versions of x, all in a different context:

> (set 'x "I belong to MAIN")
"I belong to MAIN"
> FOO:x
123
> FOO-B:x
555
> x
"I belong to MAIN"

Scoping rules for contexts 41

newLISP Users Manual and Reference

> _

Symbols owned by a context (or MAIN) are not accessible unless prefixed by the context
name:

FOO> MAIN:x
"I belong to MAIN"
FOO> FOO-B:x
555
FOO> x
123
> _

When loading source files on the command line with load, or when executing the functions
eval-string or sym, the context function tells newLISP where to put all of the symbols and
definitions:

;;; file MY_PROG.LSP
;;
;; everything from here on goes into GRAPH
(context 'GRAPH)

(define (draw-triangle x y z)
 (…))
(define (draw-circle)
 (…))

;; show the runtime context, which is GRAPH
 (define (foo)
 (context))

;; switch back to MAIN
(context 'MAIN)

;; end of file

The draw-triangle and draw-circle functions — along with their x, y, and z
parameters — are now part of the GRAPH context. These symbols are known only to GRAPH.
To call these functions from another context, prefix them with GRAPH:

(GRAPH:draw-triangle 1 2 3)
(GRAPH:foo) GRAPH⇒

The last statement shows how the runtime context has changed to GRAPH (foo's context).
This feature was introduced in version 8.7.8. In older versions, the runtime context would
still be MAIN.

A symbol's name and context are used when comparing symbols from different contexts. The
name function can be used to extract the name part from a fully qualified symbol.

;; same symbol name, but different context name
(= 'A:val 'B:val) nil⇒
(= (name 'A:val) (name 'B:val)) true⇒

Note: The symbols are quoted with a ' (single quote) because we are interested in the symbol
itself, not in the contents of the symbol.

Scoping rules for contexts 42

newLISP Users Manual and Reference

Changing scoping

By default, only built-in functions and symbols like nil and true are visible inside contexts
other than MAIN. To make a symbol visible to every context, use the global function:

(set 'aVar 123) 123⇒
(global 'aVar) aVar⇒

(context 'FOO) FOO⇒

aVar 123⇒

Without the global statement, the second aVar would have returned nil instead of 123. If
FOO had a previously defined symbol (aVar in this example) that symbol's value — and not
the global's — would be returned instead. Note that only symbols from the MAIN context can
be made global.

Once it is made visible to contexts through the global function, a symbol cannot be hidden
from them again.

Symbol protection

By using the constant function, symbols can be both set and protected from change at the
same time:

> (constant 'aVar 123) 123⇒
> (set 'aVar 999)
symbol is protected in function set : aVar
>_

A symbol needing to be both a constant and a global can be defined simultaneously:

(constant (global 'aVar) 123)

In the current context, symbols protected by constant can be overwritten by using the
constant function again. This protects the symbols from being overwritten by code in other
contexts.

Overwriting global symbols and built-ins

Global and built-in function symbols can be overwritten inside a context by prefixing them
with their own context symbol:

(context 'Account)

(define (Account:new …)
 (…))
(context 'MAIN)

Overwriting global symbols and built-ins 43

newLISP Users Manual and Reference

In this example, the built-in function new is overwritten by Account:new, a different
function that is private to the Account context.

Variables containing contexts

Variables can be used to refer to contexts:

(set 'FOO:x 123)

(set 'ctx FOO) FOO⇒

ctx:x 123⇒

(set 'ctx:x 999) 999⇒

FOO:x 999⇒

Context variables are used when creating contexts with the new function (objects), as well as
when writing functions for uninstantiated contexts.

They also allow for pass-by-reference of large data objects when contained inside contexts
and passed to functions as context variables.

Sequence of creating or loading contexts

The sequence in which contexts are created or loaded can lead to unexpected results. Enter
the following code into a file called demo:

;; demo - file for loading contexts
(context 'FOO)
 (set 'ABC 123)
(context MAIN)

(context 'ABC)
 (set 'FOO 456)
(context 'MAIN)

Now load the file into the newlisp shell:

> (load "demo")
symbol is protected in function set : FOO
> _

Loading the file causes an error message for FOO, but not for ABC. When the first context FOO
is loaded, the context ABC does not exist yet, so a local variable FOO:ABC gets created. When
ABC loads, FOO already exists as a global protected symbol and will be correctly flagged as
protected.

FOO could still be used as a local variable in the ABC context by explicitly prefixing it, as in
ABC:FOO.

Sequence of creating or loading contexts 44

newLISP Users Manual and Reference

The following pattern can be applied to avoid unexpected behavior when loading contexts
being used as modules to build larger applications:

;; begin of file - MyModule.lsp
(load "This.lsp")
(load "That.lsp")
(load "Other.lsp")

(context 'MyModule)

 …

(define (func x y z) (…))

 …

(context 'MAIN)

(MyModule:func 1 2 3)

(exit)

;; end of file

Always load the modules required by a context before the module's context statement.
Always finish by switching back to the MAIN context, where the module's functions and
values can be safely accessed.

Symbol creation in contexts

The following rules should simplify the process of understanding contexts by identifying
which ones the created symbols are being assigned to.

1. newLISP first parses and translates the expression, then evaluates it if on the top
level. The symbols are created during the parsing and translation phase.

2. A symbol is created when newLISP first sees it, when calling the load, sym, or eval-
string functions. When newLISP reads a source file, symbols are created before
evaluation occurs.

3. Once a symbol is created and assigned to a specific context, it will belong to that
context permanently.

4. When an unknown symbol is encountered during code translation, a search for its
definition begins inside the current context. Failing that, the search continues inside
MAIN for a built-in function, context, or global symbol. If no definition is found, the
symbol is created locally inside the current context.

5. Expressions and user-defined functions are evaluated in the context they are defined
in.

(§)

Symbol creation in contexts 45

newLISP Users Manual and Reference

16. Programming with context objects

Because contexts hold variables and functions and are lexically separated from each other,
they can be used for prototype-based programming.

(context 'ACCOUNT)
 (set 'full-name "")
 (set 'balance 0.0)
 (set 'phone "")

 (define (deposit amount)
 (inc 'balance amount))

 (define (withdraw amount)
 (dec 'balance amount))
(context MAIN)

The ACCOUNT context serves as a prototype for account objects:

(new ACCOUNT 'John) ; this creates a new context copy of
 ; ACCOUNT called 'John'

(set 'John:full-name "John Doe")
(set 'John:phone "555-123-456")

(John:deposit 100.00)
(John:withdraw 60)

(new ACCOUNT 'Anne)
(set 'Anne:full-name "Anne Somebody")
(set 'Anne:phone "555-456-123")

(Anne:deposit 120.00)
(Anne:withdraw 50)

The previous example uses the function new to create a pair of contexts cloned from the
ACCOUNT prototype. Object-oriented–programming (OOP) purists would use getter and
setter functions to access the object's variables. This is unnecessary in newLISP because
prefixing context variables with a context/object name makes them public. Mixins are
possible using new, which allows for various contexts to be combined into one. See new's
description for details.

Late binding of context symbols

Once a context is assigned to a variable, it can be referenced through the variable name. In
the following example, the report function contains a parameter named accnt, which
refers to the passed context:

(define (report accnt)
 (println
 (format "%-20s %8.2f" accnt:full-name accnt:balance)))

(report John)
John Doe 40.00

Late binding of context symbols 46

newLISP Users Manual and Reference

(report Anne)
Anne Somebody 70.00

;; eval symbols to contexts first. John and Anne are symbols
;; in a list, with the contexts inside.

(map report (map eval '(John Anne)))
John Doe 40.00
Anne Somebody 70.00

Here, map applies the function report to the context objects, John and Anne. The inner
map evaluates the context symbols, producing the actual contexts, which are referenced
inside report through the accnt parameter.

The report function can be defined before any contexts passed to it. The accnt context,
along with the variables accnt:full-name and accnt:balance, are not resolved until
the function is evaluated. This late binding of variable symbols facilitates using contexts as
dynamic referent software objects, which are available at runtime.

The context default function

A default function is a user-defined function or macro with the same name as its context.
When the context is used as the name of a function, newLISP executes the default function.

(define (foo:foo a b c) (+ a b c))
(foo 1 2 3) 6⇒

This allows a function defined inside a context to be called whenever the context is applied as
a function. A default function can update the lexically isolated static variables contained
inside its context:

(define (gen:gen x)
 (if gen:acc
 (inc 'gen:acc x)
 (set 'gen:acc x)))

(gen 1) 1⇒
(gen 1) 2⇒
(gen 2) 4⇒
(gen 3) 7⇒

gen:acc 7⇒

The first time the gen function is called, its accumulator is set to the value of the argument.
Each successive call increments gen's accumulator by the argument's value.

If a default function is called from a context other than MAIN, the context must already exist
or be declared with a forward declaration, which creates the context and the function
symbol:

; forward declaration of default function
(define fubar:fubar)

The context default function 47

newLISP Users Manual and Reference

(context 'foo)
(define (foo:foo a b c)
 …
 (fubar a b) ; forward reference
 (…)) ; to default function

(context MAIN)

;; definition of previously declared default function

(context 'fubar)
(define (fubar:fubar x y)
 (…))

(context MAIN)

Default functions work like global functions, but they are lexically separate from the context
in which they are called. The arguments in a default function macro are safe from variable
capture.

Like a lambda or lambda-macro function, default functions can be used with map or apply.

Passing objects by reference

In newLISP, all parameters are passed by value. This poses a potential problem when passing
large lists or strings to user-defined functions or macros. Symbols and context objects can
also be passed by reference. This allows memory-intensive objects to be passed without the
overhead of copying the entire list or string.

Any data object can be passed by reference by passing the symbol holding it:

(define (change-list aList) (push 999 (eval aList)))

(set 'data '(1 2 3 4 5))

; note the quote ' in front of data
(change-list 'data) (999 1 2 3 4 5)⇒

data (999 1 2 3 4 5)⇒

Although this method is simple to understand and use, it poses the potential problem of
variable capture when passing the same symbol as used in the function as a parameter:

;; pass an object by symbol reference

> (set 'aList '(a b c d))
(a b c d)
> (change-list 'aList)

list or string expected : (eval aList)
called from user defined function change-list
>

Passing objects by reference 48

newLISP Users Manual and Reference

Because of the danger of variable capture, passing an object by its symbol should only be
used in small scripts or programs where each function and its parameters are well-known. A
safer method would be to package the object in a context (namespace) and pass the context
ID:

;; pass an object by context reference

(set 'mydb:data (sequence 1 100000))

(define (change-db obj idx value)
 (nth-set (obj:data idx) value))

(change-db mydb 1234 "abcdefg")

(nth 1234 mydb:data) "abcdefg"⇒

This example shows how objects can be passed by reference to a user-defined function using
context variables, without the overhead of passing them by value. String buffers or data
objects enclosed in a context can also be passed using this technique.

As shown in the following variation, using default functor can further simplify the syntax:

;; pass a context containing a default functor

(set 'mydb:mydb (sequence 1 100000))

(define (change-db obj idx value)
 (nth-set (obj idx) value))

(change-db mydb 1234 "abcdefg")

(mydb 1234) "abcdefg"⇒

The change-db function does not need to know the name of the variable inside the context.
All functions which can use implicit indexing, like nth, nth-set, set-nth, ref, ref-all, push, and
pop know how to extract the default functor from the context. This technique works for
arrays and strings, as well.

For destructive functions like replace, replace-assoc, reverse, rotate, sort, and swap, which
refer to the un-indexed list, the function default can be used to extract the default functor
symbol:

(set 'foo:foo '(6 3 5 8 6 7 4 1))

(define (my-sort clist)
 (sort (eval (default clist))))

(my-sort foo)

foo:foo (1 3 4 5 6 6 7 8)⇒

In this example, the list in foo:foo is passed by context reference. default is used to acces the
default functor symbol, the contents of which is access by eval.

Passing objects by reference 49

file:///Users/lutz/newlisp/doc/set-nth

newLISP Users Manual and Reference

Contexts as prototypes

To create object prototypes, use dynamic context variables defined inside a context. As with
make-new in the example below, a method can be defined that initializes variables inside
instantiated objects.

(context 'Account)

 (define (make-new ctx nme bal ph)
 (new Account ctx)
 (set 'ctx (eval ctx)) ; get context out of symbol

 (set 'ctx:full-name nme) ; initialize new object
 (set 'ctx:balance bal)
 (set 'ctx:phone ph))

 (define (Account:deposit amount)
 (inc 'balance amount))

 (define (Account:withdraw amount)
 (dec 'balance amount))

(context MAIN)

(Account:make-new 'JD-001 "John Doe" 123.45 "555-555-1212")

;; or when creating an account from inside a different context

(Account:make-new 'MAIN:JD-001 "John Doe" 123.45 "555-555-1212")

JD-001:balance 123.45⇒

Note: Before initialization can occur, the symbol passed as the context name and bound to
the parameter ctx must be extracted using eval.

Lexical and static scoping in newLISP

A default function looks and behaves like statically scoped functions found in other
programming languages. Several functions can share one lexical closure.

Using def-new, a function or macro can be defined to define other statically scoped functions:

;; define static functions (use only in context MAIN)
;;
;; Example:
;;
;; (def-static (foo x) (+ x x))
;;
;; foo:foo (lambda (foo:x) (+ foo:x foo:x))⇒
;;
;; (foo 10) 20⇒
;;
(define-macro (def-static)
 (let (temp (append (lambda) (list (1 (args 0)) (args 1))))
 (def-new 'temp (sym (args 0 0) (args 0 0)))))

Lexical and static scoping in newLISP 50

newLISP Users Manual and Reference

The macro works by using the function def-new to create a default function in its own
context:

(def-static (acc x)
 (if sum
 (inc 'sum x)
 (set 'sum x)))

The macro def-static first creates a lambda expression of the function to be defined in the
current name space and assignes it to the variable temp. In a second step the lambda
function in temp is copied to it own name space. This happens by assigning it to the default
functor acc:acc symbol built from the name of the function.

(acc 5) 5⇒
(acc 5) 10⇒
(acc 2) 12⇒

acc:sum 12⇒
acc:x nil⇒

The example shows acc:x acting like an automatic local and and acc:sum like a local
static variable.

When forward referencing a statically defined function inside another statically defined
function, the forwarded function must have been declared beforehand:

(define foo:foo) ; declare so it can be
 ; referenced before definition

;; foo is forward referenced
(def-static (forward x) (foo x))
(def-static (foo x) (+ x x))

(forward 10) 20⇒

Without having pre-declared foo:foo, it would not be possible to reference it in another
statically defined function.

Use the def-static function inside the MAIN context only.

Note that the keywords fn and lambda have the same effect and are interchangeable.

Serializing context objects

Serialization makes a software object persistent by converting it into a character stream,
which is then saved to a file or string in memory. In newLISP, any object can be serialized to
a file by using the save function. Like other symbols, contexts are saved just by using their
names:

(save "mycontext.lsp" 'MyCtx) ; save MyCtx to
mycontext.lsp

(load "mycontext.lsp") ; loads MyCtx into
memory

Serializing context objects 51

newLISP Users Manual and Reference

(save "mycontexts.lsp" 'Ctx1 'Ctx2 'Ctx3) ; save multiple
contexts at once

For details, see the functions save (mentioned above) and source (for serializing to a
newLISP string).

(§)

17. XML, S-XML, and XML-RPC

newLISP's built-in support for XML-encoded data or documents comprises three functions:
xml-parse, xml-type-tags, and xml-error.

Use the xml-parse function to parse XML-encoded strings. When xml-parse encounters an
error, nil is returned. To diagnose syntax errors caused by incorrectly formatted XML, use
the function xml-error. The xml-type-tags function can be used to control or suppress the
appearance of XML type tags. These tags classify XML into one of four categories: text, raw
string data, comments, and element data.

XML source:

<?xml version="1.0"?>
<DATABASE name="example.xml">
<!--This is a database of fruits-->
 <FRUIT>
 <NAME>apple</NAME>
 <COLOR>red</COLOR>
 <PRICE>0.80</PRICE>
 </FRUIT>
</DATABASE>

Parsing without options:

(xml-parse (read-file "example.xml"))
 (("ELEMENT" "DATABASE" (("name" "example.xml")) (("TEXT"⇒

"\r\n")
 ("COMMENT" "This is a database of fruits")
 ("TEXT" "\r\n ")
 ("ELEMENT" "FRUIT" () (
 ("TEXT" "\r\n\t ")
 ("ELEMENT" "NAME" () (("TEXT" "apple")))
 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "COLOR" () (("TEXT" "red")))
 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "PRICE" () (("TEXT" "0.80")))
 ("TEXT" "\r\n\t")))
 ("TEXT" "\r\n"))))

S-XML can be generated directly from XML using xml-type-tags and the special option
parameters of the xml-parse function:

S-XML generation using all options:

17. XML, S-XML, and XML-RPC 52

newLISP Users Manual and Reference

(xml-type-tags nil nil nil nil)
(xml-parse (read-file "example.xml") (+ 1 2 4 8 16))
 ((DATABASE (@ (name "example.xml"))⇒

 (FRUIT (NAME "apple")
 (COLOR "red")
 (PRICE "0.80"))))

S-XML is XML reformatted as LISP S-expressions. The @ (at symbol) denotes an XML
attribute specification.

See xml-parse in the reference section of the manual for details on parsing and option
numbers, as well as for a longer example.

XML-RPC

The remote procedure calling protocol XML-RPC uses HTTP post requests as a transport and
XML for the encoding of method names, parameters, and parameter types. XML-RPC client
libraries and servers have been implemented for most popular compiled and scripting
languages.

For more information about XML, visit www.xmlrpc.com.

XML-RPC clients and servers are easy to write using newLISP's built-in network and XML
support. A stateless XML-RPC server implemented as a CGI service, can be found in the file
examples/xmlrpc.cgi. This script can be used together with a web server, like Apache.
This XML-RPC service scripts implement the following methods:

method description
system.listMethods Returns a list of all method names
system.methodHelp Returns help for a specific method

system.methodSignature Returns a list of return/calling signatures for a specific
method

newLISP.evalString Evaluates a Base64 newLISP expression string

The first three methods are discovery methods implemented by most XML-RPC servers. The
last one is specific to the newLISP XML-RPC server and implements remote evaluation of a
Base64-encoded string of newLISP source code. newLISP's base64-enc and base64-dec
functions can be used to encode and decode Base64-encoded information.

In the modules directory of the source distribution, the file xmlrpc-client.lsp
implements a specific client interface for all of the above methods. In a future version, a
generic XMLRPC:call function could be used to call any function in a remote XML-RPC
server. After starting the server, the following code would be used to access it remotely:

(load "xmlrpc-client.lsp") ; load XML-RPC client routines

(XMLRPC:newLISP.evalString
 "http://localhost:8080"
 "(+ 3 4)") "7"⇒

17. XML, S-XML, and XML-RPC 53

http://www.xmlrpc.com/

newLISP Users Manual and Reference

In a similar fashion, standard system.xxx calls can be issued.

All functions return either a result if successful, or nil if a request fails. In case of failure,
XMLRPC:error can be evaluated to return an error message.

For more information, please consult the header of the file modules/xmlrpc-
client.lsp.

(§)

18. Customization, localization, and UTF-8

All built-in primitives in newLISP can be easily renamed:

(constant 'plus +)

Now, plus is functionally equivalent to + and runs at the same speed. As with many scripting
languages, this allows for double precision floating point arithmetic to be used throughout
newLISP.

The constant function, rather than the set function, must be used to rename built-in
primitive symbols. By default, all built-in function symbols are protected against accidental
overwriting.

(constant '+ add)
(constant '- sub)
(constant '* mul)
(constant '/ div)

All operations using +, -, *, and / are now performed as floating point operations.

Using the same mechanism, the names of built-in functions can be translated into languages
other than English:

(constant 'wurzel sqrt) ; German for 'square-root'
(constant 'imprime print) ; Spanish for 'print'
 …

Switching the locale

newLISP can switch locales based on the platform and operating system. On startup,
newLISP attempts to set the ISO C standard default POSIX locale, available for most
platforms and locales. Use the set-locale function to switch to the default locale:

(set-locale "")

This switches to the default locale used on your platform/operating system and ensures
character handling (e.g., upper-case) work correctly.

Many Unix systems have a variety of locales available. To find out which ones are available
on a particular Linux/UNIX/BSD system, execute the following command in a system shell:

Switching the locale 54

newLISP Users Manual and Reference

locale -a

This command prints a list of all the locales available on your system. Any of these may be
used as arguments to set-locale:

(set-locale "en_US")

This would switch to a U.S. Spanish locale. Accents or other characters used in a U.S. Spanish
environment would be correctly converted.

See the manual description for more details on the usage of set-locale.

Decimal point and decimal comma

Many countries use a comma instead of a period as a decimal separator in numbers. newLISP
correctly parses numbers depending on the locale set:

;; switch to German locale on a Linux system
(set-locale "de_DE")

;; newLISP source and output use a decimal comma
(div 1,2 3) 0,4⇒

The default POSIX C locale, which is set when newLISP starts up, uses a period as a decimal
separator.

The following countries use a period as a decimal separator:

Australia, Botswana, Canada (English-speaking), China, Costa Rica, Dominican
Republic, El Salvador, Guatemala, Honduras, Hong Kong, India, Ireland, Israel,
Japan, Korea (both North and South), Malaysia, Mexico, Nicaragua, New
Zealand, Panama, Philippines, Puerto Rico, Saudi Arabia, Singapore, Thailand,
United Kingdom, and United States

The following countries use a comma as a decimal separator:

Albania, Andorra, Argentina, Austria, Belarus, Belgium, Bolivia, Brazil, Bulgaria,
Canada (French-speaking), Croatia, Cuba, Chile, Colombia, Czech Republic,
Denmark, Ecuador, Estonia, Faroes, Finland, France, Germany, Greece,
Greenland, Hungary, Indonesia, Iceland, Italy, Latvia, Lithuania, Luxembourg,
Macedonia, Moldova, Netherlands, Norway, Paraguay, Peru, Poland, Portugal,
Romania, Russia, Serbia, Slovakia, Slovenia, Spain, South Africa, Sweden,
Switzerland, Ukraine, Uruguay, Venezuela, and Zimbabwe

Decimal point and decimal comma 55

newLISP Users Manual and Reference

Unicode and UTF-8 encoding

Note that for many European languages, the set-locale mechanism is sufficient to display
non-ASCII character sets, as long as each character is presented as one byte internally. UTF-
8 encoding is only necessary for multibyte character sets as described in this chapter.

newLISP can be compiled as a UTF-8–enabled application. UTF-8 is a multibyte encoding of
the international Unicode character set. A UTF-8–enabled newLISP running on an operating
system with UTF-8 enabled can handle any character of the installed locale.

The following steps make UTF-8 work with newLISP on a specific operating system and
platform:

(1) Use one of the makefiles ending in utf8 to compile newLISP as a UTF-8 application. If
no UTF-8 makefile is available for your platform, the normal makefile for your operating
system contains instructions on how to change it for UTF-8.

The Mac OS X binary installer contains a UTF-8–enabled version by default.

(2) Enable the UTF-8 locale on your operating system. Check and set a UTF-8 locale on
Unix and Unix-like OSes by using the locale command or the set-locale function within
newLISP. On Linux, the locale can be changed by setting the appropriate environment
variable. The following example uses bash to set the U.S. locale:

export LC_CTYPE=en_US.UTF-8

(3) The UTF-8–enabled newLISP automatically switches to the locale found on the
operating system. Make sure the command shell is UTF-8–enabled. When using the Tcl/Tk
front-end on Linux/UNIX, Tcl/Tk will automatically switch to UTF-8 display as long as the
UNIX environment variable is set correctly. The U.S. version of WinXP's notepad.exe can
display Unicode UTF-8–encoded characters, but the command shell and the Tcl/Tk front-
end cannot. On Linux and other UNIXes, the Xterm shell can be used when started as
follows:

LC_CTYPE=en_US.UTF-8 xterm

The following procedure can now be used to check for UTF-8 support. After starting
newLISP, type:

(println (char 937)) ; displays Greek uppercase
omega
(println (lower-case (char 937))) ; displays lowercase omega

While the uppercase omega () looks like a big O on two tiny legs, the lowercase omega ()Ω ω
has a shape similar to a small w in the Latin alphabet.

Note: Only the output of println will be displayed as a character; println's return value
will appear on the console as a multibyte ASCII character.

When UTF-8–enabled newLISP is used on a non-UTF-8–enabled display, both the output
and the return value will be two characters. These are the two bytes necessary to encode the
omega character.

When UTF-8–enabled newLISP is used, the following string functions work on character
rather than byte boundaries:

Unicode and UTF-8 encoding 56

newLISP Users Manual and Reference

function description

char translates between characters and ASCII/Unicode

chop chops characters from the end of a string

date converts date number to string (when used with the third argument)

explode transforms a string into a list of characters

first gets first element in a list (car, head) or string

last returns the last element of a list or string

lower-case converts a string to lowercase characters

nth gets the nth element of a list or string

nth-set changes the nth element of a list or string

pop deletes an element from a list or string

push inserts a new element in a list or string

rest gets all but the first element of a list (cdr, tail) or string

select selects and permutes elements from a list or string

set-nth changes an element in a list or string

title-case converts the first character of a string to uppercase

trim trims a string from both sides

upper-case converts a string to uppercase characters

All other string functions work on bytes. When positions are returned, as in find or regex,
they are byte positions rather than character positions. The slice function takes not character
offset, but byte offsets. The reverse function reverses a byte vector, not a character vector.
The last two functions can still be used to manipulate binary non-textual data in the UTF-8–
enabled version of newLISP.

To enable UTF-8 in Perl Compatible Regular Expressions (PCRE) — used by directory, find,
parse, regex, and replace — set the option number accordingly (2048). See the regex
documentation for details.

Use explode to obtain an array of UTF-8 characters and to manipulate characters rather than
bytes when a UTF-8–enabled function is unavailable:

(join (reverse (explode str))) ; reverse UTF-8 characters

The above string functions (often used to manipulate non-textual binary data) now work on
character, rather than byte, boundaries, so care must be exercised when using the UTF-8–
enabled version. The size of the first 127 ASCII characters — along with the characters in
popular code pages such as ISO 8859 — is one byte long. When working exclusively within
these code pages, UTF-8–enabled newLISP is not required. The set-locale function alone is
sufficient for localized behavior.

Two new functions are available for converting between four-byte Unicode (UCS-4) and
multibyte UTF-8 code. The UTF-8 function converts UCS-4 to UTF-8, and the unicode
function converts UTF-8 or ASCII strings into USC-4 Unicode.

Unicode and UTF-8 encoding 57

newLISP Users Manual and Reference

These functions are rarely used in practice, as most Unicode text files are already UTF-8–
encoded (rather than UCS-4, which uses four-byte integer characters). Unicode can be
displayed directly when using the "%ls" format specifier.

For further details on UTF-8 and Unicode, consult UTF-8 and Unicode FAQ for Unix/Linux
by Markus Kuhn.

(§)

19. Commas in parameter lists

Some of the example programs contain functions that use a comma to separate the
parameters into two groups. This is not a special syntax of newLISP, but rather a visual trick.
The comma is a symbol just like any other symbol. The parameters after the comma are not
required when calling the function; they simply declare local variables in a convenient way.
This is possible in newLISP because parameter variables in lambda expressions are local and
arguments are optional:

(define (my-func a b c , x y z)
 (set 'x …)
 (…))

When calling this function, only a, b, and c are used as parameters. The others (x, y, and
z) are initialized to nil and are local to the function. After execution, the function's contents
are forgotten and the environment's symbols are restored to their previous values.

For other ways of declaring and initializing local variables, see let, letex, letn and local.

(§)

20. Linking newLISP source and executable

Source code and the newLISP executable can be linked together to build a self-contained
application by using link.lsp. This program is located in the examples directory of the
source distribution. As an example, the following code is linked to the newLISP executable to
form a simple, self-contained application:

;; uppercase.lsp - Link example
(println (upper-case (nth 1 (main-args))))
(exit)

This program, which resides in the file uppercase.lsp, takes the first word on the
command line and converts it to uppercase.

To build this program as a self-contained executable, follow these four steps:

(1) Put the following files into the same directory: (a) a copy of the newLISP executable; (b)
newlisp (or newlisp.exe on Win32); (c) link.lsp; and (d) the program to link with
(uppercase.lsp in this example).

(2) In a shell, go to the directory referred to in step 1 and load link.lsp:

newlisp link.lsp

20. Linking newLISP source and executable 58

http://www.cl.cam.ac.uk/~mgk25/unicode.html

newLISP Users Manual and Reference

(3) In the newLISP shell, type one of the following:

(link "newlisp.exe" "uppercase.exe" "uppercase.lsp") ; Win32
(link "newlisp" "uppercase" "uppercase.lsp") ; Linux/BSD

(4) Exit the newLISP shell and type:

uppercase "convert me to uppercase"

The console should print:

CONVERT ME TO UPPERCASE

Note: On Linux/BSD, the new file must be marked executable for the operating system to
recognize it:

chmod 755 uppercase

This gives the file executable permission (this step is unnecessary on Win32).

(∂)

20. Linking newLISP source and executable 59

newLISP Users Manual and Reference

20. Linking newLISP source and executable 60

newLISP Users Manual and Reference

newLISP Function Reference

1. Syntax of symbol variables and numbers

Source code in newLISP is parsed according the rules outlined here. When in doubt, verify
the behavior of newLISP's internal parser by calling parse without optional arguments.

Symbols for variable names

The following rules apply to the naming of symbols used as variables or functions:

1. Variable symbols may not start with any of the following characters:
; " ' () { } . , 0 1 2 3 4 5 6 7 8 9

2. Variable symbols starting with a + or - cannot have a number as the
second character.

3. Any character is allowed inside a variable name, except for:
" ' () : , and the space character. These mark the end of a
variable symbol.

4. A symbol name starting with [(left square bracket) and ending with]
(right square bracket) may contain any character except the right square
bracket.

All of the following symbols are legal variable names in newLISP:

example:

myvar
A-name
X34-zz
[* 7 5 ()};]
111

Sometimes it is useful to create hash-like lookup dictionaries with keys containing characters
that are illegal in newLISP variables. The functions sym and context can be used to create
symbols containing these characters:

(set (sym "(#:L*") 456) 456⇒

(eval (sym "(#:L*")) 456⇒

(set (sym 1) 123) 123⇒

(eval (sym 1)) 123⇒

Symbols for variable names 61

newLISP Users Manual and Reference

1 1⇒
(+ 1 2) 3⇒

The last example creates the symbol 1 containing the value 123. Also note that creating such
a symbol does not alter newLISP's normal operations, since 1 is still parsed as the number
one.

Numbers

newLISP recognizes the following number formats:

Integers are one or more digits long, optionally preceded by a + or - sign. Any other
character marks the end of the integer or may be part of the sequence if parsed as a float (see
float syntax below).

example:

123
+4567
-999

Hexadecimals start with a 0x (or 0X) followed by any combination of the hexadecimal
digits: 0123456789abcdefABCDEF. Any other character ends the hexadecimal number.

example:

0xFF 255⇒
0x10ab 4267⇒
0X10CC 4300⇒

Octals start with an optional + (plus) or - (minus) sign and a 0 (zero), followed by any
combination of the octal digits: 01234567. Any other character ends the octal number.

example:

012 10⇒
010 8⇒
077 63⇒
-077 -63⇒

Floating point numbers can start with an optional + (plus) or - (minus) sign, but they
cannot be followed by a 0 (zero) if they are. This would make them octal numbers instead of
floating points. A single . (decimal point) can appear anywhere within a floating point
number, including at the beginning.

example:

1.23 1.23⇒
-1.23 -1.23⇒
+2.3456 2.3456⇒
.506 0.506⇒

Numbers 62

newLISP Users Manual and Reference

As described above, scientific notation starts with a floating point number called the
significand (or mantissa), followed by the letter e or E and an integer exponent.

example:

1.23e3 1230⇒
-1.23E3 -1230⇒
+2.34e-2 0.0234⇒
.506E3 506⇒

2. Data types and names in the reference

To describe the types and names of a function's parameters, the following naming convention
is used throughout the reference section:

syntax: (format str-format exp-data-1 [exp-data-i ...])

Arguments are represented by symbols formed by the argument's type and name, separated
by a - (hyphen). Here, str-format (a string) and exp-data-1 (an expression) are named
"format" and "data-1", respectively.

bool

true, nil, or an expression evaluating to one of these two.

true, nil, (<= X 10)

int

An integer or an expression evaluating to an integer. Generally, if a floating point number is
used when an int is expected, the value is truncated to an integer.

123, 5, (* X 5)

num

An integer, a floating point number, or an expression evaluating to one of these two. If an
integer is passed, it is converted to a floating point number.

1.234, (div 10 3), (sin 1)

num 63

newLISP Users Manual and Reference

matrix

A list in which each row element is itself a list or an array in which each row element is itself
an array. All element lists or arrays (rows) are of the same length. When using det, multiply,
or invert, all numbers must be floats or integers.

The dimensions of a matrix are defined by indicating the number of rows and the number of
column elements per row. Functions working on matrices ignore superfluous columns in a
row. For missing row elements, 0.0 is assumed by the functions det, multiply, and invert,
while transpose assumes nil. Special rules apply for transpose when a whole row is not a list
or an array, but some other data type.

((1 2 3 4)
 (5 6 7 8)
 (9 10 11 12)) ; 3 rows 4 columns

((1 2) (3 4) (5 6)) ; 3 rows 2 columns

str

A string or an expression that evaluates to a string.

"Hello", (append first-name " Miller")

Special characters can be included in quoted strings by placing a \ (backslash) before the
character or digits to escape them:

escaped
character description
\n the line feed character (ASCII 10)
\r the carriage return character (ASCII 13)
\t the tab character (ASCII 9)
\nnn a decimal ASCII code where nnn is between 000 and 255

"\065\066\067" "ABC"⇒

Instead of a " (double quote), a { (left curly bracket) and } (right curly bracket) can be used
to delimit strings. This is useful when quotation marks need to occur inside strings. Quoting
with the curly brackets suppresses the backslash escape effect for special characters.
Balanced nested curly brackets may be used within a string. This aids in writing regular
expressions or short sections of HTML.

(print "") ; the cryptic way

(print {}) ; the readable way

;; also possible because the inner brackets are balanced
(regex {abc{1,2}} line)

str 64

newLISP Users Manual and Reference

(print [text]
 this could be
 a very long (> 2048 characters) text,
 i.e. HTML.
[/text])

The tags [text] and [/text] can be used to delimit long strings and suppress escape
character translation. This is useful for delimiting long HTML passages in CGI files written in
newLISP or for situations where character translation should be completely suppressed.
Always use the [text] tags for strings longer than 2048 characters.

sym

A symbol or expression evaluating to a symbol.

'xyz, (first '(+ - /)), '*, '- , 'someSymbol,

context

An expression evaluating to a context (namespace) or a variable symbol holding a context.

MyContext, aCtx, TheCTX

Most of the context symbols in this manual start with an uppercase letter to distinguish them
from other symbols.

sym-context

A symbol, an existing context, or an expression evaluating to a symbol from which a context
will be created. If a context does not already exist, many functions implicitly create them
(e.g., bayes-train, context, eval-string, load, sym, and xml-parse). The context must be
specified when these functions are used on an existing context. Even if a context already
exists, some functions may continue to take symbols (e.g., context). For other functions, such
as context?, the distinction is critical.

func

A symbol or an expression evaluating to an operator symbol or lambda expression.

+, add, (first '(add sub)), (lambda (x) (+ x x))

list

A list of elements (any type) or an expression evaluating to a list.

list 65

newLISP Users Manual and Reference

(a b c "hello" (+ 3 4))

array

An array (constructed with the array function).

exp

Any of the above.

body

One or more expressions that can be evaluated. The expressions are evaluated sequentially if
there is more than one.

1 7.8
nil
(+ 3 4)
"Hi" (+ a b)(print result)
(do-this)(do-that) 123

3. Functions in groups

Some functions appear in more than one group.

List processing, flow control, and integer arithmetic

+, -, *, /, % integer arithmetic

<, >, = compares any data type: less, greater, equal

<=, >=, != compares any data type: less-equal, greater-equal, not-equal

and logical and
append appends lists ,arrays or strings to form a new list, array or string

apply applies a function or primitive to a list of arguments

args retrieves the argument list of a macro expression

assoc searches for keyword associations in a list

begin begins a block of functions

List processing, flow control, and integer arithmetic
66

newLISP Users Manual and Reference

case branches depending on contents of control variable

catch evaluates an expression, possibly catching errors

chop chops elements from the end of a list

clean cleans elements from a list

cond branches conditionally to expressions

cons prepends an element to a list, making a new list

constant defines a constant symbol

count counts elements of one list that occur in another list

curry Transforms a function f(x, y) into a function fx(y)

define defines a new function or lambda expression

define-macro defines a macro or lambda-macro expression

def-new copies a symbol to a different context (namespace)

difference returns the difference between two lists

doargs iterates through the arguments of a function

dolist evaluates once for each element in a list

dotimes evaluates once for each number in a range

dotree iterates through the symbols of a context

do-until repeats evaluation of an expression until the condition is met

do-while repeats evaluation of an expression while the condition is true

dup duplicates a list or string a specified number of times

ends-with checks the end of a string or list against a key of the same type

eval evaluates an expression

exists checks for the existens of a condition in a list

expand replaces a symbol in a nested list

first gets the first element of a list or string

filter filters a list

find searches for an element in a list or string

flat returns the flattened list

fn defines a new function or lambda expression

for evaluates once for each number in a range

for-all checks if all elements in a list meet a condition

if evaluates an expression conditionally

index filters elements from a list and returns their indices

intersect returns the intersection of two lists

lambda defines a new function or lambda expression

last returns the last element of a list or string

length calculates the length of a list or string

let declares and initializes local variables

letex expands local variables into an expression, then evaluates

letn initializes local variables incrementally, like nested lets

List processing, flow control, and integer arithmetic
67

newLISP Users Manual and Reference

list makes a list

local declares local variables

lookup looks up members in an association list

map maps a function over members of a list, collecting the results

match
matches patterns against lists; for matching against strings, see find and
regex

member finds a member of a list or string

name returns the name of a symbol or its context as a string

not logical not
nth gets the nth element of a list or string

nth-set changes the nth element of a list or string

or logical or
pop deletes and returns an element from a list or string

push inserts a new element into a list or string

quote quotes an expression

ref returns the position of an element inside a nested list

ref returns a list of index vectors of element inside a nested list

rest returns all but the first element of a list or string

replace replaces elements inside a list or string

replace-assoc replaces an association within a list

reverse reverses a list or string

rotate rotates a list or string

select selects and permutes elements from a list or string

set sets the binding or contents of a symbol

setq sets the binding or contents of an unquoted symbol

set-nth changes the nth element of a list or string

silent works like begin but suppresses console output of the return value

slice extracts a sublist or substring

sort sorts the members of a list

starts-with checks the beginning of a string or list against a key of the same type

swap swaps two elements inside a list or string

unify unifies two expressions

unique returns a list without duplicates

unless evaluates an expression conditionally

until repeats evaluation of an expression until the condition is met

while repeats evaluation of an expression while the condition is true

Bit operators

<<, >> bit shift left, bit shift right

Bit operators 68

newLISP Users Manual and Reference

& bitwise and

| bitwise inclusive or

^ bitwise exclusive or

~ bitwise not

Floating point math and special functions

abs calculates the absolute value of a number

acos calculates the arccosine of a number

acosh calculates the inverse hyperbolic cosine of a number

add adds floating point or integer numbers

array creates an array

array-list returns a list conversion from an array

asin calculates the arcsine of a number

asinh calculates the inverse hyperbolic sine of a number

atan calculates the arctangent of a number

atanh calculates the inverse hyperbolic tangent of a number

atan2 computes the principal value of the arctangent of Y / X in radians

beta calculates the beta function

betai calculates the incomplete beta function

binomial calculates the binomial function

ceil rounds up to the next integer

cos calculates the cosine of a number

cosh calculates the hyperbolic cosine of a number

crc32 calculates a 32-bit CRC for a data buffer

crit-chi2 calculates the Chi² for a given probability

crit-z calculates the normal distributed Z for a given probability

dec decrements a number

div divides floating point or integer numbers

erf calculates the error function of a number

exp calculates the exponential e of a number

factor factors a number into primes

fft performs a fast Fourier transform (FFT)

floor rounds down to the next integer

flt converts a number to a 32-bit integer representing a float

gammai calculates the incomplete Gamma function

gammaln calculates the log Gamma function

gcd calculates the greates common divisor of a group of integers

ifft performs an inverse fast Fourier transform (IFFT)

inc increments a number

Floating point math and special functions 69

newLISP Users Manual and Reference

log calculates the natural or other logarithm of a number

min finds the smallest value in a series of values

max finds the largest value in a series of values

mod calculates the modulo of two numbers

mul multiplies floating point or integer numbers

round rounds a number

pow calculates x to the power of y

sequence generates a list sequence of numbers

series creates a geometric sequence of numbers

sgn calculates the signum function of a number

sin calculates the sine of a number

sinh calculates the hyperbolic sine of a number

sqrt calculates the square root of a number

sub subtracts floating point or integer numbers

tanh calculates the hyperbolic tangent of a number

uuid returns a UUID (Universal Unique IDentifier)

Matrix functions

det return the determinant of a matrix

invert return the inversion of a matrix

mat perform scalar operations on matrices

multiply multiplies two matrices

transpose returns the transposition of a matrix

Array functions

append appends arrays

array creates and initializes an array with up to 16 dimensions

array-list converts an array into a list

array? checks if expression is an array

det returns the determinant of a matrix

first returns the first row of an array

invert returns the inversion of a matrix

last returns the last row of an array

mat perform scalar operations on matrices

multiply multiplies two matrices

nth returns an element of and array

nth-set changes the element, returning the old; significantly faster than set-nth
rest returns all but the first row of an array

Array functions 70

newLISP Users Manual and Reference

set-nth changes the element and returns the changed array

slice returns a slice of an array

transpose transposes a matrix

Financial math functions

fv returns the future value of an investment

irr calculates the internal rate of return

nper calculates the number of periods for an investment

npv calculates the net present value of an investment

pv calculates the present value of an investment

pmt calculates the payment for a loan

Simulation and modeling math functions

amb randomly picks an argument and evaluates it

bayes-query calculates Bayesian probabilities for a data set

bayes-train counts items in lists for Bayesian or frequency analysis

normal makes a list of normal distributed floating point numbers

prob-chi2 calculates the cumulated probability of Chi²

prob-z calculates the cumulated probability of a Z-value

rand generates random numbers in a range

random generates a list of evenly distributed floats

randomize shuffles all of the elements in a list

seed seeds the internal random number generator

Time and date functions

date converts a date-time value to a string

date-value calculates the time in seconds since January 1, 1970 for a date and time

parse-date parse a data string

now returns a list of current date-time information

time calculates the time it takes to evaluate an expression in milliseconds

time-of-day calculates the number of milliseconds elapsed since the day started

String and conversion functions

address gets the memory address of a number or string

append appends lists, arrays or strings to form a new list, array or string

char translates between characters and ASCII codes

String and conversion functions 71

newLISP Users Manual and Reference

chop chops off characters from the end of a string

dup duplicates a list or string a specified number of times

ends-with checks the end of a string or list against a key of the same type

encrypt does a one-time–pad encryption and decryption of a string

eval-string compiles, then evaluates a string

explode transforms a string into a list of characters

find searches for an element in a list or string

find-all returns a list of all pattern matches found in string

first gets the first element in a list or string

float translates a string or integer into a floating point number

format formats numbers and strings as in the C language

get-char gets a character from a memory address

get-float gets a double float from a memory address

get-int gets an 32-bitinteger from a memory address

get-long gets a long 64-bit integer from a memory address

get-string gets a string from a memory address

int translates a string or float into an integer

join joins a list of strings

last returns the last element of a list or string

lower-case converts a string to lowercase characters

member finds a list or string member

name returns the name of a symbol or its context as a string

nth gets the nth element in a list or string

nth-set changes the nth element of a list or string

pack packs LISP expressions into a binary structure

parse breaks a string into tokens

pop pops from a string

push pushes onto a string

regex performs a Perl-compatible regular expression search

replace replaces elements in a list or string

rest gets all but the first element of a list or string

reverse reverses a list or string

rotate rotates a list or string

select selects and permutes elements from a list or string

set-nth changes the element in a list or string

slice extracts a substring or sublist

source returns the source required to bind a symbol to a string

starts-with checks the start of the string or list against a key string or list

string transforms anything into a string

sym translates a string into a symbol

String and conversion functions 72

newLISP Users Manual and Reference

title-case converts the first character of a string to uppercase

trim trims a string of one or both sides

unicode converts ASCII or UTF-8 to UCS-4 Unicode

utf8 converts UCS-4 Unicode to UTF-8

utf8 returns length of an UTF-8 string in UTF-8 characters

unpack unpacks a binary structure into LISP expressions

upper-case converts a string to uppercase characters

Input/output and file operations

append-file appends data to a file

close closes a file

command-
line

enables or disables interactive command line

current-line retrieves contents of last read-line buffer

device sets or inquires about current print device

exec launches another program, then reads from or writes to it

load loads and evaluates a file of LISP code

open opens a file for reading or writing

peek checks file descriptor for number of bytes ready for reading

print prints to the console or a device

println prints to the console or a device with a line feed

read-buffer reads binary data from a file

read-char reads an 8-bit character from a file

read-file reads a whole file in one operation

read-key reads a keyboard key

read-line reads a line from the console or file

save saves a workspace, context, or symbol to a file

search searches a file for a string

seek sets or reads a file position

write-buffer writes binary data to a file or string

write-char writes a character to a file

write-file writes a file in one operation

write-line writes a line to the console or a file

Processes, pipes and threads

! shells out to the operating system

exec runs a process, then reads from or writes to it

fork launches a newLISP child process thread

Processes, pipes and threads 73

newLISP Users Manual and Reference

pipe creates a pipe for interprocess communication

process launches a child process, remapping standard I/O and standard error

semaphore creates and controls semaphores

share shares memory with other processes and threads

wait-pid waits for a child process to end

File and directory management

change-dir changes to a different drive and directory

copy-file copies a file

delete-file deletes a file

directory returns a list of directory entries

file-info gets file size, date, time, and attributes

make-dir makes a new directory

real-path returns the full path of the relative file path

remove-dir removes an empty directory

rename-file renames a file or directory

Predicates

atom? checks if an expression is an atom

array? checks if an expression is an array

context? checks if an expression is a context

directory? checks if a disk node is a directory

empty? checks if a list or string is empty

file? checks for the existence of a file

float? checks if an expression is a float

integer? checks if an expression is an integer

lambda? checks if an expression is a lambda expression

legal? checks if a string contains a legal symbol

list? checks if an expression is a list

macro? checks if an expression is a lambda-macro expression

NaN? checks if a float is NaN (not a number)

nil? checks if an expression is nil
null? checks if an expression is nil, "", () or 0.

number? checks if an expression is a float or an integer

primitive? checks if an expression is a primitive

quote? checks if an expression is quoted

string? checks if an expression is a string

symbol? checks if an expression is a symbol

Predicates 74

newLISP Users Manual and Reference

true? checks if an expression is not nil
zero? checks if an expression is 0 or 0.0

System functions

$ accesses system variables $0 -> $15

catch evaluates an expression, catching errors and early returns

context creates or switches to a different namespace

debug debugs a user-defined function

delete deletes symbols from the symbol table

env gets or sets the operating system's environment

error-event defines an error handler

error-
number

gets the last error number

error-text gets the error text for an error number

exit exits newLISP, setting the exit value

global makes a symbol accessible outside MAIN

import imports a function from a shared library

main-args gets command-line arguments

new creates a copy of a context

ostype contains a string describing the OS platform

pretty-print changes the pretty-printing characteristics

reset goes to the top level

set-locale switches to a different locale

signal sets a signal handler

sleep suspends processing for specified milliseconds

symbols returns a list of all symbols in the system

sys-error reports OS system error numbers

sys-info gives information about system resources

throw causes a previous catch to return

throw-error throws a user-defined error

timer starts a one-shot timer, firing an event

trace sets or inquires about trace mode

trace-
highlight

sets highlighting strings in trace mode

HTTP networking API

base64-enc encodes a string into BASE64 format

base64-dec decodes a string from BASE64 format

HTTP networking API 75

newLISP Users Manual and Reference

delete-url deletes a file or page from the web

get-url reads a file or page from the web

post-url posts info to a URL address

put-url uploads a page to a URL address

xml-error returns last XML parse error

xml-parse parses an XML document

xml-type-
tags

shows or modifies XML type tags

Socket TCP/IP and UDP network API

net-accept accepts a new incoming connection

net-close closes a socket connection

net-connect connects to a remote host

net-error returns the last error

net-eval evaluates expressions on multiple remote newLISP servers

net-listen listens for connections to a local socket

net-local returns the local IP and port number for a connection

net-lookup returns the name for an IP number

net-peer returns the remote IP and port for a net connect

net-peek returns the number of characters ready to be read

net-ping sends a ping packet (ICMP echo request) to one or more addresses

net-receive reads data on a socket connection

net-receive-
from

reads a UDP on an open connection

net-receive-
udp

reads a UDP and closes the connection

net-select checks a socket or list of sockets for status

net-send sends data on a socket connection

net-send-to sends a UDP on an open connection

net-send-udp sends a UDP and closes the connection

net-service translates a service name into a port number

net-sessions returns a list of currently open connections

Importing libraries

address gets the memory address of a number or string

flt converts a number to a 32-bit integer representing a float

float translates a string or integer into a floating point number

get-char gets a character from a memory address

get-float gets a double float from a memory address

Importing libraries 76

newLISP Users Manual and Reference

get-int gets an integer from a memory address

get-int gets an integer from a memory address

get-string gets a string from a memory address

import imports a function from a shared library

int translates a string or float into an integer

pack packs LISP expressions into a binary structure

unpack unpacks a binary structure into LISP expressions

newLISP internals API

cpymem copies memory between addresses

dump shows memory address and contents of newLISP cells

(∂)

newLISP internals API 77

newLISP Users Manual and Reference

newLISP internals API 78

newLISP Users Manual and Reference

Functions in alphabetical order

!

syntax: (! str-command)

Executes the command in str-command by shelling out to the operating system and
executing. This function returns a different value depending on the host operating system.

example:

(! "vi")
(! "ls -ltr")

Use the exec function to execute a shell command and capture the standard output or to feed
standard input. The process function may be used to launch a non-blocking child process and
redirect std I/O and std error to pipes.

Note that ! (exclamation mark) can be also be used as a command-line shell operator by
omitting the parenthesis and space after the !:

example:

> !ls -ltr ; executed in the newLISP shell window

Used in this way, the ! operator is not a newLISP function at all, but rather a special feature
of the newLISP command shell. The ! must be entered as the first character on the command
line.

$

syntax: ($ int-idx)

The functions that use regular expressions (directory, find, parse, regex, search, and replace)
all bind their results to the predefined system variables $0, $1, $2–$15 after or during the
function's execution. Both nth-set and set-nth store the replaced expression in $0. System
variables can be treated the same as any other symbol. As an alternative, the contents of
these variables may also be accessed by using ($ 0), ($ 1), ($ 2), etc. This method allows
indexed access (i.e., ($ i), where i is an integer).

example:

(set 'str "http://newlisp.org:80")
(find "http://(.*):(.*)" str 0) 0⇒

$0 "http://newlisp.org:80"⇒
$1 "newlisp.org"⇒
$2 "80"⇒

$ 79

newLISP Users Manual and Reference

($ 0) "http://newlisp.org:80"⇒
($ 1) "newlisp.org"⇒
($ 2) "80"⇒

(set-nth 2 '(a b c d e f g) 'x) (a b x d e f g)⇒

$0 c⇒
($ 0) c⇒

For using captures within substitutions, the $ system variables can be accessed from within
the functions nth-set, set-nth, and replace:

(set 'lst '(1 2 3 4))
(nth-set (lst 3) (* $0 3)) 4⇒
lst (1 2 3 12)⇒

+, -, *, / ,%

syntax: (+ int-1 [int-2 ...])

Returns the sum of all numbers in int-1 —.

syntax: (- int-1 [int-2 ...])

Subtracts int-2 from int-1, then the next int-i from the previous result. If only one argument
is given, its sign is reversed.

syntax: (* int-1 [int-2 ...])

The product is calculated for int-1 to int-i.

syntax: (/ int-1 [int-2 ...])

Each result is divided successively until the end of the list is reached. Division by zero causes
an error.

syntax: (% int-1 [int-2 ...])

Each result is divided successively by the next int, then the rest (modulo operation) is
returned. Division by zero causes an error. For floating point numbers, use the mod function.

example:

(+ 1 2 3 4 5) 15⇒
(+ 1 2 (- 5 2) 8) 14⇒
(- 10 3 2 1) 4⇒
(- (* 3 4) 6 1 2) 3⇒
(- 123) -123⇒
(map - '(10 20 30)) (-10 -20 -30)⇒
(* 1 2 3) 6⇒
(* 10 (- 8 2)) 60⇒
(/ 12 3) 4⇒
(/ 120 3 20 2) 1⇒
(% 10 3) 1⇒
(% -10 3) -1⇒
(+ 1.2 3.9) 4⇒

+, -, *, / ,% 80

newLISP Users Manual and Reference

Floating point values in arguments to +, -, *, /, and % are truncated to their floor value.

Floating point values larger or smaller than the maximum
(9,223,372,036,854,775,807) or minimum (-9,223,372,036,854,775,808)
integer values are truncated to those values.

Calculations resulting in values larger than 9,223,372,036,854,775,807 or smaller than
-9,223,372,036,854,775,808 wrap around from positive to negative or negative to
positive.

For floating point values that evaluate to NaN (Not a Number), both +INF and -INF are
treated as 0 (zero).

<, >, =, <=, >=, !=

syntax: (< exp-1 [exp-2 exp-3 ...])
syntax: (> exp-1 [exp-2 exp-3 ...])
syntax: (= exp-1 [exp-2 exp-3 ...])
syntax: (<= exp-1 [exp-2 exp-3 ...])
syntax: (>= exp-1 [exp-2 exp-3 ...])
syntax: (!= exp-1 [exp-2 exp-3 ...])

Expressions are evaluated and the results are compared successively. As long as the
comparisons conform to the comparison operators, evaluation and comparison will continue
until all arguments are tested and the result is true. As soon as one comparison fails, nil is
returned.

If only one argument is supplied, all comparison operators assume 0 (zero) as a second
argument.

All types of expressions can be compared: atoms, numbers, symbols, and strings. List
expressions can also be compared (list elements are compared recursively).

When comparing lists, elements at the beginning of the list are considered more significant
than the elements following (similar to characters in a string). When comparing lists of
different lengths but equal elements, the longer list is considered greater (see examples).

In mixed-type expressions, the types are compared from lowest to highest. Floats and
integers are compared by first converting them to the needed type, then comparing them as
numbers.

 Atoms: nil, true, integer or float, string, symbol, primitive
 Lists: quoted list/expression, list/expression, lambda, lambda-macro

example:

(< 3 5 8 9) true⇒
(> 4 2 3 6) nil⇒
(< "a" "c" "d") true⇒
(>= duba aba) true⇒
(< '(3 4) '(1 5)) nil⇒
(> '(1 2 3) '(1 2)) true⇒

<, >, =, <=, >=, != 81

newLISP Users Manual and Reference

(= '(5 7 8) '(5 7 8)) true⇒
(!= 1 4 3 7 3) true⇒
(< 1.2 6 "Hello" 'any '(1 2 3)) true⇒
(< nil true) true⇒
(< '(((a b))) '(((b c)))) true⇒
(< '((a (b c)) '(a (b d)) '(a (b (d))))) true⇒

; with single argument copares against 0

(> 1) true ; checks for positive⇒
(> -1) nil ; checks for negative⇒
(= 123) nil ; checks for zero⇒

(map > '(1 3 -4 -3 1 2)) (true true nil nil true true)⇒

<<, >>

syntax: (<< int-1 int-2 [int-3 ...])
syntax: (>> int-1 int-2 [int-3 ...])
syntax: (<< int-1)
syntax: (>> int-1)

The number int-1 is arithmetically shifted to the left or right by the number of bits given as
int-2, then shifted by int-3 and so on. For example, 64-bit integers may be shifted up to 63
positions. When shifting right, the most significant bit is duplicated (arithmetic shift):

(>> 0x800000000000000 1) 0xC00000000000000 ; not⇒
0x040000000000000!

example:

(<< 1 3) 8⇒
(<< 1 2 1) 8⇒
(>> 1024 10) 1⇒
(>> 160 2 2) 10⇒

(<< 3) 6⇒
(>> 8) 4⇒

When int-1 is the only argument << and >> shift by one bit.

&

syntax: (& int-1 int-2 [int-3 ...])

A bitwise and operation is performed on the number in int-1 with the number in int-2, then
successively with int-3, etc.

example:

& 82

newLISP Users Manual and Reference

(& 0xAABB 0x000F) 11 ; which is 0xB⇒

|

syntax: (| int-1 int-2 [int-3 ...])

A bitwise or operation is performed on the number in int-1 with the number in int-2, then
successively with int-3, etc.

example:

(| 0x10 0x80 2 1) 147⇒

^

syntax: (^int-1 int-2 [int-3 ...])

A bitwise xor operation is performed on the number in int-1 with the number in int-2, then
successively with int-3, etc.

example:

(^ 0xAA 0x55) 255⇒

~

syntax: (~ int)

A bitwise not operation is performed on the number in int, reversing all of the bits.

example:

(format "%X" (~ 0xFFFFFFAA)) "55"⇒
(~ 0xFFFFFFFF) 0⇒

abs

syntax: (abs num)

Returns the absolute value of the number in num.

abs 83

newLISP Users Manual and Reference

example:

(abs -3.5) 3.5⇒

acos

syntax: (acos num)

The arccosine function is calculated from the number in num-radians.

example:

(acos 1) 0⇒
(cos (acos 1)) 1⇒

acosh

syntax: (acosh num-radians)

Calculates the inverse hyperbolic cosine of num-radians, the value whose hyperbolic cosine
is num-radians. If num-radians is less than 1, acosh returns NaN.

example:

(acosh 2) 1.316957897⇒
(cosh (acosh 2)) 2⇒
(acosh 0.5) NaN⇒

add

syntax: (add num-1 [num-2 ...])

All of the numbers in num-1, num-2, and on are summed. add accepts float or integer
operands, but it always returns a floating point number. Any floating point calculation with
NaN also returns NaN.

example:

(add 2 3.25 9) 14.25⇒
(add 1 2 3 4 5) 15⇒

add 84

newLISP Users Manual and Reference

address

syntax: (address int)
syntax: (address float)
syntax: (address str)

Returns the memory address of the integer in int, the double floating point number in float,
or the string in str. This function is used for passing parameters to library functions that have
been imported using the import function.

example:

(set 's "\001\002\003\004")

(get-char (+ (address s) 3)) 4⇒

(get-int (address 1234)) 1234⇒

(get-float (address 1.234)) 1.234⇒

When a string is passed, the address of the string is automatically used. As the example
shows, address can be used to do pointer arithmetic on the string's address.

address should only be used on persistent addresses from data objects referred to by a
variable symbol, not from volatile intermediate expression objects.

See also the get-char, get-int, get-long and get-float functions.

amb

syntax: (amb exp-1 exp-2 [exp-3...])

One of the expressions exp-1 ... n is selected at random, and the evaluation result is returned.

example:

(amb 'a 'b 'c 'd 'e) one of: a, b, c, d, or e at random⇒

(dotimes (x 10) (print (amb 3 5 7))) 35777535755⇒

Internally, newLISP uses the same function as rand to pick a random number. To generate
random floating point numbers, use random, randomize, or normal. To initialize the pseudo
random number generating process at a specific starting point, use the seed function.

and

syntax: (and exp-1 exp-2 [exp-3...])

and 85

newLISP Users Manual and Reference

The expressions exp-1, exp-2, etc. are evaluated in order, returning the result of the last
expression. If any of the expressions yield nil, evaluation is terminated and nil is returned.

example:

(set 'x 10) 10⇒
(and (< x 100) (> x 2)) true⇒
(and (< x 100) (> x 2) "passed") "passed"⇒
(and '()) nil⇒
(and true) true⇒
(and) nil⇒

append

syntax: (append list-1 [list-2 ...])
syntax: (append array-1 [array-2 ...])
syntax: (append str-1 [str-2 ...])

In the first form, append works with lists, appending list-1 through list-n to form a new list.
The original lists are left unchanged.

example:

(append '(1 2 3) '(4 5 6) '(a b)) (1 2 3 4 5 6 a b)⇒

(set 'aList '("hello" "world")) ("hello" "world")⇒

(append aList '("here" "I am")) ("hello" "world" "here" "I⇒
am")

In the second form append works on arrays:

example:

(set 'A (array 3 2 (sequence 1 6)))
 ((1 2) (3 4) (5 6))⇒

(set 'B (array 2 2 (sequence 7 10)))
 ((7 8) (9 10))⇒

(append A B)
 ((1 2) (3 4) (5 6) (7 8) (9 10))⇒

(append B B B)
 ((7 8) (9 10) (7 8) (9 10) (7 8) (9 10))⇒

In the third form, append works on strings. The strings in str-n are concatenated into a new
string and returned.

example:

(set 'more " how are you") " how are you"⇒

(append "Hello " "world," more) "Hello world, how are you"⇒

append 86

newLISP Users Manual and Reference

append is also suitable for processing binary strings containing zeroes.

Linkage characters or strings can be specified using the join function. Use the string function
to convert arguments to strings and append in one step.

Use the functions push or write-buffer (with its special syntax) to append to an existing string
in place.

append-file

syntax: (append-file str-filename str-buffer)

Works similarly to write-file, but the content in str-buffer is appended if the file in str-
filename exists. If the file does not exist, it is created (in this case, append-file works
identically to write-file). This function returns the number of bytes written.

example:

(write-file "myfile.txt" "ABC")
(append-file "myfile.txt" "DEF")

(read-file "myfile.txt") "ABCDEF"⇒

append-file can take a http:// or file:// URL in str-file-name. In this case append-
file works exactly like put-url with "Pragma: append\r\n" in the header option and can
take the same additional parameters. The "Pragma: append\r\n" option is supplied
automatically.

example:

(append-file "http://asite.com/message.txt" "More message text.")

The file message.txt is appended at a remote location http://asite.com with the
contents of str-buffer. If the file does not yet exist, it will be created. In this mode, append-
file can also be used to transfer files to remote newLISP server nodes.

See also read-file and write-file.

apply

syntax: (apply func list [int-reduce])

Applies the contents of func (primitive, user-defined function, or lambda expression) to the
arguments in list.

example:

(apply + '(1 2 3 4)) 10⇒
(set 'aList '(3 4 5)) (3 4 5)⇒
(apply * aList) 60⇒

apply 87

newLISP Users Manual and Reference

(apply sqrt '(25)) 5⇒
(apply (lambda (x y) (* x y)) '(3 4)) 12⇒

The int-reduce parameter can optionally contain the number of arguments taken by the
function in func. In this case, func will be repeatedly applied using the previous result as the
first argument and taking the other arguments required successively from list (in left-
associative order). For example, if op takes two arguments, then:

(apply op '(1 2 3 4 5) 2)

;; is equivalent to

(op (op (op (op 1 2) 3) 4) 5)

;; find the greatest common divisor
;; of two or more integers
;; note that newLISP already has a gcd function

(define (gcd_ a b)
(let (r (% b a))
 (if (= r 0) a (gcd_ r a))))

(define-macro (my-gcd)
 (apply gcd_ (args) 2))

(my-gcd 12 18 6) 6⇒
(my-gcd 12 18 6 4) 2⇒

The last example shows how apply's reduce functionality can be used to convert a two-
argument function into one that takes multiple arguments.

apply should only be used on functions and operators that evaluate all of their arguments,
not on special forms like setq or case, which evaluate only some of their arguments. Doing so
will cause the function to fail.

args

syntax: (args)
syntax: (args int-idx-1 [int-idx-2 ...])

Accesses a list of all unbound arguments passed to the currently evaluating define, define-
macro lambda, or lambda-macro expression. Only the arguments of the current function or
macro that remain after local variable binding has occurred are available. The args function
is useful for defining functions or macros with a variable number of parameters.

args can be used to define hygienic macros that avoid the danger of variable capture. See
define-macro.

example:

(define-macro (print-line)
 (dolist (x (args))
 (print x "\n")))

args 88

newLISP Users Manual and Reference

(print-line "hello" "World")

This example prints a line feed after each argument. The macro mimics the effect of the built-
in function println.

In the second syntax, args can take one or more indices (int-idx-n).

example:

(define-macro (foo)
 (print (args 2) (args 1) (args 0)))

(foo x y z)
zyx

(define (bar)
 (args 0 2 -1))

(bar '(1 2 (3 4))) 4⇒

The function foo prints out the arguments in reverse order. The bar function shows args
being used with multiple indices to access nested lists.

Remember that (args) only contains the arguments not already bound to local variables of
the current function or macro:

example:

(define (foo a b) (args))

(foo 1 2) ()⇒

(foo 1 2 3 4 5) (3 4 5)⇒

In the first example, an empty list is returned because the arguments are bound to the two
local symbols, a and b. The second example demonstrates that, after the first two arguments
are bound (as in the first example), three arguments remain and are then returned by args.

(args) can be used as an argument to a built-in or user-defined function call, but it should
not be used as an argument to another macro, in which case (args) would not be evaluated
and would therefore have the wrong contents in the new macro environment.

array

syntax: (array int-n [int-n2 ... int-n16] [list-init])

Creates an array with int-n elements, optionally initializing it with the contents of list-init.
Up to sixteen dimensions may be specified for multidimensional arrays.

Internally, newLISP builds multidimensional arrays by using arrays as the elements of an
array. newLISP arrays should be used whenever random indexing into a large list becomes
too slow. Only a subset of the list functions may be used on arrays. For a more detailed
discussion, see the chapter on arrays.

array 89

newLISP Users Manual and Reference

example:

(array 5) (nil nil nil nil nil)⇒

(array 5 (sequence 1 5)) (1 2 3 4 5)⇒

(array 10 '(1 2)) (1 2 1 2 1 2 1 2 1 2)⇒

Arrays can be initialized with objects of any type. If fewer initializers than elements are
provided, the list is repeated until all elements of the array are initialized.

(set 'myarray (array 3 4 (sequence 1 12)))
 ((1 2 3 4) (5 6 7 8) (9 10 11 12))⇒

Arrays are modified and accessed using the same list functions:

(set-nth 2 3 myarray 99) ; old syntax
(set-nth (myarray 2 3) 99) ; new preferred syntax
 ((1 2 3 4) (5 6 7 8) (9 10 11 99))⇒

(nth-set (myarray 1 1) "hello") 6⇒

myarray
 ((1 2 3 4) (5 "hello" 7 8) (9 10 11 99))⇒

(set-nth (myarray 1) (array 4 '(a b c d)))
 ((1 2 3 4) (a b c d) (9 10 11 99))⇒

(nth 1 myarray) (a b c d) ; access a whole row⇒

(nth 0 -1 myarray) 4⇒

;; use implicit indexing and slicing on arrays

(myarray 1) (a b c d)⇒

(myarray 0 -1) 4⇒

(2 myarray) (c d)⇒

(-3 2 myarray) (b c)⇒

Care must be taken to use an array when replacing a whole row.

array-list can be used to convert arrays back into lists:

(array-list myarray) ((1 2 3 4) (a b c d) (1 2 3 99))⇒

To convert a list back into an array, apply flat to the list:

(set 'aList '((1 2) (3 4))) ((1 2) (3 4))⇒

(set 'aArray (array 2 2 (flat aList))) ((1 2) (3 4))⇒

The array? function can be used to check if an expression is an array:

(array? myarray) true⇒

(array? (array-list myarray)) nil⇒

array 90

newLISP Users Manual and Reference

When serializing arrays using the function source or save, the code includes the array
statement necessary to create them. This way, variables containing arrays are correctly
serialized when saving with save or creating source strings using source.

(set 'myarray (array 3 4 (sequence 1 12)))

(save "array.lsp" 'myarray)

;; contents of file arraylsp ;;

(set 'myarray (array 3 4 (flat '(
 (1 2 3 4)
 (5 6 7 8)
 (9 10 11 12)))))

array-list

syntax: (array-list array)

Returns a list conversion from array, leaving the original array unchanged:

example:

(set 'myarray (array 3 4 (sequence 1 12)))
 ((1 2 3 4) (5 6 7 8) (9 10 11 12))⇒

(set 'mylist (array-list myarray))
 ((1 2 3 4) (5 6 7 8) (9 10 11 12))⇒

(list (array? myarray) (list? mylist))
 (true true)⇒

array?

syntax: (array? expr)

Checks if expr is an array:

example:

(set 'M (array 3 4 (sequence 1 4)))
 ((1 2 3 4) (1 2 3 4) (1 2 3 4)))⇒

(array? M) true⇒

(array? (array-list M)) nil⇒

array? 91

newLISP Users Manual and Reference

asin

syntax: (asin num-radians)

Calculates the arcsine function from the number in num-radians and returns the result.

example:

(asin 1) 1.570796327⇒
(sin (asin 1)) 1⇒

asinh

syntax: (asinh num-radians)

Calculates the inverse hyperbolic sine of num-radians, the value whose hyperbolic sine is
num-radians.

example:

(asinh 2) 1.443635475⇒
(sinh (asinh 2)) 2⇒

assoc

syntax: (assoc exp-key list-alist)

The value of exp-key is used to search list-alist for a member-list whose first element
matches the key value. If found, the member-list is returned; otherwise, the result will be
nil.

example:

(assoc 1 '((3 4) (1 2))) (1 2)⇒

(set 'data '((apples 123) (bananas 123 45) (pears 7)))

(assoc 'bananas data) (bananas 123 45)⇒
(assoc 'oranges data) nil⇒

For making replacements in association lists, use the replace-assoc function. The lookup
function is used to perform association lookup and element extraction in one step.

assoc 92

newLISP Users Manual and Reference

atan

syntax: (atan num-radians)

The arctangent of num-radians is calculated and returned.

example:

(atan 1) 0.7853981634⇒
(tan (atan 1)) 1⇒

atan2

syntax: (atan2 num-Y-radians num-X-radians)

The atan2 function computes the principal value of the arctangent of Y / X in radians. It
uses the signs of both arguments to determine the quadrant of the return value. atan2 is
useful for converting Cartesian coordinates into polar coordinates.

example:

(atan2 1 1) 0.7853981634⇒
(div (acos 0) (atan2 1 1)) 2⇒
(atan2 0 -1) 3.141592654⇒
(= (atan2 1 2) (atan (div 1 2))) true⇒

atanh

syntax: (atanh num-radians)

Calculates the inverse hyperbolic tangent of num-radians, the value whose hyperbolic
tangent is num-radians. If the absolute value of num-radians is greater than 1, atanh
returns NaN; if it is equal to 1, atanh returns infinity.

example:

(atanh 0.5) 0.5493061443⇒
(tanh (atanh 0.5)) 0.5⇒
(atanh 1.1) NaN⇒
(atanh 1) inf⇒

atom?

syntax: (atom? exp)

atom? 93

newLISP Users Manual and Reference

Returns true if the value of exp is an atom, otherwise nil. An expression is an atom, if it
evaluates to nil, true, an integer, a float, a string, a symbol or a primitive. Lists, lambda or
lambda-macro expressions, and quoted expressions are not atoms.

example:

(atom? '(1 2 3)) nil⇒
(and (atom? 123)
 (atom? "hello")
 (atom? 'foo)) true⇒
(atom? ''foo) nil⇒

base64-dec

syntax: (base64-dec str)

The BASE64 string in str is decoded. Note that str is not verified to be a valid BASE64 string.
The decoded string is returned.

example:

(base64-dec "SGVsbG8gV29ybGQ=") "Hello World"⇒

For encoding, use the base64-enc function.

newLISP's BASE64 handling is derived from routines found in the UNIX curl utility.

base64-enc

syntax: (base64-enc str)

The string in str is encoded into BASE64 format. This format encodes groups of 3 * 8 = 24
input bits into 4 * 8 = 32 output bits, where each 8-bit output group represents 6 bits from
the input string. The 6 bits are encoded into 64 possibilities from the letters A–Z and a–z; the
numbers 0–9; and the characters + (plus sign) and / (slash). The = (equals sign) is used as a
filler in unused 3- to 4-byte translations. This function is helpful for converting binary
content into printable characters.

The encoded string is returned.

BASE64 encoding is used with many Internet protocols to encode binary data for inclusion in
text-based messages (e.g., XML-RPC).

example:

(base64-enc "Hello World") "SGVsbG8gV29ybGQ="⇒

Note that base64-enc does not insert carriage-return/line-feed pairs in longer BASE64
sequences but instead returns a pure BASE64-encoded string.

base64-enc 94

http://curl.haxx.se/

newLISP Users Manual and Reference

For decoding, use the base64-dec function.

newLISP's BASE64 handling is derived from routines found in the UNIX curl utility.

bayes-query

syntax: (bayes-query list-L context-D [bool-chain] [bool-probs])

Takes a list of tokens (list-L) and a trained dictionary (context-D) and returns a list of the
combined probabilities of the tokens in one category (A or Mc) versus a category (B) against
all other categories (Mi). All tokens in list-L should occur in context-D. When using the
default R.A. Fisher Chi² mode, nonexistent tokens will skew results toward equal probability
in all categories.

Non-existing tokens will not have any influence on the result when using the true Chain
Bayesian mode with bool-chain set to true. The optional last flag, bool-probs, indicates
whether frequencies or probability values are used in the data set. The bayes-train function is
typically used to generate a data set's frequencies.

Tokens can be strings or symbols. If strings are used, they are prepended with an underscore
before being looked up in context-D. If bayes-train was used to generate context-D's
frequencies, the underscore was automatically prepended during the learning process.

Depending on the flag specified in bool-probs, bayes-query employs either the R. A. Fisher
Chi² method of compounding probabilities or the Chain Bayesian method. By default, when
no flag or nil is specified in bool-probs, the Chi² method of compounding probabilities is
used. When specifying true in bool-probs, the Chain Bayesian method is used.

If the R.A. Fisher Chi² method is used, the total number of tokens in the different training
set's categories should be equal or similar. Uneven frequencies in categories will skew the
results.

For two categories A and B, bayes-query uses the following formula:

p(A|tkn) = p(tkn|A) * p(A) / p(tkn|A) * p(A) + p(tkn|B) * p(B)

For N categories, this formula is used:

p(Mc|tkn) = p(tkn|Mc) * p(Mc) / sum-i-N(p(tkn|Mi) * p(Mi))

The probabilities (p(Mi) or p(A), along with p(B)) represent the Bayesian prior probabilities.
p(Mx|tkn) and p(A|tkn) are the posterior Bayesian probabilities of a category or model.

Priors are handled differently, depending on whether the R.A. Fisher Chi² or the Chain
Bayesian method is used. While in Chain Bayesian mode, posteriors from one token
calculation get the priors in the next calculation. In the default R.A. Fisher method, priors are
not passed on via chaining, but probabilities are compounded using the Chi² method.

In Chain Bayes mode, tokens with zero frequency in one category will effectively put the
probability of that category to 0 (zero). This also causes all posterior priors to be set to 0 and
the category to be completely suppressed in the result. Queries resulting in zero probabilities
for all categories yield NaN values.

bayes-query 95

http://curl.haxx.se/

newLISP Users Manual and Reference

The default R.A. Fisher Chi² method is less sensitive about zero frequencies and still
maintains a low probability for that token. This may be an important feature in natural
language processing when using Bayesian statistics. Imagine that five different language
corpus categories have been trained, but some words occurring in one category are not
present in another. When the pure Chain Bayesian method is used, a sentence could never be
classified into its correct category because the zero-count of just one word token could
effectively exclude it from the category to which it belongs.

On the other hand, the Chain Bayesian method offers exact results for specific proportions in
the data. When using Chain Bayesian mode for natural language data, all zero frequencies
should be removed from the trained dictionary first.

The return value of bayes-query is a list of probability values, one for each category.
Following are two examples: the first for the default R.A. Fisher mode, the second for a data
set processed with the Chain Bayesian method.

R.A. Fisher Chi² method

In the following example, the two data sets are books from Project Gutenberg. We assume
that different authors use certain words with different frequencies and want to determine if a
sentence is more likely to occur in one or the other author's writing. A similar method is
frequently used to differentiate between spam and legitimate email.

;; from Project Gutenberg: http://www.gutenberg.org/catalog/
;; The Adventures of Sherlock Holmes - Sir Arthur Conan Doyle

(bayes-train (parse (lower-case (read-file "Doyle.txt"))
 "[^a-z]+" 0) '() 'DoyleDowson)

;; A Comedy of Masks - Ernest Dowson and Arthur Moore

(bayes-train '() (parse (lower-case (read-file "Dowson.txt"))
 "[^a-z]+" 0) 'DoyleDowson)

(save "DoyleDowson.lsp" 'DoyleDowson)

The two training sets are loaded, split into tokens, and processed by the bayes-train function.
In the end, the DoyleDowson dictionary is saved to a file, which will be used later with the
bayes-query function.

The following code illustrates how bayes-query is used to classify a sentence as Doyle or
Dowson:

(load "DoyleDowson.lsp")
(bayes-query (parse "he was putting the last touches to a
picture")
 'DoyleDowson)
 (0.03801673331 0.9619832667)⇒

(bayes-query (parse "immense faculties and extraordinary powers
of observation")
 'DoyleDowson)
 (0.9851075608 0.01489243923)⇒

R.A. Fisher Chi² method 96

newLISP Users Manual and Reference

The queries correctly identify the first sentence as a Dowson sentence, and the second one as
a Doyle sentence.

Chain Bayesian method

The second example is frequently found in introductory literature on Bayesian statistics. It
shows the Chain Bayesian method of using bayes-query on the data of a previously
processed data set:

example:

(set 'Data:test-positive '(8 18))
(set 'Data:test-negative '(2 72))
(set 'Data:total '(10 90))

A disease occurs in 10 percent of the population. A blood test developed to detect this disease
produces a false positive rate of 20 percent in the healthy population and a false negative rate
of 20 percent in the sick. What is the probability of a person carrying the disease after testing
positive?

example:

(bayes-query '(test-positive) Data true)
 (0.3076923077 0.6923076923)⇒

(bayes-query '(test-positive test-positive) Data true)
 (0.64 0.36)⇒

(bayes-query '(test-positive test-positive test-positive) Data
true)
 (0.8767123288 0.1232876712)⇒

Note that the Bayesian formulas used assume statistical independence of events for the
bayes-query to work correctly.

The example shows that a person must test positive several times before they can be
confidently classified as sick.

Calculating the same example using the R.A. Fisher Chi² method will give less-distinguished
results.

Specifying probabilities instead of counts

Often, data is already available as probability values and would require additional work to
reverse them into frequencies. In the last example, the data were originally defined as
percentages. The additional optional bool-probs flag allows probabilities to be entered
directly and should be used together with the Chain Bayesian mode for maximum
performance:

example:

(set 'Data:test-positive '(0.8 0.2))

Specifying probabilities instead of counts 97

newLISP Users Manual and Reference

(set 'Data:test-negative '(0.2 0.8))
(set 'Data:total '(0.1 0.9))

(bayes-query '(test-positive) Data true true)
 (0.3076923077 0.6923076923)⇒

(bayes-query '(test-positive test-positive) Data true true)
 (0.64 0.36)⇒

(bayes-query '(test-positive test-positive test-positive) Data
true true)
 (0.8767123288 0.1232876712)⇒

As expected, the results are the same for probabilities as they are for frequencies.

bayes-train

syntax: (bayes-train list-M1 list-M2 [list-M3 ...] sym-context-D)

Takes two or more lists of tokens (M1, M2—) from a joint set of tokens. In newLISP, tokens
can be symbols or strings (other data types are ignored). Tokens are placed in a common
dictionary in sym-context-D, and the frequency is counted for each token in each category
Mi. If the context does not yet exist, it must be quoted.

The M categories represent data models for which sequences of tokens can be classified (see
bayes-query). Each token in D is a content-addressable symbol containing a list of the
frequencies for this token within each category. String tokens are prepended with an _
(underscore) before being converted into symbols. A symbol named total is created
containing the total of each category. The total symbol cannot be part of the symbols
passed as an Mi category.

The function returns a list of token frequencies found in the different categories or models.

example:

(bayes-train '(A A B C C) '(A B B C C C) 'L) (5 6)⇒

L:A (2 1)⇒
L:B (1 2)⇒
L:C (2 3)⇒
L:total (5 6)⇒

(bayes-train '("one" "two" "two" "three")
 '("three" "one" "three")
 '("one" "two" "three") 'S)
 (3 2 3)⇒

S:_one (1 1 1)⇒
S:_two (2 0 1)⇒
S:_three (1 2 1)⇒
S:total (3 2 3)⇒

The first example shows training with two lists of symbols. The second example illustrates
how an _ is prepended when training with strings.

bayes-train 98

newLISP Users Manual and Reference

Note that these examples are just for demonstration purposes. In reality, training sets may
contain thousands or millions of words, especially when training natural language models.
But small data sets may be used when then the frequency of symbols just describe already-
known proportions. In this case, it may be better to describe the model data set explicitly,
without the bayes-train function:

(set 'Data:tested-positive '(8 18))
(set 'Data:tested-negative '(2 72))
(set 'Data:total '(10 90))

The last data are from a popular example used to describe the bayes-query function in
introductory papers and books about bayesian networks.

Training can be done in different stages by using bayes-train on an existing trained
context with the same number of categories. The new symbols will be added, then counts and
totals will be correctly updated.

Training in multiple batches may be necessary on big text corpora or documents that must be
tokenized first. These corpora can be tokenized in small portions, then fed into bayes-
train in multiple stages. Categories can also be singularly trained by specifying an empty
list for the absent corpus:

(bayes-train shakespeare1 '() 'data)
(bayes-train shakespeare2 '() 'data)
(bayes-train '() hemingway1 'data)
(bayes-train '() hemingway2 'data)
(bayes-train shakepeare-rest hemingway-rest 'data)

bayes-train will correctly update word counts and totals.

Using bayes-train inside a context other than MAIN requires the training contexts to have
been created previously within the MAIN context via the context function.

bayes-train is not only useful with the bayes-query function, but also as a function for
counting in general. For instance, the resulting frequencies could be analyzed using prob-
chi2 against a null hypothesis of proportional distribution of items across categories.

begin

syntax: (begin body)

The begin function is used to group a block of expressions. The expressions in body are
evaluated in sequence, and the value of the last expression in body is returned.

example:

(begin
 (print "This is a block of 2 expressions\n")
 (print "================================"))

Some built-in functions like cond, define, dolist, dotimes, and while already allow multiple
expressions in their bodies, but begin is often used in an if expression.

begin 99

newLISP Users Manual and Reference

The silent function works like begin, but suppresses console output on return.

beta

syntax: (beta cum-a, num-b)

The Beta function, beta, is derived from the log Gamma gammaln function as follows:

beta = exp(gammaln(a) + gammaln(b) - gammaln(a + b))

example:

(beta 1 2) 0.5⇒

betai

syntax: (betai num-x, num-a, num-b)

The Incomplete Beta function, betai, equals the cumulative probability of the Beta
distribution, betai, at x in num-x. The cumulative binomial distribution is defined as the
probability of an event, pev, with probability p to occur k or more times in N trials:

pev = Betai(p, k, N - k + 1)

example:

(betai 0.5 3 8) 0.9453125⇒

;; probability of F ratio for df1/df2
;;
(define (f-prob f df1 df2)
 (let (prob (mul 2 (betai (div df2 (add df2 (mul df1 f)))
 (mul 0.5 df2)
 (mul 0.5 df1))))
 (div (if (> prob 1) (sub 2 prob) prob) 2)))

The first example calculates the probability for an event, with a probability of 0.5 to occur 3
or more times in 10 trials (8 = 10 - 3 + 1). The incomplete Beta distribution can be used to
derive a variety of other functions in mathematics and statistics. The second example
calculates the one-tailed probability of a variance, F ratio. In similar fashion, students t could
be calculated using betai. See also the binomial function.

betai 100

newLISP Users Manual and Reference

binomial

syntax: (binomial int-n int-k float-p)

The binomial distribution function is defined as the probability for an event to occur int-k
times in int-n trials if that event has a probability of float-p and all trials are independent of
one another:

binomial = n! / (k! * (n - k)!) * pow(p, k) * pow(1.0 - p, n - k)

where x! is the factorial of x and pow(x, y) is x raised to the power of y.

example:

(binomial 10 3 0.5) 0.1171875⇒

The example calculates the probability for an event with a probability of 0.5 to occur 3 times
in 10 trials. For a cumulated distribution, see the betai function.

callback

syntax: (callback int-index sym-function)

Up to eight callback functions can be registered with imported libraries. The callback
function returns a procedure address that invokes a user-defined function in sym-function.
The following example shows the usage of callback functions when importing the OpenGL
graphics library:

example:

...
(define (draw)
 (glClear GL_COLOR_BUFFER_BIT)
 (glRotated rotx 0.0 1.0 0.0)
 (glRotated roty 1.0 0.0 0.0)
 (glutWireTeapot 0.5)
 (glutSwapBuffers))

(define (keyboard key x y)
 (if (= (& key 0xFF) 27) (exit)) ; exit program with ESC
 (println "key:" (& key 0xFF) " x:" x " y:" y))

(define (mouse button state x y)
 (if (= state 0)
 (glutIdleFunc 0) ; stop rotation on button press
 (glutIdleFunc (callback 4 'rotation)))
 (println "button: " button " state:" state " x:" x " y:" y))

(glutDisplayFunc (callback 0 'draw))
(glutKeyboardFunc (callback 1 'keyboard))
(glutMouseFunc (callback 2 'mouse))
...

callback 101

http://www.opengl.org/

newLISP Users Manual and Reference

The address returned by callback is registered with the Glut library. The above code is a
snippet from the file opengl-demo.lsp, in the examples/ directory of the source
distribution of newLISP.

case

syntax: (case exp-switch (exp-1 body-1) [(exp-2 body-2) ...])

The result of evaluating exp-switch is compared to each of the unevaluated expressions exp-
1, exp-2, —. If a match is found, the corresponding expressions in body are evaluated. The
result of the last match is returned as the result for the entire case expression.

example:

(define (translate n)
 (case n
 (1 "one")
 (2 "two")
 (3 "three")
 (4 "four")
 (true "Can't translate this")))
(translate 3) "three"⇒
(translate 10) "Can't translate this"⇒

The example shows how, if no match is found, the last expression in the body of a case
function can be evaluated.

catch

syntax: (catch exp)
syntax: (catch exp symbol)

In the first syntax, catch will return the result of the evaluation of exp or the evaluated
argument of a throw executed during the evaluation of exp:

example:

(catch (dotimes (x 1000)
 (if (= x 500) (throw x)))) 500⇒

This form is useful for breaking out of iteration loops and for forcing an early return from a
function or expression block:

(define (foo x)
 …
 (if condition (throw 123))
 …
 456)

;; if condition is true

catch 102

http://www.opengl.org/documentation/specs/glut/spec3/spec3.html

newLISP Users Manual and Reference

(catch (foo p)) 123⇒

;; if condition is not true

(catch (foo p)) 456⇒

In the second syntax, catch evaluates the expression exp, stores the result in symbol, and
returns true. If an error occurs during evaluation, catch returns nil and stores the error
message in symbol. This form can be useful when errors are expected as a normal potential
outcome of a function and are dealt with during program execution.

example:

(catch (func 3 4) 'result) nil⇒
result
 "invalid function in function catch : (func 3 4)"⇒

(constant 'func +) add <4068A6>⇒
(catch (func 3 4) 'result) true⇒
result 7⇒

When a throw is executed during the evaluation of expr, catch will return true, and the
throw argument will be stored in symbol:

(catch (dotimes (x 100)
 (if (= x 50) (throw "fin")) 'result) true⇒

result "fin"⇒

As well as being used for early returns from functions and for breaking out of iteration loops
(as in the first syntax), the second syntax of catch can also be used to catch errors. The
throw-error function may be used to throw user-defined errors.

ceil

syntax: (ceil number)

Returns the next highest integer above number as a floating point.

example:

(ceil -1.5) -1⇒
(ceil 3.4) 4⇒

See also the floor function.

ceil 103

newLISP Users Manual and Reference

change-dir

syntax: (change-dir str-path)

Changes the current directory to be the one given in str-path. If successful, true is returned;
otherwise nil is returned.

example:

(change-dir "/etc")

Makes /etc the current directory.

char

syntax: (char str [int-index])
syntax: (char int)

Given a string argument, extracts the character at int-index from str, returning the ASCII
value of that character. If int-index is omitted, 0 (zero) is assumed.

See Indexing elements of strings and lists.

Given an integer argument, char returns a string containing the ASCII character with value
int.

On UTF-8–enabled versions of newLISP, the value in int is taken as Unicode and a UTF-8
character is returned.

example:

(char "ABC") 65 ; ASCII code for "A"⇒
(char "ABC" 1) 66 ; ASCII code for "B"⇒
(char "ABC" -1) 67 ; ASCII code for "C"⇒
(char "B") 66 ; ASCII code for "B"⇒

(char 65) "A"⇒
(char 66) "B"⇒

(char (char 65)) 65 ; two inverse applications⇒

(map char (sequence 1 255)) ; returns current character set

chop

syntax: (chop str [int-chars])
syntax: (chop list [int-elements])

chop 104

newLISP Users Manual and Reference

If the first argument evaluates to a string, chop returns a copy of str with the last int-char
characters omitted. If the int-char argument is absent, one character is omitted. chop does
not alter str.

If the first argument evaluates to a list, a copy of list is returned with int-elements omitted
(same as for strings).

example:

(set 'str "newLISP") "newLISP"⇒

(chop str) "newLIS"⇒
(chop str 2) "newLI"⇒

str "newLISP"⇒

(set 'lst '(a b (c d) e))

(chop lst) (a b (c d))⇒
(chop lst 2) (a b)⇒

lst (a b (c d) e)⇒

clean

syntax: (clean exp-predicate list)

The predicate exp-predicate is applied to each element of list. In the returned list, all
elements for which exp-predicate is true are eliminated.

clean works like filter with a negated predicate.

example:

(clean symbol? '(1 2 d 4 f g 5 h)) (1 2 4 5)⇒

(filter symbol? '(1 2 d 4 f g 5 h)) (d f g h)⇒

(define (big? x) (> x 5)) (lambda (x) (> x 5))⇒

(clean big? '(1 10 3 6 4 5 11)) (1 3 4 5)⇒

(clean (curry match '(a *)) '((a 10) (b 5) (a 3) (c 8) (a 9)))
 ((b 5) (c 8))⇒

The predicate may be a built-in predicate or a user-defined function or lambda expression.

For cleaning numbers from one list using numbers from another, use difference or intersect
(with the list option).

See also the related function index, which returns the indices of the remaining elements, and
filter, which returns all elements for which a predicate returns true.

clean 105

newLISP Users Manual and Reference

close

syntax: (close int-file)

Closes the file specified by the file handle in int-file. The handle would have been obtained
from a previous open operation. If successful, close returns true; otherwise nil is
returned.

example:

(close (device)) true⇒
(close 7) true⇒
(close aHandle) true⇒

Note that using close on device automatically resets it to 0 (zero, the screen device).

command-line

syntax: (command-line [bool])

Enables or disables the console's interactive command-line mode. The command line is
switched off if bool evaluates to nil, and on for anything else. The command line is also
switched on if reset or an error condition occurs.

example:

(command-line nil)

On Linux/UNIX, this will also disable the Ctrl-C handler.

cond

syntax: (cond (exp-condition-1 body-1) [(exp-condition-2 body-2) ...]

Like if, cond conditionally evaluates the expressions within its body. The exp-conditions are
evaluated in turn, until some exp-condition-i is found that evaluates to anything other than
nil or an empty list (). The result of evaluating body-i is then returned as the result of the
entire cond-expression. If all conditions evaluate to nil or an empty list, cond returns the
value of the last cond-expression.

example:

(define (classify x)
 (cond
 ((< x 0) "negative")
 ((< x 10) "small")
 ((< x 20) "medium")
 ((>= x 30) "big")))

cond 106

newLISP Users Manual and Reference

(classify 15) "medium"⇒
(classify 22) "nil"⇒
(classify 100) "big"⇒
(classify -10) "negative"⇒

When a body-n is missing, the value of the last cond-expression evaluated is returned. If no
condition evaluates to true, the value of the last conditional expression is returned (i.e., nil
or an empty list).

(cond ((+ 3 4))) 7⇒

When used with multiple arguments, the function if behaves like cond, except it does not
need extra parentheses to enclose the condition-body pair of expressions.

cons

syntax: (cons exp-1 exp-2)

If exp-2 evaluates to a list, then a list is returned with the result of evaluating exp-1 inserted
as the first element. If exp-2 evaluates to anything other than a list, the results of evaluating
exp-1 and exp-2 are returned in a list. Note that there is no dotted pair in newLISP: consing
two atoms constructs a list, not a dotted pair.

example:

(cons 'a 'b) (a b)⇒
(cons 'a '(b c)) (a b c)⇒
(cons (+ 3 4) (* 5 5)) (7 25)⇒
(cons '(1 2) '(3 4)) ((1 2) 3 4)⇒
(cons nil 1) (nil 1)⇒
(cons 1 nil) (1 nil)⇒
(cons 1) (1)⇒
(cons) ()⇒

Unlike other LISPs that return (s) as the result of the expression (cons 's nil),
newLISP's cons returns (s nil). In newLISP, nil is a boolean value and is not equivalent
to an empty list, and a LISP cell holds only one value.

cons behaves like the inverse operation of first and rest (or first and last if the list is a pair):

(cons (first '(a b c)) (rest '(a b c))) (a b c)⇒

(cons (first '(x y)) (last '(x y))) (x y)⇒

constant

syntax: (constant sym-1 exp-1 [sym-2 exp-2 ...])

constant 107

newLISP Users Manual and Reference

Identical to set in functionality, constant further protects the symbols from subsequent
modification. A symbol set with constant can only be modified using the constant
function again. When an attempt is made to modify the contents of a symbol protected with
constant, newLISP generates an error message. Only symbols from the current context can
be used with constant. This prevents the overwriting of symbols that have been protected
in their home context.

Symbols initialized with set, define, or define-macro can still be protected by using the
constant function:

(constant 'aVar 123) 123⇒
(set 'aVar 999)
error: symbol is protected in function set: aVar

(define (double x) (+ x x))

(constant 'double)

;; equivalent to

(constant 'double (fn (x) (+ x x)))

The first example defines a constant, aVar, which can only be changed by using another
constant statement. The second example protects double from being changed (except by
constant). Because a function definition in newLISP is equivalent to an assignment of a
lambda function, both steps can be collapsed into one, as shown in the last statement line.
This could be an important technique for avoiding protection errors when a file is loaded
multiple times.

The last value to be assigned can be omitted. constant returns the contents of the last
symbol set and protected.

Built-in functions can be assigned to symbols or to the names of other built-in functions,
effectively redefining them as different functions. There is no performance loss when
renaming functions.

(constant 'squareroot sqrt) sqrt <406C2E>⇒
(constant '+ add) add <4068A6>⇒

squareroot will behave like sqrt. The + (plus sign) is redefined to use the mixed type
floating point mode of add. The hexadecimal number displayed in the result is the binary
address of the built-in function and varies on different platforms and OSes.

context

syntax: (context [sym-context])

syntax: (context sym-context str exp-value)
syntax: (context sym-context str)

context 108

newLISP Users Manual and Reference

In the first syntax, context is used to switch to a different context namespace. Subsequent
loads of newLISP source or functions like eval-string will put newly created symbols and
function definitions in the new context.

If the context still needs to be created, the symbol for the new context should be specified.
When no argument is passed to context, then the symbol for the current context is
returned.

Because contexts evaluate to themselves, a quote is not necessary to switch to a different
context if that context already exists.

example:

(context 'GRAPH) ; create / switch context GRAPH

(define (foo-draw x y z) ; function resides in GRAPH
 (…))

(set 'var 12345)
(symbols) (foo-draw var) ; GRAPH has now two symbols⇒

(context MAIN) ; switch back to MAIN (quote not
required)

(print GRAPH:var) 12345 ; contents of symbol in GRAPH⇒

(GRAPH:foo-draw 10 20 30) ; execute function in GRAPH
(set 'GRAPH:var 6789) ; assign to a symbol in GRAPH

If a context symbol is referred to before the context exists, the context will be created
implicitly.

(set 'person:age 0) ; no need to create context first
(set 'person:address "") ; useful for quickly defining data
structures

Contexts can be copied:

(new person 'JohnDoe) JohnDoe⇒

(set 'JohnDoe:age 99)

Contexts can be referred to by a variable:

(set 'human JohnDoe)

human:age 99⇒

(set 'human:address "1 Main Street")

JohnDoe:address "1 Main Street"⇒

An evaluated context (no quote) can be given as an argument:

> (context 'FOO)
FOO
FOO> (context MAIN)
MAIN
> (set 'old FOO)
FOO

context 109

newLISP Users Manual and Reference

> (context 'BAR)
BAR
BAR> (context MAIN:old)
FOO
FOO>

If an identifier with the same symbol already exists, it is redefined to be a context.

Symbols within the current context are referred to simply by their names, as are built-in
functions and special symbols like nil and true. Symbols outside the current context are
referenced by prefixing the symbol name with the context name and a : (colon). To quote a
symbol in a different context, prefix the context name with a ' (single quote).

Within a given context, symbols may be created with the same name as built-in functions or
context symbols in MAIN. This overwrites the symbols in MAIN when they are prefixed with
a context:

(context 'CTX)
(define (CTX:new var)
 (…))

(context 'MAIN)

CTX:new will overwrite new in MAIN.

In the second syntax, context is used to create dictionaries for hash-like associative
memory access:

;; create a symbol and store data in it
(context 'MyHash "John Doe" 123) 123⇒
(context 'MyHash "@#$%^" "hello world") "hello world"⇒

;; retrieve contents from symbol
(context 'MyHash "john Doe") 123⇒
(context 'MyHash "@#$%^") "hello world"⇒

The first two statements create a symbol and store a value of any data type inside. The first
statement also creates the hash context named MyHash.

Hash symbols can contain spaces or any other special characters not typically allowed in
newLISP symbols being used as variable names. This second syntax of context only creates
the new symbol and returns the value contained in it. It does not switch to the new
namespace.

The following function definition can be used as a comfortable shorter method to handle
dictionaries:

(define (myhash:myhash key value)
 (if value
 (context 'myhash key value)
 (context 'myhash key)))

(myhash "hello" 123)

(myhash "hello") 123⇒

Note that context cannot be used to modify the default functor. This protects a function
like the previous against modifying itself.

context 110

newLISP Users Manual and Reference

context?

syntax: (context? exp)
syntax: (context? exp str-sym)

In the first syntax, context? is a predicate that returns true only if exp evaluates to a context;
otherwise, it returns nil.

example:

(context? MAIN) true⇒
(set 'x 123)
(context? x) nil⇒

(set 'FOO:q "hola") "hola"⇒
(set 'ctx FOO)
(context? ctx) true ; ctx contains context foo⇒

The second syntax checks for the existence of a symbol in a context. The symbol is specified
by its name string in str-sym.

(context? FOO "q") true⇒
(context? FOO "p") nil⇒

Use context to change and create namespaces and to create hash symbols in contexts.

copy-file

syntax: (copy-file str-from-name str-to-name)

Copies a file from a path-file-name given in str-from-name to a path-file-name given in str-
to-name. Returns true or nil, depending on if the copy was successful or not.

example:

(copy-file "/home/me/newlisp/data.lsp" "/tmp/data.lsp")

cos

syntax: (cos num-radians)

The cosine function is calculated from num, and the result is returned.

example:

(cos 1) 0.5403023059⇒

cos 111

newLISP Users Manual and Reference

(set 'pi (mul 2 (acos 0))) 3.141592654⇒
(cos pi) -1⇒

cosh

syntax: (cosh num-radians)

Calculates the hyperbolic cosine of num-radians. The hyperbolic sine is defined
mathematically as: (exp (x) + exp (-x)) / 2. An overflow to inf may occur if num-radians is
too large.

example:

(cosh 1) 1.543080635⇒
(cosh 10) 11013.23292⇒
(cosh 1000) inf⇒
(= (cosh 1) (div (add (exp 1) (exp -1)) 2)) true⇒

count

syntax: (count list-1 list-2)

Counts elements of list-1 in list-2 and returns a list of those counts.

example:

(count '(1 2 3) '(3 2 1 4 2 3 1 1 2 2)) (3 4 2)⇒
(count '(z a) '(z d z b a z y a)) (3 2)⇒

(set 'lst (explode (read-file "myFile.txt")))
(set 'letter-counts (count (unique lst) lst))

The second example counts all occurrences of different letters in myFile.txt.

The first list in count, which specifies the items to be counted in the second list, should be
unique. For items that are not unique, only the first instance will carry a count; all other
instances will display 0 (zero).

cpymem

syntax: (cpymem int-from-address int-to-address int-bytes)

Copies int-bytes of memory from int-from-address to int-to-address. This function can be
used for direct memory writing/reading or for hacking newLISP internals (e.g., type bits in
LISP cells, or building functions with binary executable code on the fly).

cpymem 112

newLISP Users Manual and Reference

Note that this function should only be used when familiar with newLISP internals. cpymem
can crash the system or make it unstable if used incorrectly.

example:

(cpymem (pack "c c" 0 32) (last (dump 'sym)) 2)

(set 's "0123456789")

(cpymem "xxx" (+ (address s) 5) 3)

s "01234xxx89")⇒

The first example would remove the protection bit in symbol sym. The second example copies
a string directly into a string variable.

The following example creates a new function from scratch, runs a piece of binary code, and
adds up two numbers. This assembly language snippet shows the x86 code to add up two
numbers and return the result:

 55 push epb
 8B EC mov ebp, esp
 8B 45 08 mov eax, [ebp+08]
 03 45 0C add eax, [ebp+0c]
 5D pop ebp
 C3 ret

The binary representation is attached to a new function created in newLISP:

;; set code
(set 'bindata (pack "ccccccccccc"
 0x55 0x8B 0xEC 0x8B 0x45 0x08 0x03 0x45 0x0C 0x5D 0xC3))

;; get function template
(set 'foo print)

;; change type to library import and OS calling conventions
;(cpymem (pack "ld" 265) (first (dump foo)) 4) ; Win32 stdcall
(cpymem (pack "ld" 264) (first (dump foo)) 4) ; Linux cdecl

;; set code pointer
(cpymem (pack "ld" (address bindata)) (+ (first (dump foo)) 12)
4)

;; execute
(foo 3 4) 7⇒

Use the dump function to retrieve binary addresses and the contents from newLISP cells.

crc32

syntax: (crc32 str-data)

crc32 113

newLISP Users Manual and Reference

Calculates a running 32-bit CRC (Circular Redundancy Check) sum from the buffer in str-
data, starting with a CRC of 0xffffffff for the first byte. crc32 uses an algorithm
published by www.w3.org.

example:

(crc32 "abcdefghijklmnopqrstuvwxyz") 1277644989⇒

crc32 is often used to verify data integrity in unsafe data transmissions.

crit-chi2

syntax: (crit-chi2 num-probability num-df)

Calculates the critical minimum Chi² for a given confidence probability num-probability and
the degrees of freedom num-df for testing the significance of a statistical null hypothesis.

example:

(crit-chi2 0.99 4) 13.27670443⇒

See also the inverse function prob-chi2.

crit-z

syntax: (crit-z num-probability)

Calculates the critical normal distributed Z value of a given cumulated probability (num-
probability) for testing of statistical significance and confidence intervals.

example:

(crit-z 0.999) 3.090232372⇒

See also the inverse function prob-z.

current-line

syntax: (current-line)

Retrieves the contents of the last read-line operation. current-line's contents are also
implicitly used when write-line is called without a string parameter.

The following source shows the typical code pattern for creating a UNIX command-line filter:

example:

current-line 114

http://www.w3.org/

newLISP Users Manual and Reference

#!/usr/bin/newlisp

(set 'inFile (open (main-args 2) "read"))
(while (read-line inFile)
 (if (starts-with (current-line) ";;")
 (write-line)))
(exit)

The program is invoked:

./filter myfile.lsp

This displays all comment lines starting with ;; from a file given as a command-line
argument when invoking the script filter.

curry

syntax: (curry func expr)

Transforms func from a function f(x, y) that takes two arguments into a function fx(y) that
takes a single argument. curry works like a macro in that it does not evaluate its arguments.
Instead, they are evaluated during the application of func.

example:

(set 'f (curry + 10)) (lambda (_x) (+ 10 _x))⇒

(f 7) 17⇒

(filter (curry match '(a *)) '((a 10) (b 5) (a 3) (c 8) (a 9)))
 ((a 10) (a 3) (a 9))⇒

(clean (curry match '(a *)) '((a 10) (b 5) (a 3) (c 8) (a 9)))
 ((b 5) (c 8))⇒

(map (curry list 'x) (sequence 1 5))
 ((x 1) (x 2) (x 3) (x 4) (x 5))⇒

curry can be used on all functions taking two arguments.

date

syntax: (date)
syntax: (date int-secs [int-offset])
syntax: (date int-secs int-offset str-format)

The first syntax returns the local time zone's current date and time as a string representation.

In the second syntax, date translates the number of seconds in int-secs into its date/time
string representation for the local time zone. The number in int-secs is usually retrieved from

date 115

newLISP Users Manual and Reference

the system using date-value. Optionally, a time-zone offset (in minutes) can be specified in
int-offset, which is added or subtracted before conversion of int-sec to a string.

example:

(date) "Fri Oct 29 09:56:58 2004"⇒

(date (date-value)) "Sat May 20 11:37:15 2006" ⇒
(date (date-value) 300) "Sat May 20 16:37:19 2006" ; 5 hours⇒
offset
(date 0) "Wed Dec 31 16:00:00 1969"⇒

Note that on some Win32-compiled versions, values resulting in dates earlier than January 1,
1970, 00:00:00 return nil. But the MinGW compiled version will also work with values that
result in dates up to 24 hours prior to 1/1/1970, returning a date-time string for 12/31/1969.

The way the date and time are presented in a string depends on the underlying operating
system.

The second example would show 1-1-1970 0:0 when in the Greenwich time zone, but it
displays a time lag of 8 hours when in Pacific Standard Time (PST). date assumes the int-
secs given are in Coordinated Universal Time (UCT; formerly Greenwich Mean Time (GMT))
and converts it according to the local time-zone.

The third syntax makes the date string fully customizable by using a format specified in str-
format. This allows the day and month names to be translated into results appropriate for
the current locale:

example:

(set-locale "german") "de_DE" ⇒

(date (date-value) 0 "%A %-d. %B %Y")
 "Montag 7. März 2005" ⇒

; on Linux - suppresses the leading 0

(set-locale "C") ; default POSIX

(date (date-value) 0 "%A %B %d %Y")
 "Monday March 07 2005"⇒

(date (date-value) 0 "%a %#d %b %Y")
 "Mon 7 Mar 2005" ⇒

; suppressing leading 0 on Win32 using #

(set-locale "german")

(date (date-value) 0 "%x")
 "07.03.2005" ; day month year⇒

(set-locale "C")

(date (date-value) 0 "%x")

 "03/07/05" ; month day year⇒

The following table summarizes all format specifiers available on both Win32 and
Linux/UNIX platforms. More format options are available on Linux/UNIX. For details,

date 116

newLISP Users Manual and Reference

consult the documentation for the C function strftime() in the individual platform's C
library.

for
mat

description

%a abbreviated weekday name according to the current locale

%A full weekday name according to the current locale

%b abbreviated month name according to the current locale

%B full month name according to the current locale

%c preferred date and time representation for the current locale

%d day of the month as a decimal number (range 01–31)

%H hour as a decimal number using a 24-hour clock (range 00–23)

%I hour as a decimal number using a 12-hour clock (range 01–12)

%j day of the year as a decimal number (range 001–366)

%m month as a decimal number (range 01–12)

%M minute as a decimal number

%p
either 'am' or 'pm' according to the given time value or the corresponding strings
for the current locale

%S
second as a decimal number 0–61 (60 and 61 to account for occasional leap
seconds)

%U
week number of the current year as a decimal number, starting with the first
Sunday as the first day of the first week

%w day of the week as a decimal, Sunday being 0

%W
week number of the current year as a decimal number, starting with the first
Monday as the first day of the first week

%x preferred date representation for the current locale without the time

%X preferred time representation for the current locale without the date

%y year as a decimal number without a century (range 00–99)

%Y year as a decimal number including the century

%z
time zone or name or abbreviation (same as %Z on Win32, different on
Linux/UNIX)

%Z
time zone or name or abbreviation (same as %z on Win32, different on
Linux/UNIX)

%% a literal '%' character

Leading zeroes in the display of decimal numbers can be suppressed using - (minus) on
Linux/UNIX and # (number sign) on Win32.

See also date-value, parse-date, time-of-day, time, and now.

date 117

newLISP Users Manual and Reference

date-value

syntax: (date-value int-year int-month int-day [int-hour int-min int-sec])
syntax: (date-value)

In the first syntax, date-value returns the time in seconds since 1970-1-1 00:00:00 for a
given date and time. The parameters for the hour, minutes, and seconds are optional. The
time is assumed to be Coordinated Universal Time (UCT), not adjusted for the current time
zone.

In the second syntax, date-value returns the time value in seconds for the current time.

example:

(date-value 2002 2 28) 1014854400⇒
(date-value 1970 1 1 0 0 0) 0⇒

(date (apply date-value (now))) "Wed May 24 10:02:47 2006" ⇒
(date (date-value)) "Wed May 24 10:02:47 2006"⇒
(date) "Wed May 24 10:02:47 2006"⇒

The following function can be used to transform a date-value back into a list:

(define (value-date val)
 (append
 (slice (now (+ (/ (date-value) -60) (/ val 60))) 0 5)
 (list (% val 60))))

(value-date 1014854400) (2002 2 28 0 0 0)⇒

See also date, time-of-day, time, and now.

debug

syntax: (debug func)

Calls trace and begins evaluating the user-defined function in func. debug is a shortcut for
executing (trace true), then entering the function to be debugged.

example:

;; instead of doing
(trace true)
(my-func a b c)
(trace nil)

;; use debug as a shortcut
(debug (my-func a b c))

See also the trace function.

debug 118

newLISP Users Manual and Reference

dec

syntax: (dec sym [num])

The number in sym is decremented by one (or the optional number num) and returned. dec
performs mixed integer and floating point arithmetic according to the rules outlined below.

If sym contains a float and num is absent, the input argument is truncated to an integer.

Integer calculations (without num) resulting in numbers greater than
9,223,372,036,854,775,807 wrap around to negative numbers. Results smaller than
-9,223,372,036,854,775,808 wrap around to positive numbers.

If num is supplied, dec always returns the result as a floating point number (even for integer
arguments).

example:

(set 'x 10) 10⇒
(dec 'x) 9⇒
x 9⇒
(dec 'x 0.25) 8.75⇒
x 8.75⇒

Use the inc function to increment numbers.

define

syntax: (define (sym-name [sym-param-1 ...]) [body-1 ...])
syntax: (define (sym-name [(sym-param-1 exp-default) ...]) [body-1 ...])
syntax: (define sym-name exp)

Defines the new function sym-name, with optional parameters sym-param-1—. define is
equivalent to assigning a lambda expression to sym-name. When calling a defined function,
all arguments are evaluated and assigned to the variables in sym-param-1—, then the body-1
— expressions are evaluated. When a function is defined, the lambda expression bound to
sym-name is returned.

All parameters defined are optional. When a user-defined function is called without
arguments, those parameters assume the value nil. If those parameters have a default value
specified in exp-default, they assume that value.

The return value of define is the assigned lambda expression. When calling a user-defined
function, the return value is the last expression evaluated in the function body.

example:

(define (area x y) (* x y)) (lambda (x y) (* x y))⇒
(area 2 3) 6⇒

As an alternative, area could be defined as a function without using define.

(set 'area (lambda (x y) (* x y))

define 119

newLISP Users Manual and Reference

lambda or fn expressions may be used by themselves as anonymous functions without being
defined as a symbol:

((lambda (x y) (* x y)) 2 3) 6⇒
((fn (x y) (* x y)) 2 3) 6⇒

fn is just a shorter form of writing lambda.

Parameters can have default values specified:

(define (foo (a 1) (b 2))
 (list a b))

(foo) (1 2)⇒
(foo 3) (3 2)⇒
(foo 3 4) (3 4)⇒

Expressions in exp-default are evaluated in the function's current environment.

(define-macro (foo (a 10) (b (div a 2)))
 (list a b))

(foo) (10 5)⇒
(foo 30) (30 15)⇒
(foo 3 4) (3 4)⇒

The second version of define works like the set function.

example:

(define x 123) 123⇒
;; is equivalent to
(set 'x 123) 123⇒

(define area (lambda (x y) (* x y)))
;; is equivalent to
(set 'area (lambda (x y) (* x y)))
;; is equivalent to
(define (area x y) (* x y))

Trying to redefine a protected symbol will cause an error message.

define-macro

syntax: (define-macro (sym-name [sym-param-1 ...]) body)
syntax: (define-macro (sym-name [(sym-param-1 expr-default) ...]) body)

Defines the new macro sym-name, with optional arguments sym-param-1—. define-
macro is equivalent to assigning a lambda-macro expression to a symbol. When a macro-
defined function is called, arguments are assigned to the variables in sym-param-1—,
without evaluating the arguments first. Then the body expressions are evaluated. When
evaluating the define-macro function, the lambda-macro expression is returned.

example:

define-macro 120

newLISP Users Manual and Reference

;; use underscores on symbols
(define-macro (my-setq _x _y) (set _x (eval _y)))
 (lambda-macro (_x _y) (set _x (eval _y)))⇒

(my-setq x 123) 123⇒

Macros in newLISP are similar to define functions, but they do not evaluate their
arguments. New functions can be created to behave like built-in functions that delay the
evaluation of certain arguments. Since macros can access the arguments inside a parameter
list, they can be used to create flow-control functions like those already built into newLISP.

All parameters defined are optional. When a macro is called without arguments, those
parameters assume the value nil. If those parameters have a default value specified in exp-
default, they assume that default value.

(define-macro (foo (a 1) (b 2))
 (list a b))

(foo) (1 2)⇒
(foo 3) (3 2)⇒
(foo 3 4) (3 4)⇒

Expressions in exp-default are evaluated in the function's current environment.

(define-macro (foo (a 10) (b (div a 2)))
 (list a b))

(foo) (10 5)⇒
(foo 30) (30 15)⇒
(foo 3 4) (3 4)⇒

Note that in macros, the danger exists of passing a parameter with the same variable name as
used in the macro definition. In this case, the macro internal variable would end up receiving
nil instead of the intended value:

;; not a good definition!

(define-macro (my-setq x y) (set x (eval y)))

;; symbol name clash for x

(my-setq x 123) 123⇒
x nil⇒

There are several methods that can be used to avoid this problem, known as variable
capture, and to write hygienic macros:

• Prefix all macro variable names with an underscore character. Using this or a similar
convention, the danger of symbol name clashes can be avoided.

• Put the macro into its own lexically closed namespace context. If the function has the
same name as the context, it can be called by using the context name alone. A
function with this characteristic is called a default function.

• Use args to access arguments passed by the function.

example:

;; a macro as a lexically isolated function
;; avoiding variable capture in passed parameters

define-macro 121

newLISP Users Manual and Reference

(context 'my-setq)

(define-macro (my-setq:my-setq x y) (set x (eval y)))

(context MAIN)

(my-setq x 123) 123 ; no symbol clash⇒

The macro in the example is lexically isolated, and no variable capture can occur. Instead of
the macro being called using (my-setq:my-setq …), it can be called with just (my-setq
…) because it is a default function.

A third possibility is to refer to passed parameters using args:

example:

;; avoid variable capture in macros using the args function

(define-macro (my-setq) (set (args 0) (eval (args 1))))

The last example shows how letex can be combined with define-macro to expand macro
variables into an expression to be evaluated:

example:

(define-macro (dolist-while)
 (letex (var (args 0 0)
 lst (args 0 1)
 cnd (args 0 2)
 body (cons 'begin (1 (args))))
 (let (res)
 (catch (dolist (var lst)
 (if (set 'res cnd) body (throw res)))))))

> (dolist-while (x '(a b c d e f) (!= x 'd)) (println x))
a
b
c
nil
>

dolist-while loops through a list while the condition is true. Note that a similar feature is
already built into dolist as a break condition optional parameter.

Also, the expand function performs variable expansion explicitly, without evaluating the
expanded expression.

def-new

syntax: (def-new sym-source [sym-target])

This function works similarly to new, but it only creates a copy of one symbol and its contents
from the symbol in sym-source. When sym-target is not given, a symbol with the same name
is created in the current context. All symbols referenced inside sym-source will be translated

def-new 122

newLISP Users Manual and Reference

into symbol references into the current context. If an argument is present in sym-target, the
copy will be made into a symbol and context as referenced by the symbol in sym-target. In
addition to allowing renaming of the function while copying, this also enables the copy to be
placed in a different context. All symbol references will be translated into symbol references
of the target context. The taget context cannot be MAIN.

def-new returns the symbol created:

example:

(set 'foo:var '(foo:x foo:y))

(def-new 'foo:var) var⇒

var (x y)⇒

(def-new 'foo:var 'myvar) myvar⇒

myvar (x y)⇒

(def-new 'foo:var 'ct:myvar) ct:myvar⇒

ct:myvar (ct:x ct:y)⇒

The function def-new can be used to configure contexts or context objects in a more
granular fashion than is possible with new, which copies a whole context.

default

syntax: (default context)

Returns the default functor of a context. The default functor is the symbol which carries the
same name as the context it belongs to:

example:

(set 'foo:foo '(a b c d e f))

(set 'ctx foo)

(default foo) foo:foo⇒
(default ctx) foo:foo⇒

(sort (eval (default ctx)) >)

foo:foo (f e d c b a)⇒

default 123

newLISP Users Manual and Reference

delete

syntax: (delete symbol [bool])
syntax: (delete sym-context [bool])

Deletes a symbol, symbol, or a context in sym-context with all contained symbols from
newLISP's symbol table. References to the symbol will be changed to nil. When the
expression in bool evaluates to true or anything other than nil, symbols are only deleted
when they are not referenced.

Protected symbols of built-in functions and special symbols like nil and true cannot be
deleted.

delete returns true if the symbol was deleted, else it returns nil.

example:

(set 'lst '(a b aVar c d))

(delete 'aVar) ; aVar deleted, references marked nil

lst (a b nil c d)⇒

(set 'lst '(a b aVar c d))

(delete 'aVar true)
 nil ; protect aVar if referenced⇒

lst (a b aVar c d)⇒

(set 'foo:x 123)
(set 'foo:y "hello")

;; in contexts, the quote may be omitted
(delete foo) foo:x, foo:y and foo will be deleted⇒

Note that deleting a symbol that is part of a function which is currently executing can crash
the system or have other unforeseen effects.

delete-file

syntax: (delete-file str-file-name)

Deletes a file given in str-file-name. Returns true or nil depending on the outcome of the
delete operation.

The file name can be given as a URL.

example:

(delete-file "junk")

(delete-file "http://asite.com/example.html")

delete-file 124

newLISP Users Manual and Reference

The first example deletes the file junk in the current directory. The second example shows
how to use a URL to specify the file. In this form, additional parameters can be given. See
delete-url for details.

det

syntax: (det matrix)

Returns the determinant of a square matrix. A matrix can either be a nested list or an array.

example:

(set 'A '((-1 1 1) (1 4 -5) (1 -2 0)))

(det A) -1⇒

If the matrix is singular, nil is returned.

See also the other matrix operations invert, mat, multiply and transpose.

device

syntax: (device [int])

int is an I/O device number, which is 0 (zero) for the default STD I/O console window. int
may also be a file handle previously obtained using open. When no argument is supplied, the
current I/O device number is returned. The I/O channel specified by device is used
internally by the functions print and read-line. When the current I/O device is 0 (zero), print
sends output to the console window and read-line accepts input from the keyboard. If the
current I/O device has been set by opening a file, then print and read-line work on that file.

example:

(device (open "myfile" "write")) 5⇒
(print "This goes in myfile") "This goes in myfile"⇒
(close (device)) true⇒

Note that using close on device automatically resets device to 0 (zero).

delete-url

syntax: (delete-file str-url)

This function deletes the file on a remote HTTP server specified in str-url. The HTTP
DELETE protocol must be enabled on the target web server, or an error message string may

delete-url 125

newLISP Users Manual and Reference

be returned. The target file must also have access permissions set accordingly. Additional
parameters such as timeout and custom headers are available exactly as in the get-url
function.

This feature is also available when the delete-file function is used and a URL is specified for
the filename.

example:

(delete-url "http://www.aserver.com/somefile.txt")
(delete-url "http://site.org:8080/page.html" 5000)

The second example configures a timeout option of five seconds. Other options such as
special HTTP protocol headers can be specified, as well. See the get-url function for details.

difference

syntax: (difference list-A list-B)
syntax: (difference list-A list-B bool)

In the first syntax, difference returns the set difference between list-A and list-B. The
resulting list only has elements occurring in list-A, but not in list-B. All elements in the
resulting list are unique, but list-A and list-B need not be unique. Elements in the lists can be
any type of LISP expression.

example:

(difference '(2 5 6 0 3 5 0 2) '(1 2 3 3 2 1)) (5 6 0)⇒

In the second syntax, difference works in list mode. bool specifies true or an expression
not evaluating to nil. In the resulting list, all elements of list-B are eliminated in list-A, but
duplicates of other elements in list-A are left.

example:

(difference '(2 5 6 0 3 5 0 2) '(1 2 3 3 2 1) true) (5 6 0 5⇒
0)

See also the set functions intersect and unique.

directory

syntax: (directory [str-path])
syntax: (directory str-path str-pattern [int-option])

A list of directory entry names is returned for the directory path given in str-path. On failure,
nil is returned. When str-path is omitted, the list of entries in the current directory is
returned.

directory 126

newLISP Users Manual and Reference

example:

(directory "/bin")

(directory "c:/")

The first example returns the directory of /bin, the second line returns a list of directory
entries in the root directory of drive C:. Note that on Win32 systems, a forward slash (/) can
be included in path names. When used, a backslash (\) must be preceded by a second
backslash.

On Win32 systems, there should be no trailing slash character after the directory name, but
the drive letter must be followed by a colon and a forward slash (:/). On Linux/UNIX
systems, a trailing slash after the directory name will not cause problems.

In the second syntax, directory can take a regular expression pattern in str-pattern. Only
filenames matching the pattern will be returned in the list of directory entries. In int-options,
special regular expression options can be specified; see regex for details.

example:

(directory "." "\\.c") ("foo.c" "bar.c")⇒
;; or using braces as string pattern delimiters
(directory "." {\.c}) ("foo.c" "bar.c")⇒

; show only hidden files (starting with dot)
(directory "." "^[.]") ("." ".." ".profile" ".rnd" ".ssh")⇒

The regular expression forces directory to return only file names containing the string
".c".

Other functions that use regular expressions are find, find-all, parse, regex, replace, and
search.

directory?

syntax: (directory? str-path)

Checks if str-path is a directory. Returns true or nil depending on the outcome.

(directory? "/etc") true⇒
(directory? "/usr/bin/emacs") nil⇒

On Win32 systems, there should be no trailing slash character after the directory name, but
the drive letter must be followed by a colon and a forward slash (:/). On Linux/UNIX
systems, a trailing slash after the directory name will not cause problems.

directory? 127

newLISP Users Manual and Reference

div

syntax: (div num-1 num-2 [num-3 ...])
syntax: (div num-1)

Successively divides num-1 by the number in num-2—. div can perform mixed-type
arithmetic, but it always returns floating point numbers. Any floating point calculation with
NaN also returns NaN.

example:

(div 10 3) 3.333333333⇒
(div 120 (sub 9.0 6) 100) 0.4⇒

(div 10) 0.1⇒

When num-1 is the only argument, div calculates the inverse of num-1.

doargs

syntax: (doargs (sym [exp-break]) body)

Iterates through all members of the argument list inside a user-defined function or macro.
This function or macro can be defined using define, define-macro, lambda, or lambda-macro.
The variable in sym is set sequentially to all members in the argument list until the list is
exhausted or an optional break expression (defined in exp-break) evaluates to true or a
logical true value. The doargs expression always returns the result of the last evaluation.

example:

(define (foo)
 (doargs (i) (println i)))

> (foo 1 2 3 4 5)
1
2
3
4
5

The optional break expression causes doargs to interrupt processing of the arguments:

(define-macro (foo)
 (doargs (i (= i 'x))
 (println i)))

> (foo a b c x e f g)
a
b
c
true

Use the args function to access the entire argument list at once.

doargs 128

newLISP Users Manual and Reference

dolist

syntax: (dolist (sym list [exp-break]) body)

The expressions in body are evaluated for each element in list. The variable in sym is set to
each of the elements before evaluation of the body expressions. The variable used as loop
index is local and behaves according to the rules of dynamic scoping.

Optionally, a condition for early loop exit may be defined in exp-break. If the break
expression evaluates to any non-nil value, the dolist loop returns with the value of exp-
break. The break condition is tested before evaluating body.

example:

(set 'x 123)
(dolist (x '(a b c d e f g)) ; prints: abcdefg
 (print x)) g ; return value⇒

(dolist (x '(a b c d e f g) (= x 'e)) ; prints: abcd
 (print x))

;; x is local in dolist
;; x has still its old value outside the loop

x 123 ; x has still its old value⇒

This example prints abcdefg in the console window. After the execution of dolist, the
value for x remains unchanged because the x in dolist has local scope. The return value of
dolist is the result of the last evaluated expression.

The internal system variable $idx keeps track of the current offset into the list passed to
dolist, and it can be accessed during its execution:

(dolist (x '(a b d e f g))
 (println $idx ":" x)) g⇒

0:a
1:b
2:d
3:e
4:f
5:g

The console output is shown in boldface. $idx is protected and cannot be changed by the
user.

dotimes

syntax: (dotimes (sym int [exp-break]) body)

dotimes 129

newLISP Users Manual and Reference

The expressions in body are evaluated int times. The variable in sym is set from 0 (zero) to
(int - 1) each time before evaluating the body expression(s). The variable used as the loop
index is local to the dotimes expression and behaves according the rules of dynamic
scoping. The loop index is of integer type. dotimes returns the result of the last expression
evaluated in body.

Optionally, a condition for early loop exit may be defined in exp-break. If the break
expression evaluates to any non-nil value, the dotimes loop returns with the value of exp-
break. The break condition is tested before evaluating body.

example:

(dotimes (x 10)
 (print x)) 9 ; return value⇒

This prints 0123456789 to the console window.

dotree

syntax: (dotree (sym-context) body)

The expressions in body are evaluated for all symbols in sym-context. The symbols are
accessed in a sorted order. Before each evaluation of the body expression(s), the variable in
sym is set to the next symbol from sym-context. The variable used as the loop index is local
to the dotree expression and behaves according the rules of dynamic scoping.

example:

;; faster and less memory overhead
(dotree (s 'SomeCTX) (print s " "))

;; the quote can be omitted
(dotree (s SomeCTX) (print s " "))

;; slower and more memory usage
(dolist (s (symbols 'SomeCTX)) (print s " "))

This example prints the names of all symbols inside SomeCTX to the console window.

do-until

syntax: (do-until exp-condition body)

The expressions in body are evaluated before exp-condition is evaluated. If the evaluation of
exp-condition is not nil, then the do-until expression is finished; otherwise, the
expressions in body get evaluated again. Note that do-until evaluates the conditional
expression after evaluating the body expressions, whereas until checks the condition before

do-until 130

newLISP Users Manual and Reference

evaluating the body. The return value of the do-until expression is the last evaluation of
the body expression.

example:

(set 'x 1)
(do-until (= x 1) (inc 'x))
x 2⇒

(set 'x 1)
(until (= x 1) (inc 'x))
x 1⇒

While do-until goes through the loop at least once, until never enters the loop.

See also the functions while and do-while.

do-while

syntax: (do-while exp-condition body)

The expressions in body are evaluated before exp-condition is evaluated. If the evaluation of
exp-condition is nil, then the do-while expression is finished; otherwise the expressions in
body get evaluated again. Note that do-while evaluates the conditional expression after
evaluating the body expressions, whereas while checks the condition before evaluating the
body. The return value of the do-while expression is the last evaluation of the body
expression.

example:

(set 'x 10)
(do-while (< x 10) (inc 'x))
x 11⇒

(set 'x 10)
(while (< x 10) (inc 'x))
x 10⇒

While do-while goes through the loop at least once, while never enters the loop.

See also the functions until and do-until.

dump

syntax: (dump [exp])

Shows the binary contents of a newLISP cell. Without an argument, this function outputs a
listing of all LISP cells to the console. When exp is given, it is evaluated and the contents of a
LISP cell are returned in a list.

dump 131

newLISP Users Manual and Reference

example:

(dump 'a) (9586996 5 9578692 9578692 9759280)⇒

(dump 999) (9586996 130 9578692 9578692 999)⇒

The list contains the following memory addresses and information:

 (0) memory address of the LISP cell
 (1) cell->type: mayor/minor type, see newlisp.h for details
 (2) cell->next: linked list ptr
 (3) cell->aux:
 string length+1 or
 low (little endian) or high (big endian) word of 64-bit
integer or
 low word of IEEE 754 double float
 (4) cell->contents:
 string/symbol address or
 high (little endian) or low (big endian) word of 64-bit
integer or
 high word of IEEE 754 double float

This function is valuable for changing type bits in cells or hacking other parts of newLISP
internals. See the function cpymem for a comprehensive example.

dup

syntax: (dup exp int-n [bool])

If the expression in exp evaluates to a string, it will be replicated int-n times within a string
and returned. When specifying an expression evaluating to anything other than nil in bool,
the string will not be concatenated but replicated in a list like any other data type.

If exp contains any data type other than string, the returned list will contain int-n evaluations
of exp.

example:

(dup "A" 6) "AAAAAA"⇒
(dup "A" 6 true) ("A" "A" "A" "A" "A" "A")⇒
(dup "A" 0) ""⇒
(dup "AB" 5) "ABABABABAB"⇒
(dup 9 7) (9 9 9 9 9 9 9)⇒
(dup 9 0) ()⇒
(dup 'x 8) (x x x x x x x x)⇒
(dup '(1 2) 3) ((1 2) (1 2) (1 2))⇒
(dup "\000" 4) "\000\000\000\000"⇒

The last example shows handling of binary information, creating a string filled with four
binary zeroes.

See also the functions sequence and series.

dup 132

newLISP Users Manual and Reference

empty?

syntax: (empty? exp)
syntax: (empty? str)

exp is tested for an empty list (or str for an empty string). Depending on whether the
argument contains elements, true or nil is returned.

example:

(set 'var '())
(empty? var) true⇒
(empty? '(1 2 3 4)) nil⇒
(empty? "hello") nil⇒
(empty? "") true⇒

The first example checks a list, while the second two examples check a string.

encrypt

syntax: (encrypt str-source str-pad)

Performs a one-time–pad encryption of str-source using the encryption pad in str-pad. The
longer str-pad is and the more random the bytes are, the safer the encryption. If the pad is as
long as the source text, is fully random, and is used only once, then one-time–pad encryption
is virtually impossible to break, since the encryption seems to contain only random data. To
retrieve the original, the same function and pad are applied again to the encrypted text:

example:

(set 'secret
 (encrypt "A secret message" "my secret key"))
 ",YS\022\006\017\023\017TM\014\022\n\012\030E"⇒

(encrypt secret "my secret key") "A secret message"⇒

The second example encrypts a whole file:

(write-file "myfile.enc"
 (encrypt (read-file "myfile") "29kH67*"))

ends-with

syntax: (ends-with str-data str-key [option])
syntax: (ends-with list exp)

In the first syntax, ends-with tests the string in str-data to see if it ends with the string
specified in str-key. It returns true or nil depending on the outcome.

ends-with 133

newLISP Users Manual and Reference

When nil or any expression evaluating to nil as a third parameter in bool is specified, the
comparison is case-insensitive.

If a regular expression option number is specified str-key contains a regular expression
pattern. See regex for valid numbers for option.

example:

(ends-with "newLISP" "LISP") true⇒
(ends-with "newLISP" "lisp") nil⇒
(ends-with "newLISP" "lisp" nil) true⇒
;; use regular espressions
(ends-with "newLISP" "lisp|york" 1) true⇒

In the second syntax, ends-with checks if a list ends with the list element in exp. true or
nil is returned depending on outcome.

example:

(ends-with '(1 2 3 4 5) 5) true⇒
(ends-with '(a b c d e) 'b) nil⇒
(ends-with '(a b c (+ 3 4)) '(+ 3 4)) true⇒

The last example shows that exp could be a list by itself.

See also the starts-with function.

env

syntax: (env)
syntax: (env var-str)
syntax: (env var-str value-str)

In the first syntax (without arguments), the operating system's environment is retrieved as a
list in which each entry is a string.

example:

(env) ("PATH=/bin:/usr/bin:/sbin" "USER=LUTZ")⇒

In the second syntax, the name of an environment variable is given in var-str. env returns
the value of the variable or nil if the variable does not exist in the environment.

example:

(env "PATH") "/bin:/usr/bin:/usr/local/bin"⇒

The third syntax (variable name in var-str and value pair in value-str) sets or creates an
environment variable.

example:

(env "NEWLISPDIR" "/usr/bin/") true⇒
(env "NEWLISPDIR") "/usr/bin/"⇒

env 134

newLISP Users Manual and Reference

env replaces the deprecated environ, getenv, and putenv functions.

erf

syntax: (erf num)

erf calculates the error function of a number in num. The error function is defined as:

erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt

example:

(map erf (sequence 0.0 6.0 0.5))
 ⇒

(0 0.5204998778 0.8427007929 0.9661051465 0.995322265 0.999593048
 0.9999779095 0.9999992569 0.9999999846 0.9999999998 1 1 1)

error-event

syntax: (error-event sym)
syntax: (error-event func)

sym contains a user-defined function for handling errors. Whenever an error occurs, the
system performs a reset and executes the user-defined error handler. The error handler can
use the built-in function error-number to retrieve the number of the error.

example:

(define (my-handler)
 (print "error # " (error-number) " has occurred\n")
 (restart-program))

(error-event 'my-handler) my-handler⇒

;; specify a function directly

(error-event my-handler) $error-event⇒

(error-event
 (fn () (print "error # " (error-number) " has occurred\n")))

(error-event exit) $error-event⇒

For a different way of handling errors, see the catch function. Use throw-error to throw user-
defined errors.

error-event 135

newLISP Users Manual and Reference

error-number

syntax: (error-number)

Returns the number of the last error.

example:

(define (my-handler)
 (print "error # " (error-number) " has occurred\n")
 (restart-program))

(error-event 'my-handler)

See also the functions sys-error, throw-error, error-event, and error codes in the appendix.

error-text

syntax: (error-text [int-error])

Returns a descriptive text for the error number in int-error:

example:

(error-text 5) "Not an expression"⇒

If no int-error is given, the last error is assumed.

See also the list of error codes in the appendix and the functions error-event, catch, sys-error,
and throw-error.

eval

syntax: (eval exp)

eval evaluates the result of evaluating exp.

example:

(set 'expr '(+ 3 4)) (+ 3 4)⇒
(eval expr) 7⇒
(eval (list + 3 4)) 7⇒
(eval ''x) x⇒
(set 'y 123)
(set 'x 'y)
x y⇒
(eval x) 123⇒

eval 136

newLISP Users Manual and Reference

newLISP passes all arguments by value. Using a quoted symbol, expressions can be passed by
reference through the symbol. eval can be used to access the original contents of the
symbol:

(define (change-list aList) (push 999 (eval aList)))

(set 'data '(1 2 3 4 5))

(change-list 'data) (999 1 2 3 4 5)⇒

In the example, the parameter 'data is quoted, so push can work on the original list.

It is also possible to pass arguments by reference in newLISP by enclosing the data inside
context objects. See the chapter Programming with context objects and the sub-chapter
Passing objects by reference.

eval-string

syntax: (eval-string str [expr] [sym-context])

Before being evaluated, the result of str is compiled into newLISP's internal format, and the
result of the evaluation is returned. If the string contains more than one expression, the
result of the last evaluation is returned.

A second optional argument, expr, can be passed that is evaluated and returned in case of an
error. This permits programmatic control to be maintained if the evaluation of str produces
errors. An optional third argument can be used to specify the context in which the string
should be parsed and evaluated. When sym-context is specified, the failure expression in
expr must be specified, as well.

example:

(eval-string "(+ 3 4)") 7⇒
(set 'X 123) 123⇒
(eval-string "X") 123⇒

(define (lisp)
 (while true
 (print "\n=>" (eval-string (read-line) "syntax error"))))

(set 'a 10)
(set 'b 20)
(set 'foo:a 11)
(set 'foo:b 22)

(eval-string "(+ a b)") 30⇒
(eval-string "(+ a b)" nil 'foo) 33⇒

The second example shows a simple LISP interpreter eval loop.

Use the catch function to catch errors resulting from the evaluation of expressions, as
opposed to strings.

eval-string 137

newLISP Users Manual and Reference

The last example shows how to specify a target context for evaluation. The symbols a and b
now refer to the values in context foo instead of MAIN.

exec

syntax: (exec str-process)
syntax: (exec str-process [str-stdin])

In the first form, exec launches a process described in str-process and returns all standard
output as an array of strings (one for each line in stdout). exec returns nil if the process
could not be launched.

example:

(exec "ls *.c") ("newlisp.c" "nl-math.c" "nl-string.c")⇒

The example starts a process and performs the shell command ls, capturing the output in an
array of strings.

In the second form, exec creates a process pipe, starts the process in str-process, and
receives from str-stdin standard input for this process. The return value is true if the
process was successfully launched; otherwise it is nil.

example:

(exec "cgiProc" query)

In this example, cgiProc could be a cgi processor (e.g., Perl or newLISP) that receives and
processes standard input supplied by a string contained in the variable query.

exit

syntax: (exit [int])

Exits newLISP. An optional exit code, int, may be supplied. This code can be tested by the
host operating system. When newLISP is run in daemon server mode using -d as a
command-line option, only the network connection is closed, while newLISP stays resident,
listening for a new connection.

example:

(exit 5)

exit 138

newLISP Users Manual and Reference

exists

syntax: (exists func-condition list)

Successively applies func-condition to the elements of list and returns the first element that
meets the condition in func-condition. If no element meets the condition, nil is returned.

example:

(exists string? '(2 3 4 6 "hello" 7)) "hello"⇒

(exists string? '(3 4 2 -7 3 0)) nil⇒

(exists zero? '(3 4 2 -7 3 0)) 0 ; check for 0 or⇒
0.0

(exists < '(3 4 2 -7 3 0)) -7 ; check for⇒
negative

(exists (fn (x) (> x 3)) '(3 4 2 -7 3 0)) 4⇒

(exists (fn (x) (= x 10)) '(3 4 2 -7 3 0)) nil ⇒

Use the for-all function to check if a condition is met for all elements in a list.

exp

syntax: (exp num)

The expression in num is evaluated, and the exponential function is calculated based on the
result. exp is the inverse function of log.

example:

(exp 1) 2.718281828⇒
(exp (log 1)) 1⇒

expand

syntax: (expand list sym [sym_2 ... sym_n])
syntax: (expand list list-assoc)
syntax: (expand list)

In the first syntax, one symbol in sym (or more in sym_2 through sym_n) is looked up in a
simple or nested list. They are then expanded to the current binding of the symbol, and the
expanded list is returned. The original list remains unchanged.

example:

expand 139

newLISP Users Manual and Reference

(set 'x 2 'a '(d e))
(expand '(a x b) 'x) (a 2 b)⇒
(expand '(a x (b c x)) 'x) (a 2 (b c 2))⇒
(expand '(a x (b c x)) 'x 'a) ((d e) 2 (b c 2))⇒

expand is useful when composing lambda expressions or doing variable expansion inside
macros.

(define (raise-to power)
 (expand (fn (base) (pow base power)) 'power))

(define square (raise-to 2))
(define cube (raise-to 3))

(square 5) 25⇒
(cube 5) 125⇒

If more than one symbol is present, expand will work in an incremental fashion:

(set 'a '(b c))
(set 'b 1)

(expand '(a b c) 'a 'b) ((1 c) 1 c) ⇒

Like the apply function, expand reduces its argument list.

syntax: (expand list list-assoc)

The second syntax of expand allows expansion bindings to be specified on the fly, without
performing a set on the participating variables:

example:

(expand '(a b c) '((a 1) (b 2))) (1 2 c)⇒
(expand '(a b c) '((a 1) (b 2) (c (x y z)))) (1 2 (x y z))⇒

Note that the contents of the variables in the association list will not change. This is different
from the letex function, where variables are set by evaluating and assigning their association
parts.

This form of expand is frequently used in logic programming, together with the unify
function.

syntax: (expand list)

A third syntax is used to expand only the contents of variables starting with an uppercase
character. This PROLOG mode may also be used in the context of logic programming. As in
the first syntax of expand, symbols must be preset. Only uppercase variables and those
bound to anything other than nil will be expanded:

example:

(set 'A 1 'Bvar 2 'C nil 'd 5 'e 6)
(expand '(A (Bvar) C d e f)) (1 (2) C d e f)⇒

expand 140

newLISP Users Manual and Reference

Only the symbols A and Bvar are expanded, since they have capitalized names and non-nil
contents.

The currying function in the example demonstrating the first syntax of expand can now be
written even more simply using an uppercase variable:

(define (raise-to Power)
 (expand (fn (base) (pow base Power))))

> (define cube (raise-to 3))
(lambda (base) (pow base 3))

> (cube 4)
64

> _

See the letex function, which also provides an expansion mechanism, and the functionunify,
which is frequently used together with expand.

explode

syntax: (explode str [int-chunk [bool]])
syntax: (explode list [int-chunk [bool]])

In the first syntax, explode transforms the string (str) into a list of single-character strings.
Optionally, a chunk size can be specified in int-chunk to break the string into multi-character
chunks. When specifying a value for bool other than nil, the last chunk will be omitted if it
does not have the full length specified in int-chunk.

example:

(explode "newLISP") ("n" "e" "w" "L" "I" "S" "P")⇒

(join (explode "keep it together")) "keep it together"⇒

(explode "newLISP" 2) ("ne" "wL" "IS" "P")⇒

(explode "newLISP" 3) ("new" "LIS" "P")⇒

; omit last chunk if too short
(explode "newLISP" 3 true) ("new" "LIS")⇒

explode also works on binary content:

(explode "\000\001\002\003")
 ("\000" "\001" "\002" "\003")⇒

When called in UTF-8–enabled versions of newLISP, explode will work on character
boundaries rather than byte boundaries. In UTF-8–encoded strings, characters may contain
more than one byte.

explode 141

newLISP Users Manual and Reference

In the second syntax, explode explodes a list (list) into sublists of chunk size int-chunk,
which is 1 (one) by default.

The following shows an example of the last chunk being omitted when the value for bool is
other than nil, and the chunk does not have the full length specified in int-chunk.

example:

(explode '(a b c d e f g h)) ((a) (b) (c) (d) (e) (f) (g)⇒
(h))
(explode '(a b c d e f g h) 2) ((a b) (c d) (e f) (g))⇒

; omit last chunk if too short
(explode '(a b c d e f g h) 2 true) ((a b) (c d) (e f))⇒

(transpose (explode '(a b c d e f g h) 2))
 ((a c e g) (b d f h))⇒

The join and append functions are inverse operations of explode.

factor

syntax: (factor int)

Factors the number in int into its prime components. Floating point numbers in num are
truncated to their integer part.

example:

(factor 123456789123456789) (3 3 7 11 13 19 3607 3803 52579)⇒

;; check correctness of factoring
(= (apply * (factor 123456789123456789)) 123456789123456789)
 true⇒

;; factor the biggest integer
(factor 9223372036854775807) (7 7 73 127 337 92737 649657)⇒

;; primes.lsp - return all primes in a list, up to n

(define (primes n , p)
 (dotimes (e n)
 (if (= (length (factor e)) 1)
 (push e p -1))) p)

(primes 20) (2 3 5 7 11 13 17 19) ⇒

factor returns nil for numbers smaller than 2. For numbers larger than
9,223,372,036,854,775,807 (the largest 64-bit integer) converted from floating point
numbers, the largest integer is factored.

factor 142

newLISP Users Manual and Reference

fft

syntax: (fft list-num)

Calculates the discrete Fourier transform on the list of complex numbers in list-num using
the FFT method (Fast Fourier Transform). Each complex number is specified by its real part,
followed by its imaginary part. If only real numbers are used, the imaginary part is set to 0.0
(zero). When the number of elements in list-num is not a power of 2, fft increases the
number of elements by padding the list with zeroes. When the imaginary part of a complex
number is 0, simple numbers can be used instead.

example:

(ifft (fft '((1 0) (2 0) (3 0) (4 0))))
 ((1 0) (2 0) (3 0) (4 0))⇒

;; when imaginary part is 0, plain numbers work, too
;; complex numbers can be intermixed

(fft '(1 2 3 4)) ((10 0) (-2 -2) (-2 0) (-2 2))⇒
(fft '(1 2 (3 0) 4)) ((10 0) (-2 -2) (-2 0) (-2 2))⇒

The inverse operation of fft is the ifft function.

file-info

syntax: (file-info str_name)

Returns a list of information about the file or directory in str_name. newLISP uses the
POSIX system call lstat() to get the following information:

offset contents

0 size

1 mode

2 device mode

3 user ID

4 group ID

5 access time

6 modification time

7 status change time

example:

(file-info ".bashrc")
 (124 33188 0 500 0 920951022 920951022 920953074)⇒

file-info 143

newLISP Users Manual and Reference

(date (last (file-info "/etc")))
 "Mon Mar 8 18:23:17 1999"⇒

In the second example, the last status change date for the directory /etc is retrieved.

file-info gives file statistics (size) for a linked file, not the link, except for the mode field.

file?

syntax: (file? str-name)

Checks for the existence of a file in str-name. Returns true if the file exists; otherwise, it
returns nil. This function will also return true for directories. The existence of a file does
not imply anything about its read or write permissions. A file may exist while not having the
permissions to read from or write to it by the current user.

example:

(if (file? "afile") (set 'fileNo (open "afile" "read")))

filter

syntax: (filter exp-predicate exp-list)

The predicate exp-predicate is applied to each element of the list exp-list. A list is returned
containing the elements for which exp-predicate is true. filter works like clean, but with a
negated predicate.

example:

(filter symbol? '(1 2 d 4 f g 5 h)) (d f g h)⇒

(define (big? x) (> x 5)) (lambda (x) (> x 5))⇒

(filter big? '(1 10 3 6 4 5 11)) (10 6 11)⇒

(filter (curry match '(a *)) '((a 10) (b 5) (a 3) (c 8) (a 9)))
 ((a 10) (a 3) (a 9))⇒

The predicate may be a built-in predicate, a user-defined function, or a lambda expression.

For filtering a list of elements with the elements from another list, use the difference function
or intersect (with the list option).

See also the related function index, which returns the indices of the filtered elements and
clean, which returns all elements of a list for which a predicate is false.

filter 144

newLISP Users Manual and Reference

find

syntax: (find exp-key list [func-compare | int-option])
syntax: (find str-key str-data [int-option])

Find an expressions in a list

If the second argument evaluates to a list, then find returns the index position (offset) of the
element derived from evaluating exp-key.

Optionally, an operator or user-defined function can be specified in func-compare. If exp-
key is a string, a regular expression option can be specified with int-option instead.

example:

; find an expression in a list
(find '(1 2) '((1 4) 5 6 (1 2) (8 9))) 3⇒

(find "world" '("hello" "world")) 1⇒
(find "hi" '("hello" "world")) nil⇒

(find "newlisp" '("Perl" "Python" "newLISP") 1) 2⇒

; use the comparison functor
(find 3 '(8 4 3 7 2 6) >) 4⇒

(find "newlisp" '("Perl" "Python" "newLISP")
 (fn (x y) (regex x y 1))) 2⇒

(find 5 '((l 3) (k 5) (a 10) (z 22))
 (fn (x y) (= x (last y)))) 1⇒

(find '(a ?) '((l 3) (k 5) (a 10) (z 22)) match) 2⇒

(find '(X X) '((a b) (c d) (e e) (f g)) unify) 2⇒

; define the comparsion functor first for better readability
(define (has-it-as-last x y) (= x (last y)))

(find 22 '((l 3) (k 5) (a 10) (z 22)) has-it-as-last) 3⇒

Using match and unify, list searches can be formulated which are as powerful as regular
expression searches are for strings.

Find a string in a string

If the second argument, str-data, evaluates to a string, then the offset position of the string
str-key (found in the first argument, str-data) is returned. In this case, find also works on
binary str-data.

find 145

newLISP Users Manual and Reference

The presence of a third parameter specifies a search using the regular expression pattern
specified in str-pattern, as well as an option number specified in int-option (i.e., 1 (one) for
case-insensitive search or 0 (zero) for no special options).

In newLISP, regular expressions are standard Perl Compatible Regular Expression (PCRE)
searches. Found expressions or subexpressions are returned in the system variables $0, $1,
$2, etc., which can be used like any other symbol. As an alternative, the contents of these
variables can also be accessed by using ($ 0), ($ 1), ($ 2), etc. This method allows
indexed access (i.e., ($ i), where i is an integer).

See regex for the meaning of the option numbers and more information on regular
expression searching.

example:

; simple string search
(find "world" "Hello world") 6⇒
(find "WORLD" "Hello woRLd") nil⇒

; case-insensitive regex

(find "WorlD" "Hello woRLd" 1) 6 ⇒

(find "hi" "hello world") nil⇒
(find "Hello" "Hello world") 0⇒

; regex with default options

(find "cat|dog" "I have a cat" 0) 9 ⇒
$0 "cat"⇒
(find "cat|dog" "my dog" 0) 3⇒
$0 "dog"⇒
(find "cat|dog" "MY DOG" 1) 3⇒
$0 "DOG"⇒

;; find with subexpressions in regular expression
;; and access with system variables

(set 'str "http://nuevatec.com:80")

(find "http://(.*):(.*)" str 0) 0⇒

$0 "http://nuevatec.com:80"⇒
$1 "nuevatec.com"⇒
$2 "80"⇒

;; system variables as an indexed expression (since 8.0.5)
($ 0) "http://nuevatec.com:80"⇒
($ 1) "nuevatec.com"⇒
($ 2) "80"⇒

For other functions using regular expressions, see directory, find-all, parse, regex, replace,
and search.

To find expressions in nested or multidimensional lists, use the ref and ref-all functions.

find 146

newLISP Users Manual and Reference

find-all

syntax: (find-all str-pattern str-text [expr] [int-option])

Finds all occurrences of str-pattern in the text str-text, returning a list containing all
matching strings. nil is returned if no matches are found.

Optionally, an expression can be specified to process the found string or regular
subexpressions before placing them into the returned list. An additional option, int-option,
specifies special regular expression options (see regex for further details).

example:

(find-all {\d+} "lkjhkljh34ghfdhgfd678gfdhfgd9")
 ("34" "678" "9")⇒

(find-all {(new)(lisp)} "newLISPisNEWLISP" (append $2 $1) 1)
 ("LISPnew" "LISPNEW")⇒

(unique (sort
 (find-all {[a-zA-Z]+}
 (replace "<[^>]+>" (get-url "http://newlisp.org") "" 0))
))
 ("A" "ACC" "AI" "API" "About" "All" "Amazing" "Apps"⇒

...
"where" "whole" "width" "wiki" "will" "with" "work" "written")

The first example discovers all numbers in a text. The second example shows how an optional
expression in expr can work on subexpressions found by the regular expression pattern in
str-pattern. The last example retrieves a web page, cleans out all HTML tags, and then
collects all words into a unique and sorted list.

Note that find-all always performs a regular expression search, even if the option in int-
option is omitted.

first

syntax: (first list)
syntax: (first array)
syntax: (first str)

Returns the first element of a list or the first character of a string. The operand is not
changed. This function is equivalent to car or head in other LISP dialects.

example:

(first '(1 2 3 4 5)) 1⇒
(first '((a b) c d)) (a b)⇒
(set 'aList '(a b c d e)) (a b c d e)⇒
(first aList) a⇒
aList (a b c d e)⇒

(set 'A (array 3 2 (sequence 1 6)))
 ((1 2) (3 4) (5 6))⇒

first 147

newLISP Users Manual and Reference

(first A) (1 2)⇒

In the second syntax, the first character is returned from the string in str as a string.

example:

(first "newLISP") "n"⇒
(first (rest "newLISP")) "e"⇒

See also the functions last and rest.

flat

syntax: (flat list)

Returns the flattened form of a list:

example:

(set 'lst '(a (b (c d))))
(flat lst) (a b c d)⇒

(map (fn (x) (ref x lst)) (flat lst))
 ((0) (1 0) (1 1 0) (1 1 1))⇒

flat can be used to iterate through nested lists.

fn

syntax: (fn (list-parameters) exp-body)

fn is used to define anonymous functions, which are frequently used in map, sort, and
anywhere functions can be used as a argument.

Using an anonymous function eliminates the need to define a new function with define.
Instead, a function is defined on the fly:

example:

(map (fn (x) (+ x x)) '(1 2 3 4 5)) (2 4 6 8 10)⇒

(sort '(".." "..." "." ".....") (fn (x y) (> (length x) (length
y))))
 ("....." "..." ".." ".")⇒

The example defines the function fn(x), which takes an integer (x) and doubles it. The
function is mapped onto a list of arguments using map. The second example shows strings
being sorted by length.

The lambda function (the longer, traditional form) can be used in place of fn.

fn 148

newLISP Users Manual and Reference

float

syntax: (float exp [exp-default])

If the expression in exp evaluates to a number or a string, the argument is converted to a float
and returned. If exp cannot be converted to a float then nil or, if specified, the evaluation of
exp-default will be returned. This function is mostly used to convert strings from user input
or when reading and parsing text. The string must start with a digit or the + (plus sign), -
(minus sign), or . (period). If str is invalid, float returns nil as a default value.

Floats with exponents larger than 1e308 or smaller than -1e308 are converted to +INF or
-INF, respectively. The display of +INF and -INF differs on different platforms and
compilers.

example:

(float "1.23") 1.23⇒
(float " 1.23") 1.23⇒
(float ".5") 0.50⇒
(float "-1.23") -1.23⇒
(float "-.5") nil⇒
(float "#1.23") nil⇒
(float "#1.23" 0.0) 0⇒

(float? 123) nil⇒
(float? (float 123)) true⇒

(float '(a b c)) nil⇒
(float '(a b c) 0) 0⇒
(float nil 0) 0⇒

(float "abc" "not a number") "not a number"⇒
(float "1e500") inf⇒
(float "-1e500") -inf⇒

(print "Enter a float num:")
(set 'f-num (float (read-line)))

Use the int function to parse integer numbers.

float?

syntax: (float? exp)

true is returned only if exp evaluates to a floating point number; otherwise, nil is returned.

example:

(set 'num 1.23)
(float? num) true⇒

float? 149

newLISP Users Manual and Reference

floor

syntax: (floor number)

Returns the next lowest integer below number as a floating point.

example:

(floor -1.5) -2⇒
(floor 3.4) 3⇒

See also the ceil function.

flt

syntax: (flt number)

Converts number to a 32-bit float represented by an integer. This function is used when
passing 32-bit floats to library routines. newLISP floating point numbers are 64-bit and are
passed as 64-bit floats when calling imported C library routines.

example:

(flt 1.23) 1067282596⇒

;; pass 32-bit float to C-function: foo(float value)
(import "mylib.so" "foo")
(foo (flt 1.23))

(get-int (pack "f" 1.23)) 1067282596⇒

(unpack "f" (pack "ld" (flt 1.2345))) (1.234500051)⇒

The last two statements illustrate the inner workings of flt.

Use the import function to import libraries.

for

syntax: (for (sym num-from num-to [num-step] [exp-break]) body)

Repeatedly evaluates the expressions in body for a range of values specified in num-from and
num-to, inclusive. A step size may be specified with num-step. If no step size is specified, 1.0
is assumed.

for 150

newLISP Users Manual and Reference

Optionally, a condition for early loop exit may be defined in exp-break. If the break
expression evaluates to any non-nil value, the for loop returns with the value of exp-break.
The break condition is tested before evaluating body. If a break condition is defined num-
step must be defined too.

The symbol sym is local in dynamic scope to the for expression. It takes on each value
successively in the specified range as an integer value if no step size is specified, or as a
floating point value when a step size is present.

example:

> (for (x 1 10 2) (println x))
1
3
5
7
9

> (for (x 8 6 0.5) (println x))
8
7.5
7
6.5
6

> (for (x 1 100 2 (> (* x x) 30)) (println x))
1
3
5
true
> _

The second example uses a range of numbers from highest to lowest. Note that the step size is
always a positive number. In the third example, a break condition is tested.

Use the sequence function to make a sequence of numbers.

for-all

syntax: (for-all func-condition list)

Applies the function in func-condition to all elements in list. If all elements meet the
condition in func-condition, the result is true; otherwise, nil is returned.

example:

(for-all number? '(2 3 4 6 7)) true⇒

(for-all number? '(2 3 4 6 "hello" 7)) nil⇒

(for-all (fn (x) (= x 10)) '(10 10 10 10 10)) true⇒

Use the exists function to check if at least one element in a list meets a condition.

for-all 151

newLISP Users Manual and Reference

fork

syntax: (fork exp)

The expression in exp is launched as a newLISP child process thread of the platforms OS. The
new process inherits the entire address space, but runs independently, so symbol or variable
contents changed in the child thread will not affect the parent process or vice versa. The child
process ends when the evaluation of exp finishes.

On success, fork returns with the child process ID; on failure, nil is returned. See also the
wait-pid function, which waits for a child process to finish.

This function is only available on Linux/UNIX versions of newLISP and is based on the
fork() implementation of the underlying OS.

example:

> (set 'x 0)
0
> (fork (while (< x 20) (println (inc 'x)) (sleep 1000)))
176

> 1
2
3
4
5
6

The example illustrates how the child process thread inherits the symbol space and how it is
independent of the parent process. The fork statement returns immediately with the
process ID 176. The child process increments the variable x by one each second and prints it
to standard out (boldface). In the parent process, commands can still be entered. Type x to
see that the symbol x still has the value 0 (zero) in the parent process. Although statements
entered will mix with the display of the child process output, they will be correctly input to
the parent process.

The second example illustrates how pipe can be used to communicate between threads.

example:

#!/usr/bin/newlisp

(define (count-down-thread x channel)
 (while (!= x 0)
 (begin
 (write-line (string x) channel)
 (dec 'x))))

(define (observer-thread channel)
 (do-until (= i "1")
 (println "thread " (setq i (read-line channel)))))

(map set '(in out) (pipe))
(set 'observer (fork (observer-thread in)))

fork 152

newLISP Users Manual and Reference

(set 'counter (fork (count-down-thread 5 out)))

; avoid zombies
(wait-pid observer)
(wait-pid counter)

(exit)

The following output is generated by observer-thread

thread 5
thread 4
thread 3
thread 2
thread 1

The count-down-thread writes numbers to the communication pipe, where they are
picked up by the observer-thread and displayed.

Use the semaphore function for synchronizing threads and share for sharing memory
between threads.

format

syntax: (format str-format exp-data-1 [exp-data-i ...])
syntax: (format str-format list-data)

Constructs a formatted string from exp-data-1 using the format specified in the evaluation of
str-format. The format specified is identical to the format used for the printf() function in
the ANSI C language. Two or more exp-data arguments can be specified for more than one
format specifier in str-format.

In an alternative syntax, the data to be formatted can be passed inside a list in list-data.

format checks for a valid format string, matching data type, and the correct number of
arguments. Wrong formats or data types result in error messages. int, float, or string can be
used to ensure correct data types and to avoid error messages.

The format string has the following general format:

"%w.pf"

The % (percent sign) starts a format specification. To display a % inside a format string,
double it: %%

The w represents the width field. Data is right-aligned, except when preceded by a minus
sign, in which case it is left-aligned. When preceded by a zero, the unused space is filled with
leading zeroes. The width field is optional and serves all data types.

The p represents the precision number of decimals (floating point only) or strings and is
separated from the width field by a period. Precision is optional. If preceded by a + (plus

format 153

newLISP Users Manual and Reference

sign), positive numbers are displayed with a +. When using the precision field on strings, the
number of characters displayed is limited to the number in p.

The f represents a type flag and is essential; it cannot be omitted.

Below are the types in f:

s text string
c character (value 1 - 255)
d decimal (32-bit)
u unsigned decimal (32-bit)
x hexadecimal lowercase
X hexadecimal uppercase
f floating point
e scientific floating point
E scientific floating point
g general floating point

Formatting 64-bit numbers using 32-bit format specifiers will truncate and format the lower
32 bits of the number.

For 64-bit numbers (since version 8.9.7) use the following format strings on UNIX like
operating systems:

lld decimal (64-bit)
llu unsigned decimal (64-bit)
llx hexadecimal (64-bit)
llX hexadecimal uppercase(64-bit)

For 64-bit numbers (since version 8.9.7) use the following format strings on Tru64 UNIX:

ld decimal (64-bit)
lu unsigned decimal (64-bit)
lx hexadecimal (64-bit)
lX hexadecimal uppercase(64-bit)

On Win32 platforms the following characters apply for 64 bit numbers:

I64d decimal (64-bit)
I64u unsigned decimal (64-bit)
I64x hexadecimal (64-bit)
I64X hexadecimal uppercase(64-bit)

Other text may occur between, before, or after the format specs.

Note that on Tru64 UNIX the format character i can be used instead of d.

example:

(format ">>>%6.2f<<<" 1.2345) ">>> 1.23<<<"⇒
(format ">>>%-6.2f<<<" 1.2345) ">>>1.23 <<<"⇒
(format ">>>%+6.2f<<<" 1.2345) ">>> +1.23<<<"⇒
(format ">>>%+6.2f<<<" -1.2345) ">>> -1.23<<<"⇒
(format ">>>%-+6.2f<<<" -1.2345) ">>>-1.23 <<<"⇒

(format "%e" 123456789) "1.234568e+08"⇒
(format "%12.10E" 123456789) "1.2345678900E+08"⇒

format 154

newLISP Users Manual and Reference

(format "%10g" 1.23) " 1.23"⇒
(format "%10g" 1.234) " 1.234"⇒

(format "Result = %05d" 2) "Result = 00002"⇒

(format "%-15s" "hello") "hello "⇒
(format "%15s %d" "hello" 123) " hello 123"⇒
(format "%5.2s" "hello") " he"⇒
(format "%-5.2s" "hello") "he "⇒

(format "%x %X" -1 -1) "ffffffff FFFFFFFF"⇒

(format "%c" 65) "A"⇒

The data to be formatted can be passed inside a list:

(set 'L '("hello" 123))
(format "%15s %d" L) " hello 123"⇒

If the format string requires it, newLISP's format will automatically convert integers into
floating points or floating points into integers:

(format "%f" 123) 123.000000⇒

(format "%d" 123.456) 123⇒

fv

syntax: (fv num-rate num-nper num-pmt num-pv [int-type])

Calculates the future value of a loan with constant payment num-pmt and constant interest
rate num-rate after num-nper period of time and a beginning principal value of num-pv. If
payment is at the end of the period, int-type is 0 (zero); for payment at the end of each
period, int-type is 1. If num-type is omitted, payment at the end of each period is assumed.

example:

(fv (div 0.07 12) 240 775.30 -100000) -0.5544645052⇒

The example illustrates how a loan of $100,000 is paid down to a residual of $0.55 after 240
monthly payments at a yearly interest rate of 7 percent.

See also the functions irr, nper, npv, pmt, and pv.

gammai

syntax: (gammai num-a num-b)

gammai 155

newLISP Users Manual and Reference

Calculates the incomplete Gamma function of values a and b in num-a and num-b,
respectively.

example:

(gammai 4 5) 0.7349740847⇒

The incomplete Gamma function is used to derive the probability of Chi² to exceed a given
value for a degree of freedom, df, as follows:

Q(Chi²|df) = Q(df/2, Chi²/2) = gammai(df/2, Chi²/2)

See also the prob-chi2 function.

gammaln

syntax: (gammaln num-x)

Calculates the log Gamma function of the value x in num-x.

example:

(exp (gammaln 6)) 120⇒

The example uses the equality of n! = gamma(n + 1) to calculate the factorial value of 5.

The log Gamma function is also related to the Beta function, which can be derived from it:

Beta(z,w) = Exp(Gammaln(z) + Gammaln(w) - Gammaln(z+w))

gcd

syntax: (gcd int_1 [int-2 ...])

Calculates the greatest common divisor of a group of integers. The greatest common divisor
of two integers that are not both zero is the largest integer that divides both numbers. gcd
will calculate the greatest common divisor for the first two integers in int-i and then further
reduce the argument list by calculating the greatest common divisor of the result and the
next argument in the parameter list.

example:

(gcd 0) 0⇒
(gcd 0 0) 0⇒
(gcd 10) 10⇒
(gcd 12 36) 12⇒
(gcd 15 36 6) 3 ⇒

See Wikipedia for details and theory about gcd numbers in mathematics.

gcd 156

http://en.wikipedia.org/wiki/Greatest_common_divisor

newLISP Users Manual and Reference

get-char

syntax: (get-char int-address)

Gets a character from an address specified in int-address. This function is useful when using
imported shared library functions with import.

example:

char * foo(void)
 {
 char * result;
 result = "ABCDEFG";
 return(result);
 }

Consider the above C function from a shared library, which returns a character pointer
(address to a string).

(import "mylib.so" "foo")
(print (get-char (foo))) 65⇒
(print (get-char (+ (foo) 1))) 66⇒

Note that it is unsafe to use the get-char function with an incorrect address in int-address.
Doing so could result in the system crashing or becoming unstable.

See also the address, get-int, get-long, get-float, get-string, pack, and unpack functions.

get-float

syntax: (get-float int-address)

Gets a 64-bit double float from an address specified in int-address. This function is helpful
when using imported shared library functions (with import) that return an address pointer
to a double float or a pointer to a structure containing double floats.

example:

double float * foo(void)
 {
 double float * result;
 …
 *result = 123.456;
 return(result);
 }

The previous C function is compiled into a shared library.

(import "mylib.so" "foo")
(get-float (foo)) 123.456⇒

get-float 157

newLISP Users Manual and Reference

foo is imported and returns a pointer to a double float when called. Note that get-float is
unsafe when used with an incorrect address in int-address and may result in the system
crashing or becoming unstable.

See also the address, get-int, get-long, get-char, get-string, pack, and unpack functions.

get-int

syntax: (get-int int-address)

Gets a 32-bit integer from the address specified in int-address. This function is handy when
using imported shared library functions with import, a function returning an address
pointer to an integer, or a pointer to a structure containing integers.

example:

int * foo(void)
 {
 int * result;
 …
 *result = 123;
 return(result);
 }

int foo-b(void)
 {
 int result;
 …
 result = 456;
 return(result);
 }

Consider the C function foo (from a shared library), which returns an integer pointer
(address of an integer).

(import "mylib.so" "foo")
(get-int (foo)) 123⇒
(foo-b) 456⇒

Note that using get-int with an incorrect address in int-address is unsafe and could result
in the system crashing or becoming unstable.

See also the address, get-char, get-float, get-long, get-string, pack, and unpack functions.

get-long

syntax: (get-long int-address)

get-long 158

newLISP Users Manual and Reference

Gets a 64-bit integer from the address specified in int-address. This function is handy when
using import to import shared library functions, a function returning an address pointer to
a long integer, or a pointer to a structure containing long integers.

example:

long long int * foo(void)
 {
 int * result;
 …
 *result = 123;
 return(result);
 }

long long int foo-b(void)
 {
 int result;
 …
 result = 456;
 return(result);
 }

Consider the C function foo (from a shared library), which returns an integer pointer
(address of an integer).

(import "mylib.so" "foo")
(get-int (foo)) 123⇒
(foo-b) 456⇒

Note that using get-long with an incorrect address in int-address is unsafe and could
result in the system crashing or becoming unstable.

See also the address, get-char, get-float, get-int, get-string, pack, and unpack functions.

get-string

syntax: (get-string int-address)

Gets a character string from the address specified in int-address. This function is helpful
when using imported shared library functions with import.

example:

char * foo(void)
 {
 char * result;
 result = "ABCDEFG";
 return(result);
 }

Consider the above C function from a shared library, which returns a character pointer
(address to a string).

(import "mylib.so" "foo")
(print (get-string (foo))) "ABCDEFG"⇒

get-string 159

newLISP Users Manual and Reference

When a string is passed as an argument, get-string will take its address as the argument.
Because get-string always breaks off at the first first \000 (null character) it encounters,
it can be used to retrieve a string from a buffer:

example:

(set 'buff "ABC\000\000\000") "ABC\000\000\000"⇒

(length buff) 6⇒

(get-string buff) "ABC"⇒

(length (get-string buff)) 3⇒

See also the get-char, get-int, get-float, pack, and unpack functions.

Note that get-string can crash the system or make it unstable if the wrong address is
specified.

get-url

syntax: (get-url str-url [str-option] [int-timeout [str-header]])

Reads a web page or file specified by the URL in str-url using the HTTP GET protocol.
"header" can be optionally specified to retrieve only the header. A list option, "list",
causes header and page information to be returned as separate strings in a list. The old
"debug" option, which printed header information to the console, has been eliminated.

The optional argument int-timeout can specify a value in milliseconds. If no data is available
from the host after the specified timeout, get-url returns the string ERR: timeout. When
other error conditions occur, get-url returns a string starting with ERR: and the
description of the error.

get-url requests are also understood by newLISP server nodes.

example:

(get-url "http://www.nuevatec.com")
(get-url "http://www.nuevatec.com" 3000)
(get-url "http://www.nuevatec.com" "header")
(get-url "http://www.nuevatec.com" "header" 5000)
(get-url "http://www.nuevatec.com" "list")

(env "HTTP_PROXY" "http://ourproxy:8080")
(get-url "http://www.nuevatec.com/newlisp/")

The index page from the site specified in str-url is returned as a string. In the third line, only
the HTTP header is returned in a string. Lines 2 and 4 show a timeout value being used.

The second example illustrates the use of a proxy server. The proxy server's URL must be in
the operating system's environment. As shown in the example, this can be added using the
env function.

The int-timeout can be followed by an optional custom header in str-header:

get-url 160

newLISP Users Manual and Reference

Custom header

The custom header may contain options for browser cookies or other directives to the server.
When no str-header is specified, newLISP sends certain header information by default. After
the following request:

(get-url "http://somehost.com" 5000)

newLISP will configure and send the request and header below:

GET / HTTP/1.1
Host: somehost.com
User-Agent: newLISP v8800
Connection: close

As an alternative, the str-header option could be used:

(get-url "http://somehost.com" 5000
 "User-Agent: Mozilla/4.0\r\nCookie: name=fred\r\n")

newLISP will now send the following request and header:

GET / HTTP/1.1
Host: somehost.com
User-Agent: Mozilla/4.o
Cookie: name=fred
Connection: close

Note that when using a custom header, newLISP will only supply the GET request line, as well
as the Host: and Connection: header entries. newLISP inserts all other entries supplied
in the custom header between the Host: and Connection: entries. Each entry must end
with a carriage return line-feed pair: \r\n.

See an HTTP transactions reference for valid header entries.

Custom headers can also be used in the put-url and post-url functions.

global

syntax: (global sym-1 [sym-2 ...])

One or more symbols in sym-1 [sym-2 ...] can be made globally accessible from contexts
other than MAIN. The statement has to be executed in the MAIN context, and only symbols
belonging to MAIN can be made global. global returns the last symbol made global.

example:

(global 'aVar 'x 'y 'z) z⇒

(define (foo x)
 (…))

(constant (global 'foo))

global 161

newLISP Users Manual and Reference

The second example shows how constant and global can be combined into one statement,
protecting and making a previous function definition global.

if

syntax: (if exp-condition exp-1 [exp-2])
syntax: (if exp-cond-1 exp-1 exp-cond-2 exp-2 [...])

If the value of exp-condition is not nil or an empty list, the result of evaluating exp-1 is
returned; otherwise, the value of exp-2 is returned. If exp-2 is absent, the value of exp-
condition is returned.

example:

(set 'x 50) 50⇒
(if (< x 100) "small" "big") "small"⇒
(set 'x 1000) 1000⇒
(if (< x 100) "small" "big") "big"⇒
(if (> x 2000) "big") nil⇒

The second form of if works similarly to cond, except it does not take parentheses around
the condition-body pair of expressions. In this form, if can have an unlimited number of
arguments.

example:

(define (classify x)
 (if
 (< x 0) "negative"
 (< x 10) "small"
 (< x 20) "medium"
 (>= x 30) "big"
 "n/a"))

(classify 15) "medium"⇒
(classify 100) "big"⇒
(classify 22) "n/a"⇒
(classify -10) "negative"⇒

The last expression, "n/a", is optional. When this option is omitted, the evaluation of (>= x
30) is returned, behaving exactly like a traditional cond but without requiring parentheses
around the condition-expression pairs.

In any case, the whole if expression always returns the last expression or condition
evaluated.

See also the unless function.

if 162

newLISP Users Manual and Reference

ifft

syntax: (ifft list-num)

Calculates the inverse discrete Fourier transform on a list of complex numbers in list-num
using the FFT method (Fast Fourier Transform). Each complex number is specified by its real
part, followed by its imaginary part. In case only real numbers are used, the imaginary part is
set to 0.0 (zero). When the number of elements in list-num is not an integer power of 2,
ifft increases the number of elements by padding the list with zeroes. When complex
numbers are 0 in the imaginary part, simple numbers can be used.

example:

(ifft (fft '((1 0) (2 0) (3 0) (4 0))))
 ((1 0) (2 0) (3 0) (4 0))⇒

;; when imaginary part is 0, plain numbers work too

(ifft (fft '(1 2 3 4)))
 ((1 0) (2 0) (3 0) (4 0))⇒

The inverse operation of ifft is the fft function.

import

syntax: (import str-lib-name str-function-name ["cdecl"])

Imports the function specified in str-function-name from a shared library named in str-lib-
name. The functions address, get-char, get-int, get-float, get-string, pack, and unpack can be
used to retrieve return values or to unpack data from returned structure addresses. If the
library is not located in the normal library search path, str-lib-name must contain the full
path name.

To transform newLISP data types into the data types needed by the imported function, use
the functions float for 64-bit double floats, flt for 32-bit floats, and int for 32-bit integers. By
default, newLISP passes floating point numbers as 64-bit double floats, integers as 32-bit
integers, and strings as 32-bit integers for string addresses.

example:

;; import in Linux

(import "libc.so.6" "printf") printf <400862A0>⇒

;; import in Mac OS X

(import "libc.dylib" "printf") printf <90022080>⇒

;; import in CYGWIN

(import "cygwin1.dll" "printf") printf <6106B108>⇒

(printf "%g %s %d %c\n" 1.23 "hello" 999 65)

import 163

newLISP Users Manual and Reference

1.23 hello 999 A
 17 ; return value⇒

;; import Win32 DLLs in Win32 or CYGWIN version

(import "kernel32.dll" "GetTickCount") GetTickCount⇒
(import "user32.dll" "MessageBoxA") MessageBoxA⇒
(GetTickCount) 3328896⇒

In the first example, the string "1.23 hello 999 A" is printed as a side effect, and the value 17
(number of characters printed) is returned. Any C function can be imported from any shared
library in this way.

The message box example pops up a Windows dialog box, which may be hidden behind the
console window. The console prompt does not return until the 'OK' button is pressed in the
message box.

;;this pops up a message box

(MessageBoxA 0 "This is the body" "Caption" 1)

The other examples show several imports of Win32 DLL functions and the details of passing
values by value or by reference. Whenever strings or numbers are passed by reference, space
must be reserved beforehand.

;; allocating space for a string return value

(import "kernel32.dll" "GetWindowsDirectoryA")
(set 'str (dup "\000" 64) ; reserve space and initialize

(GetWindowsDirectoryA str (length str))

str "C:\\WINDOWS\000 "⇒

(slice str 0 (find "\000" str)) "C:\\WINDOWS"⇒

;; or use trim
(trim str) "C:\\WINDOWS"⇒

;; passing an integer parameter by reference

(import "kernel32.dll" "GetComputerNameA")

(set 'str (dup "\000" 64) ; reserve space, initialize

;; get size in a buffer lpNum
(set 'lpNum (pack "lu" (length str)))

;; call the function
(GetComputerNameA str lpNum)

str "LUTZ-PC\000 "⇒

(slice str 0 (find "\000" str)) "LUTZ-PC"⇒

;; or use trim
(trim str) "LUTZ-PC"⇒

import 164

newLISP Users Manual and Reference

import returns the address of the function, which can be used to assign a different name to
the imported function.

(set 'imprime (import "libc.so.6" "printf"))
 printf <400862A0>⇒

(imprime "%s %d" "hola" 123)
 "hola 123"⇒

Note that the preceding examples are not displayed in the newLISP-tk GUI front-end, as the
output of 'printf' is directed to standard out (STDIO) and is not visible in the newLISP-tk
console. This only affects function imports with output to standard out.

Note that the Win32 version of newLISP uses standard call stdcall conventions to call DLL
library routines. This is necessary for calling DLLs that belong to the Win32 operating system
(e.g., odbc32.dll). Most third-party DLLs are compiled for C declaration cdecl calling
conventions and may need to specify the string "cdecl" as an additional last argument
when importing functions. newLISP compiled for Linux and other UNIX systems uses the
cdecl calling conventions by default and ignores any additional string.

;; force cdecl calling conventions on Win32
(import "sqlite.dll" "sqlite_open" "cdecl") sqlite_open⇒
<673D4888>

Imported functions may take up to fourteen arguments. Note that floating point arguments
take up two spaces each (e.g., passing five floats takes up ten of the fourteen parameters).

inc

syntax: (inc sym [num])

Increments the number in sym by 1 or by the optional number num and returns the result.
inc performs mixed int and float arithmetic according to the rules outlined below.

If num is absent, inc always returns an integer in sym. If the input arguments are floats and
num is absent, the input arguments are truncated to integers.

Integer calculations (without num) resulting in numbers greater than
9,223,372,036,854,775,807 wrap around to negative numbers. Results smaller than
-9,223,372,036,854,775,808 wrap around to positive numbers.

If num is supplied, inc always returns the result as floating point, even for integer input
arguments.

example:

(set 'x 0) 0⇒
(inc 'x) 1⇒
x 1⇒
(inc 'x 0.25) 1.25⇒
x 1.25⇒

(inc 'x) 2 ; gets truncated⇒

inc 165

newLISP Users Manual and Reference

Use the dec function for decrementing.

index

syntax: (index exp-predicate exp-list)

Applies the predicate exp-predicate to each element of the list exp-list and returns a list
containing the indices of the elements for which exp-predicate is true.

example:

(index symbol? '(1 2 d 4 f g 5 h)) (2 4 5 7)⇒

(define (big? x) (> x 5)) (lambda (x) (> x 5))⇒

(index big? '(1 10 3 6 4 5 11)) (1 3 6)⇒

The predicate may be a built-in predicate, a user-defined function, or a lambda expression.

Use the filter function to return the elements themselves.

int

syntax: (int exp [exp-default] [int-base])

If the expression in exp evaluates to a number or a string, the result is converted to an integer
and returned. If exp cannot be converted to an integer, then nil or the evaluation of exp-
default will be returned. This function is mostly used when translating strings from user
input or from parsing text. If exp evaluates to a string, the string must start with a digit; one
or more spaces; or the + or - sign. The string must begin with '0x' for hexadecimal strings or
'0' (zero) for octal strings. If str is invalid, integer returns nil as a default value if not
otherwise specified.

A second optional parameter can be used to force the number base of conversion to a specific
value.

Integers larger than 9,223,372,036,854,775,807 are truncated to 9,223,372,036,854,775,807.
Integers smaller than -9,223,372,036,854,775,808 are truncated to
-9,223,372,036,854,775,808.

When converting from a float (as in the second form of integer), floating point values
larger or smaller than the integer maximum or minimum are also truncated. A floating point
expression evaluating to NaN is converted to 0 (zero).

example:

(int "123") 123⇒
(int " 123") 123⇒
(int "a123" 0) 0⇒
(int (trim " 123")) 123⇒

int 166

newLISP Users Manual and Reference

(int "0xFF") 255⇒
(int "055") 45⇒
(int "1.567") 1⇒
(int 1.567) 1⇒

(integer? 1.00) nil⇒
(integer? (int 1.00)) true⇒

(int "1111" 0 2) 15 ; base 2 conversion⇒
(int "0FF" 0 16) 255 ; base 16 conversion⇒

(int 'xyz) nil⇒
(int 'xyz 0) 0⇒
(int nil 123) 123⇒

(int "abc" "not a number") "not a number"⇒

(print "Enter a num:")
(set 'num (int (read-line)))

Use the float function to convert arguments to floating point numbers.

integer?

syntax: (integer? exp)

Returns true only if the value of exp is an integer; otherwise, it returns nil.

example:

(set 'num 123) 123⇒
(integer? num) true⇒

intersect

syntax: (intersect list-A list-B)
syntax: (intersect list-A list-B bool)

In the first syntax, intersect returns a list containing one copy of each element found both
in list-A and list-B.

example:

(intersect '(3 0 1 3 2 3 4 2 1) '(1 4 2 5))
 (2 4 1)⇒

In the second syntax, intersect returns a list of all elements in list-A that are also in list-B,
without eliminating duplicates in list-A. bool is an expression evaluating to true or any
other value not nil.

intersect 167

newLISP Users Manual and Reference

example:

(intersect '(3 0 1 3 2 3 4 2 1) '(1 4 2 5) true)
 (1 2 4 2 1)⇒

See also the set functions difference and unique.

invert

syntax: (invert matrix)

Returns the inversion of a two-dimensional matrix in matrix. The matrix must be square,
with the same number of rows and columns, and non-singular (invertible). Matrix inversion
can be used to solve systems of linear equations (e.g., multiple regression in statistics).
newLISP uses LU-decomposition of the matrix to find the inverse.

The dimensions of a matrix are defined by the number of rows times the number of elements
in the first row. For missing elements in non-rectangular matrices, 0.0 (zero) is assumed. A
matrix can either be a nested list or an array.

invert will return nil if the matrix is singular and cannot be inverted.

example:

(set 'A '((-1 1 1) (1 4 -5) (1 -2 0)))
(invert A) ((10 2 9) (5 1 4) (6 1 5))⇒

All operations shown here on lists can be performed on arrays, as well.

See also the matrix functions det, mat, multiply and transpose.

irr

syntax: (irr list-amounts [list-times [num-guess]])

Calculate the internal rate of return of a cash flow per time period. The internal rate of return
is the interest rate that makes the present value of a cash flow equal to 0.0 (zero). In-flowing
(negative values) and out-flowing (positive values) amounts are specified in list-amounts. If
no time periods are specified in list-times, amounts in list-amounts correspond to
consecutive time periods increasing by 1 (1, 2, 3—). The algorithm used is iterative, with an
initial guess of 0.5 (50 percent). Optionally, a different initial guess can be specified. The
algorithm returns when a precision of 0.000001 (0.0001 percent) is reached. nil is returned
if the algorithm cannot converge after 50 iterations.

irr is often used to decide between different types of investments.

example:

(irr '(-1000 500 400 300 200 100))
 0.2027⇒

irr 168

newLISP Users Manual and Reference

(npv 0.2027 '(500 400 300 200 100))
 1000.033848 ; ~ 1000⇒

(irr '(-1000 500 400 300 200 100) '(0 3 4 5 6 7))
 0.0998⇒

(irr '(-5000 -2000 5000 6000) '(0 3 12 18))
 0.0321⇒

If an initial investment of 1,000 yields 500 after the first year, 400 after two years, and so on,
finally reaching 0.0 (zero) after five years, then that corresponds to a yearly return of about
20.2 percent. The next line demonstrates the relation between irr and npv. Only 9.9 percent
returns are necessary when making the first withdrawal after three years.

In the last example, securities were initially purchased for 5,000, then for another 2,000
three months later. After a year, securities for 5,000 are sold. Selling the remaining securities
after 18 months renders 6,000. The internal rate of return is 3.2 percent per month, or about
57 percent in 18 months.

See also the fv, nper, npv, pmt, and pv functions.

join

syntax: (join list-of-strings [separator-string])

Concatenates the given list of strings in list-of-strings. If separator-string is present, it is
inserted between each string in the join.

example:

(set 'lst '("this" "is" "a" "sentence"))

(join lst " ") "this is a sentence"⇒

(join (map string (slice (now) 0 3)) "-") "2003-11-26"⇒

(join (explode "keep it together")) "keep it together"⇒

See also the append, string, and explode functions, which are the inverse of the join
operation.

lambda

See the description of fn which is a shorter form of writing lambda.

lambda 169

newLISP Users Manual and Reference

lambda-macro

See the description of define-macro.

lambda?

syntax: (lambda? exp)

Returns true only if the value of exp is a lambda expression and otherwise nil.

example:

(define (square x) (* x x))
(lambda? square) true⇒

See define and define-macro for more information about lambda expressions.

last

syntax: (last list)
syntax: (last array)
syntax: (last str)

Returns the last element of a list or a string.

example:

(last '(1 2 3 4 5)) 5⇒
(last '(a b (c d))) (c d)⇒

(set 'A (array 3 2 (sequence 1 6)))
 ((1 2) (3 4) (5 6))⇒

(last A) (5 6)⇒

In the second version the last character in the string str is returned as a string.

example:

(last "newLISP") "P"⇒

See also first, rest and nth.

legal?

syntax: (legal? str)

legal? 170

newLISP Users Manual and Reference

The token in str is verified as a legal newLISP symbol. Non legal symbols can be created
using the sym function (e.g. symbols containing spaces, quotes, or other characters not
normally allowed). Non legal symbols are created frequently when using them for associative
data access:

example:

(symbol? (sym "one two")) true⇒

(legal? "one two") nil ; contains a space⇒

(set (sym "one two") 123) 123⇒

(eval (sym "one two")) 123⇒

The example shows that the string "one two" does not contain a legal symbol although a
symbol can be created from this string and treated like a variable.

length

syntax: (length expr)

Returns the number of elements in a list, the number of rows in an array or the number of
characters in a string.

length applied to a symbol returns the length of the symbol name. Applied to a number,
length returns the number of bytes needed in memory to store that number: 4 for integers
and 8 for floating point numbers.

example:

(length '(a b (c d) e)) 4⇒
(length '()) 0⇒
(set 'someList '(q w e r t y)) (q w e r t y)⇒
(length someList) 6⇒

(set 'ary (array 2 4 '(0))) ((1 2 3 4) (5 6 7 8))⇒
(length ary) 2⇒

(length "Hello World") 11⇒
(length "") 0⇒

(length 'someVar) 7⇒
(length 123) 8⇒
(length 1.23) 8⇒

let

syntax: (let ((sym1 exp-init1) [(sym2 exp-init2) ...]) body)
syntax: (let (sym1 exp-init1 [sym2 exp-init2 ...]) body)

let 171

newLISP Users Manual and Reference

One or more variables sym1, sym2, ... are declared locally and initialized with expressions in
exp-init1, exp-init2, etc. When the local variables are initialized the initializer expressions
evaluate using symbol bindings as before the let statement. To incrementally use symbol
bindings as evaluated during the initialization of locals in let, use letn. One or more
expressions in exp-body are evaluated using the local definitions of sym1, sym2 etc. let is
useful for breaking up complex expressions by defining local variables close to the place
where they are used. The second form omits the parenthesis around the variable expression
pairs but functions identical.

example:

(define (sum-sq a b)
 (let ((x (* a a)) (y (* b b)))
 (+ x y)))

(sum-sq 3 4) 25⇒

(define (sum-sq a b) ; alternative syntax
 (let (x (* a a) y (* b b))
 (+ x y)))

The variables x and y are initialized, then the expression (+ x y) is evaluated. The let form
is just an optimized version and syntactic convenience for writing:

((lambda (sym1 [sym2 ...]) exp-body) exp-init1 [exp-init2])

See also letn for an incremental or nested form of let.

letex

syntax: (letex ((sym1 exp-init1) [(sym2 exp-init2) ...]) body)
syntax: (letex (sym1 exp-init1 [sym2 exp-init2 ...]) body)

This functions combines let and expand to expand local variables into an expression before
evaluating it.

Both forms provide the same functionality, but in the second form the parentheses around
the initializers can be omitted.

example:

(letex '(x 1 y 2 z 3) '(x y z)) (1 2 3)⇒

Before the expression '(x y z) gets evaluated, x, y and z are literally replaced with the
initializers from the letex initializer list. The final expression which gets evaluated is '(1 2
3).

The following is a more complex realistic example. letex and define-macro are used
together to define a dolist-while, which loops through a list while certain condition is
true:

example:

letex 172

newLISP Users Manual and Reference

(define-macro (dolist-while)
 (letex (var (args 0 0)
 lst (args 0 1)
 cnd (args 0 2)
 body (cons 'begin (1 (args))))
 (let (res)
 (catch (dolist (var lst)
 (if (set 'res cnd) body (throw res)))))))

> (dolist-while (x '(a b c d e f) (!= x 'd)) (println x))
a
b
c
nil
>

The args function is used to access the unevaluated argument list from define-macro.

letn

syntax: (letn ((sym1 exp-init1) [(sym2 exp-init2) ...]) body)
syntax: (letn (sym1 exp-init1 [sym2 exp-init2 ...]) body)

letn is like a nested let and works similar to let, but will incrementally use the new symbol
bindings when evaluating the initializer expressions as if several let were nested. The
following comparison of let and letn show the difference:

example:

(set 'x 10)
(let ((x 1) (y (+ x 1)))
 (list x y)) (1 11)⇒

(letn ((x 1) (y (+ x 1)))
 (list x y)) (1 2)⇒

While in the first example using let the variable y is calculated using the binding of x before
the let expression, in the second example using letn the variable y is calculated using the
new local binding of x.

(letn (x 1 y x)
 (+ x y)) 2⇒

;; same as nested let's

(let (x 1)
 (let (y x)
 (+ x y))) 2⇒

letn works like several nested let. The parenthesis around the initializer expressions can be
omitted.

letn 173

newLISP Users Manual and Reference

list

syntax: (list exp-1 [exp-2 ...])

The exp are evaluated and the values used to construct a new list.

example:

(list 1 2 3 4 5) (1 2 3 4 5)⇒
(list 'a '(b c) (+ 3 4) '() '*) (a (b c) 7 () *)⇒

See also cons and push for other forms of building lists.

list?

syntax: (list? exp)

Returns true only if the value of exp is a list; otherwise returns nil. Note that lambda and
lambda-macro expressions are also recognized as special instances of a list expression.

example:

(set 'var '(1 2 3 4)) (1 2 3 4)⇒
(list? var) true⇒

(define (double x) (+ x x))

(list? double) true⇒

load

syntax: (load str-file-name [str-file-name-2 ...] [sym-context])

Loads and translates newLISP from a source file specified in one or more str-file-name and
evaluates the expressions contained in the file(s). When loading is successful load returns
the result of the last expression in the last file evaluated. If a file cannot be loaded load
throws an error.

An optional sym-context can be specified, which becomes the context of evaluation, unless
such a context switch is already present in the file being loaded. By default, files which do not
contain context switches will be loaded into the MAIN context.

The str-file-name specs can contain URLs. Both http:// and file:// URLs are
supported.

example:

(load "myfile.lsp")

load 174

newLISP Users Manual and Reference

(load "a-file.lsp" "b-file.lsp")

(load "file.lsp" "http://mysite.org/mypro")

(load "http://192.168.0.21:6000//home/test/program.lsp")

(load "a-file.lsp" "b-file.lsp" 'MyCTX)

(load "file:///usr/share/newlisp/mysql5.lsp")

In case expressions evaluated during the load are changing the context, this will not
influence the programming module doing the load. The current context after the load
statement will always be the same as before in the load.

Normal file specs and URLs can be mixed in the same load command.

load with HTTP URLs can also be used to load code remotely from newLISP server nodes
running on UNIX like operating system. In this mode, load will issue an HTTP GET request
to the target URL. Note that a double backslash is required when path names are specified
relative to the root directory. load in HTTP mode will observe a 60-second timeout.

The second to last line causes the files to be loaded in to the context MyCTX. The quote forces
the context to be created if it did not exist.

The file:// URL is followed by a third / for the directory spec.

local

syntax: (local (sym-1 [sym-2 ...]) body)

Initializes one or more symbols in sym-1— to nil, evaluates the expressions in body, and
returns the result of the last evaluation.

local works similarly to let, but local variables are all initialized to nil.

local provides a simple way to localize variables without explicit initialization.

log

syntax: (log num)
syntax: (log num num-base)

In the first syntax the expression in num is evaluated and the natural logarithmic function is
calculated from the result.

example:

(log 1) 0⇒
(log (exp 1)) 1⇒

log 175

newLISP Users Manual and Reference

In the second syntax an arbitrary base can be specified in num-base.

example:

(log 1024 2) 10⇒
(log (exp 1) (exp 1)) 1⇒

See also exp, which is the inverse function to log with base e.

lookup

syntax: (lookup exp assoc-list [int-index])

Finds in assoc-list an association the key element of which has the same value as exp and
returns the int-index element of association (or the last element if int-index is absent). See
also Indexing elements of strings and lists.

lookup is similar to assoc but goes one step further by extracting specific element found in
the list.

example:

(set 'params '(
 (name "John Doe")
 (age 35)
 (gender "M")
 (balance 12.34)))

(lookup 'age params) 35⇒

(set 'persons '(
 ("John Doe" 35 "M" 12.34)
 ("Mickey Mouse" 65 "N" 12345678)))

(lookup "Mickey Mouse" persons 2) "N"⇒
(lookup "Mickey Mouse" persons -3) 65⇒
(lookup "John Doe" persons 1) 35 ⇒
(lookup "John Doe" persons -2) "M"⇒

See also assoc

lower-case

syntax: (lower-case str)

Converts the characters of the string in str to lowercase. A new string is created, and the
original is left untouched.

example:

(lower-case "HELLO WORLD") "hello world"⇒
(set 'Str "ABC")

lower-case 176

newLISP Users Manual and Reference

(lower-case Str) "abc"⇒
Str "ABC"⇒

See also the upper-case and title-case functions.

macro?

syntax: (macro? exp)

returns true if exp evaluates to a lambda-macro expression; otherwise, nil is returned.

example:

(define-macro (mysetq lv rv) (set lv (eval rv)))
(macro? mysetq) true⇒

main-args

syntax: (main-args)
syntax: (main-args int-index)

main-args returns a list with several string members, one for program invocation and one
for each of the command-line arguments.

example:

newlisp 1 2 3

> (main-args)
("/usr/bin/newlisp" "1" "2" "3")

After newlisp 1 2 3 is executed at the command prompt, main-args returns a list
containing the name of the invoking program and three command-line arguments.

Optionally, main-args can take an int-index for indexing into the list. Note that an index
out of range will cause nil to be returned, not the last elements of the list like in list-
indexing.

newlisp a b c

> (main-args 0)
"/usr/bin/newlisp"
> (main-args -1)
"c"
> (main-args 2)
"b"
> (main-args 10)
nil

main-args 177

newLISP Users Manual and Reference

Note that when newLISP is executed from a script, main-args also returns the name of the
script as the second argument:

#!/usr/bin/newlisp

script to show the effect of 'main-args' in script file

(print (main-args) "\n")
(exit)

end of script file

;; execute script in the OS shell:

script 1 2 3

("/usr/bin/newlisp" "./script" "1" "2" "3")

Try executing this script with different command-line parameters.

make-dir

syntax: (make-dir str-dir-name [int-mode])

Creates a directory as specified in str-dir-name, with the optional access mode int-mode.
Returns true or nil depending on the outcome. If no access mode is specified, most UNIX
systems default to drwxr-xr-x.

On UNIX systems, the access mode specified will also be masked by the OS's user-mask set
by the system administrator. The user-mask can be retrieved on UNIX systems using the
command umask and is usually 0022 (octal), which masks write (and creation) permission
for non-owners of the file.

example:

;; 0 (zero) in front of 750 makes it an octal number

(make-dir "adir" 0750)

This example creates a directory named adir in the current directory with an access mode of
0750 (octal 750 = drwxr-x---).

map

syntax: (map exp-functor list-args-1 [list-args-2 ...])

Successively applies the primitive function, defined function, or lambda expression exp-
functor to the arguments specified in list-args-1, list-args-2—, returning all results in a list.

example:

map 178

newLISP Users Manual and Reference

(map + '(1 2 3) '(50 60 70)) (51 62 73)⇒

(map if '(true nil true nil true) '(1 2 3 4 5) '(6 7 8 9 10))
 '(1 7 3 9 5)⇒

(map (fn (x y) (* x y)) '(3 4) '(20 10))
 (60 40)⇒

The second example shows how to dynamically create a function for map:

(define (foo op p)
 (append (lambda (x)) (list (list op p 'x))))

We can also use the shorter fn:

(define (foo op p)
 (append (fn (x)) (list (list op p 'x))))

foo now works like a function-maker:

(foo 'add 2) (lambda (x) (add 2 x))⇒

(map (foo add 2) '(1 2 3 4 5)) (3 4 5 6 7 8)⇒

(map (foo mul 3) '(1 2 3 4 5)) (3 6 9 12 15)⇒

Note that the quote before the operand can be omitted, since primitives evaluate to
themselves in newLISP.

By incorporating map into the function definition, we can do the following:

(define (list-map op p lst)
 (map (lambda (x) (op p x)) lst))

(list-map + 2 '(1 2 3 4)) (3 4 5 6)⇒

(list-map mul 1.5 '(1 2 3 4)) (1.5 3 4.5 6)⇒

The number of arguments used is determined by the length of the first argument list.
Arguments missing in other argument lists cause an error message. If an argument list
contains too many elements, the extra ones will be ignored.

Note that only functions with applicative order of evaluation can be mapped. Functions with
conditional or delayed evaluation of their arguments (e.g., if or case) cannot be mapped.

mat

syntax: (mat +|-|*|/ matrix-A matrix-B)
syntax: (mat +|-|*|/ matrix-A number)

Using the first syntax, this function performs fast floating point scalar operations on two-
dimensional matrices in matrix-A or matrix-B. The type of operation is specified by one of
the four arithmetic operators +, -, *, or /. This type of arithmetic operator is typically used

mat 179

newLISP Users Manual and Reference

for integer operations in newLISP. In the case of mat, however, all operations will be
performed as floating point operations (add, sub, mul, div).

Matrices in newLISP are two-dimensional lists or arrays. Internally, newLISP translates lists
and arrays into fast, accessible C-language data objects. This makes matrix operations in
newLISP as fast as those coded directly in C. The same is true for the matrix operations
multiply and invert.

example:

(set 'A '((1 2 3) (4 5 6)))
(set 'B A)

(mat + A B) ((2 4 6) (8 10 12))⇒
(mat - A B) ((0 0 0) (0 0 0))⇒
(mat * A B) ((1 4 9) (16 25 36))⇒
(mat / A B) ((1 1 1) (1 1 1))⇒

; specify the operator in a variable

(set 'op +)
(mat op A B) ((2 4 6) (8 10 12)) ⇒

Using the second syntax, all cells in matrix-A are multiplied with a scalar in number:

(mat + A 5) ((6 7 8) (9 10 11))⇒
(mat - A 2) ((-1 0 1) (2 3 4))⇒
(mat * A 3) ((3 6 9) (12 15 18))⇒
(mat / A 10) ((.1 .2 .3) (.4 .5 .6))⇒

See also the other matrix operations det, invert, multiply, and transpose.

match

syntax: (match list-pattern list-match [bool])

The pattern in list-pattern is matched against the list in list-match, and the matching
expressions are returned in a list. The three wildcard characters ?, +, and * can be used in
list-pattern.

Wildcard characters may be nested. match returns a list of matched expressions. For each ?
(question mark), a matching expression element is returned. For each + (plus sign) or *
(asterisk), a list containing the matched elements is returned. If the pattern cannot be
matched against the list in list-match, match returns nil. If no wildcard characters are
present in the pattern an empty list is returned.

Optionally, the boolean value true (or any other expression not evaluating to nil) can be
supplied as a third argument. This causes match work as it did in versions prior to 8.2.3,
showing all list elements in the returned result.

match is frequently employed as a parameter functor in find, ref, ref-all and replace.

example:

match 180

newLISP Users Manual and Reference

(match '(a ? c) '(a b c)) (b)⇒

(match '(a ? ?) '(a b c)) (b c)⇒

(match '(a ? c) '(a (x y z) c)) ((x y z))⇒

(match '(a ? c) '(a x y z c)) nil⇒

(match '(a * c) '(a x y z c)) ((x y z))⇒

(match '(a (b c ?) x y z) '(a (b c d) x y z)) (d)⇒

(match '(a (*) x ? z) '(a (b c d) x y z)) ((b c d) y)⇒

(match '(+) '()) nil⇒

(match '(+) '(a)) ((a))⇒

(match '(+) '(a b)) ((a b))⇒

(match '(a (*) x ? z) '(a () x y z)) (() y)⇒
(match '(a (+) x ? z) '(a () x y z)) nil ⇒

Note that the * operator tries to grab the fewest number of elements possible, but match
backtracks and grabs more elements if a match cannot be found.

The + operator works similarly to the * operator, but it requires at least one list element.

The following example shows how the matched expressions can be bound to variables.

(map set '(x y) (match '(a (? c) d *) '(a (b c) d e f)))

x b⇒
y (e f)⇒

Note that match for strings has been eliminated. For more powerful string matching, use
regex, find, find-all or parse.

unify is another function for matching expressions in a PROLOG like manner.

max

syntax: (max num-1 [num-2 ...])

Evaluates the expressions num-1— and returns the largest number.

example:

(max 4 6 2 3.54 7.1) 7.1⇒

See also the min function.

max 181

newLISP Users Manual and Reference

member

syntax: (member exp list)
syntax: (member str str-key [num-option])

In the first syntax, member searches for the element exp in the list list. If the element is a
member of the list, a new list starting with the element found and the rest of the original list
is constructed and returned. If nothing is found, nil is returned. When specifying num-
option member performs a regular expression search.

example:

(set 'aList '(a b c d e f g h)) (a b c d e f g h)⇒
(member 'd aList) (d e f g h)⇒
(member 55 aList) nil⇒

In the second syntax, member searches for str-key in str. If str-key is found, all of str
(starting with str-key) is returned. nil is returned if nothing is found.

example:

(member "LISP" "newLISP") "LISP"⇒
(member "LI" "newLISP") "LISP"⇒
(member "" "newLISP") "newLISP"⇒
(member "xyz" "newLISP") nil⇒
(member "li" "newLISP" 1) "LISP"⇒

See also the related functions slice and find.

min

syntax: (min num-1 [num-2 ...])

Evaluates the expressions num-1— and returns the smallest number.

example:

(min 4 6 2 3.54 7.1) 2⇒

See also the max function.

mod

syntax: (mod num-1 num-2 [num-3 ...])

Calculates the modular value of the numbers in num-1 and num-2. mod computes the
remainder from the division of the numerator num-i by the denominator num-i + 1.
Specifically, the return value is numerator - n * denominator, where n is the quotient of the

mod 182

newLISP Users Manual and Reference

numerator divided by the denominator, rounded towards zero to an integer. The result has
the same sign as the numerator and its magnitude is less than the magnitude of the
denominator.

example:

(mod 10.5 3.3) 0.6⇒
(mod -10.5 3.3) -0.6⇒

Use the % (percent sign) function when working with integers only.

mul

syntax: (mul num-1 num-2 [num-3 ...])

Evaluates all expressions num-1—, calculating and returning the product. mul can perform
mixed-type arithmetic, but it always returns floating point numbers. Any floating point
calculation with NaN also returns NaN.

example:

(mul 1 2 3 4 5 1.1) 132⇒
(mul 0.5 0.5) 0.25⇒

multiply

syntax: (multiply matrix-A matrix-B)

Returns the matrix multiplication of matrices in matrix-A and matrix-B. If matrix-A has the
dimensions n by m and matrix-B the dimensions k by l (m and k must be equal), the result is
an n by l matrix. multiply can perform mixed-type arithmetic, but the results are always
double precision floating points, even if all input values are integers.

The dimensions of a matrix are determined by the number of rows and the number of
elements in the first row. For missing elements in non-rectangular matrices, 0.0 is assumed.
A matrix can either be a nested list or array.

example:

(set 'A '((1 2 3) (4 5 6)))
(set 'B '((1 2) (1 2) (1 2)))
(multiply A B) ((6 12) (15 30))⇒

All operations shown here on lists can be performed on arrays, as well.

See also the matrix operations det, invert, mat and transpose.

multiply 183

newLISP Users Manual and Reference

name

syntax: (name symbol [bool])
syntax: (name context)

Returns as a string, the name of a symbol without the context prefix. If the expression in bool
evaluates to anything other than nil, the name of the symbol's context is returned instead.

When context is supplied, then name returns the name of the context.

example:

(set 'ACTX:var 123)
(set 'sm 'ACTX:var)
(string sm) "ACTX:var"⇒
(name sm) "var"⇒
(name sm true) "ACTX"⇒

; name from context

(set 'ctx ACTX)
(name ctx) "ACTX"⇒

NaN?

syntax: (NaN? number)

Tests if the result of a floating point math operation is a NaN. Certain floating point
operations return a special IEEE 754 number format called a NaN for 'Not a Number'.

example:

(set 'x (sqrt -1)) NaN⇒
(add x 123) NaN⇒
(mul x 123) NaN⇒

(+ x 123) 123⇒
(* x 123) 0⇒

(> x 0) nil⇒
(<= x 0) nil⇒
(= x x) true⇒
(NaN? x) true⇒

Note that all floating point arithmetic operations with a NaN yield a NaN. All comparisons
with NaN return nil, but true when comparing to itself. Comparison with itself, however,
would result in not true when using ANSI C.

Integer operations treat NaN as 0 (zero) values.

NaN? 184

newLISP Users Manual and Reference

net-accept

syntax: (net-accept int-socket)

Accepts a connection on a socket previously put into listening mode. Returns a newly created
socket handle for receiving and sending data on this connection.

example:

(set 'socket (net-listen 1234))
(net-accept socket)

Note that for ports less than 1024, newLISP must be started in superuser mode on UNIX-like
operating systems.

See also the server and client examples in the examples/ directory of the source
distribution.

net-close

syntax: (net-close int-socket [true)

Closes a network socket in int-socket that was previously created by a net-connect or net-
accept function. Returns true on success and nil on failure.

example:

(net-close aSock)

The optional true flag suppresses immediate shutdown of sockets waiting for pending data
transmissions to finish.

net-connect

syntax: (net-connect str-remote-host int-port [str-mode [int-ttl]])

Connects to a remote host computer specified in str-remote-host and a port specified in int-
port. Returns a socket handle after having connected successfully; else it returns nil.

example:

(define (finger nameSite , socket buffer user site)
 (set 'user (nth 0 (parse nameSite "@")))
 (set 'site (nth 1 (parse nameSite "@")))
 (set 'socket (net-connect site 79))
 (if socket
 (net-send socket (append user "\r\n"))
 "no connection")
 (net-receive socket 'str 512)
 (print "\n" str "\n"))

net-connect 185

newLISP Users Manual and Reference

The above program uses the finger service on a remote computer. This service returns
information about an account holder on this computer. Some ISP and UNIX installations
provide this service.

When executing:

(finger "johnDoe@someSite.com")

the program tries to connect to a server named "someSite.com" and sends the string
"johnDoe". If "someSite.com" is running a finger service, it sends back information about the
account "johnDoe" on this server. In case a connection cannot be made, the function returns
the string "no connection."

nameSite is split up into the account name and host name parts. net-connect is used to
connect to someSite.com and returns the socket handle, which processes incoming data.

UDP communications

As a third parameter, the string "udp" or "u" can be specified in the optional str-mode to
create a socket suited for UDP (User Datagram Protocol) communications. In UDP mode,
net-connect does not try to connect to the remote host, but only binds the socket to the
remote address. A subsequent net-send will send a UDP packet containing that target
address. Using net-send-to causes that address to be overwritten.

The functions net-receive and net-receive-from can also be used and will perform UDP
communications. net-select and net-peek can be used to check for received data in a non-
blocking fashion.

If data is never received when opening a client connection using net-connect, then calling
net-listen with the "udp" option may be preferable for starting the client side of the
connection. net-listen binds a specific local address and port to the socket. When net-
connect is used, the local address and port will be picked by the socket-stack functions of
the host OS.

UDP multicast communications

When specifying "multi" or "m" as a third parameter for str-mode, a socket for UDP
multicast communications will be created. Optionally, the fourth parameter int-ttl can be
specified as a TTL (time to live) value. If no int-ttl value is specified, a value of 3 is assumed.

Note that specifying UDP multicast mode in net-connect does not actually establish a
connection to the target multicast address but only puts the socket into UDP multicasting
mode. On the receiving side, use net-listen together with the UDP multicast option.

example:

;; example client

(net-connect "226.0.0.1" 4096 "multi") 3⇒

(net-send-to "226.0.0.1" 4096 "hello" 3)

UDP multicast communications 186

newLISP Users Manual and Reference

;; example server

(net-listen 4096 "226.0.0.1" "multi") 5⇒

(net-receive-from 5 20)
 ("hello" "192.168.1.94" 32769)⇒

On the server side, net-peek or net-select can be used for non-blocking communications. In
the above example, the server would block until a datagram is received.

The address 226.0.0.1 is just one multicast address in the Class D range of multicast
addresses from 224.0.0.0 to 239.255.255.255.

The net-send and net-receive functions can also be used instead of net-send-to and net-
receive-from.

UDP broadcast communications

Specifying the string "broadcast" or "b" in the third parameter, str-mode, causes UDP
broadcast communications to be set up. In this case, the broadcast address ending in 255 is
used.

example:

;; example client

(net-connect "192.168.2.255" 3000 "broadcast") 3⇒

(net-send 3 "hello")

;; example server

(net-listen 3000 "" "udp") 5⇒

(net-receive 5 'buff 10)

buff "hello"⇒

;; or

(net-receive-from 5 10)
 ("hello" "192.168.2.1" 46620)⇒

Note that on the receiving side, net-listen should be used with the default address specified
with an "" (empty string). Broadcasts will not be received when specifying an address. As
with all UDP communications, net-listen does not actually put the receiving side in listen
mode, but rather sets up the sockets for the specific UDP mode.

The net-select or net-peek functions can be used to check for incoming communications in a
non-blocking fashion.

UDP broadcast communications 187

newLISP Users Manual and Reference

net-error

syntax: (net-error)

Retrieves the last error that occurred when calling a net-* function. When any of the
following functions return nil, net-error can be called to get more information: net-
accept, net-connect, net-eval, net-listen, net-lookup, net-receive, net-receive-udp, net-select,
net-send, net-send-udp, and net-service. Functions that communicate using sockets close the
socket automatically and remove it from the net-sessions list. This makes for a very robust
API in situations of unreliable net connections. Calling any of these functions successfully
clears the last error.

The following messages are returned:

 1: Cannot open socket
 2: Host name not known
 3: Not a valid service
 4: Connection failed
 5: Accept failed
 6: Connection closed
 7: Connection broken
 8: Socket send() failed
 9: Socket recv() failed
10: Cannot bind socket
11: Too many sockets in net-select
12: Listen failed
13: Badly formed IP
14: Select failed
15: Peek failed
16: Not a valid socket

example:

(net-connect "jhghjgkjhg" 80) nil⇒

(net-error) (2 "ERR: Host name not known") ⇒

net-eval

syntax: (net-eval str-host int-port str-expr [int-timeout [func-handler]])
syntax: (net-eval '((str-host int-port str-expr) [(...) ...]) [int-timeout])
syntax: (net-eval '((str-host int-port str-expr) ...) int-timeout func-handler)

Can be used to evaluate source remotely on one or more newLISP servers. This function
handles all communications necessary to connect to the remote servers, send source for
evaluation, and wait and collect responses.

Beginning with version 8.9.8, str-host, int-port, and str-expr are evaluated. It is no longer
necessary to specify them as constant. net-eval will evaluate these arguments.

The remote TCP/IP servers are started in the following way:

newlisp -c -d 4711 &

net-eval 188

newLISP Users Manual and Reference

;; or with logging connections

newlisp -l -c -d 4711 &

Instead of 4711, any other port number can be used. Multiple nodes can be started on
different hosts and with the same or different port numbers. The -l or -L logging options
can be specified to log connections and remote commands.

The -d daemon mode allows newLISP to maintain state between connections. When keeping
state between connections is not desired, the inetd daemon mode offers more advantages.
The Internet inetd or xinetd services daemon will start a new newLISP process for each
client connection. This makes for much faster servicing of multiple connections. In -d
daemon mode, each new client request would have to wait for the previous request to be
finished. See the chapter inetd daemon mode on how to configure this mode correctly.

In the first syntax, net-eval talks to only one remote newLISP server node, sending the
host in str-host on port int-port a request to evaluate the expression str-expr. If int-timeout
is not given, net-eval will wait indefinitely for a response. Otherwise, if the timeout in
milliseconds has expired, nil is returned; else, the evaluation result of str-expr is returned.

example:

(net-eval "192.168.1.94" 4711 "(+ 3 4")) 7⇒
(net-eval "192.168.1.94" 4711 "(+ 3 4") 1) nil ; timeout⇒
to short
(net-eval "192.168.1.94" 4711 "(+ 3 4") 1000) 7⇒

The second syntax of net-eval returns a list of the results after all of the responses are
collected or timeout occurs. Responses that time out return nil. Connection errors or errors
that occur when sending information to nodes are returned as a list of error numbers and
descriptive error strings. See the function net-error for a list of potential error messages.

example:

(net-eval '(
 ("192.168.1.94" 4711 "(+ 3 4)")
 ("192.168.1.95" 4711 "(+ 5 6)")
) 5000)
 (7 11)⇒

(net-eval '(
 ("localhost" 8081 {(foo "abc")})
 ("localhost" 8082 "(myfunc 123)")
) 3000)

;; inetd or xinetd nodes on the same server and port

(net-eval '(
 ("localhost" 2000 {(foo "abc")})
 ("localhost" 2000 "(myfunc 123)")
) 3000)

The first example shows two expressions evaluated on two different remote nodes. In the
second example, both nodes run on the local computer. This may be useful when debugging
or taking advantage of multiple CPUs on the same computer.

net-eval 189

newLISP Users Manual and Reference

When nodes are inetd or xinetd-controlled, several nodes may have the same node for the IP
address and port number. In this case, the UNIX daemon inetd or xinetd will start multiple
newLISP servers. This is useful when testing distributed programs on just one machine. The
last example illustrates this case.

The source sent for evaluation can consist of entire multiline programs. This way, remote
nodes can be loaded with programs first, then specific functions can be called. For large
program files, the functions put-url or save (with a URL file name) can be used to transfer
programs.

Optionally, a handler function can be specified. This function will be repeatedly called while
waiting and once for every remote evaluation completion.

example:

(define (myhandler param)
 (if param
 (println param))
)

(set 'Nodes '(
 ("192.168.1.94" 4711)
 ("192.168.1.95" 4711)
))

(set 'Progs '(
 {(+ 3 4)}
 {(+ 5 6)}
))

(net-eval (map (fn (n p) (list (n 0) (n 1) p)) Nodes Progs)
 5000 myhandler)
⇒
("192.168.1.94" 4711 7)
("192.168.1.95" 4711 11)

The example shows how the list of node specs can be assembled from a list of nodes and
sources to evaluate. This may be useful when connecting to a larger number of remote nodes.
Since version 8.9.7, net-eval has also been able to evaluate the spec given in the node lists.
This allows the following code:

(net-eval '(
 ((Nodes 0 0) (Nodes 0 1) (Progs 0))
 ((Nodes 1 0) (Nodes 1 1) (Progs 1))
) 3000 myhandler)

While waiting for input from remote hosts, myhandler will be called with nil as the
argument to param. When a remote node result is completely received, myhandler will be
called with param set to a list containing the remote host name or IP number, the port, and
the resulting expression. net-eval will return true before a timeout or nil if the timeout
was reached or exceeded. All remote hosts that exceeded the timeout limit will contain a nil
in their results list.

Unless operating in raw mode, each piece of code sent to a remote node for evaluation should
be one expression. This can be achieved by putting several statements into a begin block.

net-eval 190

newLISP Users Manual and Reference

Raw mode

An additional parameter in each node specification can control whether the returned result is
evaluated (the default behavior) or returned as a string as it comes over the communications
channel. The following example illustrates the difference between the default evaluated and
raw modes of net-eval:

(net-eval '(("localhost" 4711 {(+ 3 4)})) 1000) (7)⇒

(net-eval '(("localhost" 4711 {(+ 3 4)} true)) 1000) ("7\n")⇒

(net-eval '(("localhost" 4711 {(+ 3 4) (+ 5 6)})) 1000) (11)⇒

(net-eval '(("localhost" 4711 {(+ 3 4) (+ 5 6)} true)) 1000) ⇒
("7\n11\n")

While the evaluated mode always returns an evaluated expression, raw mode returns a string
terminated by a line-feed. The last two statements reveal that in the default evaluated mode,
only the result of the last expression evaluation is returned, while in raw mode, both results
are visible, each terminated by a line-feed.

Raw mode returns the same string as would be observed when entering expressions on the
command line, while the evaluated mode returns LISP expressions ready for further
newLISP processing. newLISP's net-eval protects the expression returned with a single
quote before evaluating, thus ensuring that the expression string received is parsed in the
receiving environment, but the resulting expression itself stays in the original form sent by
the remote node. Only one quote gets prepended. For that reason, only one expression
should be sent back when working in non-raw mode.

The following example shows this effect:

(set 'prog [text]
(list 1 2 3 4)
(list 'a 'b 'c)
[/text])

; raw mode
(net-eval '((host port prog true) ...))
 ("(1 2 3 4)\n(a b c)\n")⇒

; normal mode
(net-eval '((host port prog) ...))
invalid function in function net-eval : (a b c)

; brace statments with (begin ...)
(set 'prog [text]
(begin
 (list 1 2 3 4)
 (list 'a 'b 'c))
[/text])

; normal mode
(net-eval '((host port prog) ...))
 ((a b c))⇒

The begin in the definition of prog forces the return of only one expression, which then gets
converted correctly by the receiving net-eval.

Raw mode 191

newLISP Users Manual and Reference

Note that raw mode has always been part of net-eval, but it was not documented prior to
version 8.7.5.

net-listen

syntax: (net-listen int-port [str-ip-addr] [str-mode])

Listens on a port specified in int-port. A call to net-listen returns immediately with a
socket number, which is then used by the blocking net-accept function to wait for a
connection. As soon as a connection is accepted, net-accept returns a socket number that can
be used to communicate with the connecting client.

example:

(set 'port 1234)
(set 'listen (net-listen port))
(unless listen (begin
 (print "listening failed\n")
 (exit)))
(print "Waiting for connection on: " port "\n")
(set 'connection (net-accept listen))
(if connection
 (while (net-receive connection 'buff 1024 "\n")
 (print buff)
 (if (= buff "\r\n") (exit)))
 (print "Could not connect\n"))

The example waits for a connection on port 1234, then reads incoming lines until an empty
line is received. Note that listening on ports lower than 1024 may require superuser access on
UNIX systems.

On computers with more than one interface card, specifying an optional interface IP address
or name in str-ip-addr directs net-listen to listen on the specified address.

;; listen on a specific address
(net-listen port "192.168.1.54")

UDP communications

As a third parameter, the optional string "udp" or "u" can be specified in str-mode to create
a socket suited for UDP (User Datagram Protocol) communications. A socket created in this
way can be used directly with net-receive-from to await incoming UDP data without using
net-accept, which is only used in TCP communications. The net-receive-from call will
block until a UDP data packet is received. Alternatively, net-select or net-peek can be used to
check for ready data in a non-blocking fashion. To send data back to the address and port
received with net-receive-from, use net-send-to.

Note that net-peer will not work, as UDP communications do not maintain a connected
socket with address information.

(net-listen 1002 "192.168.1.120" "udp")

UDP communications 192

newLISP Users Manual and Reference

(net-listen 1002 "" "udp")

The first example listens on a specific network adapter, while the second example listens on
the default adapter. Both calls return a socket number that can be used in subsequent net-
receive, net-receive-from, net-send-to, net-select, or net-peek function calls.

Both a UDP server and UDP client can be set up using net-listen with the "udp" option.
In this mode, net-listen does not really listen as in TCP/IP communications; it just binds
the socket to the local interface address and port.

For a working example, see the files examples/client and examples/server in the
newLISP source distribution.

Instead of net-listen and the "udp" option, the functions net-receive-udp and net-send-
udp can be used for short transactions consisting only of one data packet.

net-listen, net-select, and net-peek can be used to facilitate non-blocking reading. The
listening/reading socket is not closed but is used again for subsequent reads. In contrast,
when the net-receive-udp and net-send-udp pair is used, both sides close the sockets after
sending and receiving.

UDP multicast communications

If the optional string str-mode is specified as "multi" or "m", net-listen returns a
socket suitable for multicasting. In this case, str-ip-addr contains one of the multicast
addresses in the range 224.0.0.0 to 239.255.255.255. net-listen will register str-ip-
addr as an address on which to receive multicast transmissions. This address should not be
confused with the IP address of the server host.

example:

;; example client

(net-connect "226.0.0.1" 4096 "multi") 3⇒

(net-send-to "226.0.0.1" 4096 "hello" 3)

;; example server

(net-listen 4096 "226.0.0.1" "multi") 5⇒

(net-receive-from 5 20)
 ("hello" "192.168.1.94" 32769)⇒

On the server side, net-peek or net-select can be used for non-blocking communications. In
the example above, the server would block until a datagram is received.

The net-send and net-receive functions can be used instead of net-send-to and net-receive-
from.

UDP multicast communications 193

newLISP Users Manual and Reference

net-local

syntax: (net-local int-socket)

Returns the IP number and port of the local computer for a connection on a specific int-
socket.

example:

(net-local 16) ("204.179.131.73" 1689)⇒

Use the net-peer function to access the remote computer's IP number and port.

net-lookup

syntax: (net-lookup str-ip-number)
syntax: (net-lookup str-hostname [bool])

Returns either a hostname string from str-ip-number in IP dot format or the IP number in
dot format from str-hostname:

example:

(net-lookup "209.24.120.224") "www.nuevatec.com"⇒
(net-lookup "www.nuevatec.com") "209.24.120.224"⇒

(net-lookup "216.16.84.66.sbl-xbl.spamhaus.org" true)
 "127.0.0.2"⇒

Optionally, a bool flag can be specified in the second syntax. If the expression in bool
evaluates to anything other than nil, host-by-name lookup will be forced, even if the name
string starts with an IP number.

net-peek

syntax: (net-peek int-socket)

Returns the number of bytes ready for reading on the network socket int-socket. If an error
occurs or the connection is closed, nil is Returned.

example:

(set 'aSock (net-connect "aserver.com" 123))
(while (= (net-peek aSock) 0) (do-something-else))
(net-receive aSock 'buff 1024)

After connecting, the program waits in a while loop until aSock can be read.

Use the peek function to check file descriptors and stdin.

net-peek 194

newLISP Users Manual and Reference

net-peer

syntax: (net-peer int-socket)

Returns the IP number and port of the remote computer for a connection on int-socket.

example:

(net-peer 16) ("192.100.81.100" 13)⇒

Use the net-local function to access the local computer's IP number and port.

net-ping

syntax: (net-ping str-address [int-timeout [int-response]])
syntax: (net-ping list-addresses [int-timeout [int-response]])

In the first syntax, net-ping sends a ping ICMP 64-byte echo request to the address
specified in str-address. If it is a broadcast address, the ICMP packet will be received by all
addresses on the subnet. Note that for security reasons, many computers do not answer
ICMP broadcast ping (ICMP_ECHO) requests. An optional timeout parameter can be
specified in int-timeout. If no timeout is specified, a waiting time of 1000 milliseconds (one
second) is assumed.

net-ping returns either a list of IP strings for which a response was received or an empty
list if no response was received.

A return value of nil indicates a failure. Use the net-error function to retrieve the error
message. If the message reads Cannot open socket, it is probably because newLISP is
running without root permissions. newLISP can be started using:

sudo newlisp

Alternatively, newLISP can be installed with the set-user-ID bit set to run in superuser mode.

example:

(net-ping "newlisp.org") ("66.235.209.72")⇒
(net-ping "127.0.0.1") ("127.0.0.1")⇒
(net-ping "yahoo.com" 3000) nil⇒

In the second syntax, net-ping is run in batch mode. Only one socket is opened in this
mode, but multiple ICMP packets are sent out—one each to multiple addresses. In this case,
multiple answers can be received.

To limit the number of responses to be waited for in broadcast or batch mode, an additional
argument indicating the maximum number of responses to receive can be specified in int-
response. Usage of this parameter can cause the function to return sooner than the specified

net-ping 195

newLISP Users Manual and Reference

timeout. when a given number of responses has been received, net-ping will return before
the timeout has occurred.

example:

(net-ping '("newlisp.org" "yahoo.com" "192.168.1.255") 5000)

(net-ping "192.168.1.*" 500)
 ("192.168.1.1" "192.168.1.2" "192.168.2.3" "192.168.2.254")⇒

(net-ping "192.168.1.*" 500 2)
 ("192.168.1.3" "192.168.1.1")⇒

Broadcast or batch mode—as well as normal addresses and IP numbers or hostnames— can
be mixed in one net-ping statement by putting all of the IP specs into a list.

The second and third line show how the batch mode of net-ping can be initiated by
specifying the * (asterisk) as a wildcard character for the last subnet octet in the IP number.
net-ping will iterate through all numbers from 1 to 254, sending an ICMP packet to each
address. Note that this is different from the broadcast mode specified with an IP octet of
255. While in broadcast mode, net-ping sends out only one packet, which is received by
multiple addresses. Batch mode explicitly generates multiple packets, one for each target
address.

When sending larger lists of IPs in batch mode over one socket, a longer timeout may be
necessary to allow enough time for all of the packets to be sent out over one socket. If the
timeout is too short, the function net-ping may return nil with a message of socket
send failed, which was returned by net-error. In any case, net-ping will send out
packages as quickly as possible.

This function is only available on UNIX-based systems and must be run in superuser mode.

net-receive

syntax: (net-receive int-socket sym-buffer int-max-bytes [wait-string])

Receives data on the socket int-socket into a string contained in sym-buffer. A maximum of
int-max-bytes is received. net-receive returns the number of bytes read. If there is a
break in the connection, nil is returned. The space reserved in sym-buffer is exactly the size
of bytes read.

Note that net-receive is a blocking call and does not return until the data arrives at int-
socket. Use net-peek or net-select to find out if a socket is ready for reading.

Optionally, a wait-string can be specified as a fourth parameter. net-receive then returns
after a character or string of characters matching wait-string is received. The wait-string
will be part of the data contained in sym-buffer.

example:

(define (gettime)
 (net-connect "netcom.com" 13)
 (net-receive socket 'buf 256)

net-receive 196

newLISP Users Manual and Reference

 (print buf "\n")
 (net-close socket))

When calling gettime, the program connects to port 13 of the server netcom.com. Port 13 is
a date-time service on most server installations. Upon connection, the server sends a string
containing the date and time of day.

(define (net-receive-line socket sBuff)
 (net-receive socket sBuff 256 "\n"))

(set 'bytesReceived (net-receive-line socket 'sm))

The second example defines a new function net-receive-line, which returns after
receiving a newline character (a string containing one character in this example) or 256
characters. The "\n" string is part of the contents of sBuff.

Note that when the fourth parameter is specified, net-receive is slower than the normal
version because information is read character by character. In most situations, the speed
difference can be neglected.

net-receive-from

syntax: (net-receive-from int-socket int-max-size)

net-receive-from can be used to set up non-blocking UDP communications. The socket
in int-socket must previously have been opened by either net-listen or net-connect (both
using the "udp" option). int-max-size specifies the maximum number of bytes that will be
received. On Linux/BSD, if more bytes are received, those will be discarded. On Win32, net-
receive-from will return nil and close the socket.

example:

;; listen on port 1001 on the default address
(net-listen 1001 "" "udp") 1980 ⇒

;; optionally poll for arriving data with 100ms timeout
(while (not (net-select 1980 "r" 100000)) (do-something ...))

(net-receive-from 1980 20) ("hello" "192.168.0.5" 3240)⇒

;; send answer back to sender
(net-send-to "192.168.0.5" 3240 "hello to you" 1980)

(net-close 1980) ; close socket

The second line in this example is optional. Without it, the net-receive-from call would
block until data arrives. A UDP server could be set up by listening and polling several ports
serving them as they receive data.

Note that net-receive could not be used in this case because it does not return the
sender's address and port information, which are required to talk back. In UDP

net-receive-from 197

newLISP Users Manual and Reference

communications, the data packet itself contains the address of the sender, not the socket over
which communication takes place.

See also the net-connect function with the "udp" option and the net-send-to function for
sending UDP data packets over open connections.

For blocking short UDP transactions, see the net-send-udp and net-receive-udp functions.

net-receive-udp

syntax: (net-receive-udp int-port int-maxsize [int-microsec][str-addr-if])

Receives a User Datagram Protocol (UDP) packet on port int-port, reading int-maxsize bytes.
If more than int-maxsize bytes are received, bytes over int-maxsize are discarded on
Linux/BSD; on Win32, net-receive-udp returns nil. net-receive-udp blocks until a
datagram arrives or the optional timeout value in int-microsec expires. When setting up
communications between datagram sender and receiver, the net-receive-udp statement
must be set up first.

No previous setup using net-listen or net-connect is necessary.

net-receive-udp returns a list containing a string of the UDP packet followed by a string
containing the sender's IP number and the port used.

example:

;; wait for datagram with maximum 20 bytes
(net-receive-udp 1001 20)

;; or
(net-receive-udp 1001 20 5000000) ; wait for max 5 seconds

;; executed on remote computer
(net-send-udp "nuevatec.com" 1001 "Hello") 4 ⇒

;; returned from the net-receive-udp statement
 ("Hello" "128.121.96.1" 3312) ⇒

;; sending binary information
(net-send-udp "ahost.com" 2222 (pack "c c c c" 0 1 2 3))
 4 ⇒

;; extracting the received info
(set 'buff (first (net-receive-udp 2222 10)))

(print (unpack "c c c c" buff)) (0 1 2 3)⇒

See also the net-send-udp function for sending datagrams and the pack and unpack functions
for packing and unpacking binary information.

To listen on a specified address on computers with more than one interface card, an interface
IP address or name can be optionally specified in str-addr-if. When specifying str-addr-if, a
timeout must also be specified in int-wait.

net-receive-udp 198

newLISP Users Manual and Reference

As an alternative, UDP communication can be set up using net-listen, or net-connect
together with the "udp" option to make non-blocking data exchange possible with net-
receive-from and net-send-to.

net-select

syntax: (net-select int-socket str-mode int-micro-seconds)
syntax: (net-select list-sockets str-mode int-micro-seconds)

In the first form, net-select finds out about the status of one socket specified in int-
socket. Depending on str-mode, the socket can be checked if it is ready for reading or writing,
or if the socket has an error condition. A timeout value is specified in int-micro-seconds.

In the second syntax, net-select can check for a list of sockets in list-sockets.

The following value can be given for str-mode:

"read" or "r" to check if ready for reading or accepting.
"write" or "w" to check if ready for writing.
"exception" or "e" to check for an error condition.

Read, send, or accept operations can be handled without blocking by using the net-select
function. net-select waits for a socket to be ready for the value given in int-micro-
seconds, then returns true or nil depending on the readiness of the socket. During the
select loop, other portions of the program can run. On error, net-error is set. When -1 is
specified for int-micro-seconds, net-select will never time out.

example:

(set 'listen-socket (net-listen 1001))

;; wait for connection
(while (not (net-select listen-socket "read" 1000))
 (if (net-error) (print (net-error))))
(set 'connection (net-accept listen-socket))
(net-send connection "hello")

;; wait for incoming message
(while (not (net-select connection "read" 1000))
 (do-something))
(net-receive connection 'buff 1024)

When net-select is used, several listen and connection sockets can be watched, and
multiple connections can be handled. When used with a list of sockets, net-select will
return a list of ready sockets. The following example would listen on two sockets and
continue accepting and servicing connections:

example:

(set 'listen-list '(1001 1002))

(while (not (net-error))
 (dolist (conn (net-select listen-list "r" 1000))

net-select 199

newLISP Users Manual and Reference

 (accept-connection conn)) ; build and accept-list

 (dolist (conn (net-select accept-list "r" 1000))
 (read-connection conn)) ; read on conn socket

 (dolist (conn (net-select accept-list "w" 1000))
 (write-connection conn))) ; write on conn socket

In the second syntax, a list is returned containing all the sockets that passed the test; if
timeout occurred, an empty list is returned. An error causes net-error to be set.

Note that supplying a nonexistent socket to net-select will cause an error to be set in net-
error.

net-send

syntax: (net-send int-socket sym-buffer [int-num-bytes])
syntax: (net-send int-socket str-buffer [int-num-bytes])

Sends the contents of sym-buffer on the connection specified by int-socket. If int-num-bytes
is specified, up to int-num-bytes are sent. If int-num-bytes is not specified, all contents in
sym-buffer are sent. net-send returns the number of bytes sent or nil on failure.

rewrite;;Since net-send can use a string buffer directly, the symbol does not need to be
quoted.

example:

(set 'buf "hello there")
(net-send sock 'buf)
(net-send sock 'buf 5)

;; a string buffer can be used unquoted
(net-send sock buf)
(net-send sock "bye bye")

The first net-send sends the string "hello there", while the second net-send sends
only the string "hello".

net-send-to

syntax: (net-send-to str-remotehost int-remoteport str-buffer int-socket

Sends UDP data packets on open connections. The socket in int-socket must have previously
been opened with a net-connect or net-listen function. Both functions must be opened with
their "udp" option. The host in str-remotehost can be specified either as a hostname or as an
IP-number string.

example:

net-send-to 200

newLISP Users Manual and Reference

(net-connect "asite.com" 1010 "udp")
 2058 ; get a UDP socket⇒

(net-send-to "asite.com" 1010 "hello" 2058)

;; optionally poll for answer
(while (not (net-select 2058 "r" 100000))
 (do-something …))

;; receive answering data from UDP server
(net-receive-from 2058 20)
 ("hello to you" "10.20.30.40" 1010)⇒

(net-close 2058)

The second line in the example is optional. Without it, the net-receive-from call would block
until data arrives. Using polling, a client could maintain conversations with several UDP
servers at the same time.

See also the net-receive-from function and the net-listen function with the "udp" option.

For blocking short UDP transactions, see net-send-udp" and net-receive-udp.

net-send-udp

syntax: (net-send-udp str-remotehost int-remoteport str-buffer [bool])

Sends a User Datagram Protocol (UDP) to the host specified in str-remotehost and to the
port in int-remoteport. The data sent is in str-buffer.

No previous setup using net-connect or net-listen is necessary. net-send-udp
returns immediately with the number of bytes sent and closes the socket used. If no net-
receive-udp statement is waiting at the receiving side, the datagram sent is lost. When
using datagram communications over insecure connections, setting up a simple protocol
between sender and receiver is recommended for ensuring delivery. UDP communication by
itself does not guarantee reliable delivery as TCP/IP does.

example:

(net-send-udp "somehost.com" 3333 "Hello") 5⇒

net-send-udp is also suitable for sending binary information (e.g., the zero character or
other nonvisible bytes). For a more comprehensive example, see net-receive-udp.

Optionally, the sending socket can be put in broadcast mode by specifying true or any
expression not evaluating to nil in bool:

(net-send-udp "192.168.1.255" 2000 "Hello" true) 5⇒

The UDP will be sent to all nodes on the 192.168.1 network. Note that on some operating
systems, sending the network mask 255 without the bool true option will enable broadcast
mode.

net-send-udp 201

newLISP Users Manual and Reference

As an alternative, the net-connect function using the "udp" option—together with the net-
send-to function—can be used to talk to a UDP listener in a non-blocking fashion.

net-service

syntax: (net-service str-service str-protocol)

Makes a lookup in the services database and returns the standard port number for this
service. Returns nil on failure.

example:

(net-service "ftp" "tcp") 21⇒
(net-service "finger" "tcp") 79⇒
(net-service "net-eval" "tcp") 4711 ; if configured⇒

net-sessions

syntax: (net-sessions)

Returns a list of active listening and connection sockets.

new

syntax: (new context-source sym-context-target [bool])
syntax: (new context-source)

In the first syntax, context-source is the name of an existing context, and sym-context-target
is the name of a new context to be created just like the original, with the same variable names
and user-defined functions. If the context in sym-context-target already exists, then new
symbols and definitions are added. Existing symbols are overwritten when the expression in
bool evaluates to anything besides nil; otherwise, the content of existing symbols will
remain. This makes mixins of context objects possible. new returns the target context, which
cannot be MAIN.

In the second syntax, the existing context in context-source gets copied into the current
context as the target context.

All references to symbols in the originating context will be translated to references in the
target context. This way, all functions and data structures referring to symbols in the original
context will now refer to symbols in the target context.

example:

(new CTX 'CTX-2) CTX-2 ⇒

new 202

newLISP Users Manual and Reference

;; force overwrite of existing symbols
(new CTX MyCTX true) MyCTX ⇒

(set 'CTX:x 123)
(new CTX) MAIN ; copies x into MAIN⇒
x 123⇒

(map new '(Ct-a Ct-b Ct-c)) ; merge into current context

The first line in the example creates a new context called CTX-2 that has the exact same
structure as the original one. Note that CTX is not quoted because contexts evaluate to
themselves, but CTX-2 must be quoted because it does not exist yet.

The second line merges the context CTX into MyCTX. Any existing symbols of same name in
MyCTX will be overwritten. Because MyCTX already exists, the quote before the context
symbol can be omitted.

The last lines show how a foreign context gets merged into the current one and how map can
be used to merge a list of contexts.

Context symbols need not be mentioned explicitly, but they can be contained in variables:

example:

(set 'foo:x 123)
(set 'bar:y 999)

(set 'ctxa foo)
(set 'ctxb bar)

(new ctxa ctxb) ; from foo to bar

bar:x 123 ; x has been added to bar⇒
bar:y 999)⇒

The example refers to contexts in variables and merges context foo into bar.

See also the function def-new for moving and merging single functions instead of entire
contexts. See the context function for a more comprehensive example of new.

nil?

syntax: (nil? expr)

If the expression in expr evaluates to nil, then nil? returns true; otherwise, it returns
nil.

example:

(map nil? '(x nil 1 nil "hi" ()))
 (nil true nil true nil nil)⇒

(nil? nil) true⇒
(nil? '()) nil⇒

nil? 203

newLISP Users Manual and Reference

; nil? means strictly nil
(nil? (not '())) nil⇒

The nil? predicate is useful for distinguishing between nil and the empty list ().

Note that nil? means strictly nil while true? means everything not nil or the empty list
().

not

syntax: (not exp)

If exp evaluates to nil, then true is returned; otherwise, nil is returned.

example:

(not true) nil⇒
(not nil) true⇒
(not '()) true⇒
(not (< 1 10)) nil⇒
(not (not (< 1 10))) true⇒

normal

syntax: (normal float-mean float-stdev int-n)
syntax: (normal float-mean float-stdev)

In the first form, normal returns a list of length int-n of random, continuously distributed
floating point numbers with a mean of float-mean and a standard deviation of float-stdev.
The random generator used internally can be seeded using the seed function.

example:

(normal 10 3 10)
 (7 6.563476562 11.93945312 6.153320312 9.98828125⇒

 7.984375 10.17871094 6.58984375 9.42578125 12.11230469)

In the second form, normal returns a single normal distributed floating point number:

(normal 0 1) 0.6630859375⇒

See also the random and rand functions for evenly distributed numbers, amb for
randomizing evaluation in a list of expressions, and seed for setting a different start point for
pseudo random number generation.

normal 204

newLISP Users Manual and Reference

now

syntax: (now [int-offset])

Returns information about the current date and time as a list of integers. An optional time-
zone offset can be specified in minutes in int-offset. This causes the time to be shifted
forward or backward in time, before being split into separate date values.

example:

(now) (2002 2 27 18 21 30 140000 57 3 300 0)⇒

(apply date-value (now)) 1014834090⇒

The numbers represent the following date-time fields:

format description

year Gregorian calendar

month (1–12)

day (1–31)

hour (0–23) UCT

minute (0–59)

second (0–59)

microsecond (0–999999) OS-specific, millisecond resolution

day of current year Jan 1st is 1

day of current week (1–7) starting Sunday

time zone offset in minutes west of GMT

daylight savings time flag (0–1) on Linux/UNIX bias and in minutes on Win32

The second example returns the UCT time value of seconds after January 1, 1970.

Ranging from 0 to 23, hours are given in Coordinated Universal Time (UCT) and are not
adjusted for the local time zone. The resolution of the microsecond field depends on the
operating system and platform. On some platforms, the last three digits of the
microseconds field are always 0 (zero).

See also the date, date-value, time, and time-of-day functions.

Note that on Solaris, the returned time offset value is not working correctly in some
versions/platforms and may contain garbage values.

On many platforms, the daylight savings flag is not active and returns 0 (zero) even during
daylight savings time.

now 205

newLISP Users Manual and Reference

null?

syntax: (null? expr)

Checks if an expression evaluates to nil, the empty list (), the empty string "", NaN (not a
number), or 0 (zero), in which case it returns true. In all other cases, null? returns nil.
The predicate null? is useful in conjunction with the functions filter or clean to check the
outcome of other newLISP operations.

example:

(map null? '(1 0 0.0 2 NaN "hello" "" (a b c) () nil true))
 (nil true true true nil true nil true nil true true nil)⇒

(filter null? '(1 0 2 0.0 NaN "hello" "" (a b c) () nil true))
 (0 0 NaN "" () nil)⇒

(clean null? '(1 0 2 0.0 NaN "hello" "" (a b c) () nil true))
 (1 2 "hello" (a b c) true)⇒

See also the predicates empty?, nil? and zero?.

nper

syntax: (nper num-interest num-pmt num-pv [num-fv int-type])

Calculates the number of payments required to pay a loan of num-pv with a constant interest
rate of num-interest and payment num-pmt. If num-fv is omitted, the future value of the
loan is assumed to be 0.0. If payment is at the end of the period, int-type is 0; else it is 1. If
int-type is omitted, 0 is assumed.

example:

(nper (div 0.07 12) 775.30 -100000) 239.9992828⇒

The example calculates the number of monthly payments required to pay a loan of $100,000
at a yearly interest rate of 7 percent with payments of $775.30.

See also the fv, irr, npv, pmt, and pv functions.

npv

syntax: (npv num-interest list-values)

Calculates the net present value of an investment with a fixed interest rate num-interest and
a series of future payments and income in list-values. Payments are represented by negative
values in list-values, while income is represented by positive values in list-values.

example:

npv 206

newLISP Users Manual and Reference

(npv 0.1 '(1000 1000 1000))
 2486.851991⇒

(npv 0.1 '(-2486.851991 1000 1000 1000))
 -1.434386832e-08 ; ~ 0.0 (zero)⇒

In the example, an initial investment of $2,481.85 would allow for an income of $1,000 after
the end of the first, second, and third years.

See also the fv, irr, nper, pmt, and pv functions.

nth

syntax: (nth int-index-1 [int-index-2 ...] list)
syntax: (nth (list int-index-1 [int-index-2 ...]))

syntax: (nth int-index-1 [int-index-2 ...] array)
syntax: (nth (array int-index-1 [int-index-2 ...]))

syntax: (nth int-offset str)

In the first version, nth evaluates int-index and uses it as an index into list, returning the
element found at that index. See also Indexing elements of strings and lists. Multiple indices
may be specified to recursively access elements in nested lists. If there are more indices than
nesting levels, the extra indices are ignored. Up to 16 indices can be specified.

example:

(nth 0 '(a b c)) a⇒

(set 'names '(john martha robert alex))
 (john martha robert alex)⇒

(nth 2 names) robert⇒

(nth -1 names) alex⇒

(set 'persons '((john 30) (martha 120) ((john doe) 17)))

(nth 1 1 persons) 120⇒

(nth 2 0 1 persons) doe⇒

(nth -2 0 persons) martha⇒

(nth 10 persons) ((john doe) 17)) ; out of bounds⇒
(nth -5 person) (john 30) ; out of bounds⇒

The semi and full implicit indexed syntax forms are faster and preferred in most cases for
better readability.

(nth (persons 2 0 1)) doe⇒

(persons 2 0 1) doe⇒

nth 207

newLISP Users Manual and Reference

(set 'V (ref 'doe persons)) (2 0 1)⇒

(nth (persons V)) doe⇒

(persons V) doe⇒

(persons -2 0) martha⇒

In the second version, nth works on arrays just like it does on lists, but out-of-bounds
indices will cause an error message.

example:

(set 'aArray (array 2 3 '(a b c d e f)))
 ((a b c) (d e f))⇒

(nth 1 aArray) (d e f)⇒

(nth 1 0 aArray) d⇒

(nth -5 -3 aArray) out of bounds error⇒

(nth 10 10 aArray) out of bounds error⇒

; new faster implicit indexing forms

(nth (aArray 1)) (d e f)⇒
(aArray 1) (d e f)⇒

(nth (aArray 1 0)) d⇒
(nth (aArray '(1 0))) d⇒

(aArray 1 0) d⇒
(aArray '(1 0)) d⇒

In the third version, nth returns the character found at the position int-index in str and
returns it as a string.

example:

(nth 0 "newLISP") "n"⇒

(nth 3 "newLISP") "L"⇒

(nth -1 "newLISP") "P"⇒

; new faster implicit indexing forms

(nth ("newLISP" 0)) "n"⇒
("newLISP" 0) "n"⇒

See also the set-nth function for accessing multidimensional nested lists and arrays. See the
push and pop functions for accessing multidimensional lists.

Note also that nth works on character boundaries rather than byte boundaries when using
the UTF-8–enabled version of newLISP.

nth 208

newLISP Users Manual and Reference

nth-set

syntax: (nth-set int-nth-1 [int-nth-2 ...] list|array exp-replacement)
syntax: (nth-set int-nth-1 str str-replacement)

syntax: (nth-set (list|array int-nth-1 [int-nth-2 ...]) exp-replacement)
syntax: (nth-set (str int-nth-1) str str-replacement)

Sets the int-nth element of a list or array with the evaluation of exp-replacement and returns
the old element. As shown in the last two syntax lines, implicit indexing syntax can be used
for specifying indices. Because it is more readable, implicit indexing is the preferred form
(since version 8.8.8) in nth-set and set-nth, but both forms remain valid.

nth-set performs a destructive operation, changing the original list or array. More than one
index can be specified to recursively traverse nested list structures or multidimensional
arrays. An out-of-bounds index always returns the last or first element when indexing a list,
but it causes an out-of-bound error when indexing an array. Up to 16 indices can be specified.

When replacing in lists, the old element is also contained in the system variable $0 and can
be used in the replacement expression itself.

In the second form, the int-nth character in str is replaced with the string in str-replacement.
Out-of-bounds indices will pick the first or last character for replacement, and the system
variable $0 is set to the replaced character.

example:

;;;;;;;;;;; usage on lists ;;;;;;;;;;;;

(set 'aList '(a b c d e f g))
(nth-set 2 aList "I am the replacement") c ; old syntax⇒

;; or using implicit indexing

(nth-set (aList 2) "I am the replacement") c ; new syntax⇒

aList (a b "I am the replacement" d e f g)⇒

$0 c⇒

(set 'aList '(a b (c d (e f g) h) i)))
(nth-set (aList 2 2 0) 'x) e⇒

aList (a b (c d (x f g) h) i)⇒
$0 e⇒

(set-nth (aList -2 2 -1) 99) g⇒

aList (a b (c d (x f 99) h) i)⇒

;; usage on default functors

(set 'db:db '(a b c d e f g))

(nth-set (db 3) 99) d⇒

db:db (a b c 99 e f g)⇒

nth-set 209

newLISP Users Manual and Reference

The following examples use nth-set to change the contents of arrays.

example:

;;;;;;;;;;; usage on arrays ;;;;;;;;;;;;

(set 'myarray (array 3 4 (sequence 1 12)))
 ((1 2 3 4) (5 6 7 8) (9 10 11 12))⇒

(nth-set 2 3 myarray 99) 12 ⇒
;; or with implicit indexing
(nth-set (myarray 2 3) 99) 12 ⇒
myarray
 ((1 2 3 4) (5 6 7 8) (9 10 11 99))⇒

(nth-set (myarray -2 1) "hello") 6 ⇒
myarray
 ((1 2 3 4) (5 "hello" 7 8) (9 10 11 99))⇒

(nth-set (myarray 1) (array 4 '(a b c d)))
 (5 "hello" 7 8) ⇒

myarray
 ((1 2 3 4) (a b c d) (9 10 11 99))⇒

;; usage on default functors
(set 'myarray:myarray (array 7 '(a b c d e f g)))

(nth-set (myarray 3) 99) d⇒
myarray:myarray (a b c 99 e f g)⇒

When replacing whole rows as in the third example, care must be taken to replace it as an
array. See also the array functions array, array?, and array-list.

In second form, the int-nth character in str is replaced with the string in str-replacement.

example:

;;;;;;;;;;; usage on strings ;;;;;;;;;;;;
(set 's "abcd")

(nth-set (s 0) "xyz") "a" ⇒
s "xyzbcd"⇒
$0 "a"⇒

nth-set uses the system variable $0 for the element found in lists and strings. This can be
used in the replacement expression:

(set 'lst '(1 2 3 4))

(nth-set (lst 1) (+ $0 1)) 2⇒

lst '(1 3 3 4)⇒

See the set-nth function, which works like nth-set but returns the whole changed
expression instead of the replaced element. set-nth is also slower when doing replacements
in larger lists or string buffers.

Use the nth, push, and pop functions to access multidimensional nested lists. The nth
function will also work with multidimensional nested arrays.

nth-set 210

newLISP Users Manual and Reference

nth-set works exactly like set-nth but returns the replaced element instead of the whole
changed list expression. nth-set is much faster when replacing elements in larger lists or
arrays.

number?

syntax: (number? exp)

true is returned only if exp evaluates to a floating point number or an integer; otherwise,
nil is returned.

example:

(set 'x 1.23)
(set 'y 456)
(number? x) true⇒
(number? y) true⇒
(number? "678") nil ⇒

See the functions float? and integer? to test for a specific number type.

open

syntax: (open str-path-file str-access-mode [str-option])

The str-path-file is a file name, and str-access-mode is a string specifying the file access
mode. open returns an integer, which is a file handle to be used on subsequent read or write
operations on the file. On failure, open returns nil. The access mode "write" creates the
file if it doesn't exist, or it truncates an existing file to 0 (zero) bytes in length.

The following strings are legal access modes:

"read" or "r" for read only access
"write" or "w" for write only access
"update" or "u" for read/write access
"append" or "a" for append read/write access

example:

(device (open "newfile.data" "write")) 5⇒
(print "hello world\n") "hello world"⇒
(close (device)) 5⇒

(set 'aFile (open "newfile.data" "read"))
(seek aFile 6)
(set 'inChar (read-char aFile))
(print inChar "\n")
(close aFile)

open 211

newLISP Users Manual and Reference

The first example uses open to set the device for print and writes the word "hello world"
into the file newfile.data. The second example reads a byte value at offset 6 in the same
file (the ASCII value of 'w' is 119). Note that using close on (device) automatically resets
device to 0 (zero).

As an additional str-option, "non-block" or "n" can be specified after the "read" or
"write" option. Only available on UNIX systems, non-blocking mode can be useful when
opening named pipes but is not required to perform I/O on named pipes.

To create a named pipe in newLISP, use the exec or import function:

example:

(exec "mkfifo myfifo")

;; or alternatively

(import "/lib/libc.so.6" "mkfifo")
(mkfifo "/tmp/myfifo" 0777)

The named pipe can now be used like a file with open, read-buffer, and write-buffer.

or

syntax: (or exp-1 [exp-2 exp-3 ...])

Evaluates expressions exp-x from left to right until finding a result that does not evaluate to
nil or the empty list (). The result is the return value of the or expression.

example:

(set 'x 10)
(or (> x 100) (= x 10)) true⇒
(or "hello" (> x 100) (= x 10)) "hello"⇒
(or '()) nil⇒
(or true) true⇒
(or) nil⇒

ostype

syntax: ostype

ostype is a built-in system constant containing the name of the operating system newLISP
is running on.

example:

ostype "Win32"⇒

ostype 212

newLISP Users Manual and Reference

One of the following strings is returned: "Linux", "BSD", "OSX", "Tru64Unix",
"Solaris", "Win32", or "OS/2".

ostype can be used to write platform-independent code:

(if
 (= ostype "Linux") (import "libz.so")
 (= ostype "BSD") (import "libz.so")
 (= ostype "OSX") (import "libz.dylib")
 ...
 (println "cannot import libz on this platform")
)

Use sys-info to learn more about the current flavor of newLISP running.

pack

syntax: (pack str-format exp-1 [exp-2 ... exp-n])

Packs one or more expressions (exp-1 to exp-n) into a binary format specified in the format
string str-format, returning the binary structure in a string buffer. The symmetrical unpack
function is used for unpacking. pack and unpack are useful when reading and writing
binary files (see read-buffer and write-buffer) or when unpacking binary structures from
return values of imported C functions using import.

The following characters are used in str-format:

format description
c a signed 8-bit number
b an unsigned 8-bit number
d a signed 16-bit short number
u an unsigned 16-bit short number
ld a signed 32-bit long number
lu an unsigned 32-bit long number
Ld a signed 64-bit long number
Lu an unsigned 64-bit long number
f a float in 32-bit representation
lf a double float in 64-bit representation
sn a string of n null padded ASCII characters
nn n null characters
> switch to big endian byte order
< switch to little endian byte order

Note that newLISP only supports 32-bit, signed integers and treats lu and ld the same way
internally.

pack 213

newLISP Users Manual and Reference

pack will convert all floats into integers when passed to b, c, d, ld, or lu formats. It will also
convert integers into floats when passing them to f and lf formats.

example:

(pack "c c c" 65 66 67) "ABC"⇒
(unpack "c c c" "ABC") (65 66 67)⇒

(pack "c c c" 0 1 2) "\000\001\002"⇒
(unpack "c c c" "\000\001\002") (0 1 2)⇒

(set 's (pack "c d u" 10 12345 56789))
(unpack "c d u" s) (10 12345 56789)⇒

(set 's (pack "s10 f" "result" 1.23))
(unpack "s10 f" s)
 ("result\000\000\000\000" 1.230000019)⇒

(set 's (pack "s3 lf" "result" 1.23))
(unpack "s3 f" s) ("res" 1.23)⇒

(set 's (pack "c n7 c" 11 22))
(unpack "c n7 c" s) (11 22))⇒

(unpack "b" (pack "b" -1.0)) (255)⇒
(unpack "f" (pack "f" 123)) (123)⇒

The last two statements show how floating point numbers are converted into integers when
required by the format specification.

The > and < specifiers can be used to switch between little endian and big endian byte order
when packing or unpacking:

(pack "d" 1) "\001\000" ;; on little endian CPU⇒
(pack ">d" 1) "\000\001" ;; force big endian⇒

(pack "ld" 1) "\001\000\000\000" ;; on little endian CPU⇒
(pack "<ld" 1) "\000\000\000\001" ;; force big endian⇒

Switching the byte order will affect all number formats with 16-, 32-, or 64-bit sizes.

The pack and unpack format need not be the same:

(set 's (pack "s3" "ABC"))
(unpack "c c c" s) (65 66 67)⇒

The examples show spaces between the format specifiers. These are not required but can be
used to improve readability.

See also the address, get-int, get-long get-char, get-string, and unpack functions.

parse

syntax: (parse str-data [str-break int-option])

parse 214

newLISP Users Manual and Reference

Breaks the string that results from evaluating str-data into string tokens, which are then
returned in a list. When no str-break is given, parse tokenizes according to newLISP's
internal parsing rules. A string may be specified in str-break for tokenizing only at the
occurrence of a string. If an int-option number is specified, a regular expression pattern may
be used in str-break.

When str-break is not specified, the maximum token size is 2048 for quoted strings and 256
for identifiers. In this case, newLISP uses the same faster tokenizer it uses for parsing LISP
source. If str-data is specified, there is no limitation on the length of tokens. A different
algorithm is used that splits the source string str-data at the string in str-break.

example:

(parse "hello how are you") ("hello" "how" "are" "you")⇒

(parse "one:two:three" ":") ("one" "two" "three")⇒

(parse "one--two--three" "--")
 ("one" "two" "three")⇒

(parse "one-two--three---four" "-+" 0)
 ("one" "two" "three" "four")⇒

(parse "hello regular expression 1, 2, 3" {,\s*|\s+} 0)
 ("hello" "regular" "expression" "1" "2" "3")⇒

The last two examples show a regular expression as the break string with the default option 0
(zero). Instead of { and } (left and right curly brackets), quotes can be used to limit the
pattern. In this case, double backslashes must be used inside the pattern. The last pattern
could be used for parsing CVS files. For the regular expression option numbers, see regex.

parse will return empty fields around separators as empty strings:

(parse "1,2,3," ",") ("1" "2" "3" "")⇒
(parse "1,,,4" ",") ("1" "" "" "4")⇒
(parse "," ",") ("" "")⇒

(parse "") ()⇒
(parse "" " ") ()⇒

This behavior is needed when parsing records with empty fields.

Parsing an empty string will always result in an empty list.

Use the regex function to break strings up and the directory, find, find-all, regex, replace, and
search functions for using regular expressions.

parse-date

syntax: (parse-date str-date str-format)

Parses a date from a text string in str-date using a format as defined in str-format, which
uses the same formatting rules found in date. The function parse-date returns the number
of seconds passed since January 1, 1900.

parse-date 215

newLISP Users Manual and Reference

This function is not available on Win32 platforms.

example:

(parse-date "2007.1.3" "%Y.%m.%d") 1167782400⇒
(parse-date "January 10, 07" "%B %d, %y") 1168387200⇒

See the date function for all possible format descriptors.

peek

syntax: (peek int-handle)

Returns the number of bytes ready to be read on a file descriptor; otherwise, it returns nil if
the file descriptor is invalid. peek can also be used to check stdin. This function is only
available on UNIX-like operating systems.

example:

(peek 0) ; check # of bytes ready on stdin

Use the net-peek function to check for network sockets, or for the number of available bytes
on them. On UNIX systems, net-peek can be used to check file descriptors. The difference is
that net-peek also sets net-error.

pipe

syntax: (pipe)

Creates an inter-process communications pipe and returns the read and write handles to it
within a list.

example:

(pipe) (3 4) ; 3 for read, 4 for writing⇒

The pipe handles can be passed to a child process or thread launched via process or to fork
for inter-process communications.

Note that the pipe does not block when being written to, but it does block reading until bytes
are available. A read-line blocks until a newline character is received. A read-buffer blocks
when fewer characters than specified are available from a pipe that has not had the writing
end closed by all processes.

More than one pipe can be opened if required.

newLISP can also use named pipes. See the open function for further information.

pipe 216

newLISP Users Manual and Reference

pmt

syntax: (parse num-interest num-periods num-principal [num-future-value int-
type])

Calculates the payment for a loan based on a constant interest of num-interest and constant
payments over num-periods of time. num-future-value is the value of the loan at the end
(typically 0.0). When paying at the end of each period, num-type is 0 (zero); otherwise, it is 1.
If omitted, int-type is assumed to be 0 (zero) for payment at the end of a period.

example:

(pmt (div 0.07 12) 240 100000) -775.2989356⇒

The above example calculates a payment of $775.30 for a loan of $100,000 at a yearly
interest rate of 7 percent. It is calculated monthly and paid over 20 years (20 * 12 = 240
monthly periods). This illustrates the typical way payment is calculated for mortgages.

See also the fv, irr, nper, npv, and pv functions.

pop

syntax: (pop list [int-index-1 [int-index-2 ...]])
syntax: (pop list [list-indexes])

syntax: (pop str [int-index] [int-length])

Using pop elements can be removed from lists and characters from strings.

In the first syntax pop extracts an element from the list found by evaluating list. If a second
parameter is present, the element at int-index is extracted and returned. See also Indexing
elements of strings and lists.

In the second version, indices are specified in the list list-indexes. This way, pop works easily
together with ref and ref-all, which return lists of indices.

pop changes the contents of the target list. The popped element is returned.

example:

(set 'pList '((f g) a b c "hello" d e 10))

(pop pList) (f g)⇒
(pop pList) a⇒
plist (b c "hello" d e 10)⇒

(pop pList 3) d⇒
(pop pList 100) 10⇒
pList (b c "hello" e)⇒

(pop pList -1) e⇒
pList (b c "hello")⇒

(pop pList -2) c⇒

pop 217

newLISP Users Manual and Reference

pList (b "hello")⇒

(set 'pList '(a 2 (x y (p q) z)))

(pop pList -1 2 0) p⇒

;; use indices in a list
(set 'pList '(a b (c d () e)))

(push 'x pList '(2 2 0)) x⇒
pList
 (a b (c d (x) e))⇒

(ref 'x pList) (2 2 0)⇒

(pop pList '(2 2 0)) x⇒

pop can also be used on strings with one index:

example:

;; use pop on strings

(set 'str "newLISP")

(pop str -4 4) "LISP"⇒

str "new"⇒

(pop str 1) "e"⇒

str "nw"⇒

(set 'str "x")

(pop str) "x"⇒
(pop str) ""⇒

Popping an empty string will return an empty string.

See also the push function, the inverse operation to pop, and the set-nth and nth functions,
which can take multidimensional indices into lists.

post-url

syntax: (post-url str-url str-content [str-content-type [str-option] [int-timeout [
str-header]]])

Sends an HTTP POST request to the URL in str-url. POST requests are used to post
information collected from web entry forms to a web site. Most of the time, the function
post-url mimics what a web browser would do when sending information collected in an
HTML form to a server, but it can also be used to upload files (see an HTTP reference). The
function returns the page returned from the server in a string.

post-url 218

newLISP Users Manual and Reference

When post-url encounters an error, it returns a string description of the error beginning
with ERR:.

The last parameter, int-timeout, is for an optional timeout value, which is specified in
milliseconds. When no response from the host is received before the timeout has expired, the
string ERR: timeout is returned.

example:

(post-url "http://somesite.com/login.pl"
 "user=johnDoe&pass=12345"
 "application/x-www-form-urlencoded")

(post-url "http://somesite.com/login.pl"
 "user=johnDoe&pass=12345"
 "application/x-www-form-urlencoded" 8000)

;; assumes default content type
(post-url "http://somesite.com/login.pl"
 "user=johnDoe&pass=12345")

The above example uploads a user name and password using a special format called
application/x-www-form-urlencoded. post-url can be used to post other content
types such as files or binary data. See an HTTP reference for other content-type specifications
and data encoding formats. When the content-type parameter is omitted, post-url
assumes application/x-www-form-urlencoded as the default content type.

Additional parameters

When str-content-type is specified, the str-option "header" or "list" can be specified as
the return page. If the int-timeout option is specified, the custom header option str-header
can be specified, as well. See the function get-url for details on both of these options.

See also the get-url and put-url functions.

pow

syntax: (pow num-1 num-2 [num-3 ...])
syntax: (pow num-1)

Calculates num-1 to the power of num-2 and so forth.

example:

(pow 100 2) 10000⇒
(pow 100 0.5) 10⇒
(pow 100 0.5 3) 1000⇒

(pow 3) 9⇒

When num-1 is the only argument, pow assumes 2 for the exponent.

pow 219

newLISP Users Manual and Reference

pretty-print

syntax: (pretty-print [int-length [str-tab]])

Reformats expressions for print, save, or source. The first parameter, int-length, specifies the
maximum line length, and str-tab specifies the string used to indent lines. All parameters are
optional. pretty-print returns the current settings or the new settings when one or both
parameters are specified.

example:

(pretty-print) (64 " ") ; default setting⇒

(pretty-print 90 "\t") (90 "\t")⇒

(pretty-print 100) (100 "\t") ⇒

The first example reports the default settings of 64 for the maximum line length and a TAB
character for indenting. The third example changes the line length only.

Note that pretty-print cannot be used to prevent line breaks from being printed. To
completely suppress pretty printing, use the function string to convert the expression to a
raw unformatted string as follows:

example:

;; print without formatting

(print (string my-expression))

primitive?

syntax: (primitive? exp)

Evaluates and tests if exp is a primitive symbol and returns true or nil depending on the
result.

example:

(set 'var define)
(primitive? var) true⇒

print

syntax: (print exp-1 [exp-2 ...])

print 220

newLISP Users Manual and Reference

Evaluates and prints exp-1— to the current I/O device, which defaults to the console window.
See the built-in function device for details on how to specify a different I/O device.

List expressions are indented by the nesting levels of their opening parentheses.

Several special characters may be included in strings encoded with the escape character \:

escaped
character description
\n the line-feed character (ASCII 10)
\r the carriage-return character (ASCII 13)
\t the tab character (ASCII 9)
\nnn where nnn is a decimal ASCII code between 000 and 255

example:

(print (set 'res (+ 1 2 3)))
(print "the result is" res "\n")

"\065\066\067" "ABC"⇒

To finish printing with a line feed, use println.

println

syntax: (println exp-1 [exp-2 ...])

Evaluates and prints exp-1— to the current I/O device, which defaults to the console window.
A line feed is printed at the end. See the built-in function device for details on how to specify
a different I/O device. println works exactly like print but emits a line-feed character at the
end.

See also the write-line and print functions.

prob-chi2

syntax: (prob-chi2 num-chi2 num-df)

Returns the probability Q of an observed Chi² statistic in num-chi2 with num-df degrees of
freedom to be equal to or greater than. prob-chi2 is derived from the incomplete Gamma
function gammai.

example:

(prob-chi2 10 6) 0.1246520195⇒

prob-chi2 221

newLISP Users Manual and Reference

See also the inverse function crit-chi2.

prob-z

syntax: (prob-z num-z)

Returns the probability of num-z, not to exceed the observed value where num-z is a normal
distributed value with a mean of 0.0 and a standard deviation of 1.0.

example:

(prob-z 0.0) 0.5⇒

See also the inverse function crit-z.

process

syntax: (process str-command)
syntax: (process str-command int-pipe-in int-pipe-out [int-win32-option])
syntax: (process str-command int-pipe-in int-pipe-out [int-pipe-error])

In the first syntax, process works similarly to ! (exclamation mark) but in a non-blocking
fashion, launching a child process specified in str-command and then returning immediately
with the child process ID or nil if a child process could not be created.

example:

(process "notepad") 1894⇒

In the second syntax, standard input and output of the created process can be redirected to
pipe handles. When remapping standard I/O of the launched application to a pipe, it is
possible to communicate with the other application via write-line and read-line or write-
buffer and read-buffer statements:

example:

;; Linux/UNIX
;; create pipes
(map set '(myin bcout) (pipe))
(map set '(bcin myout) (pipe))

;; launch UNIX 'bc' calculator application
(process "bc" bcin bcout)

(write-buffer myout "3 + 4\n") ; bc expects a linefeed

(read-line myin) "7"⇒

;; bc can use bignums with arbitrary precision

process 222

newLISP Users Manual and Reference

(write-buffer myout "123456789012345 * 123456789012345\n")

(read-line myin) "15241578753238669120562399025"⇒

;; Win32
(map set '(myin cmdout) (pipe))
(map set '(cmdin myout) (pipe))

(process "cmd" cmdin cmdout) ; Win32 command shell

(write-line "dir c:*.bat" myout)

(read-buffer myin 'buff 2000)

(println buff) ; directory listing

On Win32 versions of newLISP, a fourth optional parameter of int-win32-option can be
specified to control the display status of the application. This option defaults to 1 for showing
the application's window, 0 for hiding it, and 2 for showing it minimized on the Windows
launch bar.

On both Win32 and Linux/UNIX systems, standard error will be redirected to standard out
by default. On Linux/UNIX, an optional pipe handle for standard error output can be
defined. In this case, peek can be used to check for information on the pipe handles:

;; create pipes
(map set '(myin bcout) (pipe))
(map set '(bcin myout) (pipe))
(map set '(errin errout) (pipe))

;; launch UNIX 'bc' calculator application
(process "bc" bcin bcout errout)

(write-buffer myout command)

;; wait for bc sending result or error info
(while (and (= (peek myin) 0)
 (= (peek errin) 0)) (sleep 10))

(if (> (peek errin) 0)
 (println (read-line errin)))

(if (> (peek myin) 0)
 (println (read-line myin)))

Not all interactive console applications can have their standard I/O channels remapped.
Sometimes only one channel, in or out, can be remapped. In this case, specify 0 (zero) for the
unused channel. The following statement uses only the launched application's output:

(process "app" 0 myout)

Normally, two pipes are used: one for communications to the child process and the other one
for communications from the child process.

See also the pipe and share functions for inter-process communications and the semaphore
function for synchronization of several processes. See the fork function for starting separate
newLISP threads on Linux/UNIX.

process 223

newLISP Users Manual and Reference

push

syntax: (push exp list [int-index-1 [int-index-2 ...]])
syntax: (push exp list [list-indexes])

syntax: (push str-1 str-2 [int-index])

Inserts the value of exp into the list list. If int-index is present, the element is inserted at that
index. If the index is absent, the element is inserted at index 0 (zero), the first element. push
is a destructive operation that changes the contents of the target list. The element inserted is
returned. See also Indexing elements of strings and lists.

If more than one int-index is present, the indices are used to access a nested list structure.
Improper indices (those not matching list elements) are discarded.

The second version takes a list of list-indexes but is otherwise identical to the first. In this
way, push works easily together with ref and ref-all, which return lists of indices.

If list does not contain a list, list must contain a nil and will be initialized to the empty list.

Repeatedly using push to the end of a list using -1 as the int-index is optimized and as fast
as pushing to the front of a list with no index at all. This can be used to efficiently grow a list.

example:

; inserting in front
(set 'pList '(b c)) (b c)⇒
(push 'a pList) a⇒
pList (a b c)⇒

; insert at index
(push "hello" pList 2) "hello"⇒
pList (a b "hello" c)⇒

; optimized appending at the end
(push 'z pList -1) z ⇒
pList (a b "hello" c z)⇒

; inserting lists in lists
(push '(f g) pList) (f g)⇒
pList ((f g) a b "hello" c z)⇒

; inserting at negative index
(push 'x pList -3) x⇒
pList ((f g) a b "hello" x c z)⇒

; using multiple indices
(push 'h pList 0 -1) h⇒
pList ((f g h) a b "hello" x c z)⇒

; use indices in a list
(set 'pList '(a b (c d () e)))

(push 'x pList '(2 2 0)) x⇒
pList (a b (c d (x) e))⇒

(ref 'x pList) (2 2 0)⇒

(pop pList '(2 2 0)) x⇒

push 224

newLISP Users Manual and Reference

;; push on strings

(set 'str "abcdefg")

(push "hijk" str -1) "hijk"⇒
str "abcdefghijk"⇒

(push "123" str) "123"⇒
str "123abcdefghijk"⇒

(push "4" str 3) "4"⇒
str "1234abcdefghijk"⇒

; push on uninitialized symbol
aVar nil ⇒

(push 999 aVar) 999 ⇒

aVar (999)⇒

See also the pop function, which is the inverse operation to push, and the set-nth, nth-set,
and nth functions, which can all take multidimensional indices into lists.

put-url

syntax: (put-url str-url str-content [str-option] [int-timeout [str-header]])

The HTTP PUT protocol is used to transfer information in str-content to a file specified in
str-url. The lesser-known HTTP PUT mode is frequently used for transferring web pages
from HTML editors to Web servers. In order to use PUT mode, the web server's software
must be configured correctly. On the Apache web server, use the 'Script PUT' directive in
the section where directory access rights are configured.

Optionally, an int-timeout value can be specified in milliseconds as the last parameter. put-
url will return ERR: timeout when the host gives no response and the timeout expires. On
other error conditions, put-url returns a string starting with ERR: and the description of
the error.

put-url requests are also understood by newLISP server nodes.

example:

(put-url "http://asite.com/myFile.txt" "Hi there")
(put-url "http://asite.com/myFile.txt" "Hi there" 2000)

(put-url "http://asite.com/webpage.html"
 (read-file "webpage.html"))

The first example creates a file called myFile.txt on the target server and stores the text
string 'Hi there' in it. In the second example, the local file webpage.html is transferred
to asite.com.

On an Apache web server, the following could be configured in httpd.conf.

put-url 225

newLISP Users Manual and Reference

example:

<directory /www/htdocs>
Options All
Script PUT /cgi-bin/put.cgi
</directory>

The script put.cgi would contain code to receive content from the web server via STDIN.
The following is a working put.cgi written in newLISP for the Apache web server:

example:

#!/usr/home/johndoe/bin/newlisp
#
#
get PUT method data from CGI STDIN
and write data to a file specified
int the PUT request

#

(print "Content-type: text/html\n\n")

(set 'cnt 0)
(set 'result "")

(if (= "PUT" (env "REQUEST_METHOD"))
 (begin
 (set 'len (integer (env "CONTENT_LENGTH")))

 (while (< cnt len)
 (set 'n (read-buffer (device) 'buffer len))
 (if (not n)
 (set 'cnt len)
 (begin
 (inc 'cnt n)
 (write-buffer result buffer))))

 (set 'path (append
 "/usr/home/johndoe"
 (env "PATH_TRANSLATED")))

 (write-file path result)
)
)

(exit)

Note that the script appends ".txt" to the path to avoid the CGI execution of uploaded
malicious scripts. Note also that the two lines where the file path is composed may work
differently in your web server environment. Check environment variables passed by your web
server for composition of the right file path.

put-url returns content returned by the put.cgi script.

put-url 226

newLISP Users Manual and Reference

Additional parameters

In str-option, "header" or "list" can be specified for the returned page. If the int-timeout
option is specified, the custom header option str-header can be specified, as well. See the
function get-url for details on both of these options.

See also the functions get-url and post-url, which can be used to upload files when formatting
form data as multipart/form-data.

pv

syntax: (pv num-int num-nper num-pmt [num-fv int-type])

Calculates the present value of a loan with the constant interest rate num-interest and the
constant payment num-pmt after num-nper number of payments. The future value num-pmt
is assumed to be 0.0 if omitted. If payment is at the end of each period, 0 (zero) is assumed
for int-type; otherwise 1 is assumed.

example:

(pv (div 0.07 12) 240 775.30) -100000.1373⇒

In the example, a loan that would be paid off (future value = 0.0) in 240 payments of $775.30
at a constant interest rate of 7 percent per year would start out at $100,000.14.

See also the fv, irr, nper, npv, and pmt functions.

quote

syntax: (quote exp)

Returns exp without evaluating it. The same effect can be obtained by prepending a ' (single
quote) to exp.

example:

(quote x) x⇒
(quote 123) 123⇒
(quote (a b c)) (a b c)⇒
(= (quote x) 'x) true⇒

quote?

syntax: (quote? exp)

quote? 227

newLISP Users Manual and Reference

Evaluates and tests whether exp is quoted. Returns true or nil depending on the result.

example:

(set 'var ''x) 'x⇒
(quote? var) true⇒

Note that in the set statement, ''x is quoted twice because the first quote is lost during the
evaluation of the set assignment.

rand

syntax: (rand int-range [int-N])

Evaluates the expression in int-range and generates a random number in the range of 0
(zero) to (int-range - 1). When 0 (zero) is passed, the internal random generator is initialized
using the current value returned by the time function. Optionally, a second parameter can
be specified to return a list of length int-N of random numbers.

example:

(dotimes (x 100) (print (rand 2))) =>
11100000110100111100111101 ... 10111101011101111101001100001000

(rand 3 100) (2 0 1 1 2 0 …)⇒

The first line in the example prints equally distributed 0's and 1's, while the second line
produces a list of 100 integers with 0, 1, and 2 equally distributed. Use the random and
normal functions to generate floating point random numbers, and use seed to vary the initial
seed for random number generation.

random

syntax: (random float-offset float-scale int-n)
syntax: (random float-offset float-scale)

In the first form, random returns a list of int-n evenly distributed floating point numbers
scaled (multiplied) by float-scale, with an added offset of float-offset. The starting point of
the internal random generator can be seeded using seed.

example:

(random 0 1 10)
 (0.10898973 0.69823783 0.56434872 0.041507289 0.16516733⇒

 0.81540917 0.68553784 0.76471068 0.82314585 0.95924564)

When used in the second form, random returns a single evenly distributed number:

(random 10 5) 11.0971⇒

random 228

newLISP Users Manual and Reference

See also the normal and rand functions.

randomize

syntax: (randomize list [bool])

Rearranges the order of elements in list into a random order.

example:

(randomize '(a b c d e f g)) (b a c g d e f)⇒
(randomize (sequence 1 5)) (3 5 4 1 2)⇒

randomize will always return a sequence different from the previous one without the
optional bool flag. This may require the function to calculate several sets of reordered
elements, which in turn may lead to different processing times with different invocations of
the function on the same input list length. To allow for the output to be equal to the input,
true or any expression evaluating to not nil must be specified in bool.

randomize uses an internal pseudo random sequence generator that returns the same
series of results each time newLISP is started. Use the seed function to change this sequence.

read-buffer

syntax: (read-buffer int-file sym-buffer int-size [str-wait])

Reads a maximum of int-size bytes from a file specified in int-file into a buffer in sym-buffer.
Any data referenced by the symbol sym-buffer prior to the reading is deleted. The handle in
int-file is obtained from a previous open statement. The symbol sym-buffer contains data of
type string after the read operation.

Optionally, a string to be waited for can be specified in str-wait. read-buffer will read a
maximum amount of bytes specified in int-size or return earlier if str-wait was found in the
data. The wait-string is part of the returned data and must not contain binary 0 (zero)
characters.

Returns the number of bytes read or nil when the wait-string was not found. In any case,
the bytes read are put into the buffer pointed to by sym-buffer, and the file pointer of the file
read is moved forward. If no new bytes have been read, sym-buffer will contain nil.

example:

(set 'handle (open "aFile.ext" "read"))
(read-buffer handle 'buff 200)

Reads 200 bytes into the symbol buff from the file aFile.ext.

(read-buffer handle 'buff 1000 "password:")

read-buffer 229

newLISP Users Manual and Reference

Reads 1000 bytes or until the string password: is encountered. The string password: will
be part of the data returned.

See also the write-buffer function.

read-char

syntax: (read-char int-file)

Reads a byte from a file specified by the file handle in int-file. The file handle is obtained
from a previous open operation. Each read-char advances the file pointer by one byte.
Once the end of the file is reached, nil is returned.

example:

(define (slow-file-copy from-file to-file)
(set 'in-file (open from-file "read"))
(set 'out-file (open to-file "write"))
(while (set 'chr (read-char in-file))
 (write-char out-file chr))
 (close in-file)
 (close out-file)
 "finished")

Use read-line and device to read whole text lines at a time. Note that newLISP supplies a fast
built-in function called copy-file for copying files.

See also the write-char function.

read-file

syntax: (read-file str-file-name)

Reads a file in str-file-name in one swoop and returns a string buffer containing the data.

example:

(write-file "myfile.enc"
 (encrypt (read-file "/home/lisp/myFile") "secret"))

The file myfile is read, then encrypted using the password "secret" before being written
back into a new file titled "myfile.enc" in the current directory.

read-file can take an http:// or file:// URL in str-file-name. In this case, read-
file works exactly like get-url and can take the same additional parameters.

example:

(read-file "http://asite.com/somefile.tgz" 10000)

read-file 230

newLISP Users Manual and Reference

The file somefile.tgz is retrieved from the remote location http://asite.com. The file
transfer will time out after 10 seconds if it is not finished. In this mode, read-file can also
be used to transfer files from remote newLISP server nodes.

See also the write-file and append-file functions.

read-key

syntax: (read-key)

Reads a key from the keyboard and returns an integer value. For navigation keys, more than
one read-key call must be made. For keys representing ASCII characters, the return value
is the same on all OSes, except for navigation keys and other control sequences like function
keys, in which case the return values may vary on different OSes and configurations.

example:

(read-key) 97 ; after hitting the A key⇒
(read-key) 65 ; after hitting the shifted A key⇒
(read-key) 10 ; after hitting [enter] on Linux⇒
(read-key) 13 ; after hitting [enter] on Win32⇒

(while (!= (set 'c (read-key)) 1) (println c))

The last example can be used to check return sequences from navigation and function keys.
To break out of the loop, press Ctrl-A.

Note that read-key will not work from the newLISP-tk front-end or any other application
running newLISP over a TCP/IP port connection.

read-line

syntax: (read-line [int-file])

Reads from the current I/O device a string delimited by a line-feed character (ASCII 10).
There is no limit to the length of the string that can be read. The line-feed character is not
part of the returned string. The line always breaks on a line feed, which is then swallowed. A
line breaks on a carriage return (ASCII 13) only if followed by a line feed, in which case both
characters are discarded. A carriage return alone only breaks and is swallowed if it is the last
character in the stream.

By default, the current device is the keyboard (device 0). Use the built-in function device to
specify a different I/O device (e.g., a file). Optionally, a file handle can be specified in the int-
file obtained from a previous open statement.

The last buffer contents from a read-line operation can be retrieved using current-line.

example:

(print "Enter a num:")

read-line 231

newLISP Users Manual and Reference

(set 'num (integer (read-line)))

(set 'in-file (open "afile.dat" "read"))
(while (read-line in-file)
 (write-line))
(close in-file)

The first example reads input from the keyboard and converts it to a number. In the second
example, a file is read line by line and displayed on the screen. The write-line statement
takes advantage of the fact that the result from the last read-line operation is stored in a
system internal buffer. When write-line is used without argument, it writes the contents of
the last read-line buffer to the screen.

See also the current-line function for retrieving this buffer.

real-path

syntax: (real-path [str-path])

Returns the full path from the relative file path given in str-path. If a path is not given, "."
(the current directory) is assumed.

example:

(real-path) "/usr/home/fred" ; current directory⇒
(real-path "./somefile.txt")
 "/usr/home/fred/somefile.txt"⇒

The output length is limited by the OS's maximum allowed path length. If real-path fails
(e.g., because of a nonexistent path), nil is returned.

ref

syntax: (ref exp list [func-compare])

ref searches for the expression exp in list and returns a list of integer indices or an empty
list if exp cannot be found. ref can work together with push and pop, both of which can also
take lists of indices.

The optional func-compare contains a comparison operator or function.

example:

(set 'pList '(a b (c d () e)))

(push 'x pList '(2 2 0)) x⇒

pList (a b (c d (x) e))⇒

(ref 'x pList) (2 2 0)⇒

ref 232

file:///Users/lutz/newlisp/doc/pop

newLISP Users Manual and Reference

(ref '(x) pList) (2 2)⇒

(set 'v (ref '(x) pList)) (2 2)⇒

(pList v) (x)⇒

(ref '(c d (x) e) pList) (2)⇒

(ref 'foo pList) ()⇒

(pop pList '(2 2 0)) x⇒

; with optional comparison function

(ref 'e '(a b (c d (e) f))) (2 2 0)⇒

(ref 'e '(a b (c d (e) f)) =) (2 2 0)⇒

(ref 'e '(a b (c d (e) f)) >) (0)⇒

(ref 'e '(a b (c d (e) f)) (fn (x y) (or (= x y) (= y 'd))))
 (2 1)⇒

; define the comparison function first
(define (is-it-or-d x y) (or (= x y) (= y 'd)))

(ref 'e '(a b (c d (e) f)) is-it-or-d) (2 1)⇒

The following example shows the use of match and unify to formulate searches that are as
powerful as regular expressions are for strings:

(ref '(a ?) '((l 3) (a 12) (k 5) (a 10) (z 22)) match)
 (1)⇒

(ref '(X X) '(((a b) (c d)) ((e e) (f g))) unify)
 (1 0)⇒

(ref '(X g) '(((a b) (c d)) ((e e) (f g))) unify)
 (1 1)⇒

The first line searches for a list pair where the two elements are equal. The second searches
for a list pair with the symbol g as the second member.

See also the ref-all function.

ref-all

syntax: (ref-all exp list [func-compare])

Works similarly to ref, but returns a list of all index vectors found for exp in list.

By default, ref-all checks if expressions are equal. With func-compare, more complex
comparison functions can be defined.

example:

ref-all 233

newLISP Users Manual and Reference

(set 'L '(a b c (d a f (a h a)) (k a (m n a) (x))))

(ref-all 'a L) ((0) (3 1) (3 3 0) (3 3 2) (4 1) (4 2 2))⇒

(L '(3 1)) a⇒

(map 'L (ref-all 'a L)) (a a a a a a)⇒

; with comparison operator

(set 'L '(a b c (d f (h l a)) (k a (m n) (x))))

(ref-all 'c L) ((2))⇒

(ref-all 'c L >) ((0) (1) (3 2 2) (4 1))⇒

(ref-all 'a L (fn (x y) (or (= x y) (= y 'k))))
 ((0) (3 2 2) (4 0) (4 1))⇒

(ref-all nil L (fn (x y) (> (length y) 2)))
 ((3) (3 2) (4))⇒

; define the comparison functions first
(define (is-long? x y) (> (length y) 2)) ; the x gets occupied by
'nil

(ref-all nil L is-long?) ((3) (3 2) (4))⇒

(define (is-it-or-d x y) (or (= x y) (= y 'd)))

(ref-all 'e '(a b (c d (e) f)) is-it-or-d) ((2 1) (2 2 0))⇒

The comparison function can be a previously defined function. Note that the comparison
function always takes two arguments, even if only the second argument is used inside the
function (as in the example using long?).

Using the match and unify functions, list searches can be formulated that are as powerful as
regular expression searches are for strings.

(ref-all '(a ?) '((l 3) (a 12) (k 5) (a 10) (z 22)) match)
 ((1) (3))⇒

(ref-all '(X X) '(((a b) (c d)) ((e e) (f g)) ((z) (z))) unify)
 ((1 0) (2))⇒

(ref-all '(X g) '(((x y z) g) ((a b) (c d)) ((e e) (f g)))
unify)
 ((0) (2 1))⇒

See also the ref function.

regex

syntax: (regex str-pattern str-text [int-option])

regex 234

newLISP Users Manual and Reference

Performs a Perl Compatible Regular Expression (PCRE) search on str-text with the pattern
specified in str-pattern. The same regular expression pattern matching is also supported in
the functions directory, find, find-all, parse, replace, and search when using these functions
on strings.

regex returns a list with the matched strings and substrings and the beginning and length of
each string inside the text. If no match is found, it returns nil. The offset numbers can be
used for subsequent processing.

regex also sets the variables $0, $1, and $2— to the expression and subexpressions found.
Just like any other symbol in newLISP, these variables or their equivalent expressions $0,
$1, and $2— can be used in other LISP expressions for further processing.

example:

(regex "b+" "aaaabbbaaaa") ("bbb" 4 3)⇒

; case-insensitive search option 1
(regex "b+" "AAAABBBAAAA" 1) ("BBB" 4 3) ⇒

(regex "[bB]+" "AAAABbBAAAA") ("BbB" 4 3)⇒

(regex "http://(.*):(.*)" "http://nuevatec.com:80")
 ("http://nuevatec.com:80" 0 22 "nuevatec.com" 7 12 "80" 20 2)⇒

$0 "http://nuevatec.com:80"⇒
$1 "nuevatec.com"⇒
$2 "80"⇒

(dotimes (i 3) (println ($ i)))
http://nuevatec.com:80
nuevatec.com
80
 "80"⇒

The second example shows the usage of extra options, while the third example demonstrates
more complex parsing of two subexpressions, which where marked by parentheses in the
search pattern. In the last example, the expression and subexpressions are retrieved using the
system variables $0 to $2 or their equivalent expression ($ 0) to ($ 2).

When "" (quotes) are used to delimit strings that include literal backslashes, the backslash
must be doubled in the regular expression pattern. As an alternative, { } (curly brackets) or
[text] and [/text] (text tags) can be used to delimit text strings. In these cases, no extra
backslashes are required.

Characters escaped by a backslash in newLISP (e.g., the quote \" or \n) need not to be
doubled in a regular expression pattern, which itself is delimited by quotes.

;; double backslash for parentheses (special char in regex)
(regex "\\(abc\\)" "xyz(abc)xyz") ("(abc)" 3 5) ⇒

;; one backslash for quotes (special char in newLISP)
(regex "\"" "abc\"def") ("\"" 3 1) ⇒

;; brackets as delimiters
(regex {\(abc\)} "xyz(abc)xyz") ("(abc)" 3 5) ⇒

;; brackets as delimiters and quote in pattern
(regex {"} "abc\"def") ("\"" 3 1) ⇒

regex 235

newLISP Users Manual and Reference

;; text tags as delimiters, good for multiline text in CGI
(regex [text]\(abc\)[/text] "xyz(abc)xyz") ("(abc)" 3 5) ⇒
(regex [text]"[/text] "abc\"def") ("\"" 3 1) ⇒

When curly brackets or text tags are used to delimit the pattern string instead of quotes, a
simple backslash is sufficient. The pattern and string are then passed in raw form to the
regular expression routines. When curly brackets are used inside a pattern itself delimited by
curly brackets, the inner brackets must be balanced, as follows:

;; brackets inside brackets are balanced
(regex {\d{1,3}} "qwerty567asdfg") ("567" 6 3) ⇒

The following constants can be used for int-option. Several options can be combined using a
binary or | (pipe). The uppercase names are used in the PCRE regex documentation and
could be predefined in init.lsp. The last option is a newLISP custom option only to be
used in replace; it can be combined with PCRE options.

 PCRE_CASELESS 1 ; treat uppercase like lowercase
 PCRE_MULTILINE 2 ; limit search at a newline like Perl's /m
 PCRE_DOTALL 4 ; . (dot) also matches newline
 PCRE_EXTENDED 8 ; ignore whitespace except inside char class
 PCRE_ANCHORED 16 ; anchor at the start
 PCRE_DOLLAR_ENDONLY 32 ; $ matches at end of string, not before newline
 PCRE_EXTRA 64 ; additional functionality currently not used
 PCRE_NOTBOL 128 ; first ch, not start of line; ^ shouldn't match
 PCRE_NOTEOL 256 ; last char, not end of line; $ shouldn't match
 PCRE_UNGREEDY 512 ; invert greediness of quantifiers
 PCRE_NOTEMPTY 1024 ; empty string considered invalid
 PCRE_UTF8 2048 ; pattern and strings as UTF-8 characters

 REPLACE_ONCE 0x8000 ; replace only one occurrence
 ; only for use in replace

Note that regular expression syntax is very complex and feature-rich with many special
characters and forms. Please consult a book or the PCRE manual pages for more detail. Most
PERL books or introductions to Linux or UNIX also contain chapters about regular
expressions. See also http://www.pcre.org for further references and manual pages.

remove-dir

syntax: (remove-dir str-path)

Removes the directory whose path name is specified in str-path. The directory must be
empty for remove-dir to succeed. Returns nil on failure.

example:

(remove-dir "temp")

Removes the directory temp in the current directory.

remove-dir 236

http://www.pcre.org/

newLISP Users Manual and Reference

rename-file

syntax: (rename-file str-path-old str-path-new)

Renames a file or directory entry given in the path name str-path-old to the name given in
str-path-new. Returns nil or true depending on the operation's success.

example:

(rename-file "data.lisp" "data.backup")

replace

syntax: (replace exp-key list exp-replacement [func-compare])
syntax: (replace exp list)

syntax: (replace str-key str-data exp-replacement)
syntax: (replace str-pattern str-data exp-replacement int-option)

List replacement

If the second argument is a list, replace replaces all elements in the list list that are equal to
the expression in exp-key. The element is replaced with exp-replacement. Note that
replace is destructive. It changes the list passed to it and returns the changed list. The
number of replacements made is contained in the system variable $0 when the function
returns. During executions of the replacement expression, the system variable $0 is set to the
expression to be replaced.

Optionally, func-compare can specify a comparison operator or user-defined function. By
default, func-compare is the = (equals sign).

example:

;; list replacement

(set 'aList '(a b c d e a b c d))

(replace 'b aList 'B) (a B c d e a B c d)⇒
aList (a B c d e a B c d)⇒
$0 2 ; number of replacements⇒

;; list replacement with special compare functor/function

; replace all numbers where 10 < number
(set 'L '(1 4 22 5 6 89 2 3 24))

(replace 10 L 10 <) (1 4 10 5 6 10 2 3 10)⇒

; same as:

(replace 10 L 10 (fn (x y) (< x y))) (1 4 10 5 6 10 2 3 10)⇒

replace 237

newLISP Users Manual and Reference

; change name-string to symbol, x is ignored as nil

(set 'AL '((john 5 6 4) ("mary" 3 4 7) (bob 4 2 7 9) ("jane" 3)))

(replace nil AL (cons (sym ($0 0)) (rest $0))
 (fn (x y) (string? (y 0))))
 ((john 5 6 4) (mary 3 4 7) (bob 4 2 7 9) (jane 3))⇒

Using the match and unify functions, list searches can be formulated that are as powerful as
regular expression string searches:

; calculate the sum in all associations with 'mary

(set 'AL '((john 5 6 4) (mary 3 4 7) (bob 4 2 7 9) (jane 3)))

(replace '(mary *) AL (list 'mary (apply + (rest $0))) match)
 ((john 5 6 4) (mary 14) (bob 4 2 7 9) (jane 3))⇒

; make sum in all expressions

(set 'AL '((john 5 6 4) (mary 3 4 7) (bob 4 2 7 9) (jane 3)))

(replace '(*) AL (list ($0 0) (apply + (rest $0))) match)
 ((john 15) (mary 14) (bob 22) (jane 3))⇒

; using unify

(replace '(X X) '((3 10) (2 5) (4 4) (6 7) (8 8)) (list ($0 0)
'double ($0 1)) unify)
 ((3 10) (2 5) (4 double 4) (6 7) (8 double 8))⇒

List removal

The last form of replace has only two arguments: the expression expr and list. This form
removes all exprs found in list.

example:

;; removing elements from a list

(set 'lst '(a b a a c d a f g))
(replace 'a lst) (b c d f g)⇒
lst (b c d f g)⇒

$0 4⇒

String replacement without regular expression

If all arguments are strings, replace replaces all occurrences of str-key in str-data with the
evaluated exp-replacement, returning the changed string. The expression in exp-
replacement is evaluated for every replacement. The number of replacements made is

replace 238

newLISP Users Manual and Reference

contained in the system variable $0. This form of replace can also process binary 0s
(zeros).

example:

;; string replacement
(set 'str "this isa sentence")
(replace "isa" str "is a") "this is a sentence"⇒

Regular expression replacement

The presence of a fourth parameter indicates that a regular expression search should be
performed with a regular expression pattern specified in str-pattern and an option number
specified in int-option (e.g., 1 (one) for case-insensitive searching or 0 (zero) for a standard
Perl Compatible Regular Expression (PCRE) search). See regex above for details.

By default, replace replaces all occurrences of a search string even if a beginning-of-line
specification is included in the search pattern. After each replace, a new search is started at a
new position in str-data. Setting the option bit to 0x8000 in int-option will force replace
to replace only the first occurrence. The changed string is returned.

replace with regular expressions also sets the internal variables $0, $1, and $2— with the
contents of the expressions and subexpressions found. These can be used to perform
replacements that depend on the content found during replacement. The symbols $0, $1,
and $2— can be used in expressions just like any other symbols. If the replacement
expression evaluates to something other than a string, no replacement is made. As an
alternative, the contents of these variables can also be accessed by using ($ 0), ($ 1),
($ 2), and so forth. This method allows indexed access (e.g., ($ i), where i is an integer).

example:

;; using the option parameter to employ regular expressions

(set 'str "ZZZZZxZZZZyy") "ZZZZZxZZZZyy"⇒
(replace "[x|y]" str "PP" 0) "ZZZZZPPZZZZPPPP"⇒
str "ZZZZZPPZZZZPPPP"⇒

;; using system variables for dynamic replacement

(set 'str "---axb---ayb---")
(replace "(a)(.)(b)" str (append $3 $2 $1) 0)
 "---bxa---bya---"⇒

str "---bxa---bya---"⇒

;; using the 'replace once' option bit 0x8000

(replace "a" "aaa" "X" 0) "XXX"⇒

(replace "a" "aaa" "X" 0x8000) "Xaa"⇒

;; URL translation of hex codes with dynamic replacement

(set 'str "xxx%41xxx%42")
(replace "%([0-9A-F][0-9A-F])" str

replace 239

newLISP Users Manual and Reference

 (char (integer (append "0x" $1))) 1)

str "xxxAxxxB"⇒

The set-nth and replace-assoc functions can also be used to change an element in a list.

See directory, find, find-all, parse, regex, and search for other functions using regular
expressions.

replace-assoc

syntax: (replace-assoc exp-key list-assoc exp-replacement)
syntax: (replace-assoc exp-key list-assoc)

In the first syntax, replace-assoc replaces an association element with exp-key in the
association list-assoc with exp-replacement. An association list is a list whose elements are in
turn lists, the first element serving as a key.

example:

(set 'aList '((a 1 2 3)(b 4 5 6)(c 7 8 9)))

(replace-assoc 'b aList '(q "I am the replacement"))
 ((a 1 2 3)(q "I am the replacement")(c 7 8 9))⇒

aList ((a 1 2 3)(q "I am the replacement")(c 7 8 9))⇒

replace-assoc uses the system variable $0 for the association found. This can be used in
the replacement expression:

(set 'lst '((a 1)(b 2)(c 3)))

(replace-assoc 'b lst (list 'b (+ 1 (last $0))))

lst ((a 1)(b 3)(c 3))⇒

replace-assoc returns the changed list or nil if no association is found. A destructive
operation, replace-assoc changes the contents of the list.

In the second syntax, replace-assoc removes an association from the list and returns it,
as follows:

example:

(set 'lst '((a 1) (b 2) (c 3)))

(replace-assoc 'c lst)

lst ((a 1) (b 3)) ⇒
$0 (c 3)⇒

See also the assoc function for accessing association lists.

replace-assoc 240

newLISP Users Manual and Reference

reset

syntax: (reset)
syntax: (reset true)

In the first syntax, reset returns to the top level of evaluation, switches the trace mode off,
turns the command-line mode on, and switches to the MAIN context/namespace. reset
restores the top-level variable environment using the saved variable environments on the
stack. It also fires an error "user reset - no error". This behavior can be used when writing
error handlers.

reset may return memory that was claimed by newLISP to the operating system. reset
walks through the entire cell space, which may take a few seconds in a heavily loaded system.

reset occurs automatically after an error condition.

In the second syntax, reset will stop the current process and start a new newLISP process
with the same command-line parameters. This mode is not available on Win32.

rest

syntax: (rest list)
syntax: (rest array)
syntax: (rest str)

Returns all of the items in a list or a string, except for the first. rest is equivalent to cdr or
tail in other LISP dialects.

example:

(rest '(1 2 3 4)) (2 3 4)⇒
(rest '((a b) c d)) (c d)⇒
(set 'aList '(a b c d e)) (a b c d e)⇒
(rest aList) (b c d e)⇒
(first (rest aList)) b⇒
(rest (rest aList)) (d e)⇒
(rest (first '((a b) c d))) (b)⇒

(set 'A (array 2 3 (sequence 1 6)))
 ((1 2) (3 4) (5 6))⇒

(rest A) ((3 4) (5 6))⇒

In the second version, rest returns all but the first character of the string str in a string.

example:

(rest "newLISP") "ewLISP"⇒
(first (rest "newLISP")) "e"⇒

See also the first and last functions.

Note that an implicit rest is available for lists. See the chapter Implicit rest and slice.

rest 241

newLISP Users Manual and Reference

Note that rest works on character boundaries rather than byte boundaries when the UTF-8–
enabled version of newLISP is used.

reverse

syntax: (reverse list)
syntax: (reverse string)

In the first form, reverse reverses and returns the list. Note that reverse is destructive
and changes the original list.

example:

(set 'l '(1 2 3 4 5 6 7 8 9))

(reverse l) (9 8 7 6 5 4 3 2 1)⇒
l (9 8 7 6 5 4 3 2 1)⇒

In the second form, reverse is used to reverse the order of characters in a string.

example:

(set 'str "newLISP")

(reverse str) "PSILwen"⇒
str "PSILwen"⇒

See also the sort function.

rotate

syntax: (rotate list [int-count])
syntax: (rotate str [int-count])

Rotates and returns the list or string in str. A count can be optionally specified in int-count to
rotate more than one position. If int-count is positive, the rotation is to the right; if int-count
is negative, the rotation is to the left. If no int-count is specified, rotate rotates 1 to the
right. rotate is a destructive function that changes the contents of the original list or string.

example:

(set 'l '(1 2 3 4 5 6 7 8 9))

(rotate l) (9 1 2 3 4 5 6 7 8)⇒
(rotate l 2) (7 8 9 1 2 3 4 5 6)⇒

l (7 8 9 1 2 3 4 5 6)⇒

(rotate l -3) (1 2 3 4 5 6 7 8 9)⇒

(set 'str "newLISP")

rotate 242

newLISP Users Manual and Reference

(rotate str) "PnewLIS"⇒
(rotate str 3) "LISPnew"⇒
(rotate str -4) "newLISP"⇒

When working on a string, rotate works on byte boundaries rather than character
boundaries.

round

syntax: (round number int-digits)

Rounds the number in number to the number of digits given in int-digits. When decimals are
being rounded, int-digits is negative. It is positive when the integer part of a number is being
rounded.

example:

(round 123.49 2) 100⇒
(round 123.49 1) 120⇒
(round 123.49 0) 123⇒
(round 123.49 -1) 123.5⇒
(round 123.49 -2) 123.49⇒

Note that rounding for display purposes is better accomplished using format.

save

syntax: (save str-file)
syntax: (save str-file sym-1 [sym-2 ...])

In the first syntax, the save function writes the contents of the newLISP workspace (in
textual form) to the file str-file. save is the inverse function of load. Using load on files
created with save causes newLISP to return to the same state as when save was originally
invoked. System symbols starting with the $ character (e.g., $0 from regular expressions or
$main-args from the command line) are not saved.

In the second syntax, symbols can be supplied as arguments. If sym-n is supplied, only the
definition of that symbol is saved. If sym-n evaluates to a context, all symbols in that context
are saved. More than one symbol can be specified, and symbols and context symbols can be
mixed. When contexts are saved, system variables and symbols starting with the $ character
are not saved. Specifying system symbols explicitly causes them to be saved.

Each symbol is saved by means of a set statement or—if the symbol contains a lambda or
lambda-macro function—by means of define or define-macro statements.

Symbols containing nil will not be saved.

save returns true on completion.

save 243

newLISP Users Manual and Reference

example:

(save "save.lsp")

(save "/home/myself/myfunc.LSP" 'my-func)
(save "file:///home/myself/myfunc.LSP" 'my-func)

(save "http://asite.com:8080//home/myself/myfunc.LSP" 'my-func)

(save "mycontext.lsp" 'mycontext)

;; multiple args
(save "stuff.lsp" 'aContext 'myFunc '$main-args 'Acontext)

Since all context symbols are part of the context MAIN, saving MAIN saves all contexts.

Saving to a URL will cause an HTTP PUT request send to the URL. In this mode, save can
also be used to push program source to remote newLISP server nodes. Note that a double
backslash is required when path names are specified relative to the root directory. save in
HTTP mode will observe a 60-second timeout.

Symbols made using sym that are incompatible with the normal syntax rules for symbols are
serialized using a sym statement instead of a set statement.

save serializes contexts and symbols as if the current context is MAIN. Regardless of the
current context, save will always generate the same output.

See also the functions load (the inverse operation of save) and source, which saves symbols
and contexts to a string instead of a file.

search

syntax: (search int-file str-search [int-options])

Searches a file specified by its handle in int-file for a string in str-search. int-file can be
obtained from a previous open file. After the search, the file pointer is positioned at the
beginning of the searched string or at the end of the file if nothing is found. In int-options,
the options flags can be specified to perform a PCRE regular expression search. See the
function regex for details. search returns the position of the found string or nil if nothing
is found.

When using the regular expression options flag, patterns found are stored in the system
variables $0 to $15.

example:

(set 'file (open "init.lsp" "read"))
(search file "define")
(print (read-line file) "\n")
(close file)

The file init.lsp is opened and searched for the string define.

search 244

newLISP Users Manual and Reference

For other functions using regular expressions, see directory, find, find-all, parse, regex, and
replace.

seed

syntax: (seed int-seed)

Seeds the internal random generator that generates numbers for amb, normal, rand, and
random with the number specified in int-seed. Note that the random generator used in
newLISP is the C-library function rand(). All randomizing functions in newLISP are based on
this function.

Note that the maximum value for int-seed is limited to 16 or 32 bits, depending on the
operating system used. Internally, only the 32 least significant bits are passed to the random
seed function of the OS.

example:

(seed 12345)

(seed (date-value))

After using seed with the same number, the random generator starts the same sequence of
numbers. This facilitates debugging when randomized data are involved. Using seed, the
same random sequences can be generated over and over again.

The second example is useful for guaranteeing a different seed any time the program starts.

seek

syntax: (seek int-file [int-position])

Sets the file pointer to the new position int-position in the file specified by int-file. The new
position is expressed as an offset from the beginning of the file, 0 (zero) meaning the
beginning of the file. If no int-position is specified, seek returns the current position in the
file. If int-file is 0 (zero), on BSD, seek will return the number of characters printed to
STDOUT, and on Linux and Win32, it will return -1. On failure, seek returns nil. When int-
position is set to -1, seek sets the file pointer to the end of the file.

seek can set the file position past the current end of the file. Subsequent writing to this
position will extend the file and fill unused positions with zero's. The blocks of zeros are not
actually allocated on disk, so the file takes up less space and is called a sparse file.

example:

(set 'file (open "myfile" "read")) 5 ⇒
(seek file 100) 100⇒
(seek file) 100⇒

seek 245

newLISP Users Manual and Reference

(open "newlisp_manual.html" "read")
(seek file -1) ; seek to EOF
 593816 ⇒

(set 'fle (open "large-file" "read")
(seek file 30000000000) 30000000000⇒

newLISP supports file position numbers up to 9,223,372,036,854,775,807.

select

syntax: (select list list-selection)
syntax: (select list [int-index_i ...])

syntax: (select string list-selection)
syntax: (select string [int-index_i ...])

In the first two forms, select picks one or more elements from list using one or more
indices specified in list-selection or the int-index_i.

example:

(set 'lst '(a b c d e f g))

(select lst '(0 3 2 5 3)) (a d c f d)⇒

(select lst '(-2 -1 0)) (f g a)⇒

(select lst -2 -1 0) (f g a)⇒

In the second two forms, select picks one or more characters from string using one or
more indices specified in list-selection or the int-index_i.

example:

(set 'str "abcdefg")

(select str '(0 3 2 5 3)) "adcfd"⇒

(select str '(-2 -1 0)) "fga"⇒

(select str -2 -1 0) "fga"⇒

Selected elements can be repeated and do not have to appear in order, although this speeds
up processing. The order in list-selection or int-index_i can be changed to rearrange
elements.

select 246

newLISP Users Manual and Reference

semaphore

syntax: (semaphore)
syntax: (semaphore int-id)
syntax: (semaphore int-id int-wait)
syntax: (semaphore int-id int-signal)
syntax: (semaphore int-id 0)

A semaphore is an interprocess synchronization object that maintains a count between 0
(zero) and some maximum value. Useful in controlling access to a shared resource, a
semaphore is set to signaled when its count is greater than zero and to non-signaled when its
count is zero.

A semaphore is created using the first syntax. This returns the semaphore ID, an integer used
subsequently as int-id when the semaphore function is called. Initially, the semaphore has a
value of zero, which represents the non-signaled state.

If calling semaphore with a negative value in int-wait causes it to be decremented below
zero, the function call will block until another process or thread signals the semaphore with a
positive value in int-signal. Calls to the semaphore with int-wait or int-signal effectively try
to increment or decrement the semaphore value by a positive or negative value specified in
int-signal or int-wait. Because the value of a semaphore must never fall below zero, the
function call will block when this is attempted (i.e., a semaphore with a value of zero will
block until another process or thread increases the value with a positive int-signal).

The second syntax is used to inquire about the value of a semaphore by calling semaphore
with the int-id only. This form is not available on Win32.

Supplying 0 (zero) as the last argument will release system resources for the semaphore,
which then becomes unavailable. Any pending waits on this semaphore in other child threads
or processes will be released.

On Win32, only parent and child processes can share a semaphore. On Linux/UNIX,
independent processes can share a semaphore.

The following code examples summarize the different syntax forms:

;; init semaphores
(semaphore)

;; assign a semaphore to sid
(set 'sid (semaphore))

;; inquire the state of a semaphore (not on Win32)
(semaphore sid)

;; put sid semaphore in wait state (-1)
(semaphore sid -1)

;; run sid semaphore previously put in wait (always 1)
(semaphore sid 1)

;; run sid semaphore with X times a skip (backward or forward) on
the function
(semaphore sid X)

;; release sid semaphore systemwide (always 0)

semaphore 247

newLISP Users Manual and Reference

(semaphore sid 0)

The following example shows semaphores controlling a child process:

example:

;; counter thread output in bold

(define (counter n)
 (println "counter started")
 (dotimes (x n)
 (semaphore sid -1)
 (println x)))

;; hit extra <enter> to make the prompt come back
;; after output to the console from counter thread

> (set 'sid (semaphore))

> (semaphore sid)
0

> (fork (counter 100))

counter started
> (semaphore sid 1)
0
> (semaphore sid 3)
1
2
3
> (semaphore sid 2)
4

5
> _

After the semaphore is acquired in sid, it has a value of 0 (the non-signaled state). When
starting the thread counter, the semaphore will block after the initial start message and will
wait in the semaphore call. The -1 is trying to decrement the semaphore, which is not
possible because its value is already zero. In the interactive, main parent process, the
semaphore is signaled by raising its value by 1. This unblocks the semaphore call in the
counter thread, which can now decrement the semaphore from 1 to 0 and execute the
print statement. When the semaphore call is reached again, it will block because the
semaphore is already in the wait (0) state.

Subsequent calls to semaphore with numbers greater than 1 give the counter thread an
opportunity to decrement the semaphore several times before blocking.

More than one thread can participate in controlling the semaphore, just as more than one
semaphore can be created. The maximum number of semaphores is controlled by a
systemwide kernel setting on UNIX-like operating systems.

Use the fork function to start a new thread and the share function to share information
between threads. For a more comprehensive example of using semaphore to synchronize
threads, see the prodcons.lsp example in the examples/ directory in the source distribution,
as well as the examples and modules distributed with newLISP.

semaphore 248

newLISP Users Manual and Reference

sequence

syntax: (sequence num-start num-end [num-step])

Generates a sequence of numbers from num-start to num-end with an optional step size of
num-step. When num-step is omitted, the value 1 (one) is assumed. The generated numbers
are of type integer (when no optional step size is specified) or floating point (when the
optional step size is present).

example:

(sequence 10 5) (10 9 8 7 6 5)⇒
(sequence 0 1 0.2) (0 0.2 0.4 0.6 0.8 1)⇒
(sequence 2 0 0.3) (2 1.7 1.4 1.1 0.8 0.5 0.2)⇒

Note that the step size must be a positive number, even if sequencing from a higher to a lower
number.

Use the series function to generate geometric sequences.

series

syntax: (series num-start num-factor num-count)

Creates a geometric sequence with num-count elements starting with the element in num-
start. Each subsequent element is multiplied by num-factor. The generated numbers are
always floating point numbers.

When num-count is less then 1 then series returns an empty list.

example:

(series 2 2 5) (2 4 8 16 32)⇒
(series 1 1.2 6) (1 1.2 1.44 1.728 2.0736 2.48832)⇒
(series 10 0.9 4) (10 9 8.1 7.29)⇒
(series 0 0 10) (0 0 0 0 0 0 0 0 0 0)⇒
(series 99 1 5) (99 99 99 99 99)⇒

Use the sequence function to generate arithmetic sequences.

set

syntax: (set sym-1 exp-1 [sym-2 exp-2 ...])

Evaluates both arguments and then assigns the result of exp to the symbol found in sym. The
set expression returns the result of the assignment. The assignment is performed by copying

set 249

newLISP Users Manual and Reference

the contents of the right side into the symbol. The old contents of the symbol are deleted. An
error message results when trying to change the contents of the symbols nil, true, or a
context symbol. set can take multiple argument pairs.

example:

(set 'x 123) 123⇒
(set 'x 'y) y⇒
(set x "hello") "hello"⇒

y "hello"⇒

(set 'alist '(1 2 3)) (1 2 3)⇒

(set 'x 1 'y "hello") "hello" ; multiple arguments⇒

x 1⇒
y "hello"⇒

The symbol for assignment could be the result from another newLISP expression:

(set 'lst '(x y z)) (x y z)⇒

(set (first lst) 123) 123⇒

x 123⇒

Symbols can be set to lambda or lambda-macro expressions. This operation is equivalent to
using define or define-macro.

(set 'double (lambda (x) (+ x x)))
 (lambda (x) (+ x x))⇒

is equivalent to:

(define (double x) (+ x x))
 (lambda (x) (+ x x))⇒

is equivalent to:

(define double (lambda (x) (+ x x)))
 (lambda (x) (+ x x))⇒

Use the constant function (which works like set) to protect the symbol from subsequent
alteration. Using the setq function eliminates the need to quote the variable symbol.

setq

syntax: (setq sym-1 exp-1 [sym-2 exp-2 ...])

Works just like set, except the symbol in sym is not quoted. Like set, setq can take multiple
arguments.

setq 250

newLISP Users Manual and Reference

example:

(setq x 123) 123⇒

; multiple args

(setq x 1 y 2 z 3) 3 ⇒

x 1⇒
y 2⇒
z 3⇒

set-locale

syntax: (set-locale [str-locale] [int-category])

Reports or switches to a different locale on your operating system or platform. When used
without arguments, set-locale reports the current locale being used. When str-locale is
specified, set-locale switches to the locale with all category options turned on (LC_ALL).
Placing an empty string in str-locale switches to the default locale used on the current
platform. set-locale returns either the current settings or nil if the requested change
could not be performed.

example:

(set-locale) ; report current locale

(set-locale "") ; set default locale of your platform

By default, newLISP starts up with the POSIX C default locale. This guarantees that
newLISP's behavior will be identical on any platform locale:

;; after newLISP start up

(set-locale) "C"⇒

In int-category, integer numbers may be specified as category options for fine-tuning certain
aspects of the locale, such as number display, date display, and so forth. The numbers used
vary from system to system. The options valid on your platform can be found in the C include
file locale.h. This file defines constants like LC_ALL, LC_NUMERIC, and LC_MONETARY.
When set-locale is used without the option number, it assumes the LC_ALL option,
which turns on all options for that locale.

Note that the locale also controls the decimal separator in numbers. The default C locale uses
the decimal dot, but most others use a decimal comma. Since version 8.4.4, newLISP has
been parsing decimal comma numbers correctly.

Note that using set-locale does not change the behavior of regular expressions in
newLISP. To localize the behavior of PCRE (Perl Compatible Regular Expressions), newLISP
must be compiled with different character tables. See the file, LOCALIZATION, in the
newLISP source distribution for details.

set-locale 251

newLISP Users Manual and Reference

See also the chapter Switching the locale.

set-nth

syntax: (set-nth int-nth-1 [int-nth-2 ...] list|array exp-replacement)
syntax: (set-nth int-nth-1 str str-replacement)

syntax: (set-nth (list|array int-nth-1 [int-nth-2 ...]) exp-replacement)
syntax: (set-nth (str int-nth-1) str str-replacement)

set-nth works like nth-set, except instead of returning the replaced element, it returns the
entire changed expression. For this reason, set-nth is slower on larger data objects.

sgn

syntax: (sgn num)
syntax: (sgn num expr-1 [expr-2] [expr-3])

In the first syntax, the sgn function is a logical function that extracts the sign of a real
number according to the following rules:

x > 0 : sgn(x) = 1
x < 0 : sgn(x) = -1
x = 0 : sgn(x) = 0

example:

(sgn -3.5) -1⇒
(sgn 0) 0⇒
(sgn 123) 1⇒

In the second syntax, the result of evaluating one of the optional expressions expr-1, expr-2,
or expr-3 is returned, instead of -1, 0, or 1. In absence of expression expr-2 or expr-3, nil is
returned.

example:

(sgn x -1 0 1) ; works like (sgn x)
(sgn x -1 1 1) ; return -1 for negative x all others 1
(sgn x nil true true) ; return nil for negative else true
(sgn x (abs x) 0) ; return (abs x) for negative x, 0 for x =
0, else nil

Any expression or constant can be used for expr-1, expr-2, or expr-3.

sgn 252

newLISP Users Manual and Reference

share

syntax: (share)
syntax: (share int-address-or-handle)
syntax: (share int-address-or-handle exp-value)

syntax: (share nil int-address)

Accesses shared memory for communicating between several newLISP processes or threads.
When called without arguments, share requests a page of shared memory (the page is 4k on
Win32 but may differ on Linux/UNIX) from the operating system. This returns a memory
address on Linux/UNIX and a handle on Win32, which can then be assigned to a variable for
later reference. This function is not available on OS/2.

To set the contents of shared memory, use the third syntax of share. Supply a shared
memory address on Linux/UNIX or a handle on Win32 in int-address-or-handle, along with
an integer, float, or string expression in exp-value. Using this syntax, the value supplied in
exp-value is also the return value.

To access the contents of shared memory, use the second syntax of share, supplying only
the shared memory address or handle. The return value will be an integer or floating point
number, a string, or nil or true. If the memory has not been previously set to a value, nil
will be returned.

Only available on UNIX-like operating systems, the last syntax unmaps a shared memory
address. Note that using a shared address after unmapping it will crash the system.

Memory can be shared between parent and child processes or threads, but not between
independent processes.

example:

(set 'num (share))
(set 'str (share))

(share num 123) 123⇒

(share str "hello world") "hello world"⇒
(share str) "hello world"⇒

(share mVar 123) 123⇒
(share mVar) 123⇒

(share mVar true) true⇒
(share mVar) true⇒

(share nil mVar) true ; unmap only on UNIX⇒

For a more comprehensive example of using shared memory in a multithreaded Linux/UNIX
application, see the file example/prodcons.lsp in the newLISP source distribution.

Note that shared memory access between different threads or processes should be
synchronized using a semaphore. Simultaneous access to shared memory can crash the
running process/thread.

share 253

newLISP Users Manual and Reference

To find out the maximum length of a string buffer that could be stored in a shared memory
address, execute the following:

(length (share (share) (dup " " 1000000)))
 4087⇒

The statement above tries to initialize a shared memory address to 100,000 bytes, but only
4087 will be initialized as a string buffer. The page size of this platform is 4096 bytes—
4087 plus 8 bytes of header information for type and size, as well as 1 terminating byte for
displayable strings.

On Linux/UNIX systems, more than one number or string can be stored in one memory page
by using offsets added to the main segment address:

example:

;; Linux/UNIX only

(set 'num-1 (share))
(set 'num-2 (+ num-1 12))
(set 'num-3 (+ num-2 12))
(set 'str-1 (+ num-3 12))

(share num-1 123)
(share num-2 123.456)
 …

(share num-1) 123⇒
(share num-3) 123.456⇒
 …

;; etc.

For numbers, reserve 12 bytes; for strings, reserve 12 bytes, plus the length of the string, as
well as 1 for the terminating zero-byte. For the boolean values nil and true, 4 bytes should
be reserved.

Note that a shorter string could accidentally be overwritten with a longer one. Therefore,
shared strings should be stored after other shared number fields or should reside on their
own shared memory page.

The functions get-int, get-float, get-string, and get-char—as well as pack and unpack—could
also be used to access contents from a shared memory page. This low-level address requires
precise knowledge of the type of information stored, but it allows for very compact storage of
information without type/header information in a string buffer.

example:

;; Linux/UNIX and Win32

(set 'mem (share))

(mem share (pack "s5 ld lf" "hello" 123 123.456))
(unpack "s10 ls lf" (mem share))
 ("hello" 123 123.456)⇒

On Linux/UNIX, supplying a wrong or unmapped share address can cause newLISP to crash.

share 254

newLISP Users Manual and Reference

signal

syntax: (signal int-signal sym-handler)
syntax: (signal int-signal func-handler)
syntax: (signal int-signal nil)
syntax: (signal int-signal)

Sets a user-defined handler in sym-handler for a signal specified in int-signal. If nil is
specified, the signal will default to the initialized behavior in newLISP.

Different signals are available on different OS platforms and Linux/UNIX flavors. The
numbers to specify in int-signal also differ from platform to platform. Valid values can
normally be extracted from a file found in /usr/include/sys/signal.h or
/usr/include/signal.h.

Some signals make newLISP exit even after a user-defined handler has been specified and
executed (e.g., signal SIGKILL). This behavior may also be different on different platforms.

example:

(constant 'SIGINT 2)
(define (ctrlC-handler) (println "ctrl-C has been pressed"))

(signal SIGINT 'ctrlC-handler)

; now press ctrl-C
; the following line will appear

ctrl-C has been pressed

On Win32, the above example would execute the handler before exiting newLISP. On most
Linux/UNIX systems, newLISP would stay loaded and the prompt would appear after hitting
the [enter] key.

Instead of specifying a symbol containing the signal handler, a function can be specified
directly. The signal number is passed as a parameter:

(signal SIGINT exit) $signal-2⇒

(sginal SIGINT (fn (s) (println "signal " s " occurred")))

Note that the signal SIGKILL (9 on most platforms) will always terminate the application
regardless of an existing signal handler.

The signal could have been sent from another shell on the same computer:

kill -s SIGINT 2035

In this example, 2035 is the process ID of the running newLISP.

The signal could also have been sent from another newLISP application:

(constant 'SIGINT 2)
(import "libc.so" "kill")

(kill 2035 SIGINT)

signal 255

newLISP Users Manual and Reference

When importing kill, make sure it always receives an integer for the signal number. If
needed, use the int function to first convert the number.

If newLISP receives a signal while evaluating another function, it will still accept the signal
and the handler function will be executed:

(constant 'SIGINT 2)
(define (ctrlC-handler) (println "ctrl-C has been pressed"))

(signal SIGINT 'ctrlC-handler)
;; or
(signal SIGINT ctrlC-handler)

(while true (sleep 300) (println "busy"))

;; generates following output
busy
busy
busy
ctrl-C has been pressed
busy
busy
…

Specifying only a signal number will return either the name of the current defined handler
function or nil.

The user-defined signal handler can pass the the signal number as a parameter.

(define (signal-handler sig)
 (println "received signal: " sig))

;; set all signals from 1 to 8 to the same handler
(for (s 1 8)
 (signal s 'signal-handler))

In this example, all signals from 1 to 8 are set to the same handler.

silent

syntax: (silent [expr-1] [expr-2 ...])

Evaluates one or more expressions in expr-1—. silent is similar to begin, but it suppresses
console output of the return value and the following prompt. It is often used when
communicating from a remote application with newLISP (e.g., GUI front-ends or other
applications controlling newLISP), and the return value is of no interest.

Silent mode is reset when returning to a prompt. This way, it can also be used without
arguments in a batch of expressions. When in interactive mode, hit [enter] twice after a
statement using silent to get the prompt back.

example:

(silent (my-func)) ; same as next

silent 256

newLISP Users Manual and Reference

(silent) (my-func) ; same effect as previous

sin

syntax: (sin num-radians)

Calculates the sine function from num-radians and returns the result.

example:

(sin 1) 0.8414709838⇒
(set 'pi (mul 2 (acos 0))) 3.141592654⇒
(sin (div pi 2)) 1⇒

sinh

syntax: (sinh num-radians)

Calculates the hyperbolic sine of num-radians. The hyperbolic sine is defined mathematically
as: (exp (x) - exp (-x)) / 2. An overflow to inf may occur if num-radians is too large.

example:

(sinh 1) 1.175201194⇒
(sinh 10) 11013.23287⇒
(sinh 1000) inf⇒
(sub (tanh 1) (div (sinh 1) (cosh 1))) 0⇒

sleep

syntax: (sleep int-milli-seconds)

Gives up CPU time to other processes for the amount of milliseconds specified in int-milli-
seconds.

example:

(sleep 1000) ; sleeps 1 second

On some platforms, sleep is only available with a resolution of one second. In this case, the
parameter int-milli-seconds will be rounded to the nearest full second.

sleep 257

newLISP Users Manual and Reference

slice

syntax: (slice list int-index [int-length])
syntax: (slice array int-index [int-length])
syntax: (slice str int-index [int-length])

In the first form, slice copies a sublist from a list. The original list is left unchanged. The
sublist extracted starts at index int-index and has a length of int-length. If int-length is -1, or
if the parameter is omitted, slice copies all of the elements to the end of the list.

See also Indexing elements of strings and lists.

example:

(slice '(a b c d e f) 3 2) (d e)⇒
(slice '(a b c d e f) 2 -1) (c d e f)⇒
(slice '(a b c d e f) -4 3) (c d e)⇒

(set 'A (array 3 2 (sequence 1 6))) ((1 2) (3 4) (5 6))⇒
(slice A 1 2) ((3 4) (5 6))⇒

In the second form, a part of the string in str is extracted. int-index contains the start index
and int-length contains the length of the substring. If int-length is not specified, everything
to the end of the string is extracted. slice also works on string buffers containing binary
data like 0's (zeroes). It operates on byte boundaries rather than character boundaries. See
also Indexing elements of strings and lists.

example:

(slice "Hello World" 6 2) "Wo"⇒
(slice "Hello World" 0 5) "Hello"⇒
(slice "Hello World" 6) "World"⇒
(slice "newLISP" -4 2) "LI"⇒

Note that an implicit slice is available for lists. See the chapter Implicit rest and slice.

Be aware that rest always works on byte boundaries rather than character boundaries in the
UTF-8–enabled version of newLISP. As a result, slice can be used to manipulate binary
content.

sort

syntax: (sort list [func-compare])

All members in list are sorted in ascending order. Anything may be sorted, regardless of the
types. When members are themselves lists, each list element is recursively compared. If two
expressions of different types are compared, the lower type is sorted before the higher type in
the following order:

sort 258

newLISP Users Manual and Reference

 Atoms: nil, true, integer or float, string, symbol, primitive

 Lists: quoted expression, list, lambda, lambda-macro

The sort is destructive, changing the order of the elements in the original list. The return
value of sort is a copy of the sorted list.

An optional comparison operator, user-defined function, or anonymous function can be
supplied. The functor or operator can be given with or without a preceding quote.

example:

(sort '(v f r t h n m j)) (f h j m n r t v)⇒
(sort '((3 4) (2 1) (1 10))) ((1 10) (2 1) (3 4))⇒
(sort '((3 4) "hi" 2.8 8 b)) (2.8 8 "hi" b (3 4))⇒

(set 's '(k a l s))
(sort s) (a k l s) ⇒

(sort '(v f r t h n m j) '>)
 (v t r n m j h f)⇒

;; the quote can be omitted beginning with version 8.4.5
(sort '(v f r t h n m j) >)
 (v t r n m j h f)⇒

(sort s <) (a k l s)⇒
(sort s >) (s l k a) ⇒
s (s l k a)⇒

;; define a comparison function
(define (comp x y)
 (> (last x) (last y)))

(set 'db '((a 3) (g 2) (c 5)))

(sort db comp) ((c 5) (a 3) (g 2))⇒

;; use an anonymous function
(sort db (fn (x y) (> (last x) (last y))))

source

syntax: (source)
syntax: (source sym-1 [sym-2 ...])

Works almost identically to save, except symbols and contexts get serialized to a string
instead of being written to a file. Multiple variable symbols, definitions, and contexts can be
specified. If no argument is given, source serializes the entire newLISP workspace. When
context symbols are serialized, any symbols contained within that context will be serialized,
as well. Symbols containing nil are not serialized. System symbols beginning with the $
(dollar sign) character are only serialized when mentioned explicitly.

Symbols not belonging to the current context are written out with their context prefix.

example:

source 259

newLISP Users Manual and Reference

(define (double x) (+ x x))

(source 'double) "(define (double x)\n (+ x x))\n\n"⇒

As with save, the formatting of line breaks and leading spaces or tabs can be controlled using
the pretty-print function.

sqrt

syntax: (sqrt num)

Calculates the square root from the expression in num and returns the result.

example:

(sqrt 10) 3.16227766⇒
(sqrt 25) 5⇒

starts-with

syntax: (starts-with str str-key [num-option])
syntax: (starts-with list [expr])

In the first version, starts-with checks if the string str starts with a key string in str-key
and returns true or nil depending on the outcome.

If a regular expression number is specified in num-option, str-key contains a regular
expression pattern. See regex for valid option numbers.

example:

(starts-with "this is useful" "this") true⇒
(starts-with "this is useful" "THIS") nil⇒
(starts-with "this is useful" "THIS" nil) true⇒
;; use regular expressions
(starts-with "this is useful" "this|that" 1) true⇒

In the second version, starts-with checks to see if a list starts with the list element in
expr. true or nil is returned depending on outcome.

example:

(starts-with '(1 2 3 4 5) 1) true⇒
(starts-with '(a b c d e) 'b) nil⇒
(starts-with '((+ 3 4) b c d) '(+ 3 4)) true⇒

See also the ends-with function.

starts-with 260

newLISP Users Manual and Reference

string

syntax: (string exp-1 [exp-2 ... exp-n])

Translates into a string anything that results from evaluating exp-1—. If more than one
expression is specified, the resulting strings are concatenated.

example:

(string 'hello) "hello"⇒
(string 1234) "1234"⇒
(string '(+ 3 4)) "(+ 3 4)"⇒
(string (+ 3 4) 8) "78"⇒
(string 'hello " " 123) "hello 123"⇒

If a buffer passed to string contains \000, only the string up to the first terminating zero
will be copied:

(set 'buff "ABC\000\000\000") "ABC\000\000\000"⇒

(length buff) 6⇒

(string buff) "ABC"⇒

(length (string buff)) 3⇒

Use the append and join (allows the joining string to be specified) functions to concatenate
strings. Use the source function to convert a lambda expression into its newLISP source
string representation.

string?

syntax: (string? exp)

Evaluates exp and tests to see if it is a string. Returns true or nil depending on the result.

example:

(set 'var "hello")
(string? var) true⇒

sub

syntax: (sub num-1 [num-2 ...])

Successively subtracts the expressions in num-1, num-2—. sub performs mixed-type
arithmetic and handles integers or floating points, but it will always return a floating point

sub 261

newLISP Users Manual and Reference

number. If only one argument is supplied, its sign is reversed. Any floating point calculation
with NaN also returns NaN.

example:

(sub 10 8 0.25) 1.75⇒
(sub 123) -123⇒

swap

syntax: (swap num-1 num-2 list)
syntax: (swap num-1 num-2 str)
syntax: (swap sym-1 sym-2)

In the first form, swap switches the elements in list at indices num-1 and num-2 and returns
the changed list.

In the second form, the characters in str at indices num-1 and num-2 are swapped and the
changed string is returned.

In the third form, the contents of the two unquoted symbols in sym-1 and sym-2 are
swapped.

swap is a destructive operation that changes the contents of the list, string, or symbols
involved.

example:

(set 'lst '(a b c d e f))

(swap 0 5 lst) '(f b c d e a)⇒
lst '(f b c d e a)⇒

(swap 0 -1 lst) '(a b c d e f)⇒
lst '(a b c d e f)⇒

(swap 3 4 "abcdef") "abcedf"⇒

(set 'x 1 'y 2)

(swap x y) 1⇒

x 2⇒
y 1⇒

sym

syntax: (sym string [sym-context nil-flag])
syntax: (sym number [sym-context nil-flag])
syntax: (sym symbol [sym-context nil-flag])

sym 262

newLISP Users Manual and Reference

Translates the first argument in string, number, or symbol into a symbol and returns it. If
the optional context is not specified in sym-context, the current context is used when doing
symbol lookup or creation. Symbols will be created if they do not already exist. When the
context does not exist and the context is specified by a quoted symbol, the symbol also gets
created. If the context specification is unquoted, the context is the specified name or the
context specification is a variable containing the context.

sym can create symbols within the symbol table that are not legal symbols in newLISP source
code (e.g., numbers or names containing special characters such as parentheses, colons, etc.).
This makes sym usable as a function for associative memory access, much like hash table
access in other scripting languages.

As a third optional argument, nil can be specified to suppress symbol creation if the symbol
is not found. In this case, sym returns nil if the symbol looked up does not exist. Using this
last form, sym can be used to check for the existence of a symbol.

example:

(sym "some") some⇒
(set (sym "var") 345) 345⇒
var 345⇒
(sym "aSym" 'MyCTX) MyCTX:aSym⇒
(sym "aSym" MyCTX) MyCTX:aSym ; unquoted context⇒

(sym "foo" MyCTX nil) nil ; 'foo does not exist⇒
(sym "foo" MyCTX) foo ; 'foo is created⇒
(sym "foo" MyCTX nil) foo ; foo now exists⇒

Because the function sym returns the symbol looked up or created, expressions with sym can
be embedded directly in other expressions that use symbols as arguments. The following
example shows the use of sym as a hash-like function for associative memory access, as well
as symbol configurations that are not legal newLISP symbols:

example:

;; using sym for simulating hash tables

(set (sym "John Doe" 'MyDB') 1.234)
(set (sym "(" 'MyDB) "parenthesis open")
(set (sym 12 'MyDB) "twelve")

(eval (sym "John Doe" 'MyDB)) 1.234⇒
(eval (sym "(" 'MyDB)) "parenthesis open"⇒
(eval (sym 12 'MyDB)) "twelve"⇒

;; delete a symbol from a symbol table or hash
(delete (sym "John Doe" 'MyDB)) true⇒

The last statement shows how a symbol can be eliminated using delete.

The third syntax allows symbols to be used instead of strings for the symbol name in the
target context. In this case, sym will extract the name from the symbol and use it as the name
string for the symbol in the target context:

example:

(sym 'myVar 'FOO) FOO:myVar⇒

sym 263

newLISP Users Manual and Reference

(define-macro (def-context)
 (dolist (s (rest (args)))
 (sym s (first (args)))))

(def-context foo x y z)

(symbols foo) (foo:x foo:y foo:z)⇒

The def-context macro shows how this could be used to create a macro that creates
contexts and their variables in a dynamic fashion.

Available since version 8.7.4, one syntax of the context function can be used to create, set,
and evaluate symbols in a shorter, faster way.

symbol?

syntax: (symbol? exp)

Evaluates the exp expression and returns true if the value is a symbol; otherwise, it returns
nil.

example:

(set 'x 'y) y⇒

(symbol? x) true ⇒

(symbol? 123) nil⇒

(symbol? (first '(var x y z))) true⇒

The first statement sets the contents of x to the symbol y. The second statement then checks
the contents of x. The last example checks the first element of a list.

symbols

syntax: (symbols [context])

Returns a sorted list of all symbols in the current context when called without an argument.
If a context symbol is specified, symbols defined in that context are returned.

example:

(symbols) ; list of all symbols in current context
(symbols 'CTX) ; list of symbols in context CTX
(symbols CTX) ; omitting the quote
(set 'ct CTX) ; assigning context to a variable
(symbols ct) ; list of symbols in context CTX

symbols 264

newLISP Users Manual and Reference

The quote can be omitted because contexts evaluate to themselves.

sys-error

syntax: (sys-error)

Reports error numbers generated by the underlying OS newLISP is running on. The error
numbers reported may differ on the platforms newLISP has been compiled for. Consult the
platform's C library information, (e.g., the GNU libc reference). Most errors reported refer
to system resources such as files and semaphores.

Whenever a function in newLISP within the system resources area returns nil, sys-error
can be checked for the underlying reason. For file operations, sys-error may be set for
nonexistent files or wrong permissions when accessing the resource. Another cause of error
could be the exhaustion of certain system resources like file handles or semaphores.

example:

;; trying to open a nonexistent file
(open "blahbla" "r") nil⇒

(sys-error) 2⇒

(sys-error 0) 0 ; clear errno⇒

The error number can be cleared by giving a 0 (zero) for the optional argument.

sys-info

syntax: (sys-info [int-idx])

Calling sys-info without int-idx returns a list of internal resource statistics. Eight integers
report the following status:

 0 - Number of LISP cells
 1 - Maximum number of LISP cells constant
 2 - Number of symbols
 3 - Evaluation/recursion level
 4 - Environment stack level
 5 - Maximum call stack constant
 6 - Version number as an integer constant
 7 - Operating system constant:
 linux=1, bsd=2, osx=3, solaris=4, cygwin=5, win32=6,
 os/2=7, tru64unix=9
 the highest bit 7 will be set for UTF-8 versions (add 128)
 bit 6 will be added for library versions (add 64)

The numbers from 0 to 7 indicate the optional offset in the returned list.

sys-info 265

newLISP Users Manual and Reference

When using int-idx, one element of the list will be returned.

example:

(sys-info) (348 268435456 269 1 0 1024 8404 6)⇒
(sys-info 3) 1 ⇒
(sys-info -2) 8404⇒

The number for the maximum of LISP cells can be changed via the -m command-line switch.
For each megabyte of LISP cell memory, 64k memory cells can be allocated. The maximum
call stack depth can be changed using the -s command-line switch.

tan

syntax: (tan num-radians)

Calculates the tangent function from num-radians and returns the result.

example:

(tan 1) 1.557407725⇒
(set 'pi (mul 2 (asin 1))) 3.141592654⇒
(tan (div pi 4)) 1⇒

tanh

syntax: (tanh num-radians)

Calculates the hyperbolic cosine of num-radians. The hyperbolic sine is defined
mathematically as: sinh (x) / cosh (x).

example:

(tanh 1) 0.761594156⇒
(tanh 10) 0.9999999959⇒
(tanh 1000) 1⇒
(= (tanh 1) (div (sinh 1) (cosh 1))) true⇒

throw

syntax: (throw exp)

Works together with the catch function. throw forces the return of a previous catch
statement and puts the exp into the result symbol of catch.

example:

throw 266

newLISP Users Manual and Reference

(define (throw-test)
 (dotimes (x 1000)
 (if (= x 500) (throw "interrupted"))))

(catch (throw-test) 'result) true⇒

result "interrupted"⇒

(catch (throw-text)) "interrupted"⇒

The last example shows a shorter form of catch, which returns the throw result directly.

throw is useful for breaking out of a loop or for early return from user-defined functions or
expression blocks. In the following example, the begin block will return X if (foo X) is
true; else Y will be returned:

(catch (begin
 …
 (if (foo X) (throw X) Y)
 …
))

throw will not cause an error exception. Use throw-error to throw user error exceptions.

throw-error

syntax: (throw-error expr)

Causes a user-defined error exception with text provided by evaluating expr.

example:

(define (foo x y)
 (if (= x 0) (throw-error "first argument cannot be 0"))
 (+ x y))

(foo 1 2) 3⇒

(foo 0 2) ; causes a user error exception
user error : first argument cannot be 0
called from user-defined function foo

The user error can be handled like any other error exception using user-defined error
handlers and the error-event function, or the form of catch that can capture error exceptions.

time

syntax: (time exp [int-count)

Evaluates the expression in exp and returns the time spent on evaluation in milliseconds.

time 267

newLISP Users Manual and Reference

example:

(time (myprog x y z)) 450⇒

(time (myprog x y z) 10) 4420⇒

In first the example, 450 milliseconds elapsed while evaluating (myprog x y z). The
second example returns the time for ten evaluations of (myprog x y z). See also date,
date-value, time-of-day, and now.

time-of-day

syntax: (time-of-day)

Returns the time in milliseconds since the start of the current day.

See also the date, date-value, time, and now functions.

timer

syntax: (timer sym-event-handler num-seconds [int-option])
syntax: (timer func-event-handler num-seconds [int-option])
syntax: (timer sym-event-handler)
syntax: (timer func-event-handler)
syntax: (timer)

Starts a one-shot timer firing off the Unix signal SIGALRM, SIGVTALRM, or SIGPROF after
the time in seconds (specified in num-seconds) has elapsed. When the timer fires, it calls the
user-defined function in sym-event-handler.

On Linux/UNIX, an optional 0, 1, or 2 can be specified to control how the timer counts. With
default option 0, real time is measured. Option 1 measures the time the CPU spends
processing in the thread or process owning the timer. Option 3 is a combination of both
called profiling time. See the UNIX man page setitimer() for details.

The event handler can start the timer again to achieve a continuous flow of events. Starting
with version 8.5.9, seconds can be defined as floating point numbers with a fractional part
(e.g., 0.25 for 250 milliseconds).

Defining 0 (zero) as time shuts the running timer down and prevents it from firing.

When called with sym-event-handler, timer returns the elapsed time of the timer in
progress. This can be used to program timelines or schedules.

timer called without arguments returns the symbol of the current event handler.

example:

(define (ticker)
 (println (date)) (timer 'ticker 1.0))

timer 268

newLISP Users Manual and Reference

> (ticker)
Tue Apr 12 20:44:48 2005 ; first execution of ticker
 ticker ; return value from ticker⇒

> Tue Apr 12 20:44:49 2005 ; first timer event
Tue Apr 12 20:44:50 2005 ; second timer event ...
Tue Apr 12 20:44:51 2005
Tue Apr 12 20:44:52 2005
Tue Apr 12 20:44:53 2005
Tue Apr 12 20:44:54 2005
Tue Apr 12 20:44:55 2005

The example shows an event handler, ticker, which starts the timer again after each event.

Note that a timer cannot interrupt an ongoing built-in function. The timer interrupt gets
registered by newLISP, but a timer handler cannot run until one expression is evaluated and
the next one starts. To interrupt an ongoing I/O operation with timer, use the following
pattern, which calls net-select to test if a socket is ready for reading:

example:

define (interrupt)
 (set 'timeout true))

(set 'listen (net-listen 30001))
(set 'socket (net-accept listen))

(timer 'interrupt 10)
;; or specifying the function directly
(timer (fn () (set 'timeout true)) 10)

(until (or timeout done)
 (if (net-select socket "read" 100000)
 (begin
 (read-buffer socket 'buffer 1024)
 (set 'done true)))
)

(if timeout
 (println "timeout")
 (println buffer))

(exit)

In this example, the until loop will run until something can be read from socket, or until
ten seconds have passed and the timeout variable is set.

title-case

syntax: (title-case str)
syntax: (title-case str bool)

Returns a copy of the string in str with the first character converted to uppercase. When the
optional bool parameter evaluates to any value other than nil, the rest of the string is
converted to lowercase.

title-case 269

newLISP Users Manual and Reference

example:

(title-case "hello") "Hello"⇒
(title-case "hELLO" true) "Hello"⇒

See also the lower-case and upper-case functions.

trace

syntax: (trace [exp])

Tracing is switched on when exp evaluates to anything besides nil or an empty list (). When
no argument is supplied, trace evaluates to true or nil depending on the current trace
mode. If trace mode is switched on, newLISP goes into debugging mode, displaying the
function currently being executed and highlighting the current expression upon entry and
exit. The highlighting is done by bracketing the expression between two # (number sign)
characters. This can be changed to a different character using trace-highlight. Upon exit from
the expression, the result of its evaluation is also reported.

If an expression occurs more than once in a function, the first occurrence of the executing
function will always be highlighted (bracketed).

newLISP execution stops with a prompt line at each entry and exit of an expression.

[-> 2] s|tep n|ext c|ont q|uit >

At the prompt, an s, n, c, or q can be entered to step into or merely execute the next
expression. Any expression can be entered at the prompt for evaluation. Entering the name of
a variable, for example, would evaluate to its contents. In this way, a variable's contents can
be checked during debugging or set to different values.

example:

;; switches newLISP into debugging mode
(trace true) true ⇒

;; the debugger will show each step
(my-func a b c)

;; switched newLISP out of debugging mode
(trace nil) nil ⇒

To set break points where newLISP should interrupt normal execution and go into debugging
mode, put (trace true) statements into the LISP code where execution should switch on
the debugger.

Use the debug function as a shortcut for the above example.

trace 270

newLISP Users Manual and Reference

trace-highlight

syntax: (trace-highlight str-pre str-post [str-header str-footer])

Sets the characters or string of characters used to enclose expressions during trace. By
default, the # (number sign) is used to enclose the expression highlighted in trace mode. This
can be changed to different characters or strings of up to seven characters. If the console
window accepts terminal control characters, this can be used to display the expression in a
different color, bold, reverse, and so forth.

Two more strings can optionally be specified for str-header and str-footer, which control the
separator and prompt. A maximum of 15 characters is allowed for the header and 31 for the
footer.

example:

;; active expressions are enclosed in >> and <<

(trace-highlight ">>" "<<")

;; 'bright' color on a VT100 or similar terminal window

(trace-highlight "\027[1m" "\027[0m")

The first example replaces the default # (number sign) with a >> and <<. The second example
works on most Linux shells. It may not, however, work in console windows under Win32 or
CYGWIN, depending on the configuration of the terminal.

transpose

syntax: (transpose matrix)

Transposes a matrix by reversing the rows and columns and converting all of the cells to
floating point numbers. Any kind of list-matrix can be transposed. Matrices are made
rectangular by filling in nil for missing elements, omitting elements where appropriate, or
expanding atoms in rows into lists. Matrix dimensions are calculated using the number of
rows in the original matrix for columns and the number of elements in the first row as
number of rows for the transposed matrix.

The dimensions of a matrix are defined by the number of rows and the number of elements in
the first row. A matrix can either be a nested list or an array.

example:

(set 'A '((1 2 3) (4 5 6)))
(transpose A) ((1 4) (2 5) (3 6))⇒
(transpose (list (sequence 1 5))) ((1) (2) (3) (4) (5))⇒

(transpose '((a b) (c d) (e f))) ((a c e) (b d f))⇒

transpose 271

newLISP Users Manual and Reference

The number of columns in a matrix is defined by the number of elements in the first row of
the matrix. If other rows have fewer elements, transpose will assume nil for those missing
elements. Superfluous elements in a row will be ignored.

(set 'A '((1 2 3) (4 5) (7 8 9)))

(transpose A) ((1 4 7) (2 5 8) (3 nil 9))⇒

If a row is any other data type besides a list, the transposition treats it like an entire row of
elements of that data type:

(set 'A '((1 2 3) X (7 8 9)))

(transpose A) ((1 X 7) (2 X 8) (3 X 9))⇒

All operations shown here on lists can also be performed on arrays.

See also the matrix operations det, invert, mat and multiply.

trim

syntax: (trim str [str-char])
syntax: (trim str [str-left-char] [str-right-char])

The first syntax trims the string str from both sides, stripping the leading and trailing
characters as given in str-char. If str-char contains no character, the space character is
assumed. trim returns the new string.

The second syntax can either trim different characters from both sides or trim only one side if
an empty string is specified for the other.

example:

(trim " hello ") "hello"⇒
(trim "----hello-----" "-") "hello"⇒
(trim "00012340" "0" "") "12340"⇒
(trim "1234000" "" "0") "1234"⇒
(trim "----hello=====" "-" "=") "hello"⇒

true?

syntax: (true? expr)

If the expression in expr evaluates to anything other than nil, or the empty list () true?
returns true; else it returns nil.

example:

(map true? '(x 1 "hi" (a b c) nil ()))
 (true true true true nil nil)⇒

true? 272

newLISP Users Manual and Reference

(true? nil) nil⇒
(true? '()) nil⇒

Since version 9.1 true? behaves like if rejecting the empty list ()

unicode

syntax: (unicode str)

Converts ASCII/UTF-8 character strings in str to UCS-4–encoded Unicode of 4-byte integers
per character. This function is only available on UTF-8–enabled versions of newLISP.

example:

(unicode "new")
 "n\000\000\000e\000\000\000w\000\000\000\000\000\000\000"⇒

(utf8 (unicode "new")) "new"⇒

On big endian CPU architectures, the byte order will be reversed from high to low. The
unicode and utf8 functions are the inverse of each other. These functions are only necessary
if UCS-4 Unicode is in use. Most systems use UTF-8 encoding only.

unify

syntax: (unify expr-1 expr-2 [list-env])

Evaluates and matches expr-1 and expr-2. Expressions match if they are equal or if one of the
expressions is an unbound variable (which would then be bound to the other expression). If
expressions are lists, they are matched by comparing subexpressions. Unbound variables
start with an uppercase character to distinguish them from symbols. unify returns nil
when the unification process fails, or it returns a list of variable associations on success.
When no variables were bound, but the match is still successful, unify returns an empty list.
newLISP uses the J. Alan Robinson unification algorithm.

Like match unify is frequently employed as a parameter functor in find, ref, ref-all and
replace.

example:

(unify 'A 'A) () ; tautology⇒

(unify 'A 123) ((A 123)) ; A bound to 123⇒

(unify '(A B) '(x y)) ((A x) (B y)) ; A bound to x, B bound⇒
to y

(unify '(A B) '(B abc)) ((A abc) (B abc)) ; B is alias for A⇒

unify 273

newLISP Users Manual and Reference

(unify 'abc 'xyz) nil ; fails because symbols are different⇒

(unify '(A A) '(123 456)) nil ; fails because A cannot be⇒
bound to different values

(unify '(f A) '(f B)) ((A B)) ; A and B are aliases⇒

(unify '(f A) '(g B)) nil ; fails because heads of terms are⇒
different

(unify '(f A) '(f A B)) nil ; fails because terms are of⇒
different arity

(unify '(f (g A)) '(f B)) ((B (g A))) ; B bound to (g A)⇒

(unify '(f (g A) A) '(f B xyz)) ((B (g xyz)) (A xyz)) ; B⇒
bound to (g xyz) A to xyz

(unify '(f A) 'A) nil ; fails because of infinite⇒
unification (f(f(f …)))

(unify '(A xyz A) '(abc X X)) nil ; indirect alias A to X⇒
doesn't match bound terms

(unify '(p X Y a) '(p Y X X)) '((Y a) (X a))) ; X alias Y⇒
and binding to 'a

(unify '(q (p X Y) (p Y X)) '(q Z Z)) ((Y X) (Z (p X X))) ;⇒
indirect alias

;; some examples taken from
http://en.wikipedia.org/wiki/Unification

unify can take an optional binding or association list in list-env. This is useful when
chaining unify expressions and the results of previous unify bindings must be included:

example:

(unify '(f X) '(f 123)) ((X 123))⇒

(unify '(A B) '(X A) '((X 123)))
 ((X 123) (A 123) (B 123))⇒

In the previous example, X was bound to 123 earlier and is included in the second statement
to pre-bind X.

Note that variables are not actually bound as a newLISP assignment. Rather, an association
list is returned showing the logical binding. A special syntax of expand can be used to actually
replace bound variables with their terms:

(set 'bindings (unify '(f (g A) A) '(f B xyz)))
 ((B (g xyz)) (A xyz))⇒

(expand '(f (g A) A) bindings) (f (g xyz) xyz)⇒

; or in one statement
(expand '(f (g A) A) (unify '(f (g A) A) '(f B xyz)))
 (f (g xyz) xyz)⇒

unify 274

http://en.wikipedia.org/wiki/Unification

newLISP Users Manual and Reference

The following example shows how propositional logic can be modeled using unify and
expand:

; if somebody is human, he is mortal -> (X human) :- (X mortal)
; socrates is human -> (socrates human)
; is socrates mortal? -> ? (socrates mortal)

(expand '(X mortal)
 (unify '(X human) '(socrates human)))
 (socrates mortal)⇒

The following is a more complex example showing a small, working PROLOG (Programming
in Logic) implementation.

;; a small PROLOG implementation

(set 'facts '(
 (socrates philosopher)
 (socrates greek)
 (socrates human)
 (einstein german)
 (einstein (studied physics))
 (einstein human)
))

(set 'rules '(
 ((X mortal) <- (X human))
 ((X (knows physics)) <- (X physicist))
 ((X physicist) <- (X (studied physics)))
))

(define (query term)
 (or (if (find term facts) true) (catch (prove-rule term))))

(define (prove-rule term)
 (dolist (r rules)
 (if (list? (set 'e (unify term (first r))))
 (if (query (expand (last r) e))
 (throw true))))
 nil
)

; try it

> (query '(socrates human))
true
> (query '(socrates (knows physics)))
nil
> (query '(einstein (knows physics)))
true

The program handles a database of facts and a database of simple A is a fact if B is a fact
rules. A fact is proven true if it either can be found in the facts database or if it can be
proven using a rule. Rules can be nested: for example, to prove that somebody (knows
physics), it must be proved true that somebody is a physicist. But somebody is only a
physicist if that person studied physics. The <- symbol separating the left and right
terms of the rules is not required and is only added to make the rules database more
readable.

unify 275

newLISP Users Manual and Reference

This implementation does not handle multiple terms in the right premise part of the rules,
but it does handle backtracking of the rules database to try out different matches. It does
not handle backtracking in multiple premises of the rule. For example, if in the following rule
A if B and C and D, the premises B and C succeed and D fails, a backtracking
mechanism might need to go back and reunify the B or A terms with different facts or rules to
make D succeed.

The above algorithm could be written differently by omitting expand from the definition of
prove-rule and by passing the environment, e, as an argument to the unify and query
functions.

A learning of proven facts can be implemented by appending them to the facts database
once they are proven. This would speed up subsequent queries.

Larger PROLOG implementations also allow the evaluation of terms in rules. This makes it
possible to implement functions for doing other work while processing rule terms. prove-
rule could accomplish this testing for the symbol eval in each rule term.

unique

syntax: (unique list)

Returns a unique version of list with all duplicates removed.

example:

(unique '(2 3 4 4 6 7 8 7)) (2 3 4 6 7 8)⇒

Note that the list does not need to be sorted, but a sorted list makes unique perform faster.

The functions difference and intersect work with sets.

unless

syntax: (unless exp-condition exp-1 [exp-2])

unless is equivalent to (if (not exp-condition exp-1 [exp-2])). If the value of exp-condition is
nil or the empty list (), exp-1 is evaluated; otherwise, exp-2 is evaluated.

example:

(set 'x 50) 50 ⇒
(unless (< x 100) "big" "small") "small"⇒
(set 'x 1000) 1000 ⇒
(unless (< x 100) "big" "small") "big" ⇒

unless 276

newLISP Users Manual and Reference

unpack

syntax: (unpack str-format str-addr-packed)

Unpacks a binary structure in str-addr-packed into LISP variables using the format in str-
format. unpack is the reverse operation of pack. Note that str-addr-packed may also be an
integer representing a memory address. This facilitates the unpacking of structures returned
from imported, shared library functions.

The following characters may define a format:

forma
t description
c a signed 8-bit number
b an unsigned 8-bit number
d a signed 16-bit short number
u an unsigned 16-bit short number
ld a signed 32-bit long number
lu an unsigned 32-bit long number
Ld a signed 64-bit long number
Lu an unsigned 64-bit long number
f a float in 32-bit representation
lf a double float in 64-bit representation
sn a string of n null padded ASCII characters
nn n null characters
> switches to big endian byte order
< switches to little endian byte order

example:

(pack "c c c" 65 66 67) "ABC"⇒
(unpack "c c c" "ABC") (65 66 67)⇒

(set 's (pack "c d u" 10 12345 56789))
(unpack "c d u" s) (10 12345 56789)⇒

(set 's (pack "s10 f" "result" 1.23))
(unpack "s10 f" s) ("result\000\000\000\000" 1.230000019)⇒

(set 's (pack "s3 lf" "result" 1.23))
(unpack "s3 f" s) ("res" 1.23)⇒

(set 's (pack "c n7 c" 11 22))
(unpack "c n7 c" s) (11 22))⇒

The > and < specifiers can be used to switch between little endian and big endian byte order
when packing or unpacking:

;; on a little endian system (e.g., Intel CPUs)

unpack 277

newLISP Users Manual and Reference

(set 'buff (pack "d" 1)) "\001\000" ⇒

(unpack "d" buff) (1)⇒
(unpack ">d" buff) (256)⇒

Switching the byte order will affect all number formats with 16-, 32-, or 64-bit sizes.

The pack and unpack format need not be the same, as in the following example:

(set 's (pack "s3" "ABC"))
(unpack "c c c" s) (65 66 67)⇒

The examples show spaces between the format specifiers. Although not required, they can
improve readability.

If the buffer's size at a memory address is smaller than the formatting string specifies, some
formatting characters may be left unused.

See also the address, get-int, get-long, get-char, get-string, and pack functions.

until

syntax: (until exp-condition body)

Evaluates the condition in exp-condition body. If the result is nil or the empty list (), the
expressions in body are evaluated. Evaluation is repeated until the exp-condition results in a
value other than nil or the empty list. The result of the last expression evaluated is the
return value of the until expression. until works like (while (not …)).

example:

(device (open "somefile.txt" "read"))
(set 'line-count 0)
(until (not (read-line)) (inc 'line-count))
(close (device))
(print "the file has " line-count " lines\n")

Use the do-until function to test the condition after evaluation of the body expressions.

upper-case

syntax: (upper-case str)

Returns a copy of the string in str converted to uppercase. International characters are
converted correctly.

example:

(upper-case "hello world") "HELLO WORLD"⇒

upper-case 278

newLISP Users Manual and Reference

See also the lower-case and title-case functions.

utf8

syntax: (utf8 str)

Converts a UCS-4, 4-byte, Unicode-encoded string (str) into UTF-8. This function is only
available on UTF-8–enabled versions of newLISP.

example:

(unicode "new")
 "n\000\000\000e\000\000\000w\000\000\000\000\000\000\000"⇒

(utf8 (unicode "new")) "new"⇒

The utf8 function can also be used to test for the presence of UTF-8–enabled newLISP:

(if utf8 (do-utf8-version-of-code) (do-ascii-version-of-code))

On big endian CPU architectures, the byte order will be reversed from highest to lowest. The
utf8 and unicode functions are the inverse of each other. These functions are only necessary
if UCS-4 Unicode is in use. Most systems use UTF-8 Unicode encoding only.

utf8len

syntax: (utf8len str)

Returns the number of characters in a UTF-8–encoded string. UTF-8 characters can be
encoded in more than one 8-bit byte. utf8len returns the number of UTF-8 characters in a
string. This function is only available on UTF-8–enabled versions of newLISP.

example:

(utf8-len "我能吞下玻璃而不 身体。伤 ") 12⇒
(length "我能吞下玻璃而不 身体。伤 ") 36⇒

See also the unicode and utf8 functions.

uuid

syntax: (uuid [str-node])

Constructs and returns a UUID (Universally Unique IDentifier). Without a node spec in str-
node, a type 4 UUID random generated byte number is returned. When the optional str-node

uuid 279

newLISP Users Manual and Reference

parameter is used, a type 1 UUID is returned. The string in str-node specifies a valid MAC
(Media Access Code) from a network adapter installed on the node or a random node ID.
When a random node ID is specified, the least significant bit of the first node byte should be
set to 1 to avoid clashes with real MAC identifiers. UUIDs of type 1 with node ID are
generated from a timestamp and other data. See RFC 4122 for details on UUID generation.

example:

;; type 4 UUID for any system

(uuid) "493AAD61-266F-48A9-B99A-33941BEE3607"⇒

;; type 1 UUID preferred for distributed systems

;; configure node ID for ether 00:14:51:0a:e0:bc
(set 'id (pack "cccccc" 0x00 0x14 0x51 0x0a 0xe0 0xbc))

(uuid id) "0749161C-2EC2-11DB-BBB2-0014510AE0BC"⇒

Each invocation of the uuid function will yield a new unique UUID. The UUIDs are
generated without systemwide shared stable store (see RFC 4122). If the system generating
the UUIDs is distributed over several nodes, then type 1 generation should be used with a
different node ID on each node. For several processes on the same node, valid UUIDs are
guaranteed even if requested at the same time. This is because the process ID of the
generating newLISP process is part of the seed for the random number generator. When type
4 IDs are used on a distributed system, two identical UUID's are still highly unlikely and
impossible for type 1 IDs if real MAC addresses are used.

wait-pid

syntax: (wait-pid int-pid [int-options])

Waits for a child process specified in int-pid to end. The child process was previously started
with process or fork. When the child process specified in int-pid ends, a status value
describing the reason for termination of the child process or thread is returned. The
interpretation of the returned status value differs between Linux and other flavors of UNIX.
Consult the Linux/UNIX man pages for the waitpid command (without the hyphen used in
newLISP) for further information.

When -1 is specified for int-pid, the status information of any child process started is
returned. When 0 is specified, wait-pid only watches child processes in the same process
group as the calling process. Any other negative value for int-pid reports child processes in
the same process group as specified with a negative sign in int-pid.

This function is only available on Linux and other UNIX-like operating systems or on a
CYGWIN compiled version of newLISP on Win32. An option can be specified in int-option.
See Linux/UNIX documentation for details on options.

example:

(set 'pid (fork (my-thread)))

(set 'status (wait-pid pid)) ; wait until my-thread ends

wait-pid 280

http://www.ietf.org/rfc/rfc4122.txt

newLISP Users Manual and Reference

(println "thread: " pid " has finished with status: " status)

The process my-thread is started, then the main program blocks in the wait-pid call until
my-thread has finished.

while

syntax: (while exp-condition body)

Evaluates the condition in exp-condition. If the result is not nil or the empty list (), the
expressions in body are evaluated. Evaluation is repeated until an exp-condition results in
nil or the empty list (). The result of the body's last expression is the return value of the
while expression.

example:

(device (open "somefile.txt" "read"))
(set 'line-count 0)
(while (read-line) (inc 'line-count))
(close (device))
(print "the file has " line-count " lines\n")

Use the do-while function to evaluate the condition after evaluating the body of expressions.

write-buffer

syntax: (write-buffer int-file sym-buffer [int-size])
syntax: (write-buffer int-file str-buffer [int-size])

syntax: (write-buffer str-device sym-buffer [int-size])
syntax: (write-buffer str-device str-buffer [int-size])

Using the first syntax, write-buffer writes int-size bytes from a buffer in sym-buffer or
str-buffer to a file specified in int-file, previously obtained from a file open operation. If int-
size is not specified, all data in sym-buffer or str-buffer is written. write-buffer returns
the number of bytes written or nil on failure.

The string buffer symbol can be used with or without quoting a symbol.

example:

(set 'handle (open "myfile.ext" "write"))
(write-buffer handle 'data 100)

;; string buffer w/o quote
(write-buffer handle data 100)
(write-buffer handle "a quick message\n")

write-buffer 281

newLISP Users Manual and Reference

The code in the example writes 100 bytes to the file myfile.ext from the contents in data.

Using the second syntax, write-buffer appends contents from a string specified in sym-
buffer or str-buffer to the string specified in str-device, which acts like a stream device.

example:

;; fast in-place string appending
(set 'str "")
(dotimes (x 5) (write-buffer str "hello"))

str "HelloHelloHelloHelloHello")⇒

;; much slower method of string concatenation
(dotimes (x 5) (set 'str (append str "hello")))

The above example appends a string to str five times. This method is much faster than using
append when concatenating to a string in place.

See also the read-buffer function.

write-char

syntax: (write-char int-file int-byte)

Writes a byte specified in int-byte to a file specified by the file handle in int-file. The file
handle is obtained from a previous open operation. Each write-char advances the file
pointer by one byte.

example:

(define (slow-file-copy from-file to-file)
 (set 'in-file (open from-file "read"))
 (set 'out-file (open to-file "write"))
 (while (set 'chr (read-file in-file))
 (write-char out-file chr))
 (close in-file)
 (close out-file)
 "finished")

Use the print and device functions to write larger portions of data at a time. Note that
newLISP already supplies a faster built-in function called copy-file.

See also the read-char function.

write-file

syntax: (write-file str-file-name str-buffer)

Writes a file in str-file-name with contents in str-buffer in one swoop and returns the
number of bytes written.

write-file 282

newLISP Users Manual and Reference

example:

(write-file "myfile.enc"
 (encrypt (read-file "/home/lisp/myFile") "secret"))

The file myfile is read, encrypted using the password secret, and written back into the
new file myfile.enc in the current directory.

write-file can take an http:// or file:// URL in str-file-name. In this case, write-
file works exactly like put-url and can take the same additional parameters:

example:

(write-file "http://asite.com/message.txt" "This is a message")

The file message.txt is created and written at a remote location, http://asite.com,
with the contents of str-buffer. In this mode, write-file can also be used to transfer files
to remote newLISP server nodes.

See also the append-file and read-file functions.

write-line

syntax: (write-line [str] [int-file])
syntax: (write-line [str] [str-device])

The string in str and the line termination character(s) are written to the console or a file. If
no file handle is specified in int-file, write-line writes to the current device, normally the
console screen. When all arguments are omitted, write-line writes the contents of the last
read-line to the screen.

example:

(write-line "hello there")

(set 'out-file (open "myfile" "write"))
(write-line "hello there" out-file)
(close out-file)

(set 'myFile (open "init.lsp" "read")
(while (read-line myFile) (write-line))

;; using a string device:

(set 'str "")
(dotimes (x 4) (write-line "hello" str))

str "hello\r\nhello\r\nhello\r\nhello\r\n" ; on Win32⇒

str "hello\nhello\nhello\nhello\n" ; on Linux/UNIX⇒

The first example puts a string out on the current device, which is probably the console
window (device 0). The second example opens/creates a file, writes a line to it, and closes

write-line 283

newLISP Users Manual and Reference

the file. The third example shows the usage of write-line without arguments. The
contents of init.lsp are written to the console screen.

In the second syntax, a string can be specified as a device in str-device (like the write-buffer
function). When a string device is written to, the string in str-device gets appended with str
and the line termination character(s).

xml-error

syntax: (xml-error)

Returns a list of error information from the last xml-parse operation; otherwise, returns nil
if no error occurred. The first element contains text describing the error, and the second
element is a number indicating the last scan position in the source XML text, starting at 0
(zero).

example:

(xml-parse "<atag>hello</atag><fin") nil⇒

(xml-error) ("expected closing tag: >" 18)⇒

xml-parse

syntax: (xml-parse string-xml [int-options sym-ontext])

Parses a string containing XML 1.0 compliant, well-formed XML. xml-parse does not
perform DTD validation. It skips DTDs (Document Type Declarations) and processing
instructions. Nodes of type ELEMENT, TEXT, CDATA, and COMMENT are parsed, and a
newLISP list structure is returned. When an element node does not have attributes or child
nodes, it instead contains an empty list. Attributes are returned as association lists, which
can be accessed using assoc. When xml-parse fails due to malformed XML, nil is returned
and xml-error can be used to access error information.

example:

(set 'xml
 "<person name='John Doe' tel='555-1212'>nice guy</person>")

(xml-parse xml)
 (("ELEMENT" "person" ⇒

 (("name" "John Doe")
 ("tel" "555-1212"))
 (("TEXT" "nice guy"))))

Modifying the translation process.

xml-parse 284

newLISP Users Manual and Reference

Optionally, the int-options parameter can be specified to suppress whitespace, empty
attribute lists, and comments. It can also be used to transform tags from strings into
symbols. Another function, xml-type-tags, serves for translating the XML tags. The following
option numbers can be used:

option description

1 suppress whitespace text tags

2 suppress empty attribute lists

4 suppress comment tags

8 translate string tags into symbols

16 add SXML (S-expression XML) attribute tags

Options can be combined by adding the numbers (e.g., 3 would combine the options for
suppressing whitespace text tags/info and empty attribute lists).

The following examples show how the different options can be used:

XML source:

<?xml version="1.0" ?>
<DATABASE name="example.xml">
<!--This is a database of fruits-->
 <FRUIT>
 <NAME>apple</NAME>
 <COLOR>red</COLOR>
 <PRICE>0.80</PRICE>
 </FRUIT>

 <FRUIT>
 <NAME>orange</NAME>
 <COLOR>orange</COLOR>
 <PRICE>1.00</PRICE>
 </FRUIT>

 <FRUIT>
 <NAME>banana</NAME>
 <COLOR>yellow</COLOR>
 <PRICE>0.60</PRICE>
 </FRUIT>
</DATABASE>

Parsing without any options:

(xml-parse (read-file "example.xml"))
 (("ELEMENT" "DATABASE" (("name" "example.xml")) (("TEXT"⇒

"\r\n\t")
 ("COMMENT" "This is a database of fruits")
 ("TEXT" "\r\n\t")
 ("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME"
()
 (("TEXT" "apple")))
 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "COLOR" () (("TEXT" "red")))

xml-parse 285

newLISP Users Manual and Reference

 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "PRICE" () (("TEXT" "0.80")))
 ("TEXT" "\r\n\t")))
 ("TEXT" "\r\n\r\n\t")
 ("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME"
()
 (("TEXT" "orange")))
 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "COLOR" () (("TEXT" "orange")))
 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "PRICE" () (("TEXT" "1.00")))
 ("TEXT" "\r\n\t")))
 ("TEXT" "\r\n\r\n\t")
 ("ELEMENT" "FRUIT" () (("TEXT" "\r\n\t\t") ("ELEMENT" "NAME"
()
 (("TEXT" "banana")))
 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "COLOR" () (("TEXT" "yellow")))
 ("TEXT" "\r\n\t\t")
 ("ELEMENT" "PRICE" () (("TEXT" "0.60")))
 ("TEXT" "\r\n\t")))
 ("TEXT" "\r\n"))))

The TEXT elements containing only whitespace make the output very confusing. As the
database in example.xml only contains data, we can suppress whitespace and comments
with option (+ 1 3):

Filtering whitespace TEXT, COMMENT tags, and empty attribute lists:

(xml-parse (read-file "example.xml") (+ 1 2 4))
 (("ELEMENT" "DATABASE" (("name" "example.xml")) (⇒

 ("ELEMENT" "FRUIT" (
 ("ELEMENT" "NAME" (("TEXT" "apple")))
 ("ELEMENT" "COLOR" (("TEXT" "red")))
 ("ELEMENT" "PRICE" (("TEXT" "0.80")))))
 ("ELEMENT" "FRUIT" (
 ("ELEMENT" "NAME" (("TEXT" "orange")))
 ("ELEMENT" "COLOR" (("TEXT" "orange")))
 ("ELEMENT" "PRICE" (("TEXT" "1.00")))))
 ("ELEMENT" "FRUIT" (
 ("ELEMENT" "NAME" (("TEXT" "banana")))
 ("ELEMENT" "COLOR" (("TEXT" "yellow")))
 ("ELEMENT" "PRICE" (("TEXT" "0.60"))))))))

The resulting output looks much more readable, but it can still be improved by using symbols
instead of strings for the tags "FRUIT", "NAME", "COLOR", and "PRICE", as well as by
suppressing the XML type tags "ELEMENT" and "TEXT" completely using the xml-type-tags
directive.

Suppressing XML type tags with xml-type-tags and translating string tags into
symbol tags:

;; suppress all XML type tags for TEXT and ELEMENT
;; instead of "CDATA", use cdata and instead of "COMMENT", use
 !--

(xml-type-tags nil 'cdata '!-- nil)

xml-parse 286

newLISP Users Manual and Reference

;; turn on all options for suppressing whitespace and empty
;; attributes, translate tags to symbols

(xml-parse (read-file "example.xml") (+ 1 2 8))
 ((DATABASE (("name" "example.xml")) ⇒

 (!-- "This is a database of fruits")
 (FRUIT (NAME "apple") (COLOR "red") (PRICE "0.80"))
 (FRUIT (NAME "orange") (COLOR "orange") (PRICE "1.00"))
 (FRUIT (NAME "banana") (COLOR "yellow") (PRICE "0.60"))))

When tags are translated into symbols by using option 8, a context can be specified in sym-
context. If no context is specified, all symbols will be created inside the current context.

(xml-type-tags nil nil nil nil)
(xml-parse "<msg>Hello World</msg>" (+ 1 2 4 8 16) 'CTX)
 ((CTX:msg "Hello World"))⇒

Specifying nil for the XML type tags TEXT and ELEMENT makes them disappear. At the
same time, parentheses of the child node list are removed so that child nodes now appear as
members of the list, starting with the tag symbol translated from the string tags "FRUIT",
"NAME", etcetera.

Parsing into SXML (S-expressions XML) format:

Using xml-type-tags to suppress all XML-type tags—along with the option numbers 1, 4, 8,
and 16—SXML formatted output can be generated:

(xml-type-tags nil nil nil nil)
(xml-parse (read-file "example.xml") (+ 1 2 4 8 16))
 ((DATABASE (@ (name "example.xml")) ⇒

 (FRUIT (NAME "apple") (COLOR "red") (PRICE "0.80"))
 (FRUIT (NAME "orange") (COLOR "orange") (PRICE "1.00"))
 (FRUIT (NAME "banana") (COLOR "yellow") (PRICE "0.60"))))

Note that using option number 16 causes an @ (at symbol) to be added to attribute lists.

See also the xml-type-tags function for further information on XML parsing.

xml-type-tags

syntax: (xml-type-tags [expr-text-tag expr-cdata-tag expr-comment-tag expr-
element-tags])

Can suppress completely or replace the XML type tags "TEXT", "CDATA", "COMMENT", and
"ELEMENT" with something else specified in the parameters.

Note that xml-type-tags only suppresses or translates the tags themselves but does not
suppress or modify the tagged information. The latter would be done using option numbers
in xml-parse.

Using xml-type-tags without arguments returns the current type tags:

example:

xml-type-tags 287

newLISP Users Manual and Reference

(xml-type-tags) ("TEXT" "CDATA" "COMMENT" "ELEMENT")⇒

(xml-type-tags nil 'cdata '!-- nil)

The first example just shows the currently used type tags. The second example specifies
suppression of the "TEXT" and "ELEMENT" tags and shows cdata and !-- instead of
"CDATA" and "COMMENT".

zero?

syntax: (zero? expr)

Checks the evaluation of expr to see if it equals 0 (zero).

example:

(set 'value 1.2)
(set 'var 0)
(zero? value) nil⇒
(zero? var) true⇒

(map zero? '(0 0.0 3.4 4)) (true true nil nil)⇒

zero? will return nil on data types other than numbers.

(∂)

zero? 288

newLISP Users Manual and Reference

newLISP APPENDIX

Error codes

 not enough memory 1
 environment stack overflow 2
 call stack overflow 3
 problem accessing file 4
 not an expression 5
 missing parenthesis 6
 string token too long 7
 missing argument 8
 number or string expected 9
 value expected 10
 string expected 11
 symbol expected 12
 context expected 13
 symbol or context expected 14
 list expected 15
 list or symbol expected 16
 list or string expected 17
 list or number expected 18
 array expected 19
 array, list or string expected 20
 lambda expected 21
 lambda-macro expected 22
 invalid function 23
 invalid lambda expression 24
 invalid macro expression 25
 invalid let parameter list 26
 problem saving file 27
 division by zero 28
 matrix expected 29
 wrong dimensions 30
 matrix is singular 31
 syntax in regular expression 32
 throw without catch 33
 problem loading library 34
 import function not found 35
 symbol is protected 36
 error number too high 37
 regular expression 38
 missing end of text [/text] 39
 mismatch in number of arguments 40
 problem in format string 41
 data type and format don't match 42
 invalid parameter: 0.0 43
 invalid parameter: NaN 44
 illegal parameter type 45
 symbol not in MAIN context 46
 symbol not in current context 47
 target cannot be MAIN 48
 array index out of bounds 49

Error codes 289

newLISP Users Manual and Reference

 nesting level too deep 50
 user error 51
 user reset - 52
 received SIGINT - 53

TCP/IP and UDP Error Codes

 0: No error
 1: Cannot open socket
 2: Host name not known
 3: Not a valid service
 4: Connection failed
 5: Accept failed
 6: Connection closed
 7: Connection broken
 8: Socket send() failed
 9: Socket recv() failed
10: Cannot bind socket
11: Too much sockets in net-select
12: Listen failed
13: Badly formed IP
14: Select failed
15: Peek failed
16: Not a valid socket

TCP/IP and UDP Error Codes 290

newLISP Users Manual and Reference

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of

this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as "you". You accept the
license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could

GNU Free Documentation License 291

newLISP Users Manual and Reference

be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human
modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work's title, preceding the beginning of the body of the
text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a section "Entitled
XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

GNU Free Documentation License 292

newLISP Users Manual and Reference

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

GNU Free Documentation License 293

newLISP Users Manual and Reference

• B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• D. Preserve all the copyright notices of the Document.
• E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
• F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

• H. Include an unaltered copy of this License.
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of
a standard.

GNU Free Documentation License 294

newLISP Users Manual and Reference

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already includes a cover
text for the same cover, previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or publisher
of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts may
be placed on covers that bracket the Document within the aggregate, or the electronic

GNU Free Documentation License 295

newLISP Users Manual and Reference

equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the original English version of
this License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or a notice or
disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to
it, you have the option of following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

GNU Free Documentation License 296

newLISP Users Manual and Reference

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA. Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation's software and to any
other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

GNU GENERAL PUBLIC LICENSE 297

newLISP Users Manual and Reference

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the
Program" means either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most
ordinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an
announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

GNU GENERAL PUBLIC LICENSE 298

newLISP Users Manual and Reference

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that you
also do one of the following:

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance

GNU GENERAL PUBLIC LICENSE 299

newLISP Users Manual and Reference

of this License to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two

GNU GENERAL PUBLIC LICENSE 300

newLISP Users Manual and Reference

goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

(∂)

GNU GENERAL PUBLIC LICENSE 301

newLISP Users Manual and Reference

GNU GENERAL PUBLIC LICENSE 302

	Contents
	newLISP Users Manual
	1. Introduction
	newLISP-tk
	Licensing

	2. Deprecated functions and future changes
	3. Command-line options and directories
	Stack size
	Maximum memory usage
	Specifiying the working directory
	Suppressing the prompt and HTTP processing
	HTTP-only server mode
	Forcing prompts in pipe I/O mode
	newLISP as a TCP/IP server
	TCP/IP daemon mode
	inetd daemon mode
	Direct execution mode
	Logging I/O
	Command line help summary
	The initialization file init.lsp
	Directories on Linux, BSD, and Mac OS X
	Directories on Win32/newLISP-tk

	4. Shared library module for Linux/BSD versions
	5. DLL module for Win32 versions
	6. Evaluating newLISP expressions
	Integer data, floating point data, and operators
	Evaluation rules and data types

	7. Lambda expressions in newLISP
	8. nil, true, cons, and ()
	9. Arrays
	10. Dictionaries (hash tables)
	11. Indexing elements of strings, lists, and arrays
	Implicit indexing for nth
	Implicit indexing and the default functor
	Implicit indexing for rest and slice
	Implicit indexing for nth-set and set-nth

	12. Destructive versus nondestructive functions
	13. Dynamic and lexical scoping
	14. Early return from functions, loops, and blocks
	Using catch and throw
	Using and and or

	15. Contexts
	Scoping rules for contexts
	Changing scoping
	Symbol protection
	Overwriting global symbols and built-ins
	Variables containing contexts
	Sequence of creating or loading contexts
	Symbol creation in contexts

	16. Programming with context objects
	Late binding of context symbols
	The context default function
	Passing objects by reference
	Contexts as prototypes
	Lexical and static scoping in newLISP
	Serializing context objects

	17. XML, S-XML, and XML-RPC
	18. Customization, localization, and UTF-8
	Switching the locale
	Decimal point and decimal comma
	Unicode and UTF-8 encoding

	19. Commas in parameter lists
	20. Linking newLISP source and executable

	newLISP Function Reference
	1. Syntax of symbol variables and numbers
	Symbols for variable names
	Numbers

	2. Data types and names in the reference
	bool
	int
	num
	matrix
	str
	sym
	context
	sym-context
	func
	list
	array
	exp
	body

	3. Functions in groups
	List processing, flow control, and integer arithmetic
	Bit operators
	Floating point math and special functions
	Matrix functions
	Array functions
	Financial math functions
	Simulation and modeling math functions
	Time and date functions
	String and conversion functions
	Input/output and file operations
	Processes, pipes and threads
	File and directory management
	Predicates
	System functions
	HTTP networking API
	Socket TCP/IP and UDP network API
	Importing libraries
	newLISP internals API

	Functions in alphabetical order
	!
	$
	+, -, *, / ,%
	<, >, =, <=, >=, !=
	<<, >>
	&
	|
	^
	~
	abs
	acos
	acosh
	add
	address
	amb
	and
	append
	append-file
	apply
	args
	array
	array-list
	array?
	asin
	asinh
	assoc
	atan
	atan2
	atanh
	atom?
	base64-dec
	base64-enc
	bayes-query
	R.A. Fisher Chi² method
	Chain Bayesian method
	Specifying probabilities instead of counts

	bayes-train
	begin
	beta
	betai
	binomial
	callback
	case
	catch
	ceil
	change-dir
	char
	chop
	clean
	close
	command-line
	cond
	cons
	constant
	context
	context?
	copy-file
	cos
	cosh
	count
	cpymem
	crc32
	crit-chi2
	crit-z
	current-line
	curry
	date
	date-value
	debug
	dec
	define
	define-macro
	def-new
	default
	delete
	delete-file
	det
	device
	delete-url
	difference
	directory
	directory?
	div
	doargs
	dolist
	dotimes
	dotree
	do-until
	do-while
	dump
	dup
	empty?
	encrypt
	ends-with
	env
	erf
	error-event
	error-number
	error-text
	eval
	eval-string
	exec
	exit
	exists
	exp
	expand
	explode
	factor
	fft
	file-info
	file?
	filter
	find
	Find an expressions in a list
	Find a string in a string

	find-all
	first
	flat
	fn
	float
	float?
	floor
	flt
	for
	for-all
	fork
	format
	fv
	gammai
	gammaln
	gcd
	get-char
	get-float
	get-int
	get-long
	get-string
	get-url
	global
	if
	ifft
	import
	inc
	index
	int
	integer?
	intersect
	invert
	irr
	join
	lambda
	lambda-macro
	lambda?
	last
	legal?
	length
	let
	letex
	letn
	list
	list?
	load
	local
	log
	lookup
	lower-case
	macro?
	main-args
	make-dir
	map
	mat
	match
	max
	member
	min
	mod
	mul
	multiply
	name
	NaN?
	net-accept
	net-close
	net-connect
	UDP communications
	UDP multicast communications
	UDP broadcast communications

	net-error
	net-eval
	Raw mode

	net-listen
	UDP communications
	UDP multicast communications

	net-local
	net-lookup
	net-peek
	net-peer
	net-ping
	net-receive
	net-receive-from
	net-receive-udp
	net-select
	net-send
	net-send-to
	net-send-udp
	net-service
	net-sessions
	new
	nil?
	not
	normal
	now
	null?
	nper
	npv
	nth
	nth-set
	number?
	open
	or
	ostype
	pack
	parse
	parse-date
	peek
	pipe
	pmt
	pop
	post-url
	Additional parameters

	pow
	pretty-print
	primitive?
	print
	println
	prob-chi2
	prob-z
	process
	push
	put-url
	Additional parameters

	pv
	quote
	quote?
	rand
	random
	randomize
	read-buffer
	read-char
	read-file
	read-key
	read-line
	real-path
	ref
	ref-all
	regex
	remove-dir
	rename-file
	replace
	List replacement
	List removal
	String replacement without regular expression
	Regular expression replacement

	replace-assoc
	reset
	rest
	reverse
	rotate
	round
	save
	search
	seed
	seek
	select
	semaphore
	sequence
	series
	set
	setq
	set-locale
	set-nth
	sgn
	share
	signal
	silent
	sin
	sinh
	sleep
	slice
	sort
	source
	sqrt
	starts-with
	string
	string?
	sub
	swap
	sym
	symbol?
	symbols
	sys-error
	sys-info
	tan
	tanh
	throw
	throw-error
	time
	time-of-day
	timer
	title-case
	trace
	trace-highlight
	transpose
	trim
	true?
	unicode
	unify
	unique
	unless
	unpack
	until
	upper-case
	utf8
	utf8len
	uuid
	wait-pid
	while
	write-buffer
	write-char
	write-file
	write-line
	xml-error
	xml-parse
	xml-type-tags
	zero?

	newLISP APPENDIX
	Error codes
	TCP/IP and UDP Error Codes
	
GNU Free Documentation License
	GNU GENERAL PUBLIC LICENSE

