
Aba
cu

s R
es

ea
rc

h
AG

Abacus GUI
User Guide
+
Alpha JFreeChart
Components

2005-July-20

AbaGuiBuilder Ver. 1.6

Aba
cu

s R
es

ea
rc

h
AG

1

ABOUT THE JAVA BUILDER 5

2 REVISION 1.1 5

2.1 Abacus JDBC Components 5

3 WHAT’S NEW IN 1.6 6

4 INTRODUCTION 7

4.1 Starting the GUI Builder 8

4.2 Active Object Panel 9

4.3 Object Canvas 10

4.4 Property Panel 11

4.5 Component Tool Box 12

4.6 Event List and Event Code Panel 13

5 OUR FIRST ATTEMPT 14

6 DATABASE COMPONENTS 21

6.1 JSSDataSource 21

6.2 JSSTextField 22

7 MYSQL EXAMPLE 24

7.1 Creating the sample DB with MySql 24

8 MENU BAR 25

8.1 Creating the Menu Bar 25

8.2 Adding Menus to the Menu Bar 26

8.3 Adding mnemonics to Menu Bar 26

8.4 Adding menu items and separators 28

8.5 Adding accelerator keys to menu items 30

Aba
cu

s R
es

ea
rc

h
AG

8.6 Adding actions to menu items 32

9 OUTLOOK BUTTON BAR 34

9.1 Creating the Outlook Bar 35

9.2 Editing the Outlook buttons 37

9.3 The Auxiliary Object property 37

10 DATABASE BUTTON BAR 41

11 METADATA EDITOR 43

11.1 MetaData Editor Constants 44

11.2 MetaData Editor Classes 45

11.3 Adding a new JDBC driver string 46

12 UDF OBJECT EDITOR 50

12.1 User Defined Functions per Object 50

12.2 How to add UDFs 50

12.3 Adding the function to the JFrame 51

12.4 Adding external imports 53

13 IMPORTING VISUAL COMPONENTS 55

13.1 Defining interface 57

13.2 Adding to a new section in component palette 57

13.3 Storing interface definition 58

13.4 Creating a sample project 59

13.5 Rendering Imported Components 60

13.6 Example - Importing Components to existing section 61

13.7 Defining sample Interface 61

13.8 Storing sample interface 62

13.9 Component Palette 63

13.10 Saving and Compiling Calendar sample 64

Aba
cu

s R
es

ea
rc

h
AG

13.11 Rendering Calendar sample 65

Aba
cu

s R
es

ea
rc

h
AG

About The Java Builder

The Abacus GUI builder is a tool aimed to aid application developers deliver their
applications faster to market by removing the Java layout complexity with a
WYSIWYG and simple XY layout.

Abacus Research developed the GUI Builder and Renderer to aid their 50+
application developers eliminate frustrating hours of complex layout user
interface logic and thus simplifying each screen to an XY coordinate plane.

In addition to the XY layout, Abacus Research developed the Java GUI Builder, a
WYSIWYG tool that allows the applications developer to place UI Java swing
components on the canvas and have it render exactly as you see on the screen.
Due to the various Java layouts, other Java GUI Builders are cumbersome and
complicated, our goal is to simplify the UI task and help the application developer
speed the UI development in order to concentrate in that application.

2 Revision 1.1

A few changes had to be made in order to fix/enhance the Abacus GUI Builder
Open Source version. First, we changed the default Look & Feel to Windows
and enhanced some parts of the UI. Second and most important was to change
the output and how class are packaged, in version 1.0 we outputted class files for
event handling and stored the project definition in binary format in a .PROZ and
we supported a PROJ format. PROJ format is an XML based project file that
defines all the objects within the project, the PROZ was in fact a binary format of
the same file, along with some of the compiled classes. In fact, the handlers
were left out of the PROZ file and only the main file was stored.

2.1 Abacus JDBC Components

These components work in conjunction Sun’s latest Rowset object and SwingSet
classes and their code (http://sourceforge.net/projects/swingset) we were able to
implement our own database classes for the Abacus designer.

http://sourceforge.net/projects/swingse

Aba
cu

s R
es

ea
rc

h
AG

3 What’s New in 1.6

1. Importing Beans and components from IDE
2. Dynamic loading for metadata.
3. First step to Plug-in model (Editor only for this version will release details later).
4. Add new Code editor with component function searching.
5. Enhanced property table.
6. Added the following JFreeChart custom components (Alpha Version):

PieChart
PieChart3D
BarChart
StackedBarChart
BarChart3D
StackedBarChart3D
AreaChart
StackedAreaChart
LineChart
LineChart3D
GanttChart
XYLineChart

Aba
cu

s R
es

ea
rc

h
AG

4 Introduction

Java Builder 1.X requirements (all included in the distribution zip):

 Java JDK 1.4.X
 Merlin (Font Chooser)
 CF (Code Formatter)
 Electric XML (EXML)
 Rowset 1.0 (This will become part of the J2SE 1.5)
 swingset-bin_0.7.0_beta

Optional for demo: MySql database.

Java JDK

Required for compiling auto created code.

Merlin JAR

Required for font choosing actions.

CF JAR

Component written by IBM , and used in the builder to format auto created code.

Electric XML

Component written by Electric Mind and use in the builder to parse XML
configuration and the builder meta data.

RowSet

Component written by Sun will become part of the J2SE 1.5 and it is required for
the database visual components for Abacus GUI builder 1.1.

SwingSet

Code/Classes as foundation for the database visual components in the GUI
builder 1.1.

Aba
cu

s R
es

ea
rc

h
AG

4.1 Starting the GUI Builder

Once you have downloaded the Abacus Java Builder zip file, make sure to
uncompress it and run the start up batch run.bat.

Figure 1

Once you have executed the “run.bat” batch file, the Java GUI builder should appear as
in Figure 1. The GUI builder is divided into six areas:

Aba
cu

s R
es

ea
rc

h
AG

4.2 Active Object Panel

On the top right, the active object hierarchy tree displays all active and visually available
objects for the project, in addition, the hierarchy tree indicates the currently selected
object.

The other important function of the object panel is to offer a visual representation of the
relationship between objects, more specifically containership, as when an object is
contained or is a “child” of another object, as in Fig. 2

Figure 2

Aba
cu

s R
es

ea
rc

h
AG

4.3 Object Canvas

Located at the top center of the screen it shows the visual representation of the project
and how the screen will look when the Java unit is executed (Fig. 3). This is the basis of
the GUI builder WYSIWYG concept, when the GUI Builder project is executed the
objects on the canvas will look exactly as you see them in the canvas.

Figure 3

Aba
cu

s R
es

ea
rc

h
AG

4.4 Property Panel

This panel is located at the top right of the GUI Builder and its function is to display all
the available properties for the current selected object. This panel allows the user to set
and change property values for each object on the object canvas.

Figure 4

Aba
cu

s R
es

ea
rc

h
AG

4.5 Component Tool Box

Figure 4

The component tool box is a tree containing all available Swing classes ready for
instantiation on the canvas. In order to instantiate an object on the canvas, point and click
on the Swing object class you wish to create then click on the canvas, thereafter , you
have instantiated a Java object on the canvas at the desirable XY location.

Aba
cu

s R
es

ea
rc

h
AG

4.6 Event List and Event Code Panel

The event list and event code panel work in tandem to provide a list of available events
per object and its corresponding object event code, this is a standard paradigm in today’s
UI builders such VB and Delphi. The event code panel helps the application developer
code business logic to events without the having to add Java listeners and, therefore it
presents the developer with an easier paradigm.

Aba
cu

s R
es

ea
rc

h
AG

5 Our First Attempt

Fist start the GUI builder, if you have not started it yet and, click on the new project

button , at this point you will have a empty object panel and a closed component
list on the Component Panel.

Next click on the Components item and, the Swing classes should display as in Figure 5.

Figure 6

Select the JFrame item and click on the canvas at this point a JFrame object should be
created on the canvas panel, most GUI screens created with the AbaGuiBuilder will be
JFrame based.

Aba
cu

s R
es

ea
rc

h
AG

Next select JLabel and click on the canvas, you should have an instance of a JLabel
object , named “JLabel” , at this time click on the properties box , select the property
Name, and changed its value to NameLabel press the Enter key in order to update the
property value . You changed the object unique to NameLabel, next we will change the
display text for the object by clicking on the property Text and, changing its value to
“Name” and pressing the Enter key. The Active Object Panel and the Object Canvas
should look like the following images.

Active Object Panel

Object Canvas

Next make your canvas look like the following figure using the object properties from
Table 1:

Aba
cu

s R
es

ea
rc

h
AG

Sample Properties

Object Name Object Text

CompanyLabel Company
Address1Label Address2

CityLabel City
StateLabel Label

Table 1

The Active Object Panel should look like the following image:

At this point, we should save our project by clicking on , typing cityscreen in the
“Enter File Name” edit box and, by clicking on the Save button. Now you have saved
your work on a project named cityscreen with default extension proz.

Next step, you should add six JTextFields and two JButtons and make the canvas look
like the following image:

Aba
cu

s R
es

ea
rc

h
AG

Make sure to save your project once again and, let’s try to render the application in order

to preview what the application will look, so click on the Render button and you
will see the how the screen will look when you run it.

Aba
cu

s R
es

ea
rc

h
AG

Once you saved the project, you may instantiate the project screen from another Java
program by creating an AbaRenderer object and loading the project file with the render.
If you explore the directory where you saved the project, you should find a file with
extension .decl. The file contains Java code and object references that you will use to
execute the screen from another Java program.
cityscreen.proz.decl
 private JLabel citiscreen_NameLabel;
 private JLabel citiscreen_CompanyLabel;
 private JLabel citiscreen_Address1Label;
 private JLabel citiscreen_Address2Label;
 private JLabel citiscreen_CityLabel;
 private JLabel citiscreen_StateLabel;
 private JTextField citiscreen_NameEdit;
 private JTextField citiscreen_CompanyEdit;
 private JTextField citiscreen_Address1Edit;
 private JTextField citiscreen_Address2Edit;
 private JTextField citiscreen_CityEdit;
 private JTextField citiscreen_StateEdit;
 private JButton citiscreen_OkButton;
 private JButton citiscreen_CancelButton;

// Assignments for this user interface

public void getReferences(){
 citiscreen_NameLabel = (JLabel) m_AbaRenderer.getObject("NameLabel");
 citiscreen_CompanyLabel = (JLabel) m_AbaRenderer.getObject("CompanyLabel");
 citiscreen_Address1Label = (JLabel) m_AbaRenderer.getObject("Address1Label");
 citiscreen_Address2Label = (JLabel) m_AbaRenderer.getObject("Address2Label");
 citiscreen_CityLabel = (JLabel) m_AbaRenderer.getObject("CityLabel");
 citiscreen_StateLabel = (JLabel) m_AbaRenderer.getObject("StateLabel");
 citiscreen_NameEdit = (JTextField) m_AbaRenderer.getObject("NameEdit");
 citiscreen_CompanyEdit = (JTextField) m_AbaRenderer.getObject("CompanyEdit");
 citiscreen_Address1Edit = (JTextField) m_AbaRenderer.getObject("Address1Edit");
 citiscreen_Address2Edit = (JTextField) m_AbaRenderer.getObject("Address2Edit");
 citiscreen_CityEdit = (JTextField) m_AbaRenderer.getObject("CityEdit");
 citiscreen_StateEdit = (JTextField) m_AbaRenderer.getObject("StateEdit");
 citiscreen_OkButton = (JButton) m_AbaRenderer.getObject("OkButton");
 citiscreen_CancelButton = (JButton) m_AbaRenderer.getObject("CancelButton");
}

// Using the renderer

// Step 1: Declare a variable 'm_abaRenderer' that is a reference to the AbaRenderer
// For example: AbaRenderer m_AbaRenderer = new AbaRenderer(sDocumentName, false, theGlobalInterfaceObject);
//
// First parameter is name of the project document.
// Second parameter is false (unless rendering inside design cockpit.
// Third parameter is the global interface (if NULL, second parameter must be true
//
// Step 2: Load the project.
//
// boolean bTestLoad = m_AbaRenderer.load();
//
// Step 3: You can set the language of the renderer like this:
//
// m_AbaRenderer.setLanguage(HammerLanguagePresentation.DEUTSCH);
//
// Step 4: Render the interface.
//
// m_AbaRenderer.renderInterface();

Aba
cu

s R
es

ea
rc

h
AG

AbaRenderer Sample Code CityRendererSample.java
import java.io.*;
import java.awt.*;
import java.util.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.plaf.*;
import java.lang.reflect.*;
import java.awt.event.*;
import javax.swing.event.*;

import ch.abacus.lib.ui.*;
import ch.abacus.lib.ui.layout.*;
import ch.abacus.lib.ui.renderer.abaRenderer.*;

public class CityRendererSample {

 public AbaRenderer m_AbaRenderer;

// Declarations of variables for this user interface.

 private JLabel citiscreen_NameLabel;
 private JLabel citiscreen_CompanyLabel;
 private JLabel citiscreen_Address1Label;
 private JLabel citiscreen_Address2Label;
 private JLabel citiscreen_CityLabel;
 private JLabel citiscreen_StateLabel;
 private JTextField citiscreen_NameEdit;
 private JTextField citiscreen_CompanyEdit;
 private JTextField citiscreen_Address1Edit;
 private JTextField citiscreen_Address2Edit;
 private JTextField citiscreen_CityEdit;
 private JTextField citiscreen_StateEdit;
 private JButton citiscreen_OkButton;
 private JButton citiscreen_CancelButton;
// Assignments for this user interface

public void getReferences(){
 citiscreen_NameLabel = (JLabel) m_AbaRenderer.getObject("NameLabel");
 citiscreen_CompanyLabel = (JLabel) m_AbaRenderer.getObject("CompanyLabel");
 citiscreen_Address1Label = (JLabel) m_AbaRenderer.getObject("Address1Label");
 citiscreen_Address2Label = (JLabel) m_AbaRenderer.getObject("Address2Label");
 citiscreen_CityLabel = (JLabel) m_AbaRenderer.getObject("CityLabel");
 citiscreen_StateLabel = (JLabel) m_AbaRenderer.getObject("StateLabel");
 citiscreen_NameEdit = (JTextField) m_AbaRenderer.getObject("NameEdit");
 citiscreen_CompanyEdit = (JTextField) m_AbaRenderer.getObject("CompanyEdit");
 citiscreen_Address1Edit = (JTextField) m_AbaRenderer.getObject("Address1Edit");
 citiscreen_Address2Edit = (JTextField) m_AbaRenderer.getObject("Address2Edit");
 citiscreen_CityEdit = (JTextField) m_AbaRenderer.getObject("CityEdit");
 citiscreen_StateEdit = (JTextField) m_AbaRenderer.getObject("StateEdit");
 citiscreen_OkButton = (JButton) m_AbaRenderer.getObject("OkButton");
 citiscreen_CancelButton = (JButton) m_AbaRenderer.getObject("CancelButton");
}

public CityRendererSample(String paramPath) throws ch.abacus.lib.ui.renderer.common.HammerException
{
 initObject(paramPath);
}

public void initObject(String spath) throws ch.abacus.lib.ui.renderer.common.HammerException {

Aba
cu

s R
es

ea
rc

h
AG

 System.err.println("Loading: "+spath);
 m_AbaRenderer = new AbaRenderer(spath, false, null);
 boolean bTestLoad = m_AbaRenderer.load();
 getReferences();
}

public static void main(String[] args) {
 CityRendererSample thisTest = null;
 try {
 thisTest = new CityRendererSample(args[0]);
 thisTest.m_AbaRenderer.renderInterface();
 } catch(Exception e) {
 e.printStackTrace();
 System.err.println();
 System.err.println("USAGE: java -cp .;abalib.jar;exml.jar RendererSample <Project file path>");
 }
 }
}

SwingSet is a Copyright (c) 2003-2004, The Pangburn Company, Inc. and
Prasanth R. Pasala All rights reserved.

Aba
cu

s R
es

ea
rc

h
AG

6 Database Components

For this beta release, we decided on 5 basic database visual components: A DataSource, a
text edit field, an alpha release of a checkbox and a basic grid. Like we pointed before,
these classes are either derived directly from SwingSet classes or we have taken their
code changed to fit out visual need, for example, the database grid is based on the
SwingSet code with additional functionality for compatibility with our GUI builder.

6.1 JSSDataSource

This the database connection and RowSet object handler, this is a non-visual component
represented on the canvas by a transparent panel, keep in mind that we do not want to
show this object at runtime only at design time. The class keeps a bidirectional cursor to
the database using the RowSet class, this class has the following members:

Member Description

setJDBCClassName This the JDBC driver class name, must be
in the classpath. Included as choices:
com.mysql.jdbc.Driver
org.hsqldb.jdbc.Driver

setJDBCURL This is the URL database description for the
JDBCdriver. For example:
jdbc:mysql://localhost/registrar

Aba
cu

s R
es

ea
rc

h
AG

setJDBCUserName The database user with rights to the
database.

setJDBCPassword The user password.

setSQLCommand The SQL command to execute when the
object connects to the database.

execute

previous Previous record in the row set

next Next record in the row set

clear Clear visual objects and prepare to insert
record.

insert Insert a record into database

update Update current record

delete Delete current record

first Go to first record in the row set

last Go to last record in the row set

6.2 JSSTextField

This database visual object connects a database field to a text edit on the screen via the
data source object, of importance with this object is the data source and the database field
since these determine the database data to display.

Aba
cu

s R
es

ea
rc

h
AG

Aba
cu

s R
es

ea
rc

h
AG

7 MySQL Example

7.1 Creating the sample DB with MySql

Login into MySql

Execute: mysql --user=root mysql

1) Create a new test "abacus" user with password "eli" so execute the following
command:

mysql> GRANT ALL PRIVILEGES ON *.* TO 'abacus'@'localhost'IDENTIFIED BY 'eli' WITH GRANT OPTION;

2) Create demo database

mysql> create database registrar;

3)Execute:

 mysql> use registrar;

4)Execute script:

 mysql> \. mysql.registrar.sql

 Keep in mind you may also use a full path for the script, depending where you
installed the demo files.

5) Execute:
 runproz drive:\path\registrar_op.jar

You should now see the sample application window. For further reference how to create
this demo please take a look at the Flash live demos in LiveDemos.zip.

Aba
cu

s R
es

ea
rc

h
AG

8 Menu Bar

Starting with revision 1.2, the user may create an application menu bar and menu at top
of application window visually. Keep in mind that at design time you maybe able to drop
the menu bar anywhere in the canvas, however after compiling the project, the menu bar
will be attached to the top of the application window.

8.1 Creating the Menu Bar

Fig 9.1

First make sure that the JMenuBar (Revision 1.2) is part of the components palette
Figure 9.1, second select the JMenuBar component click on an existing JFrame within
the canvas. Once you dropped the component on the canvas, add the top menus on the
menu bar as in Figure 9.2.

Aba
cu

s R
es

ea
rc

h
AG

8.2 Adding Menus to the Menu Bar

Figure 9.2

Figure 9.3

8.3 Adding mnemonics to Menu Bar

Figure 9.3 shows a sample screen after adding three JMenu objects to the canvas, once
you have added the menus to the Menu bar, you may add the Mnemonics to the
individual JMenu objects. Adding Mnemonics is very simple, first select an JMenu object
from the object list then, select the “Mnemonic” property from the property table and a
dropdown list will appear Figure 9.4, at this point you may select the “Hot Key” that will
activate this menu, remember Mnemonics or Hot Keys are a combination of the Alt key
and another key, for example (ALT + M).

Aba
cu

s R
es

ea
rc

h
AG

Figure 9.4

After adding a Hot Key to the JMenu object, press the render key to make sure that in
fact you added a mnemonic as a result you should see an underscore corresponding the
hot key as in Figure 9.5.

Figure 9.5

Aba
cu

s R
es

ea
rc

h
AG

8.4 Adding menu items and separators

Once you have added the JMenu objects to the menu bar, the next step is to add the
menu items (JMenuItem) , this is accomplished by selecting the menu bar object on the
object list as in Figure 9.6 and selecting “Add JMenuItem”.

Figure 9.6

Aba
cu

s R
es

ea
rc

h
AG

At this point you can preview the menu by clicking on the render button Figure
9.7.

Figure 9.7

Adding menu separators to the menu is also very simple, once again right click on the
JMenuItem object and hit “Add JSeparator” Figure 9.6, rendering the project should
yield something similar to Figure 9.8.

Aba
cu

s R
es

ea
rc

h
AG

Figure 9.8

8.5 Adding accelerator keys to menu items

To add accelerator keys you need to focus your attention to the property table for the
JMenu objects, there you will find the “Accelerator” property Figure9.9.

Figure 9.9

Click on the dialog helper dialog button to activate the menu item Key Control Editor
dialog Figure 9.10.

Aba
cu

s R
es

ea
rc

h
AG

 Figure 9.10

The Key Control Editor provides an easy interface to connect hot keys to menu items and
the action for each menu item. The Menu Item column has all menu items for the
corresponding menu, in other words, these are the JMenuItems children objects of the
JMenu object.

The Keys column activates a drop down list with the available keys for the particular
environment, for Windows the default is the “CRTL” key, therefore each letter
corresponds to the CTRL + hot key combination, Figure 9.11.

Figure 9.11

Aba
cu

s R
es

ea
rc

h
AG

After setting the accelerators you may render the application and you should see the
menu with its corresponding accelerator as in Figure 9.12.

Figure 9.12

8.6 Adding actions to menu items

The last thing is to add “what to do” when a menu item is selected or its accelerator is
pressed, this is done via the “Action” event listener Figure 9.13. First, make sure to
select the desired JMenu and click on the “actionPerfomed” item from the event list, once
you done that you may add your Java code like in Figure 9.13.

Figure 9.13

This code will be executed when the corresponding item is click or the accelerator is
pressed, as in Figure 9.14.

Aba
cu

s R
es

ea
rc

h
AG

Figure 9.14

Aba
cu

s R
es

ea
rc

h
AG

9 Outlook Button Bar

The Outlook button bar component visual component was added to give a nicer visual
look to the applications Figure 10.1. The component makes it very for the application
developer to create the tool bar.

Figure 10.1

Aba
cu

s R
es

ea
rc

h
AG

9.1 Creating the Outlook Bar

First click on the components panel and select the “Menu” item then click on the
JOutlookBar component figure 10.2 and drag the JOutlookbar to the canvas (JFrame).

Figure 10.2

Aba
cu

s R
es

ea
rc

h
AG

You will now see and empty Outlook bar on the JFrame, right click and add a button to
the button bar as in Figure 10.3.

Figure 10.3

Once the button bar has been added to the button bar then button properties need to be set
and you will have a workable outlook bar, Figure 10.4.

Figure 10.4

Aba
cu

s R
es

ea
rc

h
AG

9.2 Editing the Outlook buttons

The following properties are the most important GUI properties for each button in the
button bar Figure 10.4.

Member Description

BitmapName This is the full path for the image render in
the button component. A full path is
required, if the path is correct then, the
image will be rendered on the button.

BitmapNamePressed This is the full path for the image render in
the button component when the user presses
the button. A full path is required, if the
path is correct then, the image will be
rendered when pressing the button.

HorizontalTextPosition This places the text in the button either:
SwingLeft – Left side of the button
SwingCenter – Center of the button
SwingRight - right side of the button

VerticalTextPosition This places the text in the button either:
SwingTop Above the image -
SwingCenter - on top of the image
SwingBottom – below the image

9.3 The Auxiliary Object property

The auxiliary property is a private property of type Object and it is controlled externally
by the function setAuxObject and retrieves by the getAuxObject method. This property is
useful when activating panel and there is need to keep track of the active object. In the
samples directory starting with revision 1.3, we have included the outlookbar.proj
sample project in order to illustrate the use of the Auxiliary Object property.

First, the code in actionPerformed event for each of the three buttons on the Outlook
bar:

Aba
cu

s R
es

ea
rc

h
AG

JToolBarButton1:

Figure 10.5a

JToolBarButton2:

public void actionPerformed(java.awt.event.ActionEvent p0)
{

 JPanel p = (JPanel)JOutlookBar1.getAuxObject();

 if(p!=null)
 p.setVisible(false);

 JOutlookBar1.setAuxObject(JPanel2);
 JPanel2.setVisible(true);
}

Figure 10.5b

public void actionPerformed(java.awt.event.ActionEvent p0)
{

 JPanel p = (JPanel)JOutlookBar1.getAuxObject();

 if(p!=null)
 p.setVisible(false);

 JOutlookBar1.setAuxObject(JPanel1);
 JPanel1.setVisible(true);

}

Aba
cu

s R
es

ea
rc

h
AG

JToolBarButton3:

public void actionPerformed(java.awt.event.ActionEvent p0)
{

 JPanel p = (JPanel)JOutlookBar1.getAuxObject();

 if(p!=null)
 p.setVisible(false);

 JOutlookBar1.setAuxObject(JPanel3);
 JPanel3.setVisible(true);
}

Figure 10.5c

The actionPerformed event is executed whenever the user presses on the individual
button on the outlook bar, therefore executing the code above. On all three event
handlers, first we retrieve the AuxObject property containing the last panel select and
setting to visible so we use the AuxObject as a place holder for the last selected panel this
way we know which panel to deactivate then set AuxObject with current selected panel
and last we set the current select panel to visible.

Second, it is essential for every application to initialize the AuxObject with a valid value,
otherwise it will contain a null as default. In the outlook bar example, it is initialized with
the first JPanel namely JPanel1 Figure 10.5.

JFrame1 focusGained event.

Figure 10.6

public void focusGained(java.awt.event.FocusEvent p0)
{
 super.focusGained(p0);
 JOutlookBar1.setAuxObject(JPanel1);
}

Aba
cu

s R
es

ea
rc

h
AG

Open and compile outlookbar.proj.

Figure 10.7

Then execute runproz c:\abaguibuilder-1.3\samples\outlookbar.jar Figure 10.7.

Aba
cu

s R
es

ea
rc

h
AG

10 Database Button Bar

This component is very similar to other database “VCR” components that allow the user
to move forward/backward, clear , insert and delete. The component requires a
JSSDatasource, and thus all the messages are sent to the datasource.

Once the JODbButton is selected and dropped on the canvas, select the datasource and
connect to a datasource. Figure 11.2

Aba
cu

s R
es

ea
rc

h
AG

Figure 11.2

Aba
cu

s R
es

ea
rc

h
AG

11 MetaData Editor

The AbacusGuiBuilder keeps its class components definitions and it properties in an
XML file called the metadata.meta and to edit this file the user must unzip the
abalib.jar, edit the metadata file and add it back to the jar. Usually a developer edits the
metadata file in order to add a new visual component, to add or edit a component’s
property or add a new constant. For example, if a application developer needs to add a
new JDBC driver, a new the metadata <JDBC> constant must be added, in fact this is
why we decided to add this tool to the Abacus builder.

In order to eliminate the cumbersome process of unzipping, editing and adding the
metadata back into the jar, we developed a visual tool called the MetaData Editor to
managed the data in the metadata file, the tool is included and you can start it by
executing the metaedit.bat in the bin directory.

Figure 12.1

Aba
cu

s R
es

ea
rc

h
AG

11.1 MetaData Editor Constants

Figure 12.2

The editor contains three sections: Constants, Collections and Classes. The first section,
the Constants, contains all the data items displayed on the selection boxes on the
AbaGuiBuilder’s property panel. For example, the JDBC properties on Figure 12.2 show
up on the gui builder like in Figure 12.3

Figure 12.3

Aba
cu

s R
es

ea
rc

h
AG

11.2 MetaData Editor Classes

This panel represents all the available visual components in the Abacus Gui Builder and
their properties, in future releases the developer we will add editing and adding
functionality to this panel, for now it gives the developer an idea to the direction we are
moving.

Aba
cu

s R
es

ea
rc

h
AG

11.3 Adding a new JDBC driver string

For this sample we will use the MS-SQL JDBC driver:

1) Run metaedit (.bat or .sh) , select the constants tab and click on JDBCDriver.

Aba
cu

s R
es

ea
rc

h
AG

Next click on the “Modify Constants” button and click the “Add” button:

Aba
cu

s R
es

ea
rc

h
AG

Now type the ClassName to be loaded, for our example, we shall use
com.mysql.jdbc.driver:

Aba
cu

s R
es

ea
rc

h
AG

Your list should look like this:

Aba
cu

s R
es

ea
rc

h
AG

12 UDF Object Editor

12.1 User Defined Functions per Object

Starting with release 1.5, the AbaGuiBuilder adds supports for User Defined Functions
(UDF) and data support for each visual object. This means that the developer can add
their own functions and/or data to each component via the GUI in addition, we have
incorporated support for external imports via the GUI.

12.2 How to add UDFs

First let’s load the sample application customer.proj (figure 11 1) from the samples
directory and we will add a new function “showDialog” to the JFrame1 object. The
“showDialog” will be used executed when we click on the either button on the Frame. On
previous versions, the developer had to code the functionality twice, on each button’s
actionPerformed event.

Figure 11 1

Aba
cu

s R
es

ea
rc

h
AG

12.3 Adding the function to the JFrame

Starting with version 1.5, we can code the function in the container and call the function
from the “children” objects. So in our example, we will add the following function to the
frame:

public void showDialog(String showString)
{
 JOptionPane.showMessageDialog(null, showString , "Alert", JOptionPane.ERROR_MESSAGE);
}

And we do this by first selecting the JFrame1 as the current object then we focus at
bottom area labeled “Event and Object Code” and select the Object code on the combox
and type the function above in the Event Code editor like in figure 11.2.

Next select the button JButton1 and click on the “Event Code” tab and add the following
code:

JFrame1.showDialog("Save Record?");

Aba
cu

s R
es

ea
rc

h
AG

Next select the button JButton2 and click on the “Event Code” tab and add the following
code:

JFrame1.showDialog("CancelChanges?");

Next select “Save with Compile” (as customer5) and run the project using the command
line: “runproz \abaguibuilder-1.5\samples\customer5.jar”

Aba
cu

s R
es

ea
rc

h
AG

12.4 Adding external imports

It became apparent once the Object Code feature was implemented that external imports
support was necessary, therefore a new option was added to the via project -> build
options on the UI. Figure 11.4

The above dialog comes from the sample project customer5.proj, this project
demonstrates the use external imports by including the JDBC and IO libraries. The
customer5.proj user defined code retrieves the values from the text editors and saves
them onto a MySQL table called customer.

The JFrame1 object has three private functions connect, clearItems and
saveToDatabase in addition to two private data members conn a Connection JDBC
object and st a Statement JDBC object, Figure 11.5. Therefore, in order to compile
customer5.proj project the “java.io and java.sql” must be included.

Aba
cu

s R
es

ea
rc

h
AG

Figure 11.5

Aba
cu

s R
es

ea
rc

h
AG

13 Importing Visual Components

Starting with version 1.6 visual components (Beans) may be imported directly from a jar
in the path, this process builds the XML component definition and adds to our global
component definitions via the custom side-by-side XML files (s-b-s).

The import object MUST have a default constructor for the import facility to work, if
there is not a default constructor we recommend you create an intermediate class that
provides one, for example, the JFreeChart implementations were created with this
method.

First, let’s take a look at a very simple visual component in order to illustrate the
importing process. For our first example, we will use the class JOvalButton derived
from the Swing class JButton, JOvalButton looks like Figure 1:

Figure 1

The JOvalButton draws an oval in its paint procedure:

import javax.swing.*;
import java.awt.*;

public class JOvalButton extends JButton
{
 public JOvalButton()
 {
 super();
 setBorder(BorderFactory.createEmptyBorder());
 }

 public JOvalButton(String text)
 {
 super(text);
 setBorder(BorderFactory.createEmptyBorder());
 }

 public void paint(Graphics g)
 {
 super.paint(g);
 int w= getWidth();
 int h= getHeight();
 g.drawOval(0, 0, w, h);
 }

}

Aba
cu

s R
es

ea
rc

h
AG

You can find the class above in the CastComponents.jar located samples\os.repository.

First, we need to import the castcomponents.jar into the Abacus GUI Builder using the
IDE importer dialog, next activate the dialog by selecting the “import classes” button on

the menu bar (Figure 2) and select the /samples/os.repository.

Figure 2

Next, select the JOvalButton.class located in the os.repository directory and select “New
Section” for Import under. (Figure 3). “Import Under” points to a section in the GUI
builder’s class palette, we use to insert the class reference into a new palette section.

Figure 3

Aba
cu

s R
es

ea
rc

h
AG

13.1 Defining interface

After selecting a class, we need to choose its properties and events we would like to
expose to the GUI builder (Figure 4) and then we select Import.

NOTE: The composite option (upper left check box) is reserved for containers object that
have children object which you would like to see activated at the design time.

Figure 4

13.2 Adding to a new section in component palette

Next, we create a new component palette section by typing “Castellum” in the name in
the Component section dialog (Figure 5).

Figure 5

Aba
cu

s R
es

ea
rc

h
AG

13.3 Storing interface definition

One a palette section has been selected, we need to save the object definition to disk, in
our example we shall save it on the /samples/os.repository directory as in Figure 6.

Figure 6

Click on the “Save” button and the class definition is now save in JOVALButton.XML
file, this file contains the GUI builder metadata definition for the imported class. At this
point, we may use the JOvalButton to create application from within the GUI builder so
let’s make sure to open the “Components” palette and make sure it looks like Figure 7.

Figure 7

Aba
cu

s R
es

ea
rc

h
AG

13.4 Creating a sample project

At this point, we are ready to create a form using the imported component:

1. Create a new project.
2. Add a JFrame
3. Drag a new JOvalButton to the canvas
4. “Save and Compile” the project as “OvalButton” (Figure 8).

Figure 8

Aba
cu

s R
es

ea
rc

h
AG

13.5 Rendering Imported Components

When you compile a project with imported components for first time, a .jar file named
{location}..AbacusCostum is written out, in fact , the jar file is recreated whenever you
update the XML class definition either manually or via the import IDE (Note: we
recommend the IDE dialog).

For the example in Figure 8, you will the following two files in the os.repository
directory:

1. abaguibuilder-1.6.samples.os.repository.AbacusCustom.jar
2. com.castellumtech.components.JOvalButton.xml

The AbacusCustom.jar file is used at rendering to extract the XML stored in the jar while
the JOvalButton is used at design time ONLY, therefore when deploying you application
you should supply the AbacusCustom(s) jars as well as the imported jars.

For example, to execute the sample application compiled in Figure 8 we need to execute
the “runproz.bat or runproz.sh” with the following parameters:

runproz /abaguibuilder-1.6/samples/ovalbutton.jar
/abaguibuilder-1.6/samples/os.repository/castcomponents.jar
/abaguibuilder-1.6/samples/os.repository/abaguibuilder-1.6.samples.os.repository.AbacusCustom.jar

Parameter #1 is the compiled project
Parameter #2 is the jar that contains the JOvalButton component
Parameter #3 is the imported metadata jar (class definition for runtime execution)

When we execute the command line above we should the following form:

Figure 9

Aba
cu

s R
es

ea
rc

h
AG

13.6 Example - Importing Components to existing section

This time we will import a calendar class from cbeans.jar included with Abacus GUI
builder distribution, this jar contains a handful of visual components that we can import
with the GUI builder.

First select the import dialog on the GUI builder , next point to the \bin directory
within our distribution and select cbeans.jar. We will import the CCalendar.class into
section “Others” (Figure 10).

Figure 10

13.7 Defining sample Interface
The next step, we select the interface properties and Events (Figure 11).

Figure 11

Aba
cu

s R
es

ea
rc

h
AG

Import the following properties:
Border,font,name,visible,width.

Import the following Event:
MouseWheeListner

13.8 Storing sample interface

Now, we can “Import” the component and create its XML definition and we will save it
under \samples\os.repository (Figure 12).

Figure 12

Aba
cu

s R
es

ea
rc

h
AG

13.9 Component Palette

After saving the definition under “Other” you should see the CCalendar component listed
on the “Components” palette (Figure 13).

Figure 13

Aba
cu

s R
es

ea
rc

h
AG

13.10 Saving and Compiling Calendar sample

Let’s use the calendar component on a sample application:

1. Create a new project.
2. Add a JFrame
3. Drag the Calendar from “Other” to the canvas
4. “Save and Compile” the project as “CalendarSample” (Figure 14)

Figure 14

Aba
cu

s R
es

ea
rc

h
AG

13.11 Rendering Calendar sample

runproz /abaguibuilder-1.6/samples/calendarsample.jar

/abaguibuilder-1.6/samples/os.repository/abaguibuilder-1.6.samples.os.repository.AbacusCustom.jar

Parameter #1 – is the compiled sample project “calendar sample”
Parameter #2 – is the XML definition of the Calendar class at rendering time.

NOTE: Because the runproz batch file adds cbeans.jar to the classpath by default we do
not have to pass it to runproz.bat, otherwise the cbeans.jar will be the third parameter in
the command line.

	ABOUT THE JAVA BUILDER 5
	Revision 1.1
	Abacus JDBC Components

	What’s New in 1.6
	Introduction
	Starting the GUI Builder
	Active Object Panel
	Object Canvas
	Property Panel
	Component Tool Box
	Event List and Event Code Panel

	Our First Attempt
	Database Components
	JSSDataSource
	JSSTextField

	MySQL Example
	Creating the sample DB with MySql

	Menu Bar
	Creating the Menu Bar
	Adding Menus to the Menu Bar
	Adding mnemonics to Menu Bar
	Adding menu items and separators
	Adding accelerator keys to menu items
	Adding actions to menu items

	Outlook Button Bar
	Creating the Outlook Bar
	Editing the Outlook buttons
	The Auxiliary Object property

	Database Button Bar
	MetaData Editor
	MetaData Editor Constants
	MetaData Editor Classes
	Adding a new JDBC driver string

	UDF Object Editor
	User Defined Functions per Object
	How to add UDFs
	Adding the function to the JFrame
	Adding external imports

	Importing Visual Components
	Defining interface
	Adding to a new section in component palette
	Storing interface definition
	Creating a sample project
	Rendering Imported Components
	Example - Importing Components to existing section
	Defining sample Interface
	Storing sample interface
	Component Palette
	Saving and Compiling Calendar sample
	Rendering Calendar sample

