h " The XMP Toolkit
Adobe

Version 2.9

May 13, 2002

ADOBE SYSTEMS INCORPORATED
Corporate Headquarters

345 Park Avenue

San Jose, CA 95110-2704

(408) 536-6000
http://www.adobe.com

Copyright © 2001 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No
part of this publication (whether in hardcopy or electronic form) may be reproduced or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, Acrobat, PostScript, the PostScript logo, and XMP are either
registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. Windows and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Apple,
Macintosh, and QuickTime are trademarks of Apple Computer, Inc., registered in the United
States and other countries. UNIX is a trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd. All other trademarks are the property of
their respective owners.

This publication and the information herein is furnished AS IS, is subject to change
without notice, and should not be construed as a commitment by Adobe Systems
Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for
any errors or inaccuracies, makes no warranty of any kind (express, implied, or
Statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes, and noninfringement of
third party rights.

Note: Contents

Chapter 1 Prefacel

1.1 AboutThisDocument e 1
1.2 Audience. L e 1
1.3 AsSSUMPLIONS e e e e e e e 1
1.4 How This DocumentIs Organized i 1
1.5 Conventions used inthisDocument e 2
1.6 Where to Go for More Informationo 2

Chapter 2 The XMP Toolkit3

2.1 OVEIVIEW o o e e e 3
22 The XMPToolkit e e e e e 3
2.3 Implementation Notes e 4
231 OVEIVIEW o o e e e 4
2.3.2 Construction and Destruction e 4
2.3.3 Memory Management. e e e e e e 5
2.3.4 Styleand Conventions. 5

Chapter 3 MetaXAP. 0.9

3.1 MetaXAP OVEIVIEW ot e e e e e e 9
3.2 Introduction. L e e 9
3.3 Path Composition e 10
3.3.1 XPathSyntax 12

3.4 PropertyValue Features e 14
3.5 Standard Attributes. e 15
3.6 MetaXAP Class e e 15
3.6.1 Storage Management e e e e e e 15

3.7 Important Types Used InMetaXAP e 16
3.7.1 Namespace Constants i e e 18

3.8 MetaXAP Member Functions e 19
3.9 MetaXAP Static Functions (Class Methods) 37
3.10 XAPPathsClass e e 43

Chapter 4 UtilityXAP45

The XMP Toolkit Version 2.9, May 13, 2002

4.1 UtilityXAP
4.2 UtilityXAP Static Functions (Class Methods).

Appendix A XMP Toolkit Exceptions .
Appendix B Runtime Flow of Control.

Appendix C XMP Toolkit Function List .

Version 2.9, May 13, 2002

.63

.67

AT

The XMP Toolkit

Preface

1.1 About This Document

This Preface contains information about this document, describes its organization and the
conventions used in the document, and where to go for additional information.

1.2 Audience

The audience for this document includes devel opers of applications who have licensed the
XMP Toolkit.

1.3 Assumptions

This document assumes that you are familiar with the XM P specification, and that you are
familiar with C++ and an appropriate development environment.

1.4 How This Document Is Organized

In addition to this preface, this document consists of the following chapters:

Chapter 2: The XMP Toolkit
Contains an overview of the XMP Toolkit, and a short section on implementation notes.

Chapter 3: MetaXAP

Describes the MetaX AP Class, which provides tools for reading, writing, and manipulating
XMP metadata. MetaX AP is the primary interface to the XMP Toolkit.

Chapter 4: UtilityXAP

Describes the Utility XAP class, avariety of special purpose utilities to simplify common uses
of MetaXAP.

Appendix A: XMP Toolkit Exceptions

Liststhe C++ exceptions that can be raised through the use of the XMP Toolkit member
functions.

Appendix B: Runtime Flow of Control

Provides a detailed roadmap that follows the most important paths through the code.

The XMP Toolkit Version 2.9, May 13, 2002

1 Preface
Conventions used in this Document

Appendix C: XMP Toolkit Function List
Lists the XMP Toolkit functions along with a brief description of what each one does.

1.5 Conventions used in this Document

The following type styles are used for specific types of text:

Typeface Style Used for:

Serifed Roman Italic Caps Values. For example, TRUE, NULL, etc.

Sans serif bold XMP property names. (Always prefaced with “xap” and
asingle colon. For example: xap:MetadataDate.

Monospaced Regul ar All C++ Code, function parameters, file names, etc.

Monospaced Bol d Member function namesin text

1.6 Where to Go for More Information

The main reference to be used in conjunction with this document is XMP — Extensible
Metadata Platform, which contains the specification of XM P schemas, properties, value types,
and the interchange format.

In addition, the following Internet standard may be of use (alonger list of standards used in
XMPisincluded in XMP — Extensible Metadata Platform):

|ETF Standard for Language Element Values (RFC 1766):
http://www.ietf.org/rfc/rfc1766.txt?number=1766

2 Version 2.9, May 13, 2002 The XMP Toolkit

http://www.ietf.org/rfc/rfc1766.txt?number=1766

2.1

2.2

The XMP Toolkit

The XMP Toolkit

Overview

This document describes the XMP Toolkit which was designed to help applications with
handling XMP operations such as the creation and manipulation of metadata. The availability
of the Toolkit makes it easier for developers to support XM P metadata, and helps to
standardize how the data is represented and interchanged. The XMP Toolkit can be licensed,
royalty-free, from Adobe Systems.

This chapter includes a brief overview of the key features of the Tookit and provides some
basic implementation notes.

The XMP Toolkit

The XMP Toolkit features a C++ interface which uses some modern (ANSI) features, such as
exceptions, STL strings, and bool. It uses conservative coding and interface design for
maximum portability and to make it easier for applications to adopt.

NoTe: Many namespaces, keywords, and related namesin this document are prefaced with the
string “ XAP", which was an early internal code name for XM P metadata. Because
Acrobat 5.0 used those names, they were retained for compatibility purposes.

The XMP Toolkit consists of two parts:

« MetaXAP manages the metadata for a managed resource such as an application document
file. It defines the objects that act as containers for properties relating to a specific
document, and is the primary interface to the XM P Toolkit. MetaX AP provides the top
level abstraction for metadata about a document. Nodes are accessed via string pathnames
which use asmplified form of XPath strings (XML Path Language:
http://www.w3.org/Tr/xpath)

« UtilityXAP provides a variety of special purpose utilitiesto simplify common uses of
MetaX AP. For example, MetaX AP reads and writes property values as strings. UtilityX AP
has services that include conversion to or from integers and other types.

XMP metadata properties are organized by schemas (see The XMP Metadata Framework for
more information about XMP schemas). In RDF, the schemais defined by a namespace
attribute. Within each schema, properties are named via a path string. This path string has a
very simple syntax which is modelled on the X Path standard.

The full XMP data model is supported, including values that are ssimple literals, nested
descriptions, and structured containers. Applications should include only the XAPTool ki t . h
file, and optionally the Wt i |'i t yXAP. hfile.

In addition, the following points apply to the XMP Toolkit:

Version 2.9, May 13, 2002

http://www.w3.org/Tr/xpath
http://www.w3.org/Tr/xpath

The XMP Toolkit
Implementation Notes

2.3

2.3.1

2.3.2

o Ituses STL <string> and <stdexcept>.
« Error conditions are handled with exceptions.

« Theredease version of the Toolkit will not call exi t () or abort () (Debug configuration
usestheassert () macro).

o All strings are UTF-8 encoded.
o Passing NULL as aparameter isafatal error unless otherwise specified.

Also, the XMP Toolkit provides minimal thread safety, as follows. multiple threads accessing
distinct objects are thread-safe (no globals), and multiple threads accessing the same shared
object are thread-safe for read operations, including enumeration/iteration. If any thread
wishes to do awrite while there may be other threads doing reads, the client is expected to
provide mutual exclusion. Also, certain globally static structures are not locked: the client is
expected to provide mutual exclusion, asindicated in the descriptive text.

Implementation Notes

The following sections give an overview of how the Toolkit is put together. You should read
this document in combination with the commentsin various header files. Begin with the
implementation notesin this chapter, and then progress to the introductory sections of the
chapters on the MetaX AP and UtilityX AP classes. For a detailed view of how the XMP
Toolkit works, see Appendix B, “Runtime Flow of Control.”

Overview

The XMP Toolkit implements one main object, MetaXAP. UtilityXAP is a collection of static
utility functions. Various smaller objects, such as XAPClock and XAPPaths, are used to
support the main objects. They are described later in this document.

Construction and Destruction

Most clients start by constructing a MetaX AP object.

Asexplained in the Met aXAP. h header file, MetaX AP is a Handle class. The only member
variable isthe opaque XAPTk_Dat a* m dat a. At construction time, anew XAPTk_Data
object is created. See XAPTkDat a. h for its member variables, which are initialized on
construction.

The MetaX AP constructor that takes a X APClock creates an object capable of tracking
changes to the metadata with timestamps.

The MetaX AP constructor that also takes abuffer of XML isaconvenience. It is equivalent to
calling the default constructor, and immediately calling Met aXAP: : par se.

Version 2.9, May 13, 2002 The XMP Toolkit

2.3.3

2.3.4

The XMP Toolkit

The XMP Toolkit
Implementation Notes

A MetaX AP object can be used without parsing. You just create propertiesin it with
Met aXAP: : set and Met aXAP: : cr eat eFi r st | t em However, most objects will befilled
up by parsing XML. Thisis done with the Met aXAP: : par se function.

Copy construction for MetaX AP is prohibited. Instead, aCl one static function is provided.
These objects manage large and complex data structures, making unintentional copy
construction very expensive, which iswhy they are prohibited.

Destruction deletes the XAPTk_Dat a object, which in turn deletes al of the memory allocated
for its member variables.

Memory Management

Any non-const data structure returned to the client is a copy. It is up to the client to freeiit.
Const structures are owned by the XMP Toolkit.

When strings and other data structures are output parameters for functions, they are specified
as non-const reference variables. This guarantees that storage control remains with the client.
Direct return of objectsis avoided in order to avoid unintended copy construction.

Style and Conventions

Thefollowing isan unordered list of itemsthat will help you understand and navigate through
the code.

Naming Styles

Table 2.1, “Naming Styles used in the XMP Toolkit” lists the naming styles used for the XMP
Toolkit.

TAaBLE 2.1 Naming Styles used in the XMP Toolkit

Item Naming Style
Types Ti t| eCase, sometimes with: Pref i x_Under bar
Module Functions Titl eCase

Class Static Functions Titl eCase (A assNane: : Ti t| eCase)
Member Functions i nitial Lower M xedCase
Public Enum Members xap_al | _| ower _case_wi t h_underbars

Private Enum Members i niti al Lower M xedCase

Version 2.9, May 13, 2002 5

The XMP Toolkit
Implementation Notes

Names Of Constants And Types

Public types, particularly enums, begin with “XAP" with no underbar. Examples are
XAPFeat ur es and XAPSt r uct Cont ai ner Type. Most are defined in XAPDef s. h, though a
few are defined in the class header file that they are most closely associated with.

Public constants, such as namespace names, begin with “XAP” . For example, XAP_NS XAP.
These are also defined in XAPDef s. h.

Public enum members begin with “xap_". For example, xap_bag.

Package constants begin with “XAPTK ”. Most are defined in XAPTkdef s. h. For example:
XAPTK_ATTR XM._LANG

Names Of Exceptions

With the exception of xap_no_mat ch, all exceptions begin “xap_bad” and are derived from
either xap_error (same sense asthe JavaError class), or xap_cl i ent _faul t (samesenseas
the Java Exception class). See XAPExcept . h.

XAPTk_Composite Types, Module Symbols

The header file XAPChj W apper . h contains data-structure typedefs built up from STL
building blocks. The naming convention for these, are as follows:

TABLE 2.2 Typedef Naming Convention

STL Name Pattern Example

std:: map XAPTK_{ Foo} By{ Bar} XAPTK_StringByString
std: :vector XAPTK_Vect or Of { Foo} XAPTK_Vector(f String
std::pair XAPTk_Pai r O { Foo} XAPTKk_Pair String
std::stack XAPTK St ack(f { Foo} XAPTK_StackCf String

Where{ Foo} and {Bar} areone of the abbreviations (that is, either the“Stri ng” or “Pair”)
in the second column in the following table:

Expression Abbreviation
std::string String
std::pair Pai r

There are also some types in the XAPTk: : nanespace that are more implementation specific.
In these cases{ Foo} or { Bar} describe the intended usage, rather than the base type, for
example:

6 Version 2.9, May 13, 2002 The XMP Toolkit

The XMP Toolkit

The XMP Toolkit
Implementation Notes

XAPTK: : Vect or O Pr ops
XAPTK: : St ackCf NSDef s

The name of aclassisused as a prefix for package global functions. For example,
Met aXAP_Col | ect Al i ases isaglobal function defined in Met aXAP. cpp.

On the other hand, when { class} _is used as a prefix for variables, it means they are module
stetic (private). For example, Met axXAP_nsMap is a static module function of Met aXAP. cpp.

As described above, XAPTk _ was used prior to the introduction of the XAPTK: : namespace.

Version 2.9, May 13, 2002

The XMP Toolkit
Implementation Notes

8 Version 2.9, May 13, 2002 The XMP Toolkit

3.1

3.2

The XMP Toolkit

MetaXAP

MetaXAP Overview

This section describes the MetaX AP Class of the XMP Toolkit, which is used to read, write,
and manipulate XM P metadata embedded in, or associated with, managed resources.

Introduction

MetaX AP is a container class equivalent to the <RDF>...</RDF> element.

A single instance of the MetaX AP class represents the metadata about one resource
(applicationfile). A MetaX AP object contains the internal tree representation of aparsed XML
stream of XMP metadata. The nodes of thistree are accessed through namespace and
pathname strings. Input and output is based on a very simple cross-platform buffer-stream
mechanism. Basically, you construct MetaX AP with a buffer of XML, you do read/writes on
the in-memory model, and then you get a buffer of potentially modified XML back.

MetaX AP enables clients to:

« define namespaces

o Qet and set property values and attributes
o parse existing RDF metadata

» seridlizeaMetaX AP object to RDF

« enumerate al of the properties, associated with aresource, by schema, or all properties at
and below a specified partia path

MetaX AP also provides a static set of known schema namespace hames (see Table 3.4,
“Schema Namespace Constants”) which are provided as constants. When specifying a
property name, you can specify anamespace prefix only when anested property isdefinedin a
namespace other than the parent property. This can happen when a property has a structured
value.

Figure 3.1 shows a diagram of a MetaX AP tree. Properties are organized by schema name.
Each property can be accessed with a path string, as described below.

Version 2.9, May 13, 2002

MetaXAP
Path Composition

FIGURE 3.1 MetaXAP Tree Diagram

~ ~

ﬁ Schema

Schema

“http://ns.adobe.com/” “http://purl.org/

dc/elements/1.0/”

Property Property Property
“Author” “Keywords” Attribute itle” Attribute
l “xml:lang” “xml:lang”
2
“John Smith”
“API" “metadata” “The XMP “La Specifica
“an-us” Toolkit” Di XMP “it”
Toolkit”

Schema

“http://ns.adobe.com/
xap/1.0/s/” \

Property

“File Disposition”

Legend:

Data structure

Schema name

O Namespace /

Property Property Property
“0os” “path” “name” Path element

l l :

“UNIX” “http://atg/projects/ “xmptk.html”
xmp/”

3.3 Path Composition

The MetaX AP object contains one or more trees that represent the metadata properties. Any
value (leaf node) can be directly accessed by composing a path to the value using a string

10 Version 2.9, May 13, 2002 The XMP Toolkit

The XMP Toolkit

MetaXAP
Path Composition

notation. Containers and attributes may also be addressed with these path strings.

The path notation is modelled on the X Path standard, but uses a very narrow subset of the
standard. This means that paths that are valid for MetaX AP are also valid in ageneral XPath
implementation. The converse is not true: general X Path expressions are not necessarily valid
paths for MetaX AP,

The paths specified to the MetaX AP abject are al relative to an implicit document root. The
path for the Name property is“Name”, not “/ Namre”.

The paths are not literal paths that match the RDF representation exactly. For one thing, there
are multiple RDF serializations which generate the same abstract tree. Paths are normalized to
the simplified representation exemplified by the diagram above. When in doubt, use paths that
are returned by the enumerate functions.

The most obvious consequence of thisisthat when referring to structured containers, the
actual element that represents each item, r df : | i , iselided. This means that all items of a
container are referred to with awild card in place of ther df : i item,eg., “title/*[1]",
isthefirst title alternative.

Here are some examples which are based on the diagram in Figure 3.1.

The pathsto all of the values (leaf nodes) associated with the “http://ns.adobe.com/xap/1.0/”
namespace (XAP_NS_XAP), and the values as returned are:

Path Value

Aut hor John Smith
Keywor ds/ *[1] API
Keywor ds/ *[2] metadata

The paths to al of the values (leaf nodes) associated with the
“http://purl.org/dc/elements/1.0/” namespace (XAP_NS_DC), and their values, are:

Path Value

title/*[@m:lang="en-us'] TheXMP Toolkit Specification
title/*[@m:lang="it"] La Specifica Di XMP Toolkit

For containers, you may usethe“l ast () ” function to specify the last item in the container,
whatever it may be. So, for example, the Italian alternative of the title can be found at
“title/*[last()]".

Also, you can use ordinal numbersto select itemsin acontainer. Thefirst itemis“1”. Thus,
the English version of thetitle can be accessed withthepath“titl e/ *[1] ".

Version 2.9, May 13, 2002

11

MetaXAP
Path Composition

The pathsto all of the values (leaf nodes) associated with the “ http://ns.adobe.com/xap/1.0/5/"
namespace (XAP_NS_XAP_S), and their values, are:

Path Value

Fil eDi sposition/*[1]/os URL
FileDi sposition/*[1]/path http://atg/projects/xmp/

Fi | eDi sposition/*[1]/ name xapi.html

In most cases, the path is specified all the way to aleaf node, but in some cases, it is useful to
specify an intermediate node, such as for the count method below. Simply compose the path to
the name of the node, and use the appropriate count terminator (‘*’ for element children). For
example, to count the number of items that the title container has, pass the “title/*” path.

3.3.1 XPath Syntax

A MetaX AP object contains an XML tree. Any node can be accessed by composing a path to
the node. These paths can be simply encoded in a string. You cannot use afully general XPath
in the XMP Toolkit. You must use paths that conform to the very narrow subset specified
below.

The path notation is modelled on the X Path standard, but uses a very narrow subset of the
standard. This means that paths that are valid for MetaX AP are also valid in a general XPath
implementation. The converseis not true: general X Path expressions are not necessarily valid
paths for MetaX AP.

The following is a complete BNF of the XMP path composition grammar:

pat h ;= propPath | attrPath
attrPath ::= propPath '/' attr

propPath ::= nane | propPath '/' expr

Qane = nane | nane ':' name

expr =Qwne | "*[' pred ']’

pred =ordinal | 'last()' | Qwne '= literal | attr '= litera
attr ='@ Qe

No productions are given for name, literal, or ordinal. The only allowed attribute nameis
“xml:lang”. An ordinal is any positive, non-zero decimal integer. A nane isanon-qualified
name (NCName) from the XML namespace grammar. Basically, a name consists of aletter or
underscore followed by zero or more letters, digits, underscores, hyphens, or periods (for more
details, see http://www.w3.0rg/TR/REC-xml-names).

A literal isanormal XML quoted string; that isit is surrounded with quotes (') or apostrophes
() and does not contain the quoting character. If it is necessary to use a quote or apostrophein
aliteral, usethe HTML character entity names“" ; ” or “' ", respectively (that is,
using character entities as escaped versions of those characters).

12 Version 2.9, May 13, 2002 The XMP Toolkit

http://www.w3.org/Tr/xpath
http://www.w3.org/TR/REC-xml-names

MetaXAP
Path Composition

There are implied prefixes and functions to the path . The implied prefix is derived from the
context of the tree. Paths are always relative to that context, and begin with a child of the
document node. Theimplied function for element and attribute leaf nodesis*“t ext () ”, which
matches all text node children of the current context node (as specified in the full XPath
grammar, but not in this subset). See the member function descriptions and derived classes for
additional context implications.

Hereis an example of asimple RDF tree that we'll use to illustrate the syntax:

<rdf: RDOF xm ns: rdf =" http://ww w3. or g/ 1999/ 02/ 22-r df - synt ax- ns#' >
<rdf: Description about="" xmns:ex=" http://ns. adobe. coniex/0.0/"' >
<ex: si npl e>0</ ex: si npl e>
<ex: struct rdf: parseType=' Resource' >
<ex: a>1</ex: a>
<ex: b>2</ ex: b>
</ ex:struct>
<ex: set >
<r df : Bag>
<rdf:li rdf: parseType=" Resource' >
<ex: a>3</ex: a>
<ex: b>4</ ex: b>
<frdf:li>
<rdf:li rdf: parseType=" Resource' >
<ex: a>b</ ex: a>
<ex: b>6</ ex: b>
<frdf:li>
</ rdf: Bag>
</ ex: set>
<ex:text xnm:lang="en' >English text.</ex:text>
<ex: one- of >

<rdf: At>
<rdf:l1i xm:lang="en-us' >trunk</rdf:li>
<rdf:l1i xm:lang="en-gb' >boot</rdf:li>
</rdf: A t>

</ ex: one- of >
</ rdf: Descripti on>
</ rdf . RDF>

The paths to all of the leaf nodes in the RDF exampl e given above, are shown in Table 3.1.

TABLE 3.1 Path Examples

Path Value

sinmpl e 0

The XMP Toolkit Version 2.9, May 13, 2002

MetaXAP
Property Value Features

Path Value
struct/a 1
struct/b 2
set/*[1]/a 3
set/*[1] /Db 4
set/*[2]/a 5
set/*[2]/b 6

text/ @m : 1 ang en

t ext English text
one-of / *[@nl : | ang=' en-us'] trunk

one-of / *[@nl : |l ang=' en-gb'] boot

3.4 Property Value Features

Table 3.2 lists the features that modify the getting and setting of property values.

TABLE 3.2 Property Value Feature Bits.

Feature Bit Meaning
XAP_FEATURE_NCNE No features, valueis literal text.
XAP_FEATURE XM Value should be interpreted as XML. Example,

“<DOC>Text </ DOC>". When setting the property, your raw
XML isconverted by MetaX AP into literal text, with appropriate
character entities for parsing characters. The property is stored
using an rdf:value, and qualified withi X: i s, whosevaueis
“XML”.

XAP_FEATURE RDF RESOURCE VaueisaURI storedasanr df : r esour ce.

XAP FEATURE RDF VALUE Value is stored with an rdf:value. This bit is not set for
XAP_FEATURE XM_, even though it usesr df : val ue.

All features bits are mutually exclusive except that XAP_RDF_ RESOURCE can be combined
with XAP_RDF_ VAL UE.

14 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
Standard Attributes

3.5 Standard Attributes

Only one standard attribute is supported, thexm : | ang attribute.

Attribute Usage

xn : 1 ang Specia “xml:” namespace. Specifies the language/locale of the
value. Uses RFC 1766 language codes.

3.6 MetaXAP Class

XMP metadata is a document-ordered collection of RDF description objects. These
description objects are parsed and normalized. Properties in the description objects are
organized by their schema name.

3.6.1 Storage Management

MetaX AP uses standard <mal | oc. h> and <new> alocators. These alocators may be
overridden at XMP Toolkit compile time by defining the XAP_CUSTOM_ALL CC definitions,
and providing an implementation xap_custom _alloc.h file. See XAPTKAlloc.h for more details.

All data passed to MetaX AP is copied. All datareturned from MetaX AP is a copy that the
client isresponsible for freeing. When the MetaX AP class is destroyed, all of itsinternally
alocated memory is freed.

In order to alow for flexible implementation of internal storage management, clients should
know the following:

o MetaXAPto MetaX AP assignment is prohibited.
o The MetaX AP copy constructor is prohibited.

The XMP Toolkit Version 2.9, May 13, 2002 15

MetaXAP
Important Types Used In MetaXAP

3.7 Important Types Used In MetaXAP

XAPDateTime
typedef struct {

short sec; /1 seconds after the mnute - [0, 59]

short mn; /1 mnutes after the hour - [0, 59]

short hour; /1 hours since mdnight - [0, 23]

short nday; /1 day of the month - [1,31]

short rmont h; /1 month of the year - [1,12]

short vyear; /1 years since 1900 (can be negative!)
short tzHour; /1 hours +ahead/-behi nd UTC - [-12,12]
short tzMn; /1 mnutes offset of UTC - [0, 59]

| ong nano; /1 nanoseconds after second (if supported)
| ong seq; /1 sequence nunber (if nano not support ed)

} XAPDat eTi ne;

This structure is used to represent dates and times from metadata, and timestamps for media
management and metadata merging. If the system clock used for timeis capabl e of sub-second
resolution, the nano field can be used to represent the sub-second value. If the system clock is
not capable of sub-second resolution, the seq field should be used to guarantee unique
timestamps. If seq is zero, the nano field contains a valid sub-second value. See

Met aXAP: : XAPCl ock below.

MetaXAP:: XAPClock

cl ass XAPC ock {
publi c:
virtual void
timestanp (XAPDateTine& dt) = O;
pr ot ect ed:
virtual ~XAPd ock() {};

};

Description

Clients provide the clock used for creating timestamps. MetaX AP will never try to delete a
XAPClock object.

Even though the XAPDat eTi ne data structure includes time zone information, XAPCl ock
should only generate GMT (UTC) timestamps. Code that uses Met aXAP: : XAPCl ock will
check to make sure that thet zHour andt zM n fields are zero. If either isnot, a
xap_bad_nunber exception will be thrown.

The seq field of XAPDat eTi e alows flexible implementation of the timestamp function.
Consider an implementation based on a system clock that only guarantees time resolution to
the second. Since it islikely that metadata changes will happen in far less than a second, an
implementation like the following could be used:

16 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
Important Types Used In MetaXAP

class MyXAPd ock : public XAPAQ ock {

public:
| ong m seq; // Internal counter
struct tmmlast; // Last tinestanp

virtual void
timestanp (XAPDateTi me& dt) {
struct tmnow = sysclock(); // 1-second resol ution

if (/* ... now=mlast ... */) {
dt.seq = ++mseq;
} else {
mlast = now,
mseq = 1,
}
/[* ... convert nowto XAPDateTinme, and assign to dt ... */

dt.seq = mseq;
dt.nano = 0; // W are using seq

Note that the seq field isinitialized to 1. The value O for seq is reserved to indicate that the
nano field should be used instead. If seq is hon-zero, nano should be set to 0.

If the system clock has better than second resol ution, to the extent that consecutive calls to
timestamp will never result in the same time, the nano field can be set to the sub-second value
instead, and seq should be set to 0.

MetaXAP::XAPChangeBits
typedef |ong int XAPChangeBits;

Description

Each timestamp record includes an indication of how the property was last changed. Only one
bit is set for any given record, except that XAP_CHANGE_SUSPECT may also be set for any
record. This means that only the most recent change is ever recorded. Each bit is described in
Table 3.3.

The XMP Toolkit Version 2.9, May 13, 2002 17

18

MetaXAP

Important Types Used In MetaXAP

TABLE 3.3 XAP Change Bits

Change Bit Meaning

XAP_CHANGE NONE No change bits are set.
XAP_CHANGE _CREATED Property was created (defined).
XAP_CHANGE SET Property value was set.

XAP_CHANGE_REMOVED
XAP_CHANGE_FORCED

XAP_CHANGE_SUSPECT

Property was removed (undefined)
The timestamp for this property was forced to a specified value.

Thereisreason to believe that the timestamp record isinvalid.

3.7.1 Namespace Constants

Use these namespace constants for the specified schema descriptions.

TABLE 3.4 Schema Namespace Constants

Constant Schema Description
XAP_NS XAP XMP Core Schema

XAP_NS XAP_G XMP Graphics
XAP_NS XAP G | MG XMP Graphics: Image
XAP_NS XAP DYN XMP Dynamic Media
XAP_NS XAP DYN A XMP Dynamic Media: Audio
XAP_NS XAP DYN V XMP Dynamic Media: Video
XAP NS XAP T XMP Text

XAP_NS XAP T PG
XAP_NS_XAP R GHTS
XAP_NS XAP MM
XAP_NS_XAP S
XAP_NS_XAP BJ

XAP_NS_PDF

XMP Text: Paged Text
XMP Rights Management
XMP Media Management
XMP Support

XMP Basic Job Ticket
Adobe PDF

Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Constant Schema Description
XAP NS USER XMP User Defined
XAP_NS DC Dublin Core

XAP_NS RDF RDF

3.8 MetaXAP Member Functions

public default constructor
Met aXAP ()

Description
Creates an empty object with no clock.

public construct empty with clock
Met aXAP (XAPd ock* cl ock);

Description

Creates an empty object with a clock. If the XAP_OPTI ON_AUTO_TRACK option is enabled,
timestamps will be kept per-property for all changes, and the xap:MetadataDate will be set to
the last modified time of any change.

Exceptions
bad al | oc, xap_bad_nunber

The clock must not be NULL. This constructor will test the clock implementation to make
sure it generates GMT (UTC) time (the timezonefields t zHour and t zM n must both be
zero). If thistest fails, this constructor will throw axap_bad_nunber exception.

The XMP Toolkit Version 2.9, May 13, 2002 19

20

MetaXAP

MetaXAP Member Functions

public construct from buffer

Met aXAP (const char* xm buf ,
const long int | en,
const long int opt = XAP_OPTI ON_DEFAULT,
XAPC ock* clock = NULL);
Description

Constructs a populated MetaX AP from a single buffer of raw XML. The buffer isfed into an
XML parser, and the MetaX AP is popul ated with sub-objects. If there are multiple buffers, use
the default constructor instead and call par se.

The specified options opt are enabled immediately after the empty MetaX AP instance is
created. Thisis particularly useful for enabling auto-tracking to capture creation dates for
properties as they are parsed (assuming they don’t already have timestamps).

If cl ock isNULL, no automatic tracking is done. Either the client does it manually with the
get/set timestamp functions (listed below), or no timestamps are generated for this metadata.

MetaXAP destructor

virtual ~MetaXAP ();

Description
Destroy this object and all internally allocated memory.

MetaXAP::append

typedef |ong int XAPFeat ures;
virtual void
append (const std::string& ns,
const std::string& path,
const std::string& value,
const bool inFront = fal se,
const XAPFeat ures f = XAP_FEATURE DEFAULT);

Description

Creates a new property with the specified val ue, and adds it next to the property specified by
namespace ns and pat h. The path must specify a property in a structured container. The

i nFront parameter says whether to place the new value before or after the named position.
To add a property to the end of a container, usethe“l ast () " specifier, for example,
“title/*[last()].” Toaddaproperty or attribute to the beginning of acontainer or list of
attributes, use the pattern “*[1] ” in the path and pass TRUE for i nFr ont .

Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

The append function is not supported for attributes.

Examples
m append (XAP_ NS XAP, "FileD sposition/*[last()]/os", "UR");
m append (XAP_ NS XAP, "title/*[1]", "First Title", true);

All properties related to the specified property by alias or actual value that are also containers
are appended as well (see Vet aXAP: : Set Al i as). For example, suppose Car is an alias of
Vehicle, and Auto is an alias of Vehicle. If any of Car, Auto, or Vehicle is appended, all that are
containers are appended as well.

Exceptions

bad_al |l oc, xap_bad_path, xap_bad _type, xap_bad_nunber,
xap_bad_schena

Throws exceptions for syntactically invalid paths, and for attempting to append to a property
that isnot astructured container. Throwsxap_bad_nunber if the specified ordinal isbeyond
“l'ast () ". Throwsxap_bad_schenm if ns isnot registered or invalid.

MetaXAP::count

virtual size_t
count (const std::string& ns,
const std::string& path) const;

Description
Returns the number of items in the structured container specified by ns and pat h.

Example
sizet n=mcount (XAP_NS DC "title/*"); [/ nunber of |anguage alts

Exceptions
bad al |l oc, xap_bad path, xap bad_schema

Throwsxap_bad_pat h for syntactically invalid paths, or if the path does not end with “*”.
Throwsxap_bad_schema if ns isnot registered or invalid.

The XMP Toolkit Version 2.9, May 13, 2002 21

MetaXAP
MetaXAP Member Functions

MetaXAP::createFirstitem

There are two variations:

Variation #1;

typedef |ong int XAPFeat ures;
virtual void

createFirstlitem (const std::string& ns,

const std::string& pat h,

const std::string& val ue,

const XAPSt ruct Cont ai ner Type type = xap_bag,

const XAPFeat ures f = XAP_FEATURE DEFAULT);
Description

Creates a structured container of the specified type, and set the val ue of thefirst item at the
end of the specified pat h, with the optionally specified features. Nodes are created as needed
to ensure that the path is complete. See next variation for examples and exceptions.

Variation #2:
virtual void
createFirstlitem (const std::string& ns,
const std::string& path,
const std::string& value,
const std::string& selectorNane,
const std::string& selectorVal,
const bool i SAttr = true,
const XAPFeat ures f = XAP_FEATURE DEFAULT);
Description

Creates a structured container of thetypexap_al t , and set the value of the first item at the
end of the specified pat h, with the specified sel ect or Nane and sel ect or Val asthe
selector of the alternation, and optional features. Expressed as an X Path predicate, the selector
would be[@el ect or Narre=' sel ectorVal '] if thei sAttr isTRUE, otherwiseit
would be“[sel ect or Nanme=" sel ect or Val ']” and val ue isignored (just pass

sel ect or Val ue or “”). Nodes are created as needed to ensure that the path is complete.

All properties related to the specified property by alias or actual value that are also containers
are created as well (see Met aXAP: : Set Al i as). For example, suppose Car is an alias of
\ehicle, and Auto is an alias of ehicle. If any of Car, Auto, or \ehicle does not exist andisa
container type, each is created (nothing happens to any that do exist, or are not containers).

22 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Examples

[/Create the first keyword
mcreateFirstitem (XAP_NS XAP, "Keywords", "big");

[ICeate the first Title, selected by xnt:lang of en-us
[/ The path to get this itemwould be "Title/*[@n:|lang="en-us']"
mcreateFirstltem(

XAP_NS XAP, "Title", "Your Photo", "xm:lang", "en-us");

[ICreate the first FileD sposition, selected by sub-prop os of UN X
[/ The path to get this itemwould be "FileD sposition/*[os= UN X]"
mcreateFirstltem(

XAP_ NS XAP S, "FileD sposition*, "", "os", "UNX', false);

Exceptions
bad_al |l oc, xap_bad path, xap bad type, xap_bad_schemna

Throwsxap_bad_pat h for syntactically invalid paths and for a path that leads to a property
that is already defined. Use Met aXAP: : append to add additional items to the container.
Throwsxap_bad_schenm if ns isnot registered or invalid. Throwsxap_bad_t ype if nota
container.

MetaXAP::enable

typedef long int Options;
virtual void
enabl e (const Options opt,
const bool en) throw ();

Description

Enables or disables the specified option(s), such as XAP_OPTI ON_DEBUG. Unrecognized
options are ignored.

The options are defined in Table 3.5, “ Option Enable Constants.”

The XMP Toolkit Version 2.9, May 13, 2002 23

MetaXAP
MetaXAP Member Functions

TABLE 3.5 Option Enable Constants

Option When option is enabled

XAP_CPTI ON_NONE No options.

XAP_CPTI ON_DEFAULT Default optionsin force.

XAP_CPTI ON_ALI ASI NG ON Alias mapping occurs during property get, set, etc., (see

Met aXAP: : Set Al i as). If disabled, property get, set,
etc., occurs on the specified property only. Enabled by
default.

XAP_CPTI ON_ALI AS QUTPUT If enabled, all forms of aliased properties are written
when serializing. Otherwise only the base form of each
alias set iswritten. Disabled by default.

XAP_CPTI ON_AUTO TRACK When constructed with a XAPCl ock object,
automatically modify xap: metadata properties for
media management that pertain to this metadata
instance. For example, callsto set will cause the
xap:MetadataDate and per-property timestamps to be
updated. See setup below. Enabled by default.

XAP_CPTI ON_DEBUG Pre- and post-condition checking and other assertions
are activated for the debug version of the Toolkit only.
Disabled by default.

XAP_CPTI ON_XAPMETA ONLY If enabled, the parser will only recognize RDF elements
that are descendents of the tag “xapmeta’ in
XAP_NS META namespace. If disabled, the parser will
recognize all RDF elements, regardless of their location
in the XML document. See parse for more details.
Enabled by default.

XAP_CPTI ON_XAPMETA CQUTPUT A xapmetaelement in the XAP_NS META namespace
iswritten as the outermost XML element when
serializing. Enabled by default.

Example
net a- >enabl e (XAP_CPTI ON_TAG AQ\LY, false);

24 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

MetaXAP::enumerate

The XMP Toolkit

There are three variations;

Variation #1;

virtual XAPPat hs*
enunerate (const int depth =0);

Description

Returns a pointer to an object that enumerates propertiesin this MetaX AP object. Properties
are listed in document order, or the order in which they were specified. Attributes are always
listed before child properties. It is the responsibility of the caller to destroy the X APPaths
object. Changesto MetaX AP (calls to non-const member functions) are not reflected in the
XAPPaths object.

The dept h parameter limits the depth of the enumeration. If the valueis O (default), paths to
al leaf nodes are enumerated, regardless of the number of stepsto each leaf. If the valueis 1,
only the paths with one step (no slash) are generated, which correspond to the top-level nodes
of thetree. If the valueis 2, paths that only have two steps (one slash) or less, and generally
include the attributes of top-level nodesif any, and children of top-level nodes, if any. And so
on.

Example
string ns, prop, val;
XAPFeat ures f;

XAPPat hs* p = m >enunerate();
whil e (p->hasMrePaths()) {
p->nextPath (ns, prop);

}

if (m>get (ns, prop, val, f)) {
cout << prop << “=" << val << endl;

}

del ete p;
delete m

Exceptions

bad_al |l oc

Variation #2:

vi rtual XAPPat hs*

enunerate (const std::string& ns,
const std::string& subPath,
const int steps = 0);

Version 2.9, May 13, 2002

25

26

MetaXAP

MetaXAP Member Functions

Description

Returns a pointer to an object that enumerates all of the propertiesin the specified subPat h.
Children are listed in the order they are specified, and attributes are always listed before child
properties. It isthe responsibility of the caller to destroy the X APPaths object. Changes to
MetaX AP (callsto non-const member functions) are not reflected in the X APPaths object. The
steps parameter is described above.

Example

string ns, path, val;
XAPFeatures f;

XAPPat hs* p = m >enurrer at e(XAP_NS XAP, "TestCont");
while (p->hasMrePaths()) {

p->nextPath (ns, path);

if (m>get (ns, prop, val, f)) {

cout << prop << “=" << val << endl;
}
del ete p;
delete m
Exceptions

bad al |l oc, xap_bad path, xap bad_schema
Throwsxap_bad_schenm if ns isinvalid. Throws xap_bad_pat h if the path isinvalid.

Variation #3:

typedef enum{
xap_before,
xap_at,
xap_after,
xap_noTi ne,
xap_not Def

1 XAPTi neRel Op;

virtual XAPPat hs*
enunerate (const XAPTi neRel Op op,
const XAPDat eTi me& dt,
const XAPChangeBits how = XAP_CHANGE MASK);

Description

Returns a pointer to an object that enumerates all of the properties whose last modified
timestamp hasthe relation to dt specified by op. For example, if dt has an earlier time than
the timestamp for “Foo” (i.e., “Foo” is newer than whatever dt specifies), “Foo” would be

Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

included in the enumeration if op isxap_af t er, and would not beincluded if theop is
xap_at or xap_bef or e. Returns NULL if there are no matches.

Theop xap_noTi me matches any property that does not have atimestamp. The op
xap_not Def isignored. The bits set in how act as afilter against which properties are
included in the comparison with op. For example, to enumerate only those propertiesthat have
been removed since dt :

= neta->enunerate (xap_after, dt, XAP_CHANGE REMOVED);

Exceptions

bad_al | oc

MetaXAP::extractSerialization

virtual size_t
extractSerialization (char* buf,
const size t nmax);

Cal extract Seri al i zat i on toincrementally extract the contents of the string saved by a
preceding call to serialize. You specify the size of your buffer with parameter nmax. The
function returns the number of bytes (char) that were actually copied. When the function
returns 0O, the extraction is complete and the private string is emptied. Subsequent calls to
extract Seri al i zati on will resultin no copiesand areturn value of O, until seri al i ze
iscalled again.

Example

const int bufMetahax = 1024,

char buf Met a] nax] ;

(void) = neta->serialize (xap _format_pretty, 0);

while (true) {
if (size == 0) break;
szz = neta->extract Serialization (bufMeta, buf MetaMax - 1);
cout->wite (bufMeta, szz);

The XMP Toolkit Version 2.9, May 13, 2002 27

28

MetaXAP

MetaXAP Member Functions

MetaxXAP::get

typedef |ong int XAPFeat ures;

virtual bool

get (const std::string& ns,
const std::string& path,

std::string& val ,
XAPFeat ur es& f) const;
Description

Getsthe value at the property specified by ns and pat h asastring. If any node along the
pat h does not exist, get returns FALSE, otherwise it returns TRUE and the string value is
copied into val . The features of the string value, such as whether or not XML markup is
preserved, are copied intof .

Example

bool is;
XAPFeat ures f;
std::string v,

is =mget (XAP_NS XAP, "N cknanme", v, f);
is =mget (XAP_NS DC "title/*[@m:lang="it']", v, f);
Exceptions

bad_al |l oc, xap_bad path, xap_no_match, xap_bad_schemra

Throws exceptions for syntactically invalid paths, and paths that do not match any property
(such astrying to get item 5 from an existing simple value). Throwsxap_bad_schena if ns
is not registered or invalid.

MetaXAP::getContainerType

typedef enum {
xap_al t,
xap_bag,
xap_seq,
xap_sct _unknown
} XAPSt ruct Cont ai ner Type;

virtual XAPStruct Cont ai ner Type

get Cont ai ner Type (const std::string& ns,
const std::string& path) const;

Version 2.9, May 13, 2002 The XMP Toolkit

Description

MetaXAP
MetaXAP Member Functions

Returns the type of the specified container. The pat h must specify a container type
(Met aXAP: : get For mmust return xap_cont ai ner).

Examples
XAPSt r uct Cont ai ner

Type t =

m get Cont ai ner Type (XAP_NS XAP, "Fil eD sposition");

Exceptions

bad aloc, xap_bad_path, xap_no_match, xap_bad schema

Throwsxap_bad_schema if ns isnot registered or invalid. Throws xap_bad_pat h if the

pathisinvalid. Throwsxap_no_mat ch if the pat h issyntactically valid, but does not match

any defined property.

MetaXAP::getForm

The XMP Toolkit

typedef enum {
xap_si npl e,
xap_descri ption,
xap_cont ai ner,
xap_unknown

} XAPVal Form

vi rtual XAPVal Form

get Form (const std
const std

Description

c:string& ns,
c:string& path) const;

Returns the type of property specified by ns and pat h, as shown below in Table 3.6.

Version 2.9, May 13, 2002

29

MetaXAP
MetaXAP Member Functions

TABLE 3.6 Property Type Values

XAPValForm Meaning
xap_si npl e Path to asimple value.
xap_descri ption Path to a nested description objects. Contains other

properties as children.

xap_cont ai ner Path to a structured container. See
Met aXAP: : get Cont ai ner Type.

xap_unknown Unknown value type (treat asxap_si npl e with
par seType=“Li teral ").

Example
XAPVal Formvt = mgetForm (XAP_NS XAP, "FileD sposition");

Exceptions
bad_al |l oc, xap_bad path, xap no_match, xap_bad_schema

Throwsxap_bad_schema if ns isnot registered or invalid. Throws xap_bad_pat h if the
pat h isinvalid. Throwsxap_no_nmat ch if the pat h is syntactically valid, but does not
match any defined property.

MetaXAP::getResourceRef

virtual void
get ResourceRef (std::string& resRef) const;

Description

Returns the reference (URI) for the resource that this MetaX AP is about. Returns the empty
string “” if the description is embedded in the resource itself.

Exceptions
bad_al |l oc

30 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

MetaXAP::getTimestamp

virtual bool

getTi mestanp (const std::string& ns,
const std::string& path,
XAPDat eTi ne& dt,
XAPChangeBi t s& how) const;

Description

Returns FALSE if the property specified by ns and pat h is not defined. Otherwise, returns
TRUE, and copies the timestamp value into dt . The bitsin how are set according to how the
property was changed. If there is no timestamp record for this property, howis set to
XAP_CHANGE_NONE.

Example

XAPDat eTi me dt;
XAPChangeBi ts how,
Met aXAP* neta = new Met axXAP();
bool Ck = neta->get Ti nestanp (
XAP_NS XAP G IM5 "D nensions/stDmw',dt, how);

Exceptions

bad_al l oc, xap_bad_path, xap_bad_schema, xap_no_natch

Throws exceptions for syntactically invalid paths. Throws xap_bad_schema if ns isnot
registered or invalid. Throws xap_no_mat ch if pr operty isnot defined.

MetaXAP::isEnabled

The XMP Toolkit

vi rtual bool
i sEnabl ed (const Options opt) const throw ();

Description

Returns whether the specified option is enabled, such as XAP_OPTI ON_DEBUG. An
unrecoghized option always returns FALSE. Pass a single option bit.

Version 2.9, May 13, 2002

31

32

MetaXAP

MetaXAP Member Functions

MetaXAP::parse

virtual void
parse (const char* xm buf,
const size t n,
const bool last = false);

Description

Parses a buffer of XML and creates the corresponding XM P objects. This function expects to
be called in the order that buffers occur for aparticular XML serialization. The last buffer is
indicated by passing TRUE for | ast . It islegal for tokens, or even multibyte characters, to
cross buffer boundaries.

Only one parsing cycle should be used per MetaX AP instance (acycleis 0 or more callsto
par se with| ast ==f al se, 1 call to par se with| ast ==t r ue). Calling par se with

| ast ==f al se after calling it with| ast ==t r ue for the same MetaX AP instance will have
unspecified results.

The parse function will handle any well-formed XML, and will detect RDF elements
anywherein the XML. If the XAP_OPTI ON_XAPMETA_ONLY option is enabled, only those
RDF elements that are children of the “xapmeta’ tag in the XAP_NS_META namespace are
recognized as XMP metadata, al others are ignored. If the XAP_OPTI ON_XAPMETA ONLY
option is disabled, al RDF elementsin the input are recognized as XM P metadata.

Calling any other functionsin MetaX AP during apar se will yield undefined results.

Example

const int bufMetaMax = 1024,

char buf Met a[buf Met aMax] ;

Met aXAP* meta = new Met aXAP();

ifstreant netaFs = newifstream("netadata.xm",
ios_base::in | ios_base::binary);

if ('metaFs || netaFs->fail()) exit(-1);

try {
while (!'metaFs->eof ()) {
nmet aFs->read (buf Meta, nbuf Met aMax
net a- >parse (buf Meta, netaFs->gcount());
}
neta->parse ("\n", 1, true); // all done
}

catch (xap_bad xm & x) {
cerr << x.what() << "(" << x.getContext() << "):"
<< x.getLine() << endl;
t hrow,

Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

Exceptions
bad_al l oc, xap_bad xm, xap_bad xap

Throwsxap_bad_xnl if the XML isnot well-formed (Iexica error). Throwsxap_bad_xap
if the RDF isinvalid (parsing error).

MetaXAP::purgeTimestamps

virtual void
pur geTi nest anps (const XAPChangeBits how = XAP_CHANGE REMOVED,
const XAPDat eTi me* dt = NULL);

Description

Purges all timestamp recordsfor propertieswith any XAPChangeBi t s setinhow. By defaullt,
purges all timestamp records for properties marked XAP_CHANGE REMOVED. If dt isnot
NULL, all timestamps that were not purged are forced to the specified timestamp, and their
XAPChangeBi t s are set to XAP_CHANGE_FORCED. Thus, to force al timestampsto a
specific time, pass XAP_CHANGE_NONE as the first parameter and a non-null date and time as
the second parameter.

Example

XAPDat eTi me dt;
met a- >pur geTi mest anps (XAP_CHANGE REMOVED, &dt) ;

Exceptions
bad al | oc

MetaXAP::remove

virtual void
renove (const std::string& ns,
const std::string& subPath);

Description

Removes the specified property and all of its sub-properties, if any. When a child of a
container isremoved, al siblings that follow that item are renumbered. Nothing is done if
there is no property for the specified path.

All propertiesrelated to the specified property by alias or actual value are removed aswell (see
Met aXAP: : Set Al i as). For example, suppose Car isan alias of Vehicle, and Autoisan alias
of Vehicle. If any of Car, Auto, or Vehicle is removed, all are removed.

The XMP Toolkit Version 2.9, May 13, 2002 33

MetaXAP
MetaXAP Member Functions

Examples
mrenove (XAP_NS DC "title/*[1]");
Throws an exception if the path isinvalid, or the path matches none of the nodes.

Exceptions
xap_bad _path, xap_no_match, xap_bad_schena
Throws xap bad schemaif ns isnot registered or invalid.

MetaXAP::serialize

typedef enum {
xap_format _pretty,
xap_format _conpact
} XAPFor mat Type;

const int XAP_ESCAPE CR
const int XAP_ESCAPE LF

1<<0;
1<<1,;

virtual size_t
serialize (const XAPFormat Type f = xap_format_pretty,
const int escnl =0) = 0;

Description

Serializesthe MetaX AP treeas XML. Call seri al i ze to perform serialization, optionally
specifying aformat and escnl for filtering linebreaks. Thef option xap_format _pretty
is pretty-printed for human readability, using whitespace and indenting. Thef option

xap_f ormat _conpact minimizes whitespace and uses the most compact representation
possible. The serialized datais kept in a private string.

Theescnl bitsindicate whether line ending characters should be escaped into character refs,
using the HTML character entity names‘ " for CR, and “
 ” for LF. Thisalowsa
client to post-filter the XML to impose line-length limitations: the unescaped version of the
line-break character can be inserted into the XML, since the XML is guaranteed not to contain
that character unescaped, unless formatted pretty (see below). A processing instruction is
added at the beginning to indicate that the filtering was applied. The processing instruction is
omitted if escnl is 0. Thisinstruction is detected by the par se function of this class, and the
corresponding unescaped linebreak characters, if any, are removed before buffers are passed to
the XML parser. If fisxap_f ormat _pretty,linesareformatted with alinebreak character
asfollows: CRif escnl isXAP_ESCAPE_LF only, LF if escnl isXAP_ESCAPE_CRonly,
CRLF if both bits are set. Returns avalue of O if thereis no metadata, and a value greater than
zero (>0) otherwise.

34 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Member Functions

The serialized metadata does not include (does not begin with) the standard xml prolog <?xml
..7>. Thismakes it easier to embed the serialized metadatain an existing XML document
entity, such asaWebDAV property. If you are writing this serialized XML as a document
entity (e.g., into a standalone file), you should prepend an appropriate prolog, such as:

<?xm version="1.0" encodi ng="UTF- 8" ?>

If the XAP_OPTI ON_XAPVMETA QOUTPUT option is enabled, the serialized output is contained
within the single tag “xapmeta’ in the XAP_NS_META namespace. If the

XAP_OPTI ON_XAPMETA _OUTPUT option is disabled, the “xapmeta’ tag is omitted. In either
case, al of the metadatais contained within asingle RDF element.

The serialized metadataisin UTF-8 Unicode character encoding.

Exceptions
bad_al |l oc

MetaXAP::set

The XMP Toolkit

typedef |ong int XAPFeat ures;
virtual void
set (const std::string& ns,
const std::string& path,
const std::string& val ue,
XAPFeat ur es f = XAP_FEATURE_DEFAULT);

Description

Setsthe specified value at the end of the specified pat h, with the optionally specified features.
Nodes are created as needed to ensure that the pat h is complete, except for items of a
structured container (see Met aXAP: : cr eat eFi r st | t emabove and xap_bad_nunber
below). Existing values are overwritten.

Examples

mset (XAP_NS XAP, "Author", "Your Name");
mset (XAP_NS XAP G IM3 "D nensions/stDmw', "480");

All properties related to the specified property by alias or actual value are set aswell (see
Met aXAP: : Set Al i as). For example, suppose Car isan alias of Vehicle, and Autoisan alias
of Vehicle. If any of Car, Auto, or Vehicleis set, all are set to the same value.

Exceptions
bad_al | oc, xap_bad _path, xap_bad type, xap_bad nunber, xap_bad_schena

Throws exceptions for syntactically invalid paths, and for attempting to change the type of the
property, e.g., if “title” isastructured container (an Alt of different languages), trying to set

Version 2.9, May 13, 2002 35

36

MetaXAP
MetaXAP Member Functions

titleto asimple value will generate axap_bad_t ype exception. Throws a
xap_bad_nunber exception if an attempt is made to set a structured item beyond

“l'ast ()”.UseMet aXAP: : append to add itemsto acontainer. Throwsxap_bad_schenn
if ns isnot registered or invalid.

MetaXAP::setTimestamp

virtual void

set Ti mestanp (const std::string& ns,
const std::string& path,
const XAPDat eTi ne& dt);

Description

This should only be used when manual tracking is being done by the client. Setsthe timestamp
to dt . The XAPChangeBits for this property are set to XAP_CHANGE_FORCED.

Example
met a- >set Ti mestanp (XAP_NS XAP G IM5 "D nensions/stDmw', dt);

Exceptions
bad_al |l oc, xap_bad_path, xap_bad schema, xap_no_nmatch

The timestamp must be GMT (UTC) time (the timezone fields tzHour and tzMin must both be
zero). If there is non-zero timezone information, the xap_bad_nunber exception will be
thrown. Throwsxap_bad_pat h for syntactically invalid paths. Throwsxap_no_mat ch for
valid pat hsthat have no defined property. Throws xap_bad_schema if ns isnot registered
or invalid.

MetaXAP::setup

virtual void
setup (const char *const key,
const std::string& val);

Description

Some properties require metadata that only the client of this Toolkit can provide, such asthe
name of the software agent using the Toolkit. Use this function to provide valuesto this
instance of MetaX AP for automatic tracking.

Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

Examples

m setup (XAP_SETUP_VENDCR "Adobe");
msetup (XAP_SETUP_APP, "Phot oshop");
msetup (XAP_SETUP_VERSION, "10.0");
msetup (XAP_SETUP_PLATFCRVM "W ndows");

These example calls would allow the Toolkit to create an AgentName of “Adobe Photoshop
10.0 for Windows".

Exceptions
bad_al |l oc

MetaXAP::setResourceRef

virtual void
set ResourceRef (const std::string& ref);

Descripton
Sets the reference to the resource (URI) that this MetaX AP is about.

Example

et a- >set Resour ceRef ("test:/resource/' about' /");

Exceptions
bad_al |l oc

3.9 MetaXAP Static Functions (Class Methods)

MetaXAP::Clone

static MetaXAP*
Clone (MetaxXAP* orig);

Description

Makes a deep-copy of the MetaX AP object or i g and returns it. Copies timestamps without
changing them, if any.

NoTe: Multi-threaded clients must provide mutual exclusion.

The XMP Toolkit Version 2.9, May 13, 2002

37

MetaXAP
MetaXAP Static Functions (Class Methods)

Examples
Met aXAP* cl one = Met axXAP: : O one(mnet a) ;

MetaXAP::EnumerateAliases
stati c XAPPat hs*
EnunerateAli ases () throw();

Description

Returns a pointer to an object that enumerates all of the aliases defined for all MetaXx AP
objects. It isthe responsibility of the caller to destroy the X APPaths object. Changes to aliases
(calsto Met aXAP: : Set Al i as) are not reflected in the X APPaths object.

NoTe: Multi-threaded clients must provide mutual exclusion.

MetaXAP::GetAlias

static bool

GetAlias (const std::string& al i asNS,
const std::string& al i asPat h,
std::string& act ual NS,
std::string& act ual Pat h,

XAPSt r uct Cont ai ner Type& cType) throw();

Description

Getsthealiasfor the specified path, if any. Thefirst pair, al i asNSand al i asPr op, specifies
anamespace and path to the property whose actual value might be found elsewhere. If thereis
an alias defined, act ual NS and act ual Pr op are set to the namespace and path,
respectively, of the actual property and TRUE is returned. Otherwise, FALSE is returned. The
cType isaso set to the container type of the actual path: if the value form is not a container,
cType issettoxap_sct _unknown.

NoTe: Multi-threaded clients must provide mutual exclusion.

Example

string nsActual, pActual;

string pActual ;

XAPSt r uct Cont ai ner Type sct;

Met aXAP: : Get Alias (XAP_NS XAP, "TestCont", nsActual, pActual, sct);

38 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

MetaXAP::Merge

typedef enum {
xap_policy_a,
xap_policy_b,
xap_pol i cy_newest,
xap_pol i cy_ol dest,
xap_pol i cy_dont _ner ge,
xap_pol i cy_ask_user

} XAPMer gePol i cy;

stati c XAPPat hs*

Merge (Met axXAP* a,
Met aXAP* b,
Met aXAP* * mer ge,
const XAPMer gePol i cy policy,
const bool j ust Check = fal se,

XAPTi meRel Op* dont MergeResult = NULL);

Description

If j ust Check isFALSE and pol i cy isnot xap_pol i cy_dont _ner ge nor

xap_pol i cy_ask_user, thisfunction creates a new MetaX AP object and returns the
pointer in mer ge, after merging the metadata in instance a with instance b, and copying the
resulting metadata into mer ge. Any propertiesdefined ina but notin b, orinb but notina,
are defined (copied) to merge. The corresponding timestamp record is also copied unchanged.
The policy specifies what the merge does when both a and b define a property, including cases
when one has the XAP_CHANGE _REMOVED bit set. The policy descriptions follow:

TABLE 3.7 Merge Policy Descriptions

Policy Meaning

xap_pol i cy_dont _mer ge Just compare, see below.

xap_policy a Thevaluein ais copied to merge.

xap_policy b Thevaluein b is copied to merge.

xap_pol i cy_newest The latest timestamped value is copied to merge.
xap_pol i cy_ol dest The earliest timestamped value is copied to merge.
xap_pol i cy_ask_user Same asxap_pol i cy_dont _ner ge.

Any property with a XAP_CHANGE _SUSPECT hit set isignored and no change is made to
merge for that property, regardless of whether the bit isset ina or b. Properties with no

The XMP Toolkit Version 2.9, May 13, 2002 39

MetaXAP
MetaXAP Static Functions (Class Methods)

timestamp are treated as if they had atimestamp equal to the value of xap:MetadataDate. If
xap:MetadataDate is not defined, no change is made to merge for that property for
xap_pol i cy_newest or xap_pol i cy_ol dest only.

The returned paths represent those properties in merge that were changed as aresult of the
policy, or if j ust Check is TRUE, the paths for the properties that would have been copied
into mergeif j ust Check had been FALSE. Does not include properties copied to merge
because they were defined in a but not in b, or vice versa. Returns NULL if nothing is copied
to merge (merge is unchanged by the call).

Forxap_pol i cy_dont _nerge andxap_pol i cy_ask_user, nonew MetaXAP object is
created and mergeisleft unchanged. If j ust Check is FALSE, the paths returned represent
those properties that are defined in both a and b, but that do not have identical timestamps. If
j ust Check isTRUE, NULL isreturned, and if dont Mer geResul t isnon-NULL, it isset to
the result of comparing the xap:MetadataDate of a and b (see

UtilityXAP:: ConpareTi nest anps).

Example
Met aXAP* mergedMeta = NULL;
/1 Merge letting newer val ues override ol der val ues.

XAPPat hs* newer = Met aXAP:: Merge(ol dMet a, newMet a, &mer gedMet a,
xap_pol i cy_newest);

Met aXAP* del taMeta = NULL;

/1 Merge letting ol der val ues override newer val ues.
XAPPat hs* ol der = Met aXAP: : Merge(ol dMeta, newMeta, &del t aMet a,
xap_pol i cy_ol dest);
Exceptions

Raises all the same exceptions as Met aXAP: : enuner at e, Met aXAP: : set,
Met aXAP: : renove, Met aXAP: : cr eat eFi rst1tem and Met aXAP: : set Ti mest anp.

MetaXAP::RegisterNamespace

static void
Regi st er Nanespace (const std::string& nsNane,
const std::string& suggestedPrefix);

Description

For serializationto XML, clients must provide a suggested prefix for each namespace that they
use. The standard namespaces (those for which a constant string is defined in thisAPI) already
have registered prefixes. Register anamespace name (which should be aURI), and a suggested

40 Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
MetaXAP Static Functions (Class Methods)

prefix for composing qualified names. Omit the composition character (such as“:” for RDF)
from the prefix. Setting or creating a property in anamespace that has not been registered will
result in an exception.

NoTe: Multi-threaded clients must provide mutual exclusion.

Example
Met aXAP: : Regi st er Nanespace("http://purl.org/dc/qualifiers/1.0/", "dcq");

Exceptions

bad al | oc

MetaXAP::RemoveAlias

static void
RenmoveAl i as (const std::string& aliasNS,
const std::string& aliasPath);

Description

Removes the specified alias from the alias map for all metadata objects. This function does not
change any metadata values. Seethe important Notein Met aXAP: : Set Al i as, which applies
to Met aXAP: : RenoveAl i as aswell.

MetaXAP::SetAlias

static void

SetAlias (const std::string& al i asNS,
const std::string& al i asPat h,
const std::string& act ual NS,
const std::string& act ual Pat h,

const XAPStruct Cont ai ner Type cType = xap_sct_unknown);

Description

Addsto the alias map for all instances of MetaX AP. Matching aliases are overwritten, new
aliases are appended. The aliasis specified as two pairs of strings. Thefirst pair, al i asNS and
al i asPr op, specifies anamespace and path to the property whose actual valueis found
elsewhere. The second pair, act ual NS and act ual Pr op, specifies anamespace and path to
the property for the actual value. The c Ty pe specifies the container type, if theact ual Pat h
represents a container or container member.

The XMP Toolkit Version 2.9, May 13, 2002 41

42

MetaXAP

MetaXAP Static Functions (Class Methods)

Examples

[* "Author" and "Title" in the XMP core schenma are ali ases of
"creator" and "title" in the Dublin Core schema. */

const char* XAP_NS XAP = "http://ns. adobe. com xap/ 1.0/ ";
const char* XAP NS DC = "http://purl.org/dc/elements/1.0/";

Met aXAP: : Set Alias (XAP_NS XAP, "Author",

XAP NS DC, "creator/*[1]", xap_bag);
Met axXAP: : Set Alias (XAP_NS XAP, "Title",

XAP NS DC "title", xap_alt);

To determine which of two properties should be the alias, and which the actual, consider
which will be used most frequently by the broadest cross-section of users. If one property
happens to be from a broadly supported schema, such as Dublin Core, or if one property
represents an important legacy metadata format, such as IPTC, use that property as the actua,
and use the new or XMP defined property asthe alias.

NoTe: Changesto the alias map made by callsto Set Al i as do not automatically take
effect on existing MetaX AP instances. For thisreason, it is strongly recommended
that all aliases be set prior to any MetaX AP objects being created, and then once
they are created, no new alias settings are made until all MetaX AP objects have
been destroyed.

If thisisnot feasible, it is possible to force an existing MetaX AP object to recognize new aias
settings. For al MetaX AP objects which have the XAP_OPTI ON_ALI AS_ON enabled, toggle
the option: that is, disable it, and then enable it again, as follows:

Met axXAP* net a;

if (meta->isEnabled (XAP_CPTICN ALIAS ON)) {
nmet a- >enabl e (XAP_CPTION ALIAS O\, false);
nmet a- >enabl e (XAP_CPTION ALIAS QN, true);

}

Exceptions
bad_al |l oc, xap_bad path

Throwsxap_bad_pat h if an aiasloop isdefined, or if an attempt is made to make an alias
of an alias, or if an attempt is made to use a property that has previously been defined as an
actual value asan dlias, or if theal i asPat h ismalformed. Only single level diases are
supported.

MetaXAP::SetStandardAliases

static void
Set St andar dAl i ases (const std::string& aliasNS);

Version 2.9, May 13, 2002 The XMP Toolkit

MetaXAP
XAPPaths Class

Description
Added in version 2.9.

Calls MetaX AP::SetAlias for standard aliases associated with a standard namespace. The
aliases for each namespace are defined in the XM P framework specification. The standard
aliases for all standard namespaces are set if an empty string is passed for aliasNS. Only the
aliases from XMP to Dublin Core, and from PDF to XMP and Dublin Core are automatically
set during toolkit initialization.

Examples
Met aXAP: : Set Alias (XAP_NS EXIF);// Define standard EXIF ali ases.

Exceptions
Any exception thrown by SetAlias will be propagated.

3.10 XAPPaths Class

Thisisapure virtua base class, used to represent an enumeration of the paths to nodes of
metadata.

NoTe: Itisup tothe caller to destroy this object with the public destructor.
Examplesfor hasMbr ePat hs and next Pat h are shown with Met aXAP: : enuner at e.

XAPPaths::hasMorePaths

virtual bool

hasMor ePat hs()

const throw () = 0;

Description

Returns TRUE if there are more paths in the enumeration, otherwise returns FALSE.

XAPPaths::nextPath

virtual void
nextPath (std::string& ns,
std::string& path) = 0;

The XMP Toolkit Version 2.9, May 13, 2002

43

MetaXAP
XAPPaths Class
Description

Copies the next namespace and path into the parameters. Calling this method after
hasMor ePat hs has returned FALSE will cause the parameters to be set to empty strings.

44 Version 2.9, May 13, 2002 The XMP Toolkit

Utility XAP

4.1 UtilityXAP

UtilityXAP is a collection of static (class) functions that provide general purpose convenience
routines.

4.2 UtilityXAP Static Functions (Class Methods)

Utility XAP::AnalyzeStep

static bool

Anal yzeStep (const std::string& fullPath,
std::string& par ent Pat h,
std::string& | ast St ep,
long int& ord,
std::string& sel ect or Nane,
std::string& selectorVal);

Description

Removes| ast st ep from the path, and separates it into component pieces.

Fromf ul | Pat h, removethelast step and assignittol ast St ep, and assign the front part of
the path to par ent Pat h. If the last step contains a predicate expression with an ordinal
(which is always greater than 0), it isassigned to or d. If the ordinal predicate is the function
| ast (), ordissetto 0. Otherwise, or d isset to—1. If the predicate is a selector, such as
“*IT@m :lang="fr']", sel ect or Name would be assigned “@m : | ang” and

sel ect or Val would be assigned “fr”. Otherwise, sel ect or Nane and sel ect or Val are
assigned the empty string.

Utility XAP::AppendProperties

The XMP Toolkit

static void
AppendProperties (const MetaXAP & source,

Met aXAP & dest,
const bool repl aced d,
const bool doAll = false);

Version 2.9, May 13, 2002 45

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Description

Appends external properties from one MetaX AP object to another. A top level property is
copied from the source if it does not exist in the destination, or if replaceOld istrue. If the top
level name exists and replaceOld is false, the processing depends on the forms of the old and
new properties. If the forms do not match, the destination is left aone. If the forms match and
are simple, the destination isleft alone. If the forms match andare a structure, each field is
recursively processed like atop level property.

Containers are a bit more complex. If the container types (alt, bag, seq) differ, the destination
isleft alone. Otherwise the source is merged into the destination. For alt-by-lang containers
the merge is based on the languages, a source item is copied if the language does not yet exist
in the destination.

For other container types, the merge is based on the item values. Each item in the source is
checked to seeif it isin the destination already. This compares the values for equality, and the
values of the xml:lang attributeif present. f the sourceitemisnot aready in the destination, it
is appened to the destination container. If the source item is a structure, the equality check
recursively compares each field without regard to order. The field names and values must
match, but they can be in different order. The destination may contain extrafields, it may bea
superset of the source. If the source item is a container, the equality check recursively
compares each item without regard for order.

Aliasesin the source are ignored, things will be caught with the base properties.
The optional "doAll" parameter causes al properties to be treated as external.

NoTe: Thereare special casesin theimplementation for containers. An item with an xml:lang
value of 'x-default' isinserted at the front of an alt container instead of being appended.
This preserves RDF semantics of thefirstitemin an alt being the default. The existence
checks do not care about duplicates. For example if a source bag has three copies "foo"
and the destination has one, al three will match and no additional copieswill be added
to the destination. No attempt is made to be clever about the order of itemsin a
sequence. For exampleif the first item in a source sequence is the only one missing
from the destination, it is appended to the end of the destination, not inserted in front.

Example
WilityXAP:: AppendProperties (sourceMeta, destMta, false);

Utility XAP::CatenateContainerltems

static void

Cat enat eCont ai nerltens (const MetaxAP & net a,
const std::string & ns,
const std::string & container,
const std::string & separator,
std::string & result);

46 Version 2.9, May 13, 2002 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Description

Catenates all of the values from a bag or sequence container into one string using the given
separator between each. The namespace and path must specify an existing bag or sequence
container, all of the itemsin the container must be simple.

Example

UilityXAP::CatenateContainerltens (nmeta, XAP_NS DC "subject",
".o", allltens);

Exceptions

Throws xap _bad typeif the named property is not a bag or sequence, or if any itemin the
container is not asimple property. Can also propagate exceptions from Met aXAP: : get .

UtilityXAP::ChooseLocalizedText

The XMP Toolkit

enum {
xnmpCLT_NoVal ues =0,
xnmpCLT_Speci ficMatch = 1,
xmpCLT_Cenerichatch = 2,
xmpQLT_Simlarhatch = 3,
XnmpCLT_XDef aul t = 4,
XmpCLT_Firstltem =5
h
static int
Chooselocal i zedText (const Met axXAP& net a,
const std::string& ns,
const std::string& container,
const std::string& genericlLang,
const std::string& specificlLang,
std::string& act ual Lang,
std::string& val ue,
XAPFeat ur es& features);
Description

Added in version 2.9.

Selects an appropriate item in alanguage alternative container, based on the given “generic’
and “ specific” languages and the rules given below. The property indicated by the container
parameter must be an RDF alternative container. All languges are represented as RFC 1766
values. One common use of the languages are a generic language such as“en” and a specific
“dialect” of that language such as“en-us’. The generic language may be ignored by passing an
empty string.

Version 2.9, May 13, 2002

47

UtilityXAP
UtilityXAP Static Functions (Class Methods)

The language of the selected item is returned in actualLang. The function result tells which of
the following rules was used:

0. The container does not exist or is empty.

1. Look for an exact match with the specific language.

2. Look for an exact match with the generic language.

3. Look for a partial match with the generic language. This looks through the container in
positional order for alanguage of the form "<generic>-<suffix>". For example, "en" would

match "en-us’, "en-ca’, or "en-cockney", but not "enx-foo".
4. Look for an "x-default" item.
5. Select the first item in the container.

NOTE: Most clients should only need GetlL ocalizedText and SetlocalizedText. Those
funciotns use these rules to decide what to do. Use of Choosel ocalizedText is only necessary
if you really care exactly what item in the alternative is chosen.

Example
rule = WilityXAP:: ChooselLocal i zedText (neta, XAP_NS DC "title",
"en", "en-us",
act Lang, value, features);
Exceptions

Throws xap _bad typeif the container is not an RDF alternative container. Throws
xap_bad pathif rule #3 finds an item in the container without an xml:lang attribute.

Utility XAP::CompareTimestamps
stati c XAPTi meRel o
Conpar eTi nest anps (const XAPDateTime & a, const XAPDateTine &b);

Description
Compares the two timestamps and returns the relation as follows:

Condition Returns

a<b (a timestamp earlier than b) xap_bef ore

a== (a timestamp same as b) xap_at

a>b (a timestamp later than b) xap_af ter

a?b (a or b does not have a xap_noTi ne
timestamp)

48 Version 2.9, May 13, 2002 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Example
order = WilityXAP:: ConpareTimestanps (firstTine, secondTine);

Utility XAP::CompareTimestamps

static XAPTi meRel Op

Conpar eTi nmest anps (Met axAP* a,
Met aXAP* b,
const std::string& ns,
const std::string& path);

Description

Compares timestamps on the property with the specified namespace ns and pat h in instance
a with that in instance b, and returns the relation as follows;

Condition Returns
a<b (a timestamp earlier than b) xap_bef ore
a== (a timestamp same as b) xap_at
a>b (a timestamp later than b) xap_after
a?b (a or b does not have a xap_noTi ne
timestamp)
(a or b not defined) xap_not Def
Example

WilityXAP:: ConpareTinestanps (meta, clone, XAP_NS XAP, "Nunber");

Exceptions

Raises all the same exceptions as Met aXAP: : enuner at e and
Met aXAP: : get Ti nest anp, except that xap_no_mat ch is converted into the return value
xap_not Def .

Utility XAP::CreateXMLPacket

static void

The XMP Toolkit Version 2.9, May 13, 2002 49

UtilityXAP
UtilityXAP Static Functions (Class Methods)

O eat eXM_Packet (const std::string& encoding,

const bool i NPl aceEdi t Ck,
const size t padByt es,
const std::string& nl,
std::string& header,
std::string& trailer,
std::string* xm = NULL);

Description

Use thisroutine to compute the header and trailer string for a packet, which you useto create a
XMP packet (for information on XM P Packets, see XMP — Extensible Metadata Platform), or
if you specify non-NULL XML data, it will also create the entire packet.

If theencodi ng isempty (*”), it defaultsto UTF-8. If i nPl aceEdi t Ck is TRUE, it marks
the packet as okay to edit in-place, otherwise it marks the packet as read-only.

If positive, the padByt es parameter specifies the number of bytes of whitepsace padding to
add to the packet. The padding is placed after the XML data, and before the trailer.

If padByt es isnegative, its absolute val ue specifies the length for the completed packet, and
thexm parameter must be non-NULL. The absolute value of padByt es must be large
enough to contain the compl ete packet, otherwise xap_bad_nunber isthrown. The
appropriate amount of whitespace padding is added to provide the specified total size. Thisis
convenient when formatting a packet to update existing metadatain afile of unknown format.

Thenl string isthe character sequence to use as a newline between the header and the xml
dataif xm isnon-NULL: it can be empty (“”), or some combination of well-formed XML
whitespace. The header is assigned to the string representing the computed header for the
packet, and the trailer is assigned to the string representing the computed trailer of the packet.

The charactersin xm specify the XML data for the packet. The same non-NULL parameter
xm isassigned the complete packet, with header, trailer, and padding added. The value of
encodi ng must match the encoding of the XML data, but no checking is done to guarantee
that it does match.

Examples
(for UTF-8 encodings):

string header, trailer;
UtilityXAP:: CreateXM.Packet ("", true, val.size(), "\n", header,
trailer, &val);

Thereis a second form:

static void

50 Version 2.9, May 13, 2002 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

O eat eXM_Packet (const std::wstring& encodi ng,

const bool i NP aceHEdi t C,
const size t padByt es,
const std::wstring& nl,
std::wstring& header ,
std::wstring& trailer,
std::wstring* xm = NULL);

Same as Cr eat eXM_Packet above, except that all of the string parameters are 16-bit
character strings.

NoTe: Thisfunction assumesthat the XML dataisin the native byte order of this machine.
It generates packet header text in UCS-2 encoding, with characters in the range
U+0000 to U+007F, plus U+FEFF. Thisrefersonly to the additional material for the
packet wrapper, NOT to the data contents, which are assumed to be XML
compatible UCS-2 and are copied unchanged.

Example
(for UTF-16 encodings)

wstring wxml = L"\nThis is sonme \x03a3 16-bit
text. </ B>\ n\n";
wstring wh;
wstring wt;
UtilityXAP:: CreateXM.Packet (L"UTF-16", false,
wxml . si ze() *si zeof (wchar _t), L"\n", wh, wt, &uwm);

Utility XAP::FilterPropPath

The XMP Toolkit

static bool

FilterPropPath (const std::string& tx,
std::string& propPath);

Description

Filters Ul text into valid X Path.

ConvertsaUTF-8 string t x into avalid XPath, which isalso a UTF-8 string pr opPat h. For
example, any disallowed characters, like spaces or slashes, or any Unicode characters greater
than U+007A, are converted into a series of hexidecimal digits, where every two digits
represent a byte of UTF-8. Such sequences are introduced by the character pattern “- " and
closed with“_". If the original text contains“-_”, it is escaped with “-__". If the converted
character istheinitial character, the escape is modified to be“QQ-_". If such asequence exists
inthe original text, itisescaped as“QQ-__".

Version 2.9, May 13, 2002 51

UtilityXAP
UtilityXAP Static Functions (Class Methods)

For example, if t x isthe single Unicode character U+03A3 GREEK CAPITAL LETTER
SIGMA in UTF-8 encoding, it isfiltered into “QQ-_cea3 ", which represents the two bytes
CE and A3 of UTF-8, in hex.

Utility XAP::GetBoolean

static bool

Get Bool ean (Met axXAP* net a,
const std::string& ns,
const std::string& pat h,
bool &val);

Description

Getsaproperty value as aboolean as specified by ns and pat h. CallsMet aXAP: : get . If the
property is not defined, returns FALSE. Otherwise, the string value provided by
Met aXAP: : get isconverted into aboolean and copied into val and TRUE is returned.

Example
bool areYouHappy;
bool ok = UtilityXAP:: CetBool ean (neta, XAP_NS_XAP, "Happy",
ar eYouHappy);
Exceptions

Raises all the same exceptions as Met aXAP: : get , plusxap_bad_xap if the property value
cannot be converted to a boolean.

Utility XAP::GetDateTime

static bool
Get Dat eTi ne (Met aXAP* net a,
const std::string& ns,
const std::string& path,
XAPDat eTi me& dateTine);
Description

Gets a property value as adate and time.

Getsthe Date value specified by ns and pat h. Calls Met aXAP: : get . If the property is not
defined, it returns FALSE. Otherwise, the string value provided by Met aXAP: : get is
converted into values of the XAPDat eTi ne record as described below, and timezone offset
from GMT, and TRUE isreturned. If tzZHour and tzMin are both O, the time returned isUTC
(GMT). The seq field isalways set to 0, and the nano field is set to the subsecond time defined

52 Version 2.9, May 13, 2002 The XMP Toolkit

The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

in the value of the property, if any. This function implements the Date as specified in XMP —
Extensible Metadata Platform; also see 1SO 8601.: http://www.w3.org/TR/NOT E-datetime.

TABLE 4.1 XAPDateTime Field Usage

XAPDateTime field Usage Range
sec seconds after the minute [0,59]
min minutes after the hour [0,59]
hour hours since midnight [0,23]
mday day of the month [1,31]
month month of the year [1,12]
year year A.D. (can be negative!)
tzHour hours +ahead/-behind UTC [-12,11]
tzMin minutes offset of UTC [0,59]
nano nanoseconds after second (if

supported)
seq sequence number (if nano not

supported)

Examples

(using HTML format for shorthand):

1994-11-05T08:15:30-05:00 corresponds to November 5, 1994, 8:15:30 am, US Eastern
Standard Time.

1994-11-05T13:15:30Z corresponds to the same instant.
(C++ code example:)

XAPDat eTi me dt;

bool ok = UtilityXAP:: GetDateTi ne(nmeta, XAP_NS XAP, "UTC', dt);
Exceptions

Raises all the same exceptions as Met aXAP: : get , plusxap_bad_xap if the property value
cannot be converted to a date and time.

Version 2.9, May 13, 2002 53

http://www.w3.org/TR/NOTE-datetime

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Utility XAP::GetlInteger

static bool

Get I nteger (Met axAP* net a,
const std::string& ns,
const std::string& pat h,
long int &al);

Description

Gets a property value as an integer.

Getstheinteger value specified by ns and pat h. CallsMet aXAP: : get . If the property isnot
defined, returns FALSE. Otherwise, the string value provided by Met aXAP: : get isconverted
into an integer and copied into val , and TRUE is returned.

Example

I ong int gNum = sizeof (int);
bool ok = UtilityXAP:: Getlnteger (nmeta, XAP_NS XAP, "Nunmber",
ghum) ;

Exceptions

Raises all the same exceptions as Met aXAP: : get , plusxap_bad_xap if the property value
cannot be converted to an integer.

Utility XAP::GetLocalizedText

static bool
Get Local i zedText (const Met axAP* net a,
const std::string& ns,
const std::string& container,
const std::string& genericlLang,
const std::string& specificlLang,
std::string& val ue,
XAPFeat ur es& features);
Description

Get the value and features for an appropriate item in alanguage alternative container. Usesthe
rules defined for Choosel ocalizedText to select the item. Returnsfalse for rule #0, and true for
al other rules.

Example

found = WilityXAP:: GetlLocal i zedText (neta, XAP_NS DC "title",
"en", "en-us", value, features);

54 Version 2.9, May 13, 2002 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Exceptions

Raises all the same exceptionsas Ut i | i t yXAP: : Chooselocal i zedText and
Met aXAP: : get .

UtilityXAP::GetReal

static bool

Get Real (Met axAP* net a,
const std::string& ns,
const std::string& path,
doubl e &al);

Description
Gets a property value as areal number.

Getstherea (double) value specified by ns and pat h. CallsMet aXAP: : get . If the property
is not defined, FALSE isreturned. Otherwise, the string value provided by Met aXAP: : get is
converted into areal and copied into val , and TRUE is returned.

Example

doubl e gReal ;
bool ok = UtilityXAP:: GetReal (nmeta, XAP_NS XAP, "Real", gReal);

Exceptions

Raises all the same exceptions as Met aXAP: : get , plusxap_bad_xap if the property value
cannot be converted to areal.

Utility XAP::IsAltByLang

static bool

I sAl tByLang (const XAPPat hTree* tree,
const std::string& ns,
const std::string& path,
std::string* [angVal = NULL);

Description

Returns TRUE if the specified pat h evaluates to a member of a structured container that is of
typexap_al t , and which is selected by the attribute xmi : | ang. If apointer to astringis
passed in| angVal , the string is assigned with the value of thexn : | ang attribute.

The XMP Toolkit Version 2.9, May 13, 2002

55

UtilityXAP
UtilityXAP Static Functions (Class Methods)

This function is handy when you are doing an enumerate. If you are searching for a particular
language alternative, pass the paths returned by X APPaths to this function to test for the
sought type, and then compare thel angVal with the language you seek.

Exceptions
Raises all the same exceptions as Met aXAP: : get For m

Utility XAP::MakeLocalTime

static void
MakeLocal Time (const XAPDateTinme & inTine, XAPDateTine & outTine);

Description

Sets outTimeto the value of inTime converted to alocal timeinstead of UTC. This dependson
the ANSI C functions gmtime, localtime, and mktime. Which also depend on the host system
having a properly set time zone.

Utility XAP::MakeUTCTime

static void
MakeUTCTi me (const XAPDateTime & inTime, XAPDateTime & outTine);

Description

Sets outTime to the value of inTime converted to UTC. This depends only on the timezone of
inTime, it must be set correctly. Does not assume inTimeisalocal time.

Utility XAP::RemoveProperties

static void
RermoveProperties (Met axXAP & net a,
const std::string * ns = 0,
const std::string * path = 0,
const bool doAll = false);

Description

Removes external properties from a MetaX AP object. If the namespaceis null, the pathis
ignored and all external propertiesin all schema are removed. If the namespace is not null but
the pathisnull, all external propertiesin the named schemaare removed. If the namespace and
path are both non-null, the named property isremoved if it isexternal. A schemais removed if
al of its properties are removed.

56 Version 2.9, May 13, 2002 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

The function returns true if all candidate properties are removed. It returns false if any
properties are not removed because they are internal. This holds even if the namespace or path
are null, in those cases the candidates are all properties in the schema.

The optional "doAll" parameter causes all properties to be treated as external.

Example

WilityXAP:: RenoveProperties (nmeta);
WilityXAP:: RenoveProperties (nmeta, XAP_NS XAP);

Utility XAP::SeparateContainerltems

static void

SeparateContai nerltens (MetaxAP & net a,

const std::string & ns,

const std::string & cont ai ner,

const XAPStruct Cont ai ner Type cType,

const std::string & val ues,

const bool pr eser veCommas) ;
Description

Separates chunks of the values string into itemsin abag or sequence container. Thisis more
than just the inverse of CatenateContainerltems. Separation is more general to allow for input
from other sources or ingrained typing habits. The preserveCommas flag tells if commas
should be a separator or not. If true, they are not a separator but are preserved as part of the
values. Other separators are semicolon, tab, carriage return, linefeed, or multiple spaces. Any
sequence of contiguous separators is one separator. Whitespace at either end of the separated
valuesisremoved. Empty values are ignored.

Example
WilityXAP:: SeparateContainerltens (meta, XAP_NS DC "subject", xap_bag,

allltens, false);

Exceptions
Can propagate exceptions from Met aXAP: : cr eat eFi r st | t emand Met aXAP: : append.

Utility XAP::SetBoolean

static void

The XMP Toolkit Version 2.9, May 13, 2002 57

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Set Bool ean (Met aXAP* net a,
const std::string& ns,
const std::string& pat h,
const bool val);

Description
Sets a property value as a boolean.

Sets the property specified by ns and pat h to the specified boolean value. Calls
Met aXAP: : set . Intermediate nodes on the path are created as needed.

Example

bool happy = true;
UtilityXAP:: SetBoolean (neta, XAP_NS XAP, "Happy", happy);

Exceptions
Raises all the same exceptions as Met aXAP: : set .

Utility XAP::SetDateTime

static void
Set Dat eTi ne (Met aXAP* et a,
const std::string& ns,
const std::string& pat h,
const XAPDat eTi me& dateTime);

Description
Sets the property value as a date and time.

Sets the property specified by ns and pat h to the specified boolean value. Calls
Met aXAP: : set . Intermediate nodes on the path are created as needed.

SeeUtilityXAP:: Get Dat eTi me above for the details of usage for dat eTi ne. The seq
and nano fields are ignored.

Example

XAPDat eTi ne dt;
UilityXAP:: SetDateTine (neta, XAP_NS XAP, "UTC', dt);

Exceptions
Raises all the same exceptions as Met aXAP: : set .

58 Version 2.9, May 13, 2002 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Utility XAP::SetInteger

static void

Set I nteger (Met axAP* net a,
const std::string& ns,
const std::string& path,
const long int val);

Description
Sets property value as an integer.

Sets the property specified by ns and pat h to the specified integer value. Calls
Met aXAP: : set . Intermediate nodes on the path are created as needed.

Example

long int num = -123456789;
UilityXAP:: Setlnteger (nmeta, XAP_NS XAP, "Number", num);

Exceptions
Raises all the same exceptions as Met aXAP: : set .

UtilityXAP::SetLocalized Text

static void

Set Local i zedText (Met axAP* net a,
const std::string& ns,
const std::string& container,
const std::string& genericlLang,
const std::string& specificlLang,
const std::string& val ue,

const XAPFeatures features);

Description

Set the value and features for an appropriate item in alanguage alternative container. Uses the
rules defined for Choosel ocalizedText to determine a"display” item. The items that are set

The XMP Toolkit Version 2.9, May 13, 2002 59

UtilityXAP
UtilityXAP Static Functions (Class Methods)

depend on which Choosel ocalizedText rule applied. The term "preferred language” refersto
the generic language if provided, otherwise to the specific language.
0. The preferred language item is created. An "x-default" item is also created if that is not
the preferred language.

1. The specific language item is updated. An existing "x-default” item is updated if itsvalue
matches the old value of the specific language item.

2. If there are other items with the same generic language root, create a new item for the
given specific language. Otherwise (there was just the generic item) update the generic
language item; also update an existing x-default item if the old values match.

3. The specific language item is created.

4. The preferred language item is created. If the container only had the "x-default" item,
that is also updated.

5. The preferred language item is created.

In addition, if an "x-default” item exists after the update it will be forced to be thefirst item in
the container. This improves RDF interoperability, RDF specifies that the first item in an
alternative should be the default.

Example

WilityXAP:: SetLocalizedText (meta, XAP_NS DC "title", "en", "en-us",
"The XMP Tool kit");

Exceptions

Raises all the same exceptionsas Ut i | i t yXAP: : ChooselLocal i zedText and
Met aXAP: : set .

Utility XAP::SetReal

static void

Set Real (Met axXAP* net a,
const std::string& ns,
const std::string& path,
const doubl e val);

Description
Sets a property value asareal.

Setsthe property specified by ns and pat h to the specified real value. Calls Vet aXAP: : set .
Intermediate nodes on the path are created as needed.

60 Version 2.9, May 13, 2002 The XMP Toolkit

UtilityXAP
UtilityXAP Static Functions (Class Methods)

Example

doubl e real = 3.14159012345678;
UilityXAP::SetReal (nmeta, XAP_NS XAP, "Real", real);

Exceptions
Raises all the same exceptions as Met aXAP: : set .

Utility XAP::SetTimeZone

static void
Set Ti meZone (XAPDateTine & tine);

Description

Setsjust the time zone part of the time to the local offset from UTC. Useful for determining
thelocal time zone or for converting a"zone-less" time to a proper local time.

The XMP Toolkit Version 2.9, May 13, 2002

61

UtilityXAP
UtilityXAP Static Functions (Class Methods)

62 Version 2.9, May 13, 2002 The XMP Toolkit

XMP Toolkit Exceptions

A.1 Overview

This appendix lists the collection of C++ classes used for exceptions throughout the Toolkit.

A.1.1 Exception Classes

Errors are indicated using exceptions. Member function prototypes use the conventions listed
inTable A.1, “XMP Toolkit Exceptions.”

TABLEA.1 XMP Toolkit Exceptions

Potential Exceptions Convention
No exceptions possi bl e. Declared throw ().
dient violates a pre-condition, Default declaration (no throw cl ause).

or runtime exceptions possible.

The following are the exceptions for the XMP Toolkit:

/* Text messages for standard exceptions. */
extern const char *const XAP_BAD ALLCC
extern const char *const XAP_| NVALI D ARGUVENT;

/* Text messages for client faults. */

extern const char *const XAP FAULT BAD FEATURE;
extern const char *const XAP FAULT BAD SCHEMA
extern const char *const XAP_FAULT_BAD TYPE;
extern const char *const XAP_FAULT _BAD PATH
extern const char *const XAP FAULT BAD ACCESS;
extern const char *const XAP FAULT BAD NUMBER

[* Text messages for XWP errors. */

extern const char *const XAP ERR BAD XAP,
extern const char *const XAP ERR BAD XM
extern const char *const XAP_ERR NO NATCH

class XAP APl xap client fault : std::logic_error {

publ i c:
xap_client_fault() throw) : std::logic_error("") {}
explicit xap_client_fault(const char* w) throw() :

The XMP Toolkit Version 2.9, May 13, 2002

XMP Toolkit Exceptions
Overview

std::logic_error(w {}

std::runtime_error {

const char* getContext() const throw() {

virtual ~xap_client fault() throw() {}
h
class XAP_APl xap_error :
public:
virtual ~xap_error() throw() {}
vi rtual
return(mcontext.c_str());
}
virtual const int getlLine() const throw) {
return(mline);
}
pr ot ect ed:

xap_error() throw() :
explicit xap_error(const
std::runtime_error(w {}
vi rtual
m context = c;
}
vi rtual
mline = line;
d
private:
std::string mcontext;
int mline;

}s

cl ass XAP_API
publi c:

xap_bad _feature() throw()

{}
}s

cl ass XAP_API
publi c:
xap_bad_type() throw() :

xap_bad_type :

}s

cl ass XAP_API
public:
xap_bad_path() throw() :

xap_bad_path :

}s

cl ass XAP_API
public:

xap_bad_access() throw()
H

64

xap_bad_feature :

xap_bad_access :

Version 2.9, May 13, 2002

std::runtime_error("") {}

char *const w) throw()

voi d set Context (const char* c) {

voi d setLine(const int line) {

public xap _client_fault {

xap_client fault(XAP_FAULT _BAD FEATURE)

public xap _client_fault {

xap_client _fault (XAP_FAULT _BAD TYPE) {}

public xap _client_fault {

xap_client _fault (XAP_FAULT _BAD PATH {}

public xap _client_fault {

xap_client fault(XAP_FAULT _BAD ACCESS) {}

The XMP Toolkit

XMP Toolkit Exceptions
Overview

class XAP_APlI xap_bad nunber : public xap _client fault {
public:

xap_bad_nunber () throw() : xap_client_faul t (XAP_FAULT _BAD NBER) {}
h

class XAP_APlI xap_bad xap : public xap_error {
public:
xap_bad_xap() throw() : xap_error(XAP_ERR BAD XAP) {}
explicit xap_bad xap(const char *const c) :
xap_error (XAP_ERR BAD XAP) {
set Context (¢);
set Li ne(0);

}s

class XAP_APl xap_bad xm : public xap_error {
publi c:
xap_bad_xm () throw() : xap_error(XAP_ERR BAD XM.) {}
xap_bad_xm (const char *const c, const int |) :
xap_error (XAP_ERR BAD XM.) {
set Context (¢);
setLine(l);

}s

class XAP_APlI xap _no match : public xap_error {
publi c:
xap_no_match() throw() : xap_error(XAP_ERR NO MATCH {}
explicit xap_no_match(const char *const path) :
xap_error (XAP_ERR NO MATCH) {
set Cont ext (pat h) ;
set Li ne(0);

The XMP Toolkit Version 2.9, May 13, 2002 65

XMP Toolkit Exceptions
Overview

66 Version 2.9, May 13, 2002 The XMP Toolkit

The XMP Toolkit

Runtime Flow of Control

This roadmap will follow the most important code paths through the code. Once you are
familiar with these paths, you should be able to find your way around the |ess important
highways and byways.

Met aXAP: : par se

Until the last buffer is encountered, XAPTk_Dat a: : par se is used, which does some pre-
parsing to deal with end-of-line filtering. Once that is dealt with, the buffers are handed over to
XAPTk_Dat a: : i nner Par se, which does the actual filtering, and eventualy calls

XAPTK: : DOMd ue_Par se (in DOM3 ue. cpp). Thisiswhere thereal parsing occurs. It
passes through the DOM code to the underlying expat parser. A DOM tree gets built up asthe
XML isparsed (XAPTk_Dat a: : m donDoc). ThisDOM doc is an exact representation of the
XML syntax that was parsed (modulo comments, XML processing instructions, parsed
entities, etc., which are irrelevant for RDF).

After the last buffer is parsed, XAPTk_Dat a: : | oadFr onilr ee iscaled, which iswhere the
normalization is done. The objective isto convert the exact representation of the XML
seriadlization into a representation that is easier to manipulate. This normalized representation,
which folds the many-equivalent syntax representations into one model, is aforest of trees.
Each tree is represented by a class Nor nilt ee object. Each tree has a non-descript root, and
contains all the properties that are defined for a particular schema/namespace, or for a
particular ID. The ID form has many uses, one of which is to manage the timestamps for
properties. More on this later.

The class RDFToNor mTr ees hormalizes the raw DOM tree into Nor nir ees. It isagigantic
DOMWalker (a pure virtual base class which implements depth-first, preorder tree walks). As
the RDFToNor mir ees walks the original DOM treg, it executes afinite state machine. This
state machine has 6 states:

1) state init
Looking for an r df : RDF element.
2) state_ignore
Ignore this element (m bei ngl gnor ed) and all of its children.
3) state rdf
Found an r df : RDF element, looking for an r df : Descri pti on element.
4) state_desc

Found anr df : Descri pti on (or parseType="Resource’, or implicit description), looking
for properties.

5) state prop

Version 2.9, May 13, 2002

67

n Runtime Flow of Control

Found aproperty, looking for avalue, astructure container, anested description, or aspecial
case (see code for details).

6) state _container
Found a container, looking for alist member.

A side-effect of certain state transitions is the construction of nodesin a Nor nTr ee. When the
RDFToNor miIt ees object is finished walking the original tree, it deletes the original DOM
Document, and leaves behind two st d: : map data structures XAPTk_Dat a: : m by Schena, and
XAPTk_Dat a: : m byl D The former maps a schema/namespace name to a Nor nTr ee of RDF
properties and values, the latter maps a schema/namespace name to a Nor milT ee used to store
timestamps (a stylized RDF bag of properties).

XAPTk_Dat a: : | oadFr omIT ee continues by enumerating the schema/namespaces |oaded in
XAPTk_Dat a: : m bySchena. The corresponding Nor nTr ee in XAPTk_Dat a: : m byl Dis
looked up by this namespace. The encoded timestamp properties are loaded into a more
convenient data structure (XAPTk_ChangelLog, XAPTk_PunchCar dByPat h, and class
PunchCar d, all defined in XAPTk_Dat a. h). See XAPTk_Dat a: : m changelLog.

Finally, XAPTk_Dat a: : | oadFr omlIT ee returns. The last thing that Met aXAP: : par se does
is detectsif aliasing is enabled. If so, it verifies that linked values that are defined are equal,
and populates any linked values that were not defined. Thisis a side-effect of flipping the
XAP_CPTI ON_ALI ASI NG ONflag, which calls Ver i f yAndPopul at e (static module function
in Met aXAP. cpp).

Met aXAP: : Set Al i as

After validating that the parameters are legal, an entry is added to the static

Met aXAP_al i asMap (defined in Met aXAP. cpp). This maps an alias property to an actual
property.

Aliases are treated as linked values. Thisisimplemented by actualy instantiating all
properties that share the same value, and setting/copying the value. Thisis done by

Ver i f yAndPopul at e (see above), and by each non-const function of MetaX AP that can alter
property values, utilizing a pre-computed list of linked values generated by

PreResol veAl i as, which iscalled at the end of Met aXAP: : Set Al i as.

Thejob of PreResol veAl i as isto resolve al aliaslookups (and actual to alias reverse
lookups), and build this information into a sparse matrix, implemented with nested st d: map
structures: Met aXAP_| nf oMap and Met aXAP_Resol vedAl i ases, both defined in

Met aXAP. cpp. The sparse matrix is stored in the static variable Met aXAP_r esol vedAl i ases
(in Met aXAP. cpp).

68 Version 2.9, May 13, 2002 The XMP Toolkit

Runtime Flow of Control

Both the alias and actual properties are entered into the Met aXAP_Resol vedAl i ases map as
keys. The values are mapswhich list all of the other propertiesthat are linked by value. So if |
dothis:

Met aXAP: : Set Alias("dc", "Foo", "xap", "Bar");
/!l Aias = <dc, Foo>
/1 Actual = <xap, Bar>

The Met aXAP_Resol vedAl i ases structure will contain:

Met aXAP_Resol vedAl i ases: {
[<dc, Foo>] = MetaXAP_InfoMap : {
[<xap, Bar> = MetaXAP_Aliaslnfo: {
actual = true;
aliasSingle = true;

}

[<xap, Bar>] = MetaXAP_InfoMap : {
[<dc, Foo> = MetaXAP_Aliasinfo: {
actual = fal se;
aliasSingle = true;

The meaning of al i asSi ngl e, the four flavors of aliases, and the other fields of
Met aXAP_Al i as| nf o are described in the comment above Pr eResol veAl i as. Search for
COMMVENT _ALI AS_FLAVCRS

If another alias for <xap,Bar> is added, <xy,ZZY >, the structure will contain:

Met aXAP_Resol vedAl i ases: {
[<dc, Foo>] = MetaXAP_ I nfoMap : {
[<xap, Bar>] = MetaXAP_Aliaslinfo: {
actual = true;
aliasSingle = true;

}
}
[<xap, Bar>] = MetaXAP_InfoMap : {
[<dc, Foo>] = MetaXAP_Aiaslnfo: {

actual = fal se;
aliasSingle = true;

}

[<xy,ZZY>] = MetaXAP_Aiaslnfo: {
actual = fal se;
aliasSingle = true;

The XMP Toolkit Version 2.9, May 13, 2002

69

n Runtime Flow of Control

}

[<xy, ZZY>] = Met aXAP_I nfolNap : {
[<xap, Bar>] = MetaxXAP_Aiaslinfo: {
actual = true
aliasSingle = true;

}
}

Notice that the Met aXAP_I nf oMap for <xap,Bar> now has two entries, which are the two
properties whose values are linked to <xap,Bar>. This ensures that if the value for <xap,Bar>
is changed directly, the other two properties will also get changed. More about how this works
will be discussed in Met aXAP: : set .

Met aXAP: : get

Right away, XAPTk_Dat a: : get iscaled. First, XPath is evaluated against the appropriate
Nor mTr ee, looked up by schema/namespace hame. If no nodeis found, it returns FALSE.
Next, the form is checked to make sureit issimple (you can’'t do aget on anything but
xap_si npl e).

If the node is an attribute, its valueis returned.

If the nodeisan element, XAPTk _Dat a: : ext r act PropVal iscaled, whichinturn cals
Nor nTr ee: : get Text . The children of the element are examined; if it has no children, an

empty string isreturned. If it has exactly one child that is atext node, itstext valueis returned.
Otherwise, anumber of special casesinvolving XAPFeatures have to be dealt with.

Notice that there were no aliases to deal with. That's because the linked val ue implementation
has already accounted for aliases. The value returned has already been copied from the actual
by other code.

Met aXAP: : set

After validating input parameters, any possible aliases, associated with this property via
Met aXAP_Col | ect Al i ases, are collected.

BEG N Met aXAP_Col | ect Al i ases

Remember, all non-const functions that alter property values call
Met aXAP_Col | ect Al i ases, so this description also appliesto append, r enpve, etc.

If aliasing is not enabled, don’t do anything.

Otherwise, thefirst objectiveisto find avalid value for the
Met aXAP_Resol vedAl i ases: :iterator entry. CheckAl i ases isused to seeif this

70 Version 2.9, May 13, 2002 The XMP Toolkit

Runtime Flow of Control E

path is an actual (target of aliases). If so (CheckAl i ases returns FALSE), lookup the path
in Met aXAP_r esol vedAl i ases, saveif valid. Note that the conformed path is tried first
(from XAPTK: : Conf or nPat h, in xapt kf uncs. cpp), which isthe longest path prefix
that contains no wildcards (*). Also, the structured container type (sct) is needed, which is
normally filled in by CheckAl i ases, but since it returned FALSE, it must be figured out.
We get the Met aXAP_I nf oMap, and try to find a matching member. If not found, the full
path (without conformance) istried, since flavor 3 and flavor 4 (described in
OOMENT_ALI AS FLAVCRS) have wildcardsin their canonical actual paths. If not found,
just use the first entry as a best guess. In any case, remember that the original pathisan
actual.

If CheckAl i ases returned true, we just get the matching entry, and sct is aready
assigned by CheckAl i ases.

If the pointer to the output parameter cType isnot NULL, we assign sct to the variable it
points at.

Our next objective is to massage the canonical path stored in the alias entry into an actual
path that corresponds to the one passed into Met aXAP_Col | ect Al i ases. The variable
savedPat h holds any variable part of the path that was detected during CheckAl i as or
Conf or nPat h earlier. If it is non-empty, we need to remember to tack it on any container
paths we collect astarget linked values. If the original path was an aternate by language,
remember that too. We need to determine if the target is single (not a container).

xap_sct _unknown meanssingle. If sct is some other value and the origina path is not
actual, i sSi ngl e isTRUE only if we are flavor 3 or 4.

If the savedPat h has| ast () inthe predicate, we convert it to the appropriate canonical
path.

Now that we have all of the information we need, we build alist of target paths for linked
values. We iterate over the Met aXAP_| nf oMap value of entry. Theiterator isitem. We do a
little extrawork to guarantee that the first slot (0) in the list is always the target of the
actual, which is alwaysin the second dlot (1). Thisis easy when the original path was an
dias (just put the original pathisslot 0, and the looked up actual in slot 1). It's harder when
the original path was an actual, we have to pick some alias path to put into slot 0: that’s
why thereisabig block of code that starts“i f (i sActual)”. We arrange all this by
saving the corresponding pathsin mat chQri g, ful | O'i g, mat chAct ual , and

full Actual .

We're building our list in the output parameter pr ops, which is avector. Normally, we just
wanttoput ful | Oi ginthefirst slot, and f ul | Act ual in the second. However, thereis
one specia case where the original path was an actual, and has targets, but none of the
targets qualify for one reason or another. For example, if the actual is member 2 of a

The XMP Toolkit Version 2.9, May 13, 2002 71

n Runtime Flow of Control

72

container, but all aliases are either targeted at member 1 or the whole container, nothing
actually matches. See the comment in the block that starts:

if (isActual &% !(foundActual &&% foundAlias)) {

Theitemsin Met aXAP_I nf oMap ar e sear ched, skipping matches for actual and its
dias, since they are already loaded in the list. If any fixup is needed, we append the
variable parts as needed. Finally, we return TRUE.

END Met aXAP_Col | ect Al i ases

If there were no aliases collected, just call XAPTk_Dat a: set . Otherwise, loop through the
list of linked values, and call XAPTk: : set on each, catching and ignoring errors for all
but the original path.

In XAPTk _Dat a: : set, we evaluate the path and convert character escapes to raw
characters. If we evaluate to a node, we replace its value with

XAPTK_Dat a: : r epl acePr op. Otherwise, if the container typeis unknown (not a
container), we call XAPTk _Dat a: : cr eat ePr op. If it isacontainer, we figure out what
type. If the container does not exist, we call the type-specific form of

XAPTk_Dat a: : cr eat eFi r st | t em otherwise, XAPTk_Dat a: : append iscalled.

In XAPTk_Dat a: : repl aceProp, NornTree i s | ooked up and adeterminationis
madeif thisisan element or an attribute. The appropriate form of Nor miTr ee: : set Text
is caled, and also update the timestamp by calling XAPTk_Dat a: : punchd ock.

In XAPTk_Dat a: : set Text , handle special cases and features, then set the text child to
the value passed in.

In XAPTk _Dat a: : cr eat ePr op, we lookup the Nor miIT ee, creating one if needed. We
use the form of Nor mr ee: eval XPat h which creates anodeif oneis not found. The rest
of the code looks just liker epl acePr op.

In XAPTk _Dat a: : cr eat eFi r st | t em we create the container of the appropriate type,
and then create the first member item. The rest of the code isjust liker epl acePr op,
except that we set the timestamp on the entire container, rather than individual members.

In XAPTk _Dat a: : append, we find the member item specified, climb the tree to get
information about the container (parent), and then create a new node and placeit as
specified by the input parameters. We set the timestamp on the whole container.

Met aXAP: : enuner at e
All forms of enumerate directly call XAPTk _Dat a: : enuner at e.

In XAPTk _Dat a: : enuner at e, figure out if everything is being enumerated, or just certain
schemas, subPaths, or depths in steps. For each schema, call Nor miTr ee: : enuner at e.

In Nor miTr ee: : enuner at e, we create a Paths object (Pat hs. cpp), and construct a
DW_enurrer at ePr opEl emDOMWalker, passing the Paths object as a parameter.
DW_enurrer at ePr opEl emis defined in Nor nTr ee. cpp. It basically walks the tree, and for

Version 2.9, May 13, 2002 The XMP Toolkit

The XMP Toolkit

Runtime Flow of Control

each element that meets the input criteria (number of steps, or leaf nodes only), it computes a
canonical path and appends it to the Paths object.

Met aXAP: : serialize

In XAPTk Dat a: : seri al i ze, wefirst deal with header information, then ther df : RDF
boilerplate. Then we iterate through each of the normalized treesin m by Schena. We call
Nor mr ee: : seri al i ze for each one. Then we tack on the timestamp info, if any, with
XAPTk_Dat a: : seri al i zeTi mest anps, then more boilerplate and trailer stuff.

In Nor miTr ee: : seri al i ze, which isimplemented in Nor nTr ee_seri al i ze. cpp, we
arrange for the proper line ending, and then we add the boilerplate for r df : Descri pti on,
which is onetop-level per schema. We loop through all the namespace definitions, and write
out any that we need. Finally, we construct a DOMWalker to serialize the Nor nilr ee: a
SerializePretty for pretty-printing, aSeri al i zeConpact for compact notation.

Both DOMWalkers handle al the nasty details of writing out the syntax. There are many
special cases to handle. See commentsin the code for details. There's also a big block of
comments at the beginning of Nor nTr ee. cpp, which explains the internal layout of

Nor nTr ees.

InXAPTk _Dat a: : seri al i zeTi mest anps, Weiterate through m changelLog. Each entry
isaXAPTk_PunchCar dByPat h map, which contains a timestamp entry for each property that
changed. The body of the loop writes out anr df : Descri pti onwith an ID that is set to the
namespace name for each schemathat has propertiesthat were changed. Thereis one property,
XAPTK_TAG TS _CHANGES, whichisaBag. Each member item of the bag is atimestamp entry,
written in a compact, comma separated val ue notation.

Nor mlr ee: : eval XPat h

This simple XPath evaluator uses a very restricted subset of the X Path notation (see Section
3.3.1, “XPath Syntax”). It takes the input expression and separates each St ep by parsing out
the dlashes with XAPTk: : Expl odePat h (defined in xapt kf uncs. cpp). For each step, we
do alexical anaysis, and then an evaluation. The side-effects of the evaluation isaNode
pointer, stored in current. X Paths always evaluate to a single Node, rather than a node list.

The lexical analysis generates XAPTk_Token class objects (defined in here), which are
appended to a Vect OToken (defined here). Begin and end iterators to the original step string
are saved in the token for type tChars. All token types start with “t”.

In evaluation, we use a finite state machine, which may be described as follows:
1) slnit
OntDot, next state is sSEmpty.

On tAt, next state is SAttr.
On tStar, next stateissList.

Version 2.9, May 13, 2002

73

n Runtime Flow of Control

74

On tChars, next stateis sSName: if there are no more tokens, recover the element node name
and look it up with Nor nTr ee: : sel ect Chi | d. If not found but required, create a node.
Set current an continue to next step.

Otherwise, throw xap_bad_pat h.

2) sEmpty
If there are no more tokens, set return value to current.
Otherwise, throw xap_bad_pat h.

3) sAttr
OntStar, if there are no more tokens, set return value to current, else throw xap_bad_pat h.

On tChars, cast current to EH enent *. If NULL, or there are more tokens, throw
xap_bad_pat h. Otherwise, recover the attribute name from the token, get the attribute,
create it if required, and set current to it.

Otherwise, throw xap_bad_pat h.

4) sList

OntLB, throw xap_bad_pat hs if boundary conditions not met, otherwise next stateis
sPred and save some state.

Otherwise, if there are more tokens, throw xap_bad_pat h,
€l se set return value to current.

5) sName
OntLB, next state is sPred.

On tParens, recover function name from token. If name is not supported, throw
xap_bad_pat h, else set return value to NULL since functions are not yet supported.

Otherwise throw xap_bad_pat h.

6) sPred
OntAt, next stateis pAdttr.

On tChars, if token is not a number, next state is pName, elseit is pOrd. Remember the |eft
hand side (1hs) by assigning the current token index (tix) to it.

Otherwise throw xap_bad_pat h.

7) pAttr

On tChars, next state is pAName, remember |eft hand side (1hs) by assigning current token
index (tix) toit.

Otherwise throw xap_bad_pat h.

Version 2.9, May 13, 2002 The XMP Toolkit

Runtime Flow of Control E

8) pAName
On tEquals, next state is pMatch.
Otherwise throw xap_bad_pat h.

9) pName
On tEquals, next state is pMatch.
On tParens, next state is pFunc.
Otherwise throw xap_bad_pat h.

10) pFunc

On tRB, recover function name from token; if it isn't “l ast ", throw xap_bad_pat h. Set
current to the last child of former value of current.

Otherwise throw xap_bad_pat h.

11) pMatch
On tChars, set the right hand side (rhs) to the current token index, and next stateis pVal.
Otherwise throw xap_bad_pat h.

12) pval

On tRB AND thisisthe last token, perform the match, creating the node if required. Assign
it to current.

Otherwise throw xap_bad_pat h.

If at any pointret != NULL, and we are at the last token or step, break out of the loop.

The XMP Toolkit Version 2.9, May 13, 2002 75

n Runtime Flow of Control

76 Version 2.9, May 13, 2002 The XMP Toolkit

XMP Toolkit Function List

MetaXAP Static Functions (Class Methods)

Met aXAP: : C one Makes a deep-copy of the MetaX AP object and returnsit.

Met aXAP: : Enuner at eAl i ases Returns a pointer to an object that enumerates all of the
aliases defined for all MetaX AP objects.

Met aXAP: : set Extracts an externally saved serialization and savesasa
string in a specified buffer.

Met aXAP: : Cet Al i as Getsthe alias for the specified path, if any.

Met axXAP: : Mer ge creates anew MetaX AP object containing merged
metadata.

Met aXAP: : Regi st er Nanespace Register a namespace name (should be aURI), and a
suggested prefix for composing qualified names.

Met aXAP: : RenoveAl i as Removes the specified alias from the alias map for all
metadata objects.

Met aXAP: : Set Al i as Addsto the alias map for all instances of MetaX AP.

Met aXAP: : Set St andar dAl i ases Defines standard aliases for standard namespaces.

MetaXAP Types

Met aXAP: : XAPCl ock Clients provide the clock used for creating timestamps.

Met aXAP: : XAPChangeBi t s Each timestamp record includes an indication of how the

property was last changed.

MetaXAP Constructors

public default constructor Create an empty object with no clock.
Met aXAP ()

public construct enpty with clock Creates an empty object with a clock.
Met aXAP (XAPd ock* cl ock);

The XMP Toolkit Version 2.9, May 13, 2002

XMP Toolkit Function List

78

public construct from buffer Constructs a populated MetaX AP from a single buffer of
Met axXAP raw XML.
Met aXAP dest ruct or Destroy this object and all internally allocated memory.
~Met aXAP ();

MetaXAP Public Member Functions

Met aXAP: : append Creates a new property with the specified val ue, and add
it after the property specified by namespace ns and pat h.

Met aXAP: : count Returns the number of items in the structured container
specified by ns and pat h.

Met aXAP: : createFirstltem Creates a structured container of the specified type.

Met aXAP: : enabl e Enables or disables the specified option(s), such as
XAP_OPTI ON_DEBUG.

Met aXAP: : enuner at e Enumerates MetaX AP object properties

Met aXAP: : extract Seri al i zati on Exttracts an externally saved serialization and saves as a
string in a specified buffer.

Met aXAP: : get Getsthevalue at the property specified by ns and pat h as
astring.

Met aXAP: : get Cont ai ner Type Returns the type of the specified container.

Met aXAP: : get For m Returns the type of property specified by ns and pat h

Met aXAP: : get Resour ceRef Returns the reference (URI) for the resource that this
MetaX AP is about.

Met aXAP: : get Ti mest anp Returns FALSE if the property specified by ns and pat h
is not defined. Otherwise, returns T

Met aXAP: : i sEnabl ed Returns whether the specified option is enabled, such as
XAP_OPTI ON_DEBUG

Met aXAP: : par se Parses a buffer of XML and create the corresponding
XMP objects.

Met aXAP: : pur geTi mest anps Purges al timestamp records for properties with any

XAPChangeBi t s setinhow.

Met aXAP: : r enove Removes the specified property and all of its sub-
properties, if any.

Version 2.9, May 13, 2002 The XMP Toolkit

XMP Toolkit Function List

Met aXAP:

Met aXAP:

:serialize

i set

Met aXAP:

Met aXAP:

Met aXAP:

:set Ti mest anp

setup

: set Resour ceRef

Serializes the MetaX AP tree as XML.

Sets the specified value at the end of the specified path,
with the optionally specified features.

Sets the timestamp.

Enables client application to provide metadata to this
instance of MetaX AP for automatic tracking.

Sets the reference to the resource (URI) that this
MetaX AP is about.

UtilityXAP Static Functions (Class Methods)

UtilityXAP:: Anal yzeStep Removes last step from path, break it into pieces.

UtilityXAP:: AppendProperties Copies properties from one MetaX AP abject to another.

UtilityXAP:: CatenateContainerltens Catenatestheindividual items of abag or sequence
container into a“composite” string.

UtilityXAP:: Chooselocal i zedText Selects an item in an “alt Text” container.

UtilityXAP:: Conpar eTi mest anps (1) Compares apair of timestamps.

(2) Compares the timestamps on a property in apair of
MetaX AP objects.

UtilityXAP:: Creat eXM_Packet Use this routine to compute the header and trailer string
for a packet, which you use yourself to create a XMP
packet.

UtilityXAP::FilterPropPath Filters Ul text into valid X Path.

UtilityXAP:: Get Bool ean Gets a property value as a boolean as specified by ns and
pat h.

UtilityXAP:: Get DateTi nme Gets a property value as a date and time.

UtilityXAP:: Getlnteger Gets a property value as an integer.

UtilityXAP:: GetLocal i zedText Getsthevalue of anitemin an “at Text” container.

UtilityXAP:: Get Real Gets a property value asareal.

UtilityXAP::IsAl tByLang Returns TRUE if the specified path evaluates to a member
of astructured container that is of typexap_al t , and
which is selected by the attribute xm : | ang.

Version 2.9, May 13, 2002 79

The XMP Toolkit

XMP Toolkit Function List

UtilityXAP:: MakeLocal Ti ne Converts atimestamp to be expressed as alocal time.
UtilityXAP:: MakeUTCTi me Converts a timestamp to be expressed asa UTC time.
UtilityXAP:: RemoveProperties Removes properties or entire schema.

UtilityXAP:: SeparateContainerltens Separatesa“composite” string and stores the individual
items into a bag or sequence container.

UtilityXAP:: Set Bool ean Sets a property value as a boolean.

UtilityXAP:: Set DateTi nme Sets the property value as a date and time.

UtilityXAP:: Setlnteger Sets property value as an integer.

UtilityXAP:: SetLocal i zedText Sets the value of anitemin an “alt Text” container.

UtilityXAP:: Set Real Sets aproperty value asareal.

UtilityXAP:: SetTi meZone Sets the timezone of atimestamp to the local offset from
UTC.

80 Version 2.9, May 13, 2002 The XMP Toolkit

	Preface
	1.1 About This Document
	1.2 Audience
	1.3 Assumptions
	1.4 How This Document Is Organized
	1.5 Conventions used in this Document
	1.6 Where to Go for More Information

	The XMP Toolkit
	2.1 Overview
	2.2 The XMP Toolkit
	2.3 Implementation Notes
	2.3.1 Overview
	2.3.2 Construction and Destruction
	2.3.3 Memory Management
	2.3.4 Style and Conventions

	MetaXAP
	3.1 MetaXAP Overview
	3.2 Introduction
	3.3 Path Composition
	3.3.1 XPath Syntax

	3.4 Property Value Features
	3.5 Standard Attributes
	3.6 MetaXAP Class
	3.6.1 Storage Management

	3.7 Important Types Used In MetaXAP
	3.7.1 Namespace Constants

	3.8 MetaXAP Member Functions
	3.9 MetaXAP Static Functions (Class Methods)
	3.10 XAPPaths Class

	UtilityXAP
	4.1 UtilityXAP
	4.2 UtilityXAP Static Functions (Class Methods)

	XMP Toolkit Exceptions
	Runtime Flow of Control
	XMP Toolkit Function List

