
Watcom C

Language Reference

Edition 11.0c

Notice of Copyright
Copyright  2000 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

ii

Preface
This book describes the C programming language as implemented by the Watcom C16 and
C32 compilers for 80x86-based processors. Watcom C16 and C32 are implementations of
ANSI/ISO 9899:1990 Programming Language C. The standard was developed by the ANSI
X3J11 Technical Committee on the C Programming Language. In addition to the full C
language standard, the compiler supports numerous extensions for the 80x86 environment.

This book is intended to be a reference manual and hence a precise description of the C
language. It also attempts to remain readable by ordinary humans. When new concepts are
introduced, examples are given to provide clarity.

Since C is a programming language that is supposed to aid programmers trying to write
portable programs, this book points out those areas of the language that may vary from one
system to another. Where possible, the probable behavior of other C compilers is mentioned.

September, 1996.

Trademarks
IBM, IBM PC, PS/2, PC DOS and OS/2 are registered trademarks of International Business
Machines Corp.

Intel and Pentium are registered trademarks of Intel Corp.

Microsoft and MS DOS are registered trademarks of Microsoft Corp. Windows is a
trademark of Microsoft Corp.

QNX is a registered trademark of QNX Software Systems Ltd.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

WATCOM is a trademark of Sybase, Inc. and its subsidiaries.

iii

iv

Table of Contents

Introduction ... 1

1 Introduction to C ... 3
1.1 History .. 3
1.2 Uses .. 3
1.3 Advantages ... 5
1.4 How to Use This Book ... 6

Language Reference .. 7

2 Notation ... 9

3 Basic Language Elements ... 11
3.1 Character Sets ... 11

3.1.1 Multibyte Characters .. 12
3.2 Keywords .. 12
3.3 Identifiers .. 13
3.4 Comments ... 14

4 Basic Types ... 17
4.1 Declarations of Objects .. 17
4.2 Name Scope .. 20
4.3 Type Specifiers ... 20
4.4 Integer Types .. 22
4.5 Floating-Point Types .. 25
4.6 Enumerated Types .. 26
4.7 Arrays ... 29
4.8 Strings ... 31

5 Constants ... 33
5.1 Integer Constants .. 33
5.2 Floating-Point Constants .. 35
5.3 Character Constants .. 36

5.3.1 Wide Character Constants .. 39
5.4 String Literals ... 40

5.4.1 Wide String Literals ... 41

6 Type Conversion ... 43
6.1 Integral Promotion .. 43
6.2 Signed and Unsigned Integer Conversion .. 44
6.3 Floating-Point to Integer Conversion ... 45

v

Table of Contents

6.4 Integer to Floating-Point Conversion ... 45
6.5 Arithmetic Conversion ... 46
6.6 Default Argument Promotion ... 47

7 Advanced Types .. 49
7.1 Structures .. 49

7.1.1 Bit-fields ... 52
7.2 Unions ... 54
7.3 Pointers ... 56

7.3.1 Special Pointer Types for Watcom C16 ... 57
7.3.1.1 The Small and Big Code Models 58
7.3.1.2 The Small and Big Data Models 59
7.3.1.3 Mixing Memory Models .. 59
7.3.1.4 The _ _far Keyword for Watcom C16 60
7.3.1.5 The _ _near Keyword for Watcom C16 61
7.3.1.6 The _ _huge Keyword for Watcom C16 62

7.3.2 Special Pointer Types for Watcom C32 ... 63
7.3.2.1 The _ _far Keyword for Watcom C32 64
7.3.2.2 The _ _near Keyword for Watcom C32 65
7.3.2.3 The _ _far16 and _Seg16 Keywords 66

7.3.3 Based Pointers for Watcom C16 and C32 67
7.3.3.1 Segment Constant Based Pointers and Objects 68
7.3.3.2 Segment Object Based Pointers 69
7.3.3.3 Void Based Pointers ... 70
7.3.3.4 Self Based Pointers .. 71

7.4 Void .. 72
7.5 The const and volatile Declarations .. 73

8 Storage Classes ... 77
8.1 Type Definitions ... 78

8.1.1 Compatible Types .. 80
8.2 Static Storage Duration ... 81

8.2.1 The static Storage Class ... 82
8.2.2 The extern Storage Class .. 82

8.3 Automatic Storage Duration ... 83
8.3.1 The auto Storage Class ... 84
8.3.2 The register Storage Class .. 85

9 Initialization of Objects ... 87
9.1 Initialization of Scalar Types .. 87
9.2 Initialization of Arrays .. 87
9.3 Initialization of Structures .. 89

vi

Table of Contents

9.4 Initialization of Unions ... 90
9.5 Uninitialized Objects .. 91

10 Expressions ... 93
10.1 Lvalues .. 95
10.2 Primary Expressions ... 95
10.3 Postfix Operators .. 97

10.3.1 Array Subscripting ... 97
10.3.2 Function Calls .. 98
10.3.3 Structure and Union Members ... 99
10.3.4 Post-Increment and Post-Decrement .. 100

10.4 Unary Operators ... 101
10.4.1 Pre-Increment and Pre-Decrement Operators 101
10.4.2 Address-of and Indirection Operators .. 101
10.4.3 Unary Arithmetic Operators ... 102
10.4.4 The sizeof Operator .. 103

10.5 Cast Operator .. 104
10.6 Multiplicative Operators ... 106
10.7 Additive Operators ... 107
10.8 Bitwise Shift Operators .. 108
10.9 Relational Operators ... 109
10.10 Equality Operators .. 110
10.11 Bitwise AND Operator ... 110
10.12 Bitwise Exclusive OR Operator .. 111
10.13 Bitwise Inclusive OR Operator ... 112
10.14 Logical AND Operator ... 112
10.15 Logical OR Operator .. 113
10.16 Conditional Operator .. 113
10.17 Assignment Operators .. 114

10.17.1 Simple Assignment .. 115
10.17.2 Compound Assignment .. 115

10.18 Comma Operator .. 116
10.19 Constant Expressions .. 116

11 Statements ... 119
11.1 Labelled Statements .. 119
11.2 Compound Statements .. 119
11.3 Expression Statements .. 120
11.4 Null Statements ... 121
11.5 Selection Statements ... 121

11.5.1 The if Statement ... 121
11.5.2 The switch Statement ... 123

vii

Table of Contents

11.6 Iteration Statements .. 124
11.6.1 The while Statement ... 124
11.6.2 The do Statement .. 125
11.6.3 The for Statement ... 125

11.7 Jump Statements ... 127
11.7.1 The goto Statement ... 127
11.7.2 The continue Statement .. 127
11.7.3 The break Statement ... 127
11.7.4 The return Statement .. 128

12 Functions ... 129
12.1 The Body of the Function ... 132
12.2 Function Prototypes .. 132

12.2.1 Variable Argument Lists .. 133
12.3 The Parameters to the Function main ... 135

13 The Preprocessor ... 137
13.1 The Null Directive .. 137
13.2 Including Headers and Source Files ... 138
13.3 Conditionally Including Source Lines .. 139

13.3.1 The #ifdef and #ifndef Directives .. 141
13.4 Macro Replacement .. 142
13.5 Argument Substitution .. 144

13.5.1 Converting An Argument to a String ... 144
13.5.2 Concatenating Tokens .. 145
13.5.3 Simple Argument Substitution ... 146
13.5.4 Rescanning for Further Replacement ... 147

13.6 More Examples of Macro Replacement ... 149
13.7 Redefining a Macro .. 150
13.8 Changing the Line Numbering and File Name ... 152
13.9 Displaying a Diagnostic Message ... 152
13.10 Providing Other Information to the Compiler .. 153
13.11 Standard Predefined Macros ... 153
13.12 Watcom C16 and C32 Predefined Macros ... 154
13.13 The offsetof Macro ... 157
13.14 The NULL Macro ... 157

14 The Order of Translation ... 159

Programmer’s Guide ... 161

viii

Table of Contents

15 Modularity ... 163
15.1 Reducing Recompilation Time ... 163
15.2 Grouping Code With Related Functionality ... 164
15.3 Data Hiding ... 164

15.3.1 Complete Data Hiding .. 165
15.3.2 Partial Data Hiding ... 165

15.4 Rewriting and Redesigning Modules .. 166
15.5 Isolating System Dependent Code in Modules ... 166

16 Writing Portable Programs .. 167
16.1 Isolating System Dependent Code .. 167
16.2 Beware of Long External Names .. 169
16.3 Avoiding Implementation-Defined Behavior ... 170
16.4 Ranges of Types ... 170
16.5 Special Features .. 171
16.6 Using the Preprocessor to Aid Portability .. 171

17 Avoiding Common Pitfalls ... 173
17.1 Assignment Instead of Comparison .. 173
17.2 Unexpected Operator Precedence ... 174
17.3 Delayed Error From Included File .. 175
17.4 Extra Semi-colon in Macros ... 175
17.5 The Dangling else ... 176
17.6 Missing break in switch Statement ... 177
17.7 Side-effects in Macros .. 178

18 Programming Style ... 179
18.1 Consistency ... 179
18.2 Case Rules for Object and Function Names ... 179
18.3 Choose Appropriate Names .. 181
18.4 Indent to Emphasize Structure .. 182
18.5 Visually Align Object Declarations .. 184
18.6 Keep Functions Small ... 184
18.7 Use static for Most Functions ... 185
18.8 Group Static Objects Together ... 185
18.9 Do Not Reuse the Names of Static Objects .. 185
18.10 Use Included Files to Organize Structures ... 186
18.11 Use Function Prototypes ... 186
18.12 Do Not Do Too Much In One Statement .. 186
18.13 Do Not Use goto Too Much ... 187
18.14 Use Comments .. 187

ix

Table of Contents

Appendices .. 189

A. Compiler Keywords .. 191
A.1 Standard Keywords .. 191
A.2 Watcom C16 and C32 Keywords .. 191

B. Trigraphs ... 195

C. Escape Sequences .. 197

D. Operator Precedence ... 199

E. Formal C Grammar .. 201
E.1 Lexical Grammar .. 201

E.1.1 Tokens .. 202
E.1.2 Keywords ... 202
E.1.3 Identifiers ... 202
E.1.4 Constants .. 203
E.1.5 String Literals .. 204
E.1.6 Operators .. 205
E.1.7 Punctuators .. 205

E.2 Phrase Structure Grammar ... 205
E.2.1 Expressions .. 205
E.2.2 Declarations ... 207
E.2.3 Statements .. 210
E.2.4 External Definitions ... 211

E.3 Preprocessing Directives Grammar .. 211

F. Translation Limits .. 215

G. Macros for Numerical Limits .. 217
G.1 Numerical Limits for Integer Types .. 217
G.2 Numerical Limits for Floating-Point Types ... 221

H. Implementation-Defined Behavior .. 229
H.1 Translation ... 229
H.2 Environment .. 230
H.3 Identifiers ... 230
H.4 Characters .. 231
H.5 Integers .. 233
H.6 Floating Point ... 234
H.7 Arrays and Pointers .. 234

x

Table of Contents

H.8 Registers .. 236
H.9 Structures, Unions, Enumerations and Bit-Fields .. 237
H.10 Qualifiers ... 238
H.11 Declarators ... 238
H.12 Statements .. 238
H.13 Preprocessing Directives ... 239
H.14 Library Functions ... 239

I. Examples of Declarations ... 241
I.1 Object Declarations ... 241
I.2 Function Declarations ... 243
I.3 _ _far, _ _near and _ _huge Declarations .. 244
I.4 _ _interrupt Declarations ... 246

J. A Sample Program ... 247
J.1 The memos.h File .. 247
J.2 The memos.c File .. 248

K. Glossary ... 263

xi

xii

Introduction

Introduction

2 Introduction

1 Introduction to C

1.1 History
The C programming language was developed by Dennis Ritchie in 1972 for the UNIX
operating system. Over the years, the language has appeared on many other systems,
satisfying a need of programmers who want to be able to develop applications that can run in
many different environments.

Because the C language was never formally defined, each implementation interpreted the
behavior of the language in slightly different ways, and also introduced their own extensions.
As a result, the goal of true software portability was not achieved.

In 1982, the American National Standards Committee formed the X3J11 Technical
Committee on the C Programming Language, whose purpose was to formally define the C
language and its library functions, and to describe its interaction with the execution
environment. The C Programming Language standard was completed in 1989.

The Watcom C16 and C32 compiler has evolved from 8086 code generation technology
developed and refined at Watcom and the University of Waterloo since 1980. The first
Watcom C16 compiler was released in 1988. The first Watcom C32 compiler was released in
1989.

1.2 Uses
C is sometimes called a "low-level" language, referring to the fact that C programmers tend to
think in terms of bits, bytes, addresses and other concepts fundamental to assembly-language
programming.

But C is also a "broad spectrum" language. In addition to accessing the basic components of
the computer, it also provides features common to many "high-level" languages. Structured
program control, data structures and modular program design are recent additions to some
high-level languages, but have been part of the C language since its inception.

C gives the programmer the ability to write applications at a level just above the assembly
language level, without having to know the assembly language of the machine. Language

Uses 3

Introduction

compilers provided this ability in the past, but the application was often quite "fat", because
the code produced by the compiler was never as good as could be written by a good assembly
language programmer. But with modern code generation techniques it is often difficult, if not
impossible, to distinguish an assembly language program written by a human from the same
program generated by a C compiler (based on code size). In fact, some compilers now
generate better code than all but the best assembly language programmers.

So, what can C be used for? It can be used to write virtually anything, the same way that
assembly language can be used. But other programming languages continue to be used for
specific programming applications at which they excel.

C tends to be used for "systems programming", a term that refers to the writing of operating
systems, programming languages and other software tools that don’t fall into the class of
"applications programming". A classic example is the UNIX operating system, developed by
Bell Laboratories. It is written almost entirely in C and is one of the most portable operating
systems available.

C is also used for writing large programs that require more efficiency than the average
application. Typical examples are interpreters and compilers for programming languages.

Another area where C is commonly used is large-scale application programs, such as
databases, spreadsheets, word processors and so on. These require a high degree of efficiency
and compactness, since they are often basic to an individual’s or company’s computing needs,
and therefore consume a lot of computer resources.

It seems that C is used extensively for commercially available products, but C can also be
used for any application that just requires more efficiency. For example, a large transaction
processing system may be written in COBOL, but to squeeze the last bit of speed out of the
system, it may be desirable to rewrite it in C. That application could certainly be written in
assembly language, but many programmers now prefer to avoid programming at such a low
level, when a C compiler can generate code that is just as efficient.

Finally, of course, a major reason for writing a program in C is that it will run with little or no
modification on any system with a C compiler. In the past, with the proliferation of C
compilers and no standard to guide their design, it was much more difficult. Today, with the
appearance of the ANSI standard for the C programming language, a program written entirely
in a conforming C implementation should be transportable to a new compiler with relatively
little work. Of course, issues like file names, memory layout and command line parameter
syntax will vary from one system to another, but a properly designed C application will isolate
these parts of the code in "system-dependent" files, which can be changed for each system.
(Refer to "Writing Portable Programs".)

4 Uses

Introduction to C

1.3 Advantages
C has a number of major advantages over other programming languages.

• Most systems provide a C compiler.

Vendors of computer systems realize that the success of a system is dependent upon the
availability of software for that system. With the large body of C-based programs in
existence, most vendors provide a C compiler in order to encourage the transporting of some
of these programs to their system. For systems that don’t provide a C compiler, independent
companies may develop a compiler.

With the development of the ANSI C standard, the trend towards universal availability of C
compilers will probably accelerate.

• C programs can be transported easily to other computers and operating systems.

Many programming languages claim transportability. FORTRAN, COBOL and Pascal
programs all have standards describing them, so a program written entirely within the standard
definition of the language will likely be portable. The same is true of C. However, few
languages can match portability with the other advantages of C, including efficiency of
generated code and the ability to work close to the machine level.

• Programs written in C are very efficient in both execution speed and code size.

Few languages can match C in efficiency. A good assembly language programmer may be
able to produce code better than a C compiler, but he/she will have to spend much more time
in the development of the application, because assembly language programming lends itself
more easily to errors. Compilers for other languages may produce efficient code for
applications within their scope, but few produce efficient code for all applications.

• C programs can get close to the hardware, controlling devices directly if necessary.

Most programs do not need this ability, but if necessary, the program can access particular
features of the computer. For example, a fixed memory location may exist that contains a
certain value of use to the program. It is easy to access it from C, but not from many other
languages. (Of course, if the program is designed to be portable, this section of code will be
isolated and clearly marked as depending on the operating system.)

• C programs are easy to maintain.

Assembly language code is difficult to maintain owing to the very low level of programming
(registers, addressing modes, branching). C programs provide comparable functionality, but

Advantages 5

Introduction

at a higher level. The programmer still thinks in terms of machine capabilities, but without
having to know the exact operation of the hardware, leaving the programmer free to
concentrate on program design rather than the intimate details of coding on that particular
machine.

• C programs are easy to understand.

"Easy" is, of course, a relative term. C programs are definitely easier to understand than the
equivalent assembly language program. Another programming language may be easier to
understand for a particular kind of application, but in general C is a good choice.

• All of the above advantages apply regardless of the application or the hardware or
operating system on which it is running.

This is the biggest advantage. Because C programs are portable, and C is not suited only to a
certain class of applications, it is often the best choice for developing an application.

1.4 How to Use This Book
This book is a description of the C programming language as implemented by the Watcom
C16 and C32 compilers for the 80x86 family of processors. It is intended to be an
easy-to-read description of the C language. The ANSI C standard is the last word on details
about the language, but it describes the language in terms that must be interpreted for each
implementation of a C compiler.

This book attempts to describe the C language in terms of general behavior, and the specific
behavior of the C compiler when the standard describes the behavior as
implementation-defined.

Areas that are shaded describe the interpretation of the behavior that the Watcom
C16 and C32 compilers follow.

Programmers who are writing a program that will be ported to other systems should pay
particular attention when using these features, since other compilers may behave in other
ways. As much as possible, an attempt is made to describe other likely behaviors.

This book does not describe any of the library functions that a C program might use to interact
with its environment. In particular, input and output is not described in this manual. The C
language does not contain any I/O capabilities. The Watcom C Library Reference manual
describes all of the library functions, including those used for input and output.

A glossary is included in the appendix, and describes all terms used in the book.

6 How to Use This Book

Language Reference

Language Reference

8 Language Reference

2 Notation

The C programming language contains many useful features, each of which has a number of
optional parts. The ANSI C standard describes the language in very precise terms, often
giving syntax diagrams to describe the features.

This book attempts to describe the C language in more friendly terms. Where possible,
features are described using ordinary English. Jargon is avoided, although by necessity, new
terminology is introduced throughout the book. A glossary is provided at the end of the book
to describe any terms that are used.

Where the variety of features would create excessive amounts of text, simple syntax diagrams
are used. It is hoped that these are mostly self-explanatory. However, a brief explanation of
the notation used is offered here:

1. Required keywords are in normal lettering style (for example, enum).

2. Terms that describe a class of object that replace the term are in italics (for example,
identifier).

3. When two or more optional forms are available, they are shown as follows:

form 1
or
form 2

4. Any other symbol that appears is required, unless otherwise noted.

The following example is for an enumerated type:

enum identifier
or
enum { enumeration-constant-list }
or
enum identifier { enumeration-constant-list }

Notation 9

Language Reference

An enumerated type has three forms:

1. The required keyword enum followed by an identifier that names the type. The
identifier is chosen by the programmer.

2. The required keyword enum followed by a brace-enclosed list of enumeration
constants. The braces are required, and enumeration-constant-list is described
elsewhere.

3. The required keyword enum followed by an identifier and a brace-enclosed list of
enumeration constants. As with the previous two forms, the identifier may be
chosen by the programmer, the braces are required and enumeration-constant-list is
described elsewhere.

10 Notation

3 Basic Language Elements

The following topics are discussed:

• Character Sets

• Keywords

• Identifiers

• Comments

3.1 Character Sets
The source character set contains the characters used during the translation of the C source
file into object code. The execution character set contains the characters used during the
execution of the C program. In most cases, these two character sets are the same, since the
program is compiled and executed on the same machine. However, C is sometimes used to
cross-compile, whereby the compilation of the program occurs on one machine, but the
compiler generates code for some other machine. If the two machines have different character
sets (say EBCDIC and ASCII), then the compiler will, where appropriate, map characters
from the source character set to the execution character set. This mapping is
implementation-defined, but generally maps the visual representation of the character.

Regardless of which C compiler is used, the source and execution character sets contain (at
least) the following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9
! " # % & ’ () * + , - . /
: ; < = > ? [\] ^ { | } ~

as well as the space (blank), horizontal tab, vertical tab and form feed. Also, a new line
character will exist for both the source and execution character sets.

Character Sets 11

Language Reference

Any character other than those previously listed should appear in a source file in a character
constant, a string or a comment, otherwise the behavior is undefined.

If the character set of the computer being used to compile the program does not contain a
certain character, a trigraph sequence may be used to represent it. Refer to the section
"Character Constants".

The Watcom C16 and C32 compilers use the full IBM PC character set as both the
source and execution character sets. The set of values from hexadecimal 00 to 7F
constitute the ASCII character set.

3.1.1 Multibyte Characters

A multibyte character, as its name implies, is a character whose representation consists of
more than one byte. Multibyte characters allow compilers to provide extended character sets,
often for human languages that contain more characters than those found in the one-byte
character set.

Multibyte characters are generally restricted to:

• comments,
• string literals,
• character constants,
• header names.

The method for specifying multibyte characters generally varies depending upon the extended
character set.

3.2 Keywords
The following words are reserved as part of the C language and are called keywords. They
may not be used for any kind of identifier, including object names, function names, labels,
structure or union tags (names).

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

12 Keywords

Basic Language Elements

The Watcom C16 and C32 compilers also reserve the following keywords:

based fortran near segment
cdecl huge Packed segname
export interrupt pascal self
far loadds saveregs syscall

The Watcom C32 compiler also reserves the following keywords:

far16 Seg16 stdcall

Note that, since C is sensitive to the case of letters, changing one or more letters in a keyword
to upper case will prevent the compiler from recognizing it as a keyword, thereby allowing it
to be used as an identifier. However, this is not a recommended programming practice.

3.3 Identifiers
Identifiers are used as:

• object or variable names,
• function names,
• labels,
• structure, union or enumeration tags,
• the name of a member of a structure or union,
• enumeration constants,
• macro names,
• typedef names.

An identifier is formed by a sequence of the following characters:

• upper-case letters "A" through "Z",
• lower-case letters "a" through "z",
• the digits "0" through "9",
• the underscore "_".

The first character may not be a digit.

An identifier cannot be a member of the list of keywords.

Identifiers can consist of any number of characters, but the compiler is not required to
consider more than 31 characters as being significant, provided the identifier does not have
external linkage (shared by more than one compiled module of the program). If the identifier

Identifiers 13

Language Reference

is external, the compiler is not required to consider more than 6 characters as being
significant. External identifiers may be case-sensitive.

Of course, any particular compiler may choose to consider more characters as being
significant, but a portable C program will strictly adhere to the above rules. (This restriction
is likely to be relaxed in future versions of the ANSI C standard and corresponding C
compilers.)

The Watcom C16 and C32 compilers do not restrict the number of significant
characters for functions or objects with external or internal linkage.

The linker provided with Watcom C16 and C32 restricts the number of significant
characters in external identifiers to 40 characters, and by default, does not distinguish
between identifiers that differ only in the case of the letters. An option may be used
to force the linker to respect case differences.

Any external identifier that starts with the underscore character ("_") may be reserved by the
compiler. Any other identifier that starts with two underscores, or an underscore and an
upper-case letter may be reserved. Generally, a program should avoid creating identifiers that
start with an underscore.

3.4 Comments
A comment is identified by /* followed by any characters and terminated by */. Comments
are recognized anywhere in a program, except inside a character constant or string. Once the
/* is found, characters are examined only until the */ is found. This excludes nesting of
comments.

A comment is treated as a "white-space" character, meaning that it is like a space character.

For example, the program fragment,

/* Close all the files.
*/

for(i = 0; i < fcount; i++) { /* loop through list */
fclose(flist[i]); /* close the file */

}

is equivalent to,

for(i = 0; i < fcount; i++) {
fclose(flist[i]);

}

14 Comments

Basic Language Elements

Comments are sometimes used to temporarily remove a section of code during testing or
debugging of a program. For example, the second program fragment could be "commented
out" as follows:

/*
for(i = 0; i < fcount; i++) {

fclose(flist[i]);
}

*/

This technique will not work on the first fragment because it contains comments, and
comments may not be nested. For these cases, the #if directive of the C preprocessor may
be used. Refer to the chapter "The Preprocessor" for more details.

The Watcom C16 and C32 compilers support an extension for comments. The
symbol // can be used at any point in a physical source line (except inside a
character constant or string literal). Any characters from the // to the end of the line
are treated as comment characters. The comment is terminated by the end of the line.
There is no explicit symbol for terminating the comment. For example, the program
fragment used at the beginning of this section can be rewritten as,

// Close all the files.

for(i = 0; i < fcount; i++) { // loop through list
fclose(flist[i]); // close the file

}

This form of comment can be used to "comment out" code without the difficulties
encountered with /*.

Comments 15

Language Reference

16 Comments

4 Basic Types

The following topics are discussed:

• Declarations of Objects

• Integer Types

• Floating-Point Types

• Enumerated Types

• Arrays

• Strings

4.1 Declarations of Objects
When a name is used in a program, the compiler needs to know what that name represents. A
declaration describes to the compiler what a name is, including:

• How much storage it occupies (objects) or how much storage is required for the value
that is returned (functions), and how the value in that storage is to be interpreted. This
is called the type. Examples include int, float and struct list.

• Whether the name is visible only within the module being compiled, or throughout the
program. This is called the linkage, and is part of the storage class. The keywords
extern and static determine the linkage.

• For object names, whether the object is created every time the function is called and
destroyed every time the function returns. This is called the storage duration, and is
part of the storage class. The keywords extern, static, auto and register
determine the storage duration.

The placement of the declaration within the program determines whether the declaration
applies to all functions within the module, or just to the function within which the declaration
appears.

Declarations of Objects 17

Language Reference

The definition of an object is similar to its declaration, except that the storage for the object is
reserved. Whether the declaration of an object is also a definition depends upon the
placement of the declaration and the attributes of the object.

The usual form for defining (creating) an object is as follows:

storage-class-specifier type-specifier declarator;
or
storage-class-specifier type-specifier declarator = initializer;

The storage-class-specifier is optional, and is thoroughly discussed in the chapter "Storage
Classes". The type-specifier is also optional, and is thoroughly discussed in the next section
and in the chapter "Advanced Types". At least one of the storage-class-specifier and
type-specifier must be specified, and they may be specified in either order, although it is
recommended that the storage-class-specifier always be placed first.

The declarator is the name of the object being defined along with other information about its
type. There may be several declarators, separated by commas.

The initializer is discussed in the chapter "Initialization of Objects".

The following are examples of declarations of objects, along with a brief description of what
each one means. A more complete discussion of the terms used may be found in the relevant
section.

int x;

Inside a function
The object x is declared to be an integer, with automatic storage duration. Its
value is available only within the function (or compound statement) in which it is
defined. This is also a definition.

Outside a function
The object x is created and declared to be an integer with static storage duration.
Its value is available within the module in which it is defined, and has external
linkage so that any other module may refer to it by using the declaration,

extern int x;

This is also a definition.

18 Declarations of Objects

Basic Types

register void * memptr;

Inside a function
The object memptr is declared to be a pointer to void (no particular type of
object), and is used frequently in the function. This is also a definition.

Outside a function
Not valid because of the register storage class.

auto long int x, y;

Inside a function
The objects x and y are declared to be signed long integers with automatic
storage duration. This is also a definition.

Outside a function
Not valid because of the auto storage class.

static int nums[10];

Inside a function
The object nums is declared to be an array of 10 integers with static storage
duration. Its value is only available within the function, and will be preserved
between calls to the function. This is also a definition.

Outside a function
The object nums is declared to be an array of 10 integers with static storage
duration. Its value is only available within the module. (The difference is the
scope of the object nums.) This is also a definition.

extern int x;

Inside a function
The object x is declared to be an integer with static storage duration. No other
functions within the current module may refer to x unless they also declare it. The
object is defined in another module, or elsewhere in this function or module.

Outside a function
The object x is declared to be an integer with static storage duration. Its value is
available to all functions within the module. The object is defined in another
module, or elsewhere in this module.

The appendix "Examples of Declarations" contains many more examples of declarations of
objects and functions.

Declarations of Objects 19

Language Reference

4.2 Name Scope
An identifier may be referenced only within its scope.

An identifier declared within a function or within a compound statement within a function has
block scope, and may be referenced only in the block in which it is declared. The object’s
scope includes any enclosed blocks and terminates at the } which terminates the enclosing
block.

An identifier declared within a function prototype (as a parameter to that function) has
function prototype scope, and may not be referenced elsewhere. Its scope terminates at the)
which terminates the prototype.

An identifier declared outside of any function or function prototype has file scope, and may be
referenced anywhere within the module in which it is declared. If a function contains a
declaration for the same identifier, the identifier with file scope is hidden within the function.
Following the terminating } of the function, the identifier with file scope becomes visible
again.

A label, which must appear within a function, has function scope.

4.3 Type Specifiers
Every object has a type associated with it. Functions may be defined to return a value, and
that value also has a type. The type describes the interpretation of a value of that type, such as
whether it is signed or unsigned, a pointer, etc. The type also describes the amount of storage
required. Together, the amount of storage and the interpretation of stored values describes the
range of values that may be stored in that type.

There are a number of different types defined by the C language. They provide a great deal of
power in selecting methods for storing and moving data, and also contribute to the readability
of the program.

There are a number of "basic types", those which will appear in virtually every program.
More sophisticated types provide methods to describe data structures, and are discussed in the
chapter "Advanced Types".

A type specifier is one or more of:

20 Type Specifiers

Basic Types

char
double
float
int
long
short
signed
unsigned
void
enumeration
structure
union
typedef name

and may also include the following type qualifiers:

const
volatile

The Watcom C16 and C32 compilers also provide the following type qualifiers:

based fortran near segment
cdecl huge Packed segname
export interrupt pascal self
far loadds saveregs syscall

The Watcom C32 compiler also provides the following type qualifiers:

far16 Seg16 stdcall

The keywords based, segment, segname and self are described in
the section "Based Pointers for Watcom C16 and C32".

The keywords far, huge and near are described in the sections "Special
Pointer Types for Watcom C16" and "Special Pointer Types for Watcom C32".

The keywords far16 and Seg16 are described in the section "Special Pointer
Types for Watcom C32".

The Packed keyword is described in the section "Structures".

For the remaining keywords, see the appendix "Compiler Keywords".

Various combinations of these keywords may be used when declaring an object. Refer to the
section on the type being defined.

Type Specifiers 21

Language Reference

The main types are char, int, float and double. The keywords short, long,
signed, unsigned, const and volatile modify these types.

4.4 Integer Types
The most commonly used type is the integer. Integers are used for storing most numbers that
do not require a decimal point, such as counters, sizes and indices into arrays. The range of
integers is limited by the underlying machine architecture and is usually determined by the
range of values that can be handled by the most convenient storage type of the hardware.
Most 16-bit machines can handle integers in the range -32768 to 32767. Larger machines
typically handle integers in the range -2147483648 to 2147483647.

The general integer type includes a selection of types, specifying whether or not the value is to
be considered as signed (negative and positive values) or unsigned (non-negative values),
character (holds one character of the character set), short (small range) or long (large range).

Just specifying the type int indicates that the amount of storage should correspond to the
most convenient storage type of the hardware. The value is treated as being a signed quantity.
According to the C language standard, the minimum range for int is -32767 to 32767,
although a compiler may provide a greater range.

With Watcom C16, int has a range of -32768 to 32767.

With Watcom C32, int has a range of -2147483648 to 2147483647.

Specifying the type char indicates that the amount of storage is large enough to store any
member of the execution character set. If a member of the required source character set (see
"Character Sets") is stored in an object of type char, then the value is guaranteed to be
positive. Whether or not other characters are positive is implementation-defined. (In other
words, whether char is signed or unsigned is implementation-defined. If it is necessary for
the object of type char to be signed or unsigned, then the object should be declared
explicitly, as described below.)

The Watcom C16 and C32 compilers define char to be unsigned, allowing
objects of that type to store values in the range 0 to 255. A command line switch
may be specified to cause char to be treated as signed. This switch should only
be used when porting a C program from a system where char is signed.

The int keyword may be specified with the keywords short or long. These keywords
provide additional information about the range of values to be stored in an object of this type.
According to the C language standard, a signed short integer has a minimum range of

22 Integer Types

Basic Types

-32767 to 32767. A signed long integer has a minimum range of -2147483647 to
2147483647.

With Watcom C16 and C32, short int has a range of -32768 to 32767, while
long int has a range of -2147483648 to 2147483647.

The char and int types may be specified with the keywords signed or unsigned.
These keywords explicitly indicate whether the type represents a signed or unsigned
(non-negative) quantity.

The keyword int may be omitted from the declaration if one (or more) of the keywords
signed, unsigned, short or long is specified. In other words, short is equivalent to
signed short int and unsigned long is equivalent to unsigned long int.

The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing
the range and other characteristics of the various numeric types. The macros from the header
<limits.h>, which describe the integer types, are discussed.

Integer Types 23

Language Reference

The following table describes all of the various integer types and their ranges as
implemented by the Watcom C16 and C32 compilers. Note that the table is in order
of increasing storage size.

Minimum Maximum
Type Value Value

signed char -128 127

unsigned char 0 255

char 0 255

short int -32768 32767

unsigned short int 0 65535

int (C16) -32768 32767
int (C32) -2147483648 2147483647

unsigned int (C16) 0 65535
unsigned int (C32) 0 4294967295

long int -2147483648 2147483647

unsigned long int 0 4294967295

With Watcom C16, an object of type int has the same range as an object of type
short int.

With Watcom C32, an object of type int has the same range as an object of type
long int.

The following are some examples of declarations of objects with integer type:

short a;
unsigned short int b;
int c,d;
signed e;
unsigned int f;
long g;
signed long h;
unsigned long int i;

24 Integer Types

Basic Types

4.5 Floating-Point Types
A floating-point number is a number which may contain a decimal point and digits following
the decimal point. The range of floating-point numbers is usually considerably larger than
that of integers, but the efficiency of integers is usually much greater. Integers are always
exact quantities, whereas floating-point numbers sometimes suffer from round-off error and
loss of precision.

On some computers, floating-point arithmetic is emulated (simulated) by software, rather than
hardware. Software emulation can greatly reduce the speed of a program. While this should
not affect the portability of a program, a prudent programmer limits the use of floating-point
numbers.

There are three floating-point number types, float, double, and long double.

The appendix "Macros for Numerical Limits" discusses a set of macro definitions describing
the range and other characteristics of the various numeric types. The macros from the header
<float.h>, which describe the floating-point types, are discussed.

The following table gives the ranges available on the 80x86/80x87 using the Watcom
C16 and C32 compiler. The floating-point format is the IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

Smallest Largest Digits 80x87
Absolute Absolute Of Type

Type Value Value Accuracy Name

float 1.1E-38 3.4E+38 6 short real

double 2.2E-308 1.7E+308 15 long real

long double 2.2E-308 1.7E+308 15 long real

By default, the Watcom C16 and C32 compilers emulate floating-point arithmetic. If
the 8087 or 80x87 Numeric Processor Extension (numeric coprocessor, math chip)
will be present at execution time, the compiler can be forced to generate
floating-point instructions for the coprocessor by specifying a command line switch,
as described in the User’s Guide. Other than an improvement in execution speed, the
final result should be the same as if the processor is not present.

Floating-Point Types 25

Language Reference

The following are some examples of declarations of objects with floating-point type:

float a;
double b;
long double c;

4.6 Enumerated Types
Sometimes it is desirable to have a list of constant values representing different things, and the
exact values are not relevant. They may need to be unique or may have duplicates. For
example, a set of actions, colors or keys might be represented in such a list. An enumerated
type allows the creation of a list of items.

An enumerated type is a set of identifiers that correspond to constants of type int. These
identifiers are called enumeration constants. The first identifier in the set has the value 0, and
subsequent identifiers are given the previous value plus one. Wherever a constant of type
int is allowed, an enumeration constant may be specified.

The following type specifier defines the set of actions available in a simple memo program:

enum actions { DISPLAY, EDIT, PURGE };

The enumeration constant DISPLAY is equivalent to the integer constant 0, and EDIT and
PURGE are equivalent to 1 and 2 respectively.

An enumerated type may be given an optional tag (name) with which it may be identified
elsewhere in the program. In the example above, the tag of the enumerated type is actions,
which becomes a new type. If no tag is given, then only those objects listed following the
definition of the type may have the enumerated type.

The name space for enumerated type tags is different from that of object names, labels and
member names of structures and unions, so a tag may be the same identifier as one of these
other kinds. An enumerated type tag may not be the same as the tag of a structure or union, or
another enumerated type.

Enumeration constants may be given a specific value by specifying ’=’ followed by the value.
For example,

enum colors { RED = 1, BLUE = 2, GREEN = 4 };

creates the constants RED, BLUE and GREEN with values 1, 2 and 4 respectively.

26 Enumerated Types

Basic Types

enum fruits { GRAPE, ORANGE = 6, APPLE, PLUM };

creates constants with values 0, 6, 7 and 8.

enum fruits { GRAPE, PLUM, RAISIN = GRAPE, PRUNE = PLUM };

makes GRAPE and RAISIN equal to 0, and PLUM and PRUNE equal to 1.

The formal specification of an enumerated type is as follows:

enum identifier
or
enum { enumeration-constant-list }
or
enum identifier { enumeration-constant-list }

enumeration-constant-list:
enumeration-constant

or
enumeration-constant, enumeration-constant-list

enumeration-constant:
identifier

or
identifier = constant-expression

The type of an enumeration is implementation-defined, although it must be compatible with
an integer type. Many compilers will use int.

From the following table, the Watcom C16 compiler will choose the smallest type
that has sufficient range to represent all of the constants of a particular enumeration:

Type Smallest Value Largest Value

signed char -128 127
unsigned char 0 255
signed int -32768 32767
unsigned int 0 65535

A command-line option may be used to force all enumerations to int.

Enumerated Types 27

Language Reference

From the following table, the Watcom C32 compiler will choose the smallest type
that has sufficient range to represent all of the constants of a particular enumeration:

Type Smallest Value Largest Value

signed char -128 127
unsigned char 0 255
signed short -32768 32767
unsigned short 0 65535
signed int -2147483648 2147483647
unsigned int 0 4294967295

A command-line option may be used to force all enumerations to int.

To create an object with enumerated type, one of two forms may be used. The first form is to
create the type as shown above, and then to declare an object as follows:

enum tag object-name;

For example, the declaration,

enum fruits fruit;

declares the object fruit to be the enumerated type fruits.

The second form is to list the identifiers of the objects following the closing brace of the
enumeration declaration. For example,

enum fruits { GRAPE, ORANGE, APPLE, PLUM } fruit;

Provided no other objects with the same enumeration are going to be declared, the enumerated
type tag fruits is not required. The declaration could be specified as,

enum { GRAPE, ORANGE, APPLE, PLUM } fruit;

An identifier that is an enumeration constant may only appear in one enumeration type. For
example, the constant ORANGE may not be included in another enumeration, because the
compiler would then have two values for ORANGE.

28 Enumerated Types

Basic Types

4.7 Arrays
An array is a collection of objects which are all of the same type. All elements (objects) in
the array are stored in contiguous (adjacent) memory.

References to array elements are usually made through indexing into the array. To facilitate
this, the elements of the array are numbered starting at zero. Hence an array declared with n
elements is indexed using indices between 0 and n-1.

An array may either be given an explicit size (using a constant expression) or its size may be
determined by the number of values used to initialize it. Also, it is possible to declare an array
without any size information, in the following cases:

• a parameter to a function is declared as "array of type" (in which case the compiler
alters the type to be "pointer to type"),

• an array object has external linkage (extern) and the definition which creates the array
is given elsewhere,

• the array is fully declared later in the same module.

An array of undetermined size is an incomplete type.

An array declaration is of the following form:

type identifier [constant-expression];
or
type identifier[] = { initializer-list };
or
type identifier[constant-expression] = { initializer-list };
or
type identifier[];

where type is the type of each element of the array, identifier is the name of the array,
constant-expression is an expression that evaluates to a positive integer defining the number
of elements in the array, and initializer-list is a list of values (of type type) to be assigned to
successive elements of the array.

For example,

int values[10];

Arrays 29

Language Reference

declares values to be an array of 10 integers, with indices from 0 to 9. The expression
values[5] refers to the sixth integer in the array.

char text[] = { "some stuff" };

declares text to be an array of 11 characters, each containing successive letters from "some
stuff". The value of text[10] is ’\0’ (the null character), representing the
terminating character in the string (see Strings).

extern NODES nodelist[];

declares nodelist to be an array of NODES (defined elsewhere), and the array is of
unknown size. In another source file or later in the current file, there must be a corresponding
declaration of nodelist which defines how big the array actually is.

It is possible to declare multi-dimensional arrays by including more than one set of
dimensions. For example,

int tbl[2][3];

defines a 2-row by 3-column array of integers. In fact, it defines an array of 2 arrays of 3
integers. The values are stored in memory in the following order:

tbl[0][0]
tbl[0][1]
tbl[0][2]
tbl[1][0]
tbl[1][1]
tbl[1][2]

The rows of the table are stored together. This form of storing an array is called row-major
order. The expression tbl[1][2] refers to the element in the last row and last column of
the array.

In an expression, if an array is named without specifying any indices, the value of the array
name is the address of its first element. In the example,

int array[10];
int * aptr;

aptr = array;

the assignment to aptr is equivalent to,

aptr = &array[0];

30 Arrays

Basic Types

Since multi-dimensional arrays are just arrays of arrays, it follows that omission of some, but
not all, dimensions is equivalent to taking the address of the first element of the sub-array. In
the example,

int array[9][5][2];
int * aptr;

aptr = array[7];

the assignment to aptr is equivalent to,

aptr = &array[7][0][0];

Note that no checking of indices is performed at execution time. An invalid index (less than
zero or greater than the highest index) will refer to memory as if the array was extended to
accommodate the index.

4.8 Strings
A string is a special form of the type "array of characters", specifically an array of characters
terminated by a null character. The null character is a character with the value zero,
represented as \0 within a string, or as the character constant ’\0’. Because string
processing is such a common task in programming, C provides a set of library functions for
handling strings.

A string is represented by the address of the first character in the string. The length of a string
is the number of characters up to, but not including, the null character.

An array can be initialized to be a string using the following form:

type identifier[] = { "string value " };

(The braces are optional.) For example,

char ident[] = "This is my program";

declares ident to be an array of 19 characters, the last of which has the value zero. The
string has 18 characters plus the null character.

In the above example, ident is an array whose value is a string. However, the
quote-enclosed value used to initialize the array is called a string literal. String literals are
described in the "Constants" chapter.

Strings 31

Language Reference

A string may be used anywhere in a program where a "pointer to char" may be used. For
example, if the declaration,

char * ident;

was encountered, the statement,

ident = "This is my program";

would set the value of ident to be the address of the string "This is my program".

32 Strings

5 Constants

A constant is a value which is fixed at compilation time and is often just a number, character
or string. Every constant has a type which is determined by its form and value. For example,
the value 1 may have the type signed int, while the value 400000 may have the type
signed long. In many cases, the type of the constant does not matter. If, for example, the
value 1 is assigned to an object of type long int, then the value 1 will be converted to a
long integer before the assignment takes place.

5.1 Integer Constants
An integer constant begins with a digit and contains no fractional or exponent part. A prefix
may be included which defines whether the constant is in octal, decimal or hexadecimal
format.

A constant may be suffixed by u or U indicating an unsigned int, or by l or L indicating
a long int, or by both indicating an unsigned long int.

If a constant does not start with a zero and contains a sequence of digits, then it is interpreted
as a decimal (base 10) constant. These are decimal constants:

7
762
98765L

If the constant starts with 0x or 0X followed by the digits from 0 through 9 and the letters a
(or A) through f (or F), then the constant is interpreted as a hexadecimal (base 16) constant.
The letters A through F represent the values 10 through 15 respectively. These are
hexadecimal constants:

0X07FFF
0x12345678L
0xFABE

Integer Constants 33

Language Reference

If a constant starts with a zero, then it is an octal constant and may contain only the digits 0
through 7. These are octal constants:

017
0735643L
0

Note that the constant 0 is actually an octal constant, but is zero in decimal, octal and
hexadecimal.

The following table describes what type the compiler will give to a constant. The left column
indicates what base (decimal, octal or hexadecimal) is used and what suffixes (U or L) are
present. The right column indicates the types that may be given to such a constant. The type
of an integer constant is the first type from the table in which its value can be accurately
represented.

Constant Type

unsuffixed decimal int, long, unsigned long

unsuffixed octal int, unsigned int, long, unsigned long

unsuffixed hexadecimal int, unsigned int, long, unsigned long

suffix U only unsigned int, unsigned long

suffix L only long, unsigned long

suffixes U and L unsigned long

34 Integer Constants

Constants

The following table illustrates a number of constants and their interpretation and type:

Hexa
Decimal -decimal Watcom C16 Watcom C32

Constant Value Value Type Type

33 33 21 signed int signed int
033 27 1B signed int signed int
0x33 51 33 signed int signed int
33333 33333 8235 signed long signed int
033333 14043 36DB signed int signed int
0xA000 40960 A000 unsigned int signed int
0x33333 209715 33333 signed long signed int
0x80000000 2147483648 80000000 unsigned long unsigned int
2147483648 2147483648 80000000 unsigned long unsigned int
4294967295 4294967295 FFFFFFFF unsigned long unsigned int

5.2 Floating-Point Constants
A floating-point constant may be distinguished by the presence of either a period, an e or E,
or both. It consists of a value part (mantissa) optionally followed by an exponent. The
mantissa may include a sequence of digits representing a whole number, followed by a period,
followed by a sequence of digits representing a fractional part. The exponent must start with
an e or E followed by an optional sign (+ or -), and a digit sequence representing (with the
sign) the power of 10 by which the mantissa should be multiplied. Optionally, the suffix f or
F may be added indicating the constant has type float, or the suffix l or L indicating the
constant has type long double. If no suffix is present then the constant has type double.

In the mantissa, either the whole number part or the fractional part must be present. If only
the whole number part is present and no period is included then the exponent part must be
present.

Floating-Point Constants 35

Language Reference

The following table illustrates a number of floating-point constants and their type:

Constant Value Type

3.14159265 3.14159265E0 double
11E24 1.1E25 double
.5L 5E-1 long double
7.234E-22F 7.234E-22 float
0. 0E0 double

5.3 Character Constants
A character constant is usually one character enclosed in single-quotes, and indicates a
constant whose value is the representation of the character in the execution character set. A
character constant has type int.

The character enclosed in quotes may be any character in the source character set. Certain
characters in the character set may not be directly representable, since they may be assigned
other meanings. These characters can be entered using the following escape sequences:

Character Escape
Character Name Sequence

’ single quote \’
" double quote " or \"
? question mark ? or \?
\ backslash \\

octal value \octal digits (max 3)
hexadecimal value \xhexadecimal digits

For example,

’a’ /* the letter a */
’\’’ /* a single quote */
’?’ /* a question mark */
’\?’ /* a question mark */
’\\’ /* a backslash */

are all simple character constants.

36 Character Constants

Constants

The following are some character constants containing octal escape sequences, made up of a \
followed by one, two or three octal digits (the digits 0 through 7):

’\0’
’\377’
’\100’

If a character constant containing an octal value is found, but a non-octal character is also
present, or if a fourth octal digit is found, it is not part of the octal character already specified,
and constitutes a separate character. For example,

’\1000’
’\109’

the first constant is a two-character constant, consisting of the characters ’\100’ and ’0’
(because an octal value consists of at most three octal digits). The second constant is also a
two-character constant, consisting of the characters ’\10’ and ’9’ (because 9 is not an
octal digit).

If more than one octal value is to be specified in a character constant, then each octal value
must be specified starting with \.

The meaning of character constants with more than one character is implementation-defined.

The following are some character constants containing hexadecimal escape sequences, made
up of a \x followed by one or more hexadecimal digits (the digits 0 through 9, and the letters
a through f and A through F). (The values of these character constants are the same as the
first examples of octal values presented above.)

’\x0’
’\xFF’
’\x40’

If a character constant containing a hexadecimal value is found, but a non-hexadecimal
character is also present, it is not part of the hexadecimal character already specified, and
constitutes a separate character. For example,

’\xFAx’
’\xFx’

the first constant is a two-character constant, consisting of the characters ’\xFA’ and ’x’
(because x is not a hexadecimal digit). The second constant is also a two-character constant,
consisting of the characters ’\xF’ and ’x’.

Character Constants 37

Language Reference

If more hexadecimal digits are found than are required to specify one character, the behavior
is implementation-defined. Specifically, any sequence of hexadecimal characters in a
hexadecimal value in a character constant is used to specify the value of one character. If
more than one hexadecimal value is to be specified in a character constant, then each
hexadecimal value must be specified starting with \x.

The meaning of character constants with more than one character is implementation-defined.

In addition to the above escape sequences, the following escape sequences may be used to
represent non-graphic characters:

Escape
Sequence Meaning

\a Causes an audible or visual alert
\b Back up one character
\f Move to the start of the next page
\n Move to the start of the next line
\r Move to the start of the current line
\t Move to the next horizontal tab
\v Move to the next vertical tab

The following trigraph sequences may be used to represent characters not available on all
terminals or systems:

Trigraph
Character Sequence

[??(
] ??)
{ ??<
} ??>
| ??!
??=
\ ??/
^ ??’
~ ??-

38 Character Constants

Constants

The Watcom C16 and C32 compilers also allow character constants with more than
one character. These may be used to initialize larger types, such as int. For
example, the program fragment:

int code;
code = ’ab’;

assigns the constant value ’ab’ to the integer object code. The letter b is placed in
the lowest order (least significant) portion of the integer value and the letter a is
placed in the next highest portion.

Up to four characters may be placed in a character constant. Successive characters,
starting from the right-most character in the constant, are placed in successively
higher order (more significant) bytes of the result.

Note that a character constant such as ’a’ is different from the corresponding string literal
"a". The former is of type int and has the value of the letter a in the execution character
set. The latter is of type "pointer to char" and its value is the address of the first character
(a) of the string literal.

5.3.1 Wide Character Constants

If the value of a character constant is to be a multibyte character from an extended character
set, then a wide character constant should be specified. Its form is similar to normal character
constants, except that the constant is preceded by the character L.

The type of a wide character constant is wchar t, which is one of the integral types, and is
described in the header <stddef.h>.

With Watcom C16 and C32, wchar t is defined as unsigned short.

For example, the constant L’a’ is a wide character constant containing the letter a from the
source character set, and has type wchar t. In contrast, the constant ’a’ is a character
constant containing the letter a, and has type int.

How the multibyte character maps onto the wide character value is defined by the mbtowc
library function.

As shown above, a wide character constant may also contain a single byte character, since an
extended character set contains the single byte characters. The single byte character is
mapped onto the corresponding wide character code.

39

Language Reference

5.4 String Literals
A sequence of zero or more characters enclosed within double-quotes is a string literal.

Most of the same rules for creating character constants also apply to creating string literals.
However, the single-quote may be entered directly or as the \’ escape sequence. The
double-quote must be entered as the \" escape sequence.

The value of a string literal is the sequence of characters within the quotes, plus a null
character at the end.

The type of a string literal is "array of char".

The following are examples of string literals:

"Hello there"
"\"Quotes inside string\""
"G’day"

If two or more string literals are adjacent, the compiler will join them together into one string
literal. The pair of string literals,

"Hello" "there"

would be joined by the compiler to be,

"Hellothere"

and is an array of 11 characters, including the single terminating null character.

The joining of adjacent string literals occurs after the replacement of escape sequences. In the
examples,

"\xFAB\xFA" "B"
"\012\01" "2"

the first string, after joining, consists of three characters, with the values ’\xFAB’, ’\xFA’
and ’B’. The second string, after joining, also consists of three characters, with the values
’\012’, ’\01’ and ’2’.

A program should not attempt to modify a string literal, as this behavior is undefined. On
computers where memory can be protected, it is likely that string literals will be placed where
the program cannot modify them. An attempt to modify them will cause the program to fail.

40 String Literals

Constants

On other computers without such protection, the literal can be modified, but this is generally
considered to be a poor programming practice. (Constants should be constant!)

A string literal normally is a string. It is not a string if one of the characters within
double-quotes is the null character (\0). If such a string literal is treated as a string, then only
those characters before the first null character will be considered part of the string. The
characters following the first null character will be ignored.

If a source file uses the same string literal in several places, the compiler may combine them
so that only one instance of the string exists and each reference refers to that string. In other
words, the addresses of each of the string literals would be the same. However, no program
should rely on this since other compilers may make each string a separate instance.

The Watcom C16 and C32 compilers combine several instances of the same string
literal in the same module into a single string literal, provided that they occur in
declarations of constant objects or in statements other than declarations (eg.
assignment).

If the program requires that several string literals be the same instance, then an object should
be declared as an array of char with its value initialized to the string.

5.4.1 Wide String Literals

If any of the characters in a string literal are multibyte characters from an extended character
set, then a wide string literal should be specified. Its form is similar to normal string literals,
except that the string is preceded by the character L.

The type of a wide string literal is "array of wchar t". wchar t is one of the integral
types, and is described in the header <stddef.h>.

With Watcom C16 and C32, wchar t is defined as unsigned short.

For example, the string literal L"ab" is a wide string literal containing the letters a and b. Its
type is "array [3] of wchar t", and the values of its elements are L’a’, L’b’ and ’\0’.
In contrast, the string literal "ab" has type "array [3] of char", and the values of its elements
are ’a’, ’b’ and ’\0’.

How the multibyte characters map onto wide character values is defined by the mbtowc
library function.

As shown above, a wide string literal may also contain single byte characters, since the
extended character set contains the single byte characters. The single byte characters are
mapped onto the corresponding wide character codes.

41

Language Reference

Adjacent wide string literals will be concatenated by the compiler and a null character
appended to the end. If a string literal and a wide string literal are adjacent, the behavior
when the compiler attempts to concatentate them is undefined.

42

6 Type Conversion

Whenever two operands are involved in an operation, some kind of conversion of one or both
of the operands may take place. For example, a short int and a long int cannot be
directly added. Instead, the short int must first be converted to a long int, then the
two values can be added.

Fortunately, C provides most conversions as implicit operations. Simply by indicating that the
two values are to be added, the C compiler will check their types and generate the appropriate
conversions. Sometimes it is necessary, however, to be aware of exactly how C will convert
the operands.

Conversion of operands always attempts to preserve the value of the operand. Where
preservation of the value is not possible, the compiler will sign-extend signed quantities and
discard the high bits of quantities being converted to smaller types.

The rules of type conversions are fully discussed in the following sections.

6.1 Integral Promotion
Rule: A char, short int or int bit-field in either of their signed or

unsigned forms, or an object that has an enumerated type, is always
converted to an int. If the type int cannot contain the entire range of
the object being converted, then the object will be converted to an
unsigned int.

A signed or unsigned char will be converted to a signed int without changing the
value.

With Watcom C16, a short int has the same range as int, therefore a signed
short int is converted to a signed int, and an unsigned short int is
converted to an unsigned int, without changing the value.

With Watcom C32, a signed or unsigned short int is converted to an int
without changing the value.

These promotions are called the integral promotions.

Integral Promotion 43

Language Reference

6.2 Signed and Unsigned Integer Conversion
Rule: If an unsigned integer is converted to an integer type of any size, then, if

the value can be represented in the new type, the value remains
unchanged.

If an unsigned integer is converted to a longer type (type with greater range), then the value
will not change. If it is converted to a type with a smaller range, then provided the value can
be represented in the smaller range, the value will remain unchanged. If the value cannot be
represented, then if the result type is signed, the result is implementation-defined. If the result
type is unsigned, the result is the integer modulo (1+the largest unsigned number that can
be stored in the shorter type).

With Watcom C16, unsigned integers are promoted to longer types by extending the
high-order bits with zeros. They are demoted to shorter types by discarding the
high-order portion of the larger type.

Consider the following examples of 32-bit quantities (unsigned long int) being
converted to 16-bit quantities (signed short int or unsigned short int):

32-bit 16-bit signed unsigned
long representation representation short short

65538 0x00010002 0x0002 2 2
100000 0x000186A0 0x86A0 -31072 34464

Rule: When a signed integer is converted to an unsigned integer of equal or
greater length, if the value is non-negative, the value will be unchanged.

A non-negative value stored in a signed integer may be converted to an equal or larger integer
type without affecting the value. A negative value is first converted to the signed type of the
same length as the result, then (1+the largest unsigned number that can be stored in the result
type) is added to the value to convert it to the unsigned type.

With Watcom C16, signed integers are promoted to longer types by sign-extending
the value (the high bit of the shorter type is propogated throughout the high bits of
the longer type). When the longer type is unsigned, the sign-extended bit-pattern is
then treated as an unsigned value.

Consider the following examples of 16-bit signed quantities (signed short int) being
converted to 32-bit quantities (signed long int and unsigned long int):

44 Signed and Unsigned Integer Conversion

Type Conversion

signed 16-bit 32-bit signed unsigned
short represention representation long long

-2 0xFFFE 0xFFFFFFFE -2 4294967294
32766 0x7FFE 0x00007FFE 32766 32766

Rule: When a signed integer is converted to a longer signed integer, the value
will not change.

Rule: When a signed integer is converted to a shorter type, the result is
implementation-defined.

With Watcom C16, signed integers are converted to a shorter type by preserving the
low-order (least significant) portion of the larger type.

6.3 Floating-Point to Integer Conversion
Rule: When a floating-point type is converted to integer, the fractional part is

discarded. If the value of the integer part cannot be represented in the
integer type, then the result is undefined.

Hence, it is valid only to convert a floating-point type to integer within the range of the
integer type being converted to. Refer to the section "Integer Types" for details on the range
of integers.

6.4 Integer to Floating-Point Conversion
Rule: When the value of an integer type is converted to a floating-point type,

and the integer value cannot be represented exactly in the floating-point
type, the value will be rounded either up or down.

Rounding of floating-point numbers is implementation-defined. The technique being used by
the compiler may be determined from the macro FLT ROUNDS found in the header
<float.h>. The following table describes the meaning of the various values:

Integer to Floating-Point Conversion 45

Language Reference

FLT ROUNDS Technique

-1 indeterminable
0 toward zero
1 to nearest number
2 toward positive infinity
3 toward negative infinity

The Watcom C16 and C32 compilers will round to the nearest number. (The value
of FLT ROUNDS is 1.)

Rule: When a floating-point value is converted to a larger floating-point type
(float to double, float to long double, or double to long
double), the value remains unchanged.

Rule: When any floating-point type is demoted to a floating-point type with a
smaller range, then the result will be undefined if the value lies outside the
range of the smaller type. If the value lies inside the range, but cannot be
represented exactly, then rounding will occur in an
implementation-defined manner.

The Watcom C16 and C32 compilers round to the nearest number. (The value of
FLT ROUNDS is 1.)

6.5 Arithmetic Conversion
Whenever two values are used with a binary operator that expects arithmetic types (integer or
floating-point), conversions may take place implicitly. Most binary operators work on two
values of the same type. If the two values have different types, then the type with the smaller
range is always promoted to the type with the greater range. Conceptually, each type is found
in the table below and the type found lower in the table is converted to the type found higher
in the table.

long double
double
float
unsigned long
long
unsigned int
int

46 Arithmetic Conversion

Type Conversion

Note that any types smaller than int have integral promotions performed on them to promote
them to int.

The following table illustrates the result type of performing an addition on combinations of
various types:

Operation Result Type

signed char + signed char signed int
unsigned char + signed int signed int
signed int + signed int signed int
signed int + unsigned int unsigned int
unsigned int + signed long signed long
signed int + unsigned long unsigned long
signed char + float float
signed long + double double
float + double double
float + long double long double

6.6 Default Argument Promotion
When a call is made to a function, the C compiler checks to see if the function has been
defined already, or if a prototype for that function has been found. If so, then the arguments
to the function are converted to the specified types. If neither is true, then the arguments to
the function are promoted as follows:

• all integer types have the integral promotions performed on them, and,
• all arguments of type float are promoted to double.

If the definition of the function does not have parameters with types that match the promoted
types, the behavior is undefined.

Default Argument Promotion 47

Language Reference

48 Default Argument Promotion

7 Advanced Types

The following topics are discussed:

• Structures

• Unions

• Pointers

• Void

• The const and volatile Declarations

7.1 Structures
A structure is a type composed of a sequential group of members of various types. Like other
types, a structure is a model describing storage requirements and interpretations, and does not
reserve any storage. Storage is reserved when an object is declared to be an instance of the
structure.

Each of the members of a structure must have a name, with the exception of bit-fields.

With Watcom C16 and C32, a structure member may be unnamed if the member is a
structure or union.

A structure may not contain a member with an incomplete type. In particular, it may not
contain a member with a type of the structure being defined (otherwise the structure would
have indeterminate size), although it may contain a pointer to it.

The structure may be given an optional tag with which the structure may be referenced
elsewhere in the program. If no tag is given, then only those objects listed following the
definition of the structure may have the structure type.

The name space for structure tags is different from that of object names, labels and member
names, so a tag may be the same identifier as one of these other kinds. A structure tag may
not be the same as the tag of a union or enumerated type, or another structure.

Structures 49

Language Reference

Each structure has its own name space, so an identifier may be used as a member name in
more than one structure. An identifier that is an object name, structure tag, union tag, union
member name, enumeration tag or label may also be used as a member name without
ambiguity.

Structures help to organize program data by collecting several related objects into one object.
They are also used for linked lists, trees and for describing externally-defined regions of data
that the application must access.

The following structure might describe a token identified by parsing a typed command:

struct tokendef {
int length;
int type;
char text[80];

};

This defines a structure containing three members, an integer containing the token length,
another integer containing some encoding of the token type, and the third an array of 80
characters containing the text of the token. The tag of the structure is tokendef.

The above definition does not actually create an object containing the structure. Creation of
an instance of the structure requires a list of identifiers following the structure definition, or to
use struct tokendef in place of a type for declaring an object. For example,

struct tokendef {
int length;
int type;
char text[80];

} token;

is equivalent to,

struct tokendef {
int length;
int type;
char text[80];

};

struct tokendef token;

Both create the object token as an instance of the structure tokendef. The type of
token is struct tokendef.

50 Structures

Advanced Types

References to a member of a structure are made using the dot operator (.). The first operand
of the . operator is the object containing the structure. The second operand is the name of the
member. For example, token.length refers to the length member of the tokendef
structure contained in token.

If tokenptr is declared as,

struct tokendef * tokenptr;

(tokenptr is a pointer to a tokendef structure), then,

(*tokenptr).length

refers to the length member of the tokendef structure that tokenptr points to.
Alternatively, to refer to a member of a structure, the arrow operator (->) is used:

tokenptr->length

is equivalent to,

(*tokenptr).length

If a structure contains an unnamed member which is a structure or union, then the
members of the inner structure or union are referenced as if they were members of
the outer structure. For example,

struct outer {
struct inner {

int a, b;
};
int c;

} X;

The members of X are referenced as X.a, X.b and X.c.

Each member of a structure is at a higher address than the previous member. Alignment of
members may cause (unnamed) gaps between members, and an unnamed area at the end of
the structure.

Structures 51

Language Reference

The Watcom C16 and C32 compilers provide a command-line switch and a
#pragma to control the alignment of members of structures. See the User’s Guide
for details.

In addition, the Packed keyword is provided, and if specified before the struct
keyword, will force the structure to be packed (no alignment, no gaps) regardless of
the setting of the command-line switch or the #pragma controlling the alignment of
members.

A pointer to an object with a structure type, suitably cast, is also a pointer to the first member
of the structure.

A structure declaration of the form,

struct tag;

can be used to declare a new structure within a block, temporarily hiding the old structure.
When the block ends, the previous structure’s hidden declaration will be restored. For
example,

struct thing { int a,b; };
/* ... */

{
struct thing;
struct s1 { struct thing * thingptr; } tptr;
struct thing { struct s1 * s1ptr; } sptr;

}

the original definition of struct thing is suppressed in order to create a new definition.
Failure to suppress the original definition would result in thingptr being a pointer to the
old definition of thing rather than the new one.

Redefining structures can be confusing and should be avoided.

7.1.1 Bit-fields

A member of a structure can be declared as a bit-field, provided the type of the member is
int, unsigned int or signed int.

In addition, the Watcom C16 and C32 compilers allow the types char, unsigned
char, short int and unsigned short int to be bit-fields.

A bit-field declares the member to be a number of bits. A value may be assigned to the
bit-field in the same manner as other integral types, provided the value can be stored in the

52

Advanced Types

number of bits available. If the value is too big for the bit-field, excess high bits are discarded
when the value is stored.

The type of the bit-field determines the treatment of the highest bit of the bit-field. Signed
types cause the high bit to be treated as a sign bit, while unsigned types do not treat it as a sign
bit. For a bit-field defined with type int (and no signed or unsigned keyword), whether
or not the high bit is considered a sign bit is implementation-defined.

The Watcom C16 and C32 compilers treat the high bit of a bit-field of type int as a
sign bit.

A bit-field is declared by following the member name by a colon and a constant expression
which evaluates to a non-negative value that does not exceed the number of bits in the type.

A bit-field may be declared without a name and may be used to align a structure to an
imposed form. Such a bit-field cannot be referenced.

If two bit-fields are declared sequentially within the same structure, and they would both fit
within the storage unit assigned to them by the compiler, then they are both placed within the
same storage unit. If the second bit-field doesn’t fit, then whether it is placed in the next
storage unit, or partially placed in the same unit as the first and spilled over into the next unit,
is implementation-defined.

The Watcom C16 and C32 compilers place a bit-field in the next storage unit if it
will not fit in the remaining portion of the previously defined bit-field. Bit-fields are
not allowed to straddle storage unit boundaries.

An unnamed member declared as : 0 prevents the next bit-field from being placed in the
same storage unit as the previous bit-field.

The order that bit-fields are placed in the storage unit is implementation-defined.

The Watcom C16 and C32 compilers place bit-fields starting at the low-order end
(least significant bit) of the storage unit. If a 1-bit bit-field is placed alone in an
unsigned int then a value of 1 in the bit-field corresponds to a value of 1 in the
integer.

53

Language Reference

Consider the following structure definition:

struct list el {
struct list el * link;
unsigned short elnum;
unsigned int length : 3;
signed int offset : 4;
int flag : 1;
char * text;

};

The structure list el contains the following members:

1. link is a pointer to a list el structure, indicating that instances of this structure
will probably be used in a linked list,

2. elnum is an unsigned short integer,

3. length is an unsigned bit-field containing 3 bits, allowing values in the range 0
through 7,

4. offset is a signed bit-field containing 4 bits, which will be placed in the same
integer with length. Since the type is signed int, the range of values for this
bit-field is -8 through 7,

5. flag is a 1-bit field,

Since the type is int, the Watcom C16 and C32 compilers will treat the
bit as a sign bit, and the set of values for the bit-field is -1 and 0.

6. text is a pointer to character, possibly a string.

7.2 Unions
A union is similar to a structure, except that each member of a union is placed starting at the
same storage location, rather than in sequentially higher storage locations. (The Pascal term
for a union is "variant record".)

The name space for union tags is different from that of object names, labels and member
names, so a tag may be the same identifier as one of these other kinds. The tag may not be the
same identifier as the tag of a structure, enumeration or another union.

54 Unions

Advanced Types

Each union has its own name space, so an identifier may be used as a member name in several
different unions. An identifier that is an object name, structure tag, structure member name,
union tag, enumeration tag or label may also be used as a member name without ambiguity.

With Watcom C16 and C32, unions, like structures, may contain unnamed members
that are structures or unions. References to the members of an unnamed structure or
union are made as if the members of the inner structure or union were at the outer
level.

The size of a union is the size of the largest of the members it contains.

A pointer to an object that is a union points to each of the members of the union. If one or
more of the members of the union is a bit-field, then a pointer to the object also points to the
storage unit in which the bit-field resides.

Storing a value in one member of a union, and then referring to it via another member is only
meaningful when the different members have the same type. Members of a union may
themselves be structures, and if some or all of the members start with the same members in
each structure, then references to those structure members may be made via any of the union
members. For example, consider the following structure and union definitions:

struct rec1 {
int rectype;
int v1,v2,v3;
char * text;

};

struct rec2 {
int rectype;
short int flags : 8;
enum {red, blue, green} hue;

};

union alt rec {
struct rec1 val1;
struct rec2 val2;

};

alt rec is a union defining two members val1 and val2, which are two different forms
of a record, namely the structures rec1 and rec2 respectively. Each of the different record
forms starts with the member rectype. The following program fragment would be valid:

Unions 55

Language Reference

union alt rec record;
/* ... */
record.rec1.rectype = 33;
DoSomething(record.rec2.rectype);

However, the following fragment would exhibit implementation-defined behavior:

record.rec1.v1 = 27;
DoSomethingElse(record.rec2.hue);

In other words, unless several members of a union are themselves structures where the first
few members are of the same type, a program should not store into a union member and
retrieve a value using another union member. Generally, a flag or other indicator is kept to
describe which member of the union is currently the "active" member.

7.3 Pointers
A pointer to an object is equivalent to the address of the object in the memory of the
computer.

An object may be declared to be a pointer to a type of object, or it may be declared to be a
pointer to no particular type. The form,

type * identifier;

declares the identifier to be a pointer to the given type. If type is void, then the identifier is a
pointer to no particular type of object (a generic pointer).

The following examples illustrate various pointer declarations:

int * intptr;

intptr is a pointer to an int.

char * charptr;

charptr is a pointer to a char.

struct tokendef * token;

token is a pointer to the structure tokendef.

56 Pointers

Advanced Types

char * argv[];

argv is an array of pointers to char or an array of pointers to strings.

char ** strptr;

strptr is a pointer to a pointer to char.

void * dumpbeg;

dumpbeg is a pointer, but to no particular type of object.

Any place that a pointer may be used, the constant 0 may also be used. This value is the null
pointer constant. The value that is used internally to represent a null pointer is guaranteed not
to be a pointer to an object. It does not necessarily correspond to the integer value 0. It
merely represents a pointer that does not currently point at anything. The macro NULL,
defined in the header <stddef.h>, may also be used in place of 0.

7.3.1 Special Pointer Types for Watcom C16

Note: the following sections only apply to the Watcom C16 (16-bit) compiler. For
the Watcom C32 compiler, see the section "Special Pointer Types for Watcom C32".

On the 8086, a normal pointer (16 bits) can only point to a 64K region of the total memory
available on the machine. This effectively limits any program to a maximum of 64K of
executable code and 64K of data. For many applications, this does not pose a limitation.

Some applications need more than 64K of code or data, or both. The Watcom C16 compiler
provides a mechanism whereby pointers can be declared that get beyond the 64K limit. This
can be done either by specifying an option when compiling the files (see the User’s Guide) or
by including a special type qualifier keyword in the declaration of the object. Later sections
describe these keywords and their use.

The use of the keywords may prevent the program from compiling using other C compilers, in
particular when the program is being transported to another system. However, the
preprocessor can be used to eliminate the keywords on these other systems.

Before discussing the special pointer types, it is important to understand the different memory
models that are available and what they mean. The five memory models are referred to as:

small small code (code < 64K), small data (data < 64K)

compact small code (code < 64K), big data (total data > 64K, all objects < 64K)

57

Language Reference

medium big code (code > 64K), small data (data < 64K)

large big code (code > 64K), big data (total data > 64K, all objects < 64K)

huge big code (code > 64K), huge data (total data > 64K, objects > 64K)

The following sections discuss the memory models in terms of "small" and "big" code and
data sizes. The terms "small", "compact", "medium", "large" and "huge" are simply concise
terms used to describe the combinations of code and data sizes available.

7.3.1.1 The Small and Big Code Models

Each program can use either small code (less than 64K) or big code (more than 64K). Small
code means that all functions (together) must fit within the 64K limit on code size. It is
possible to call a function using only a 16-bit pointer. This is the default.

Big code removes the restriction, but requires that all functions be called with a 32-bit pointer.
A 32-bit pointer consists of two 16-bit quantities, called the segment and offset. (When the
computer uses the segment and offset to refer to an actual memory location, the two values are
combined to produce a 20-bit memory address, which allows for the addressing of 1024K of
memory.) Because of the larger pointers, the code generated by the big code option takes
more space and takes longer to execute.

When the big code option is being used, it is possible to group functions together into several
64K (or smaller) regions. Each module can be its own region, or several modules can be
grouped. It is possible to call other functions within the same group using a 16-bit value.
These functions are said to be near. Functions outside the group can still be called, but must
be called using a 32-bit value. These functions are said to be far.

When the big code option is given on the command line for compiling the module, ordinary
pointers to functions will be defined automatically to be of the larger type, and function calls
will be done using the longer (32-bit) form.

It is also possible to use the small code option, and to override certain functions and pointers
to functions as being far. However, this method may lead to problems. The Watcom
C16 compiler generates special function calls that the programmer doesn’t see, such as
checking for stack overflow when a function is invoked. These calls are either near or far
depending entirely on the memory model chosen when the module is compiled. If the small
code model is being used, all calls will be near calls. If, however, several code groups are
created with far calls between them, they will all need to access the stack overflow checking
routines. The linker can only place these special routines in one of the code groups, leaving
the other functions without access to them, causing an error.

58

Advanced Types

To resolve this problem, mixing code models requires that all modules be compiled with the
big code model, overriding certain functions as being near. In this manner, the stack checking
routines can be placed in any code group, which the other code groups can still access.
Alternatively, a command-line switch may be used to turn off stack checking, so no stack
checking routines get called.

7.3.1.2 The Small and Big Data Models

Each program can use either small data (less than 64K) or big data (more than 64K). Small
data requires that all objects exist within one 64K region of memory. It is possible to refer to
each object using a 16-bit pointer. This is the default.

Big data removes the restriction, but all pointers to data objects require a 32-bit pointer. As
with the big code option, extra instructions are required to manipulate the 32-bit pointer, so
the generated code will be larger and not as fast.

With either small or big data, each object is restricted in size to a maximum of 64K bytes.
However, an object may be declared as huge, allowing the object to be bigger than 64K bytes.
Pointers to huge objects are the least efficient because of extra code required to handle them,
especially when doing pointer arithmetic. Huge objects are discussed in the section "The _
_huge Keyword".

When the big data option is being used, the program still retains one region up to 64K in size
in which objects can be referred to using 16-bit pointers, regardless of the code group being
executed. These objects are said to be near. Objects outside this region can still be
referenced, but must be referred to using a 32-bit value. These objects are said to be far.

When the big data option is given on the command line for compiling the module, ordinary
pointers to objects other than functions will be defined automatically to be of the larger type.

It is also possible to use the small data option, and to override certain objects as being far.
The programmer must decide which method is easier to use.

7.3.1.3 Mixing Memory Models

It is possible to mix small and big code and data pointers within one program. In fact, a
programmer striving for optimum efficiency will probably mix pointer types. But great care
must be taken!

In some applications, the programmer may want the ability to have either big code or big data,
but won’t want to pay the extra-code penalty required to compile everything accordingly. In
the case of big data, the programmer may realize that 99% of the data structures can reside

59

Language Reference

within the 64K limit, and the remaining ones must go beyond that limit. Similarly, it may be
desirable to have only a few functions that don’t fit within the 64K limit.

When overriding the current memory model, it is very important to declare each type properly.

The following sections describe how to override the current memory model.

7.3.1.4 The _ _far Keyword for Watcom C16

When the big code memory model is in effect, functions are far and pointers to functions are
declared automatically to be pointers to far functions. Similarly, the big data model causes all
pointers to objects (other than functions) to be pointers to far objects. However, when either
the small code or small data model is being used, the keyword far may be used to
override to the big model.

The far keyword is a type qualifier that modifies the token that follows it. If far
precedes * (as in far *), then the pointer points to something far. Otherwise, if far
precedes the identifier of the object or function being declared (as in far x), then the
object itself is far.

The keyword far can only be applied to function and object names and the indirection
(pointer) symbol *. Parameters to functions may not be declared as far since they are
always in the 64K data area that is near.

Watcom C16 provides the predefined macros far and far for convenience and
compatibility with the Microsoft C compiler. They may be used in place of far.

The following examples illustrate the use of the far keyword. The examples assume that
the small memory model (small code, small data) is being used.

int far * ptr;

declares ptr to be a pointer to an integer. The object ptr is near (addressable using
only 16 bits), but the value of the pointer is the address of an integer which is far, and
so the pointer contains 32 bits.

int * far fptr;

also declares fptr to be a pointer to an integer. However, the object fptr is far, but
the integer that it points to is near.

int far * far ffptr;

60

Advanced Types

declares ffptr to be a pointer (which is far) to an integer (which is far).

When declaring a function, placing the keyword far in front of the function name causes
the compiler to treat the function as being far. It is important, if the function is called before
its definition, that a function prototype be included prior to any calls. For example, the
declaration,

void far BubbleSort();

declares the function BubbleSort to be far, meaning that any calls to it must be far calls.

Here are a few more examples. These, too, assume that the small memory model (small code,
small data) is being used.

struct symbol * far FSymAlloc(void);

declares the function FSymAlloc to be far, returning a pointer to a near symbol
structure.

struct symbol far * far FFSymAlloc(void);

declares the function FFSymAlloc to be far, returning a pointer to a far symbol
structure.

void Indirect(float far fn());

declares the function Indirect to be near, taking one parameter fn which is a
pointer to a far function that returns a float.

int AdjustLeft(struct symbol * far symptr);

is an invalid declaration, since it attempts to declare symptr to be far. All parameters
must be near, since they reside in the 64K data area that is always near.

7.3.1.5 The _ _near Keyword for Watcom C16

When the small code memory model is in effect, functions are near, and pointers to functions
are automatically declared to be pointers to near functions. Similarly, the small data model
causes all pointers to objects (other than functions) to be pointers to near objects. However,
when either the big code or big data model is being used, the keyword near may be used
to override to the small model.

The near keyword is a type qualifier that modifies the token that follows it. If near
precedes * (as in near *), then the pointer points to something near. Otherwise, if

61

Language Reference

near precedes the identifier of the object or function being declared (as in near x),
then the object itself is near.

The keyword near can only be applied to function and object names and the indirection
(pointer) symbol *.

Watcom C16 provides the predefined macros near and near for convenience and
compatibility with the Microsoft C compiler. They may be used in place of
near.

The following examples illustrate the use of the near keyword. These examples assume
that the large memory module (big code, big data) is being used.

extern int near * x;

declares the object x to be a pointer to a near integer. (x is not necessarily within the
64K data area that is near, but the integer that it points to is.)

extern int * near nx;

declares the object nx to be near, and is a pointer to a far integer. (nx is within the
64K data area that is near, but the integer that it points to might not be.)

extern int near * near nnx;

declares the object nnx to be near, and is a pointer to a near integer. (nnx and the
integer that it points to are both within the 64K data area that is near.)

struct symbol * near NSymAlloc(void);

declares the function NSymAlloc to be near, and returns a pointer to a far symbol
structure.

struct symbol near * near NNSymAlloc(void);

declares the function NNSymAlloc to be near, and returns a pointer to a near
symbol structure.

7.3.1.6 The _ _huge Keyword for Watcom C16

Even using the big data model, each object is restricted in size to 64K. Some applications will
need to get beyond this limitation. The Watcom C16 compiler provides the keyword huge
to describe those objects that exceed 64K in size. The code generated for these objects is less
efficient than for far objects.

62

Advanced Types

The declaration of such objects follows the same pattern as above, with the keyword huge
preceding the name of the object if the object itself is bigger than 64K, or preceding the * if
the pointer is to an object that is bigger than 64K.

The keyword huge can only be applied to arrays. Huge objects may be used in both the
small and big data models.

Watcom C16 provides the predefined macros huge and huge for convenience and
compatibility with the Microsoft C compiler. They may be used in place of
huge.

These examples illustrate the use of the huge keyword. They assume that big code, small
data (the medium memory model) is in effect.

int huge iarray[50000];

declares the object iarray to be an array of 50000 integers, for a total size of 100000
bytes.

int huge * iptr;

declares iptr to be near, and a pointer to an integer that is part of a huge array, such
as an element of iarray.

7.3.2 Special Pointer Types for Watcom C32

With an 80386 processor in "protect" mode, a normal pointer (32 bits) can point to a 4
gigabyte (4,294,967,296 byte) region of the memory available on the machine. (In practice,
memory limits may mean that these regions will be smaller than 4 gigabytes.) These regions
are called segments, and there may be more than one segment defined for the memory. Each
32-bit pointer is actually an offset within a 4 gigabyte segment, and the offsets within two
different segments are generally not related to each other in a known manner.

As an example, the screen memory may be set up so that it resides in a different region of the
memory from the program’s data. Normal pointers (those within the program’s data area) will
not be able to access such regions.

Like the 16-bit version of Watcom C (for the 8086 and 80286), Watcom C32 uses the
near and far keywords to describe objects that are either in the normal data space or

elsewhere.

Objects or functions that are near require a 32-bit pointer to access them.

63

Language Reference

Objects or functions that are far require a 48-bit pointer to access them. This 48-bit pointer
consists of two parts: a selector consisting of 16 bits, and an offset consisting of 32 bits. A
selector is similar to a segment in a 16-bit program’s far pointer, except that the numeric value
of the selector does not directly determine the memory region. Instead, the processor uses the
selector value in conjunction with a "descriptor table" to determine what region of memory is
to be accessed. In the discussion of far pointers on the 80386, the terms selector and segment
may be used interchangeably.

Like the 16-bit compiler, the Watcom C32 compiler supports the small, compact, medium and
large memory models. Throughout the discussions in the following sections, it is assumed
that the small memory model is being used, since it is the most likely to be used.

7.3.2.1 The _ _far Keyword for Watcom C32

The far keyword is a type qualifier that modifies the token that follows it. If far
precedes * (as in far *), then the pointer points to something that is far (not in the
normal data region). Otherwise, if far precedes the identifier of the object or function
being declared (as in far x), then the object or function is far.

The keyword far can only be applied to function and object names and the indirection
(pointer) symbol *. Parameters to functions may not be declared as far, since they are
always in the normal data region.

These examples illustrate the use of the far keyword, and assume that the small memory
model is being used.

int far * ptr;

declares ptr to be a pointer to an integer. The object ptr is near but the integer that
it points to is far.

int * far fptr;

also declares fptr to be a pointer to an integer. However, the object fptr is far, but
the integer that it points to is near.

int far * far ffptr;

declares ffptr to be a pointer (which is far) to an integer (which is far).

When declaring a function, placing the keyword far in front of the function name causes
the compiler to treat the function as being far. It is important, if the function is called before

64

Advanced Types

its definition, that a function prototype be included prior to any calls. For example, the
declaration,

extern void far SystemService();

declares the function SystemService to be far, meaning that any calls to it must be far
calls.

Here are a few more examples:

extern struct systbl * far FSysTblPtr(void);

declares the function FSysTblPtr to be far, returning a pointer to a near systbl
structure.

extern struct systbl far * far FFSysTblPtr(void);

declares the function FFSysTblPtr to be far, returning a pointer to a far systbl
structure.

extern void Indirect(char far fn());

declares the function Indirect to be near, taking one parameter fn which is a
pointer to a far function that returns a char.

extern int StoreSysTbl(struct systbl * far sysptr);

is an invalid declaration, since it attempts to declare sysptr to be far. All parameters
must be near, since they reside in the normal data area that is always near.

7.3.2.2 The _ _near Keyword for Watcom C32

The near keyword is a type qualifier that modifies the token that follows it. If near
precedes * (as in near *), then the pointer points to something that is near (in the normal
data region). Otherwise, if near precedes the identifier of the object or function being
declared (as in near x), then the object or function is near.

The keyword near can only be applied to function and object names and the indirection
(pointer) symbol *.

For programmers using the small memory model, the near keyword is not required, but
may be useful for making the program more readable.

65

Language Reference

7.3.2.3 The _ _far16 and _Seg16 Keywords

With the 80386 processor, a far pointer consists of a 16-bit selector and a 32-bit offset.
Watcom C32 also supports a special kind of far pointer which consists of a 16-bit selector and
a 16-bit offset. These pointers, referred to as far16 pointers, allow 32-bit code to access code
and data running in 16-bit mode.

In the OS/2 operating system (version 2.0 or higher), the first 512 megabytes of the 4 gigabyte
segment referenced by the DS register is divided into 8192 areas of 64K bytes each. A far16
pointer consists of a 16-bit selector referring to one of the 64K byte areas, and a 16-bit offset
into that area.

For compatibility with Microsoft C, Watcom C32 provides the far16 keyword. A pointer
declared as,

type far16 * name;

defines an object that is a far16 pointer. If such a pointer is accessed in the 32-bit
environment, the compiler will generate the necessary code to convert between the far16
pointer and a "flat" 32-bit pointer.

For example, the declaration,

char far16 * bufptr;

declares the object bufptr to be a far16 pointer to char.

A function declared as,

type far16 func(parm-list);

declares a 16-bit function. Any calls to such a function from the 32-bit environment will
cause the compiler to convert any 32-bit pointer parameters to far16 pointers, and any int
parameters from 32 bits to 16 bits. (In the 16-bit environment, an object of type int is only
16 bits.) Any return value from the function will have its return value converted in an
appropriate manner.

For example, the declaration,

char * far16 Scan(char * buffer, int buflen, short err);

declares the 16-bit function Scan. When this function is called from the 32-bit environment,
the buffer parameter will be converted from a flat 32-bit pointer to a far16 pointer (which,
in the 16-bit environment, would be declared as char far *). The buflen parameter

66

Advanced Types

will be converted from a 32-bit integer to a 16-bit integer. The err parameter will be passed
unchanged. Upon returning, the far16 pointer (far pointer in the 16-bit environment) will be
converted to a 32-bit pointer which describes the equivalent location in the 32-bit address
space.

For compatibility with IBM C Set/2, Watcom C32 provides the Seg16 keyword. Note that
Seg16 is not interchangeable with far16.

A pointer declared as,

type * Seg16 name;

defines an object that is a far16 pointer. Note that the Seg16 appears on the opposite side
of the * than the far16 keyword described above.

For example,

char * Seg16 bufptr;

declares the object bufptr to be a far16 pointer to char (the same as above).

The Seg16 keyword may not be used to describe a 16-bit function. A #pragma directive
must be used. See the User’s Guide for details. A function declared as,

type * Seg16 func(parm-list);

declares a 32-bit function that returns a far16 pointer.

For example, the declaration,

char * Seg16 Scan(char * buffer, int buflen, short err);

declares the 32-bit function Scan. No conversion of the parameter list will take place. The
return value is a far16 pointer.

7.3.3 Based Pointers for Watcom C16 and C32

Near pointers are generally the most efficient type of pointer because they are small, and the
compiler can assume knowledge about what segment of the computer’s memory the pointer
(offset) refers to. Far pointers are the most flexible because they allow the programmer to
access any part of the computer’s memory, without limitation to a particular segment.
However, far pointers are bigger and slower because of the additional flexibility.

67

Language Reference

Based pointers are a compromise between the efficiency of near pointers and the flexibility of
far pointers. With based pointers, the programmer takes responsibility to tell the compiler
which segment a near pointer (offset) belongs to, but may still access segments of the
computer’s memory outside of the normal data segment (DGROUP). The result is a pointer
type which is as small as and almost as efficient as a near pointer, but with most of the
flexibility of a far pointer.

An object declared as a based pointer falls into one of the following categories:

• the based pointer is in the segment described by another object,
• the based pointer, used as a pointer to another object of the same type (as in a linked

list), refers to the same segment,
• the based pointer is an offset to no particular segment, and must be combined explicitly

with a segment value to produce a valid pointer.

To support based pointers, the following keywords are provided:

based
segment
segname
self

The following operator is also provided:

:>

These keywords and operator are described in the following sections.

Two macros, defined in <malloc.h> are also provided:

NULLSEG
NULLOFF

They are used in a similar manner to NULL, but are used with objects declared as
segment and based respectively.

7.3.3.1 Segment Constant Based Pointers and Objects

A segment constant based pointer or object has its segment value based on a specific, named
segment. A segment constant based object is specified as:

type based(segname("segment")) object-name;

and a segment constant based pointer is specified as:

68

Advanced Types

type based(segname("segment")) * object-name;

where segment is the name of the segment in which the pointer or object is based. As shown
above, the segment name is always specified as a string. There are three special segment
names recognized by the compiler:

" CODE"
" CONST"
" DATA"

The " CODE" segment is the default code segment. The " CONST" segment is the segment
containing constant values. The " DATA" segment is the default data segment. If the
segment name is not one of the three recognized names, then a segment will be created with
that name. If a segment constant based object is being defined, then it will be placed in the
named segment. If a segment constant based pointer is being defined, then it can point at
objects in the named segment.

The following examples illustrate segment constant based pointers and objects:

int based(segname(" CODE")) ival = 3;
int based(segname(" CODE")) * iptr;

ival is an object that resides in the default code segment. iptr is an object that resides in
the data segment (the usual place for data objects), but points at an integer which resides in the
default code segment. iptr is suitable for pointing at ival.

char based(segname("GOODTHINGS")) thing;

thing is an object which resides in the segment GOODTHINGS, which will be created if it
does not already exist. (The creation of segments is done by the linker, and is a method of
grouping objects and functions. Nothing is implicitly created during the execution of the
program.)

7.3.3.2 Segment Object Based Pointers

A segment object based pointer derives its segment value from another named object. A
segment object based pointer is specified as follows:

type based(segment) * name;

where segment is an object defined as type segment.

An object of type segment may contain a segment value. Such an object is particularly
designed for use with segment object based pointers.

69

Language Reference

The following example illustrates a segment object based pointer:

segment seg;
char based(seg) * cptr;

The object seg contains only a segment value. Whenever the object cptr is used to point to
a character, the actual pointer value will be made up of the segment value found in seg and
the offset value found in cptr. The object seg might be assigned values such as the
following:

• a constant value (eg. the segment containing screen memory),
• the result of the library function bheapseg,
• the segment portion of another pointer value, by casting it to the type segment.

7.3.3.3 Void Based Pointers

A void based pointer must be explicitly combined with a segment value to produce a reference
to a memory location. A void based pointer does not infer its segment value from another
object. The :> (base) operator is used to combine a segment value and a void based pointer.

For example, on an IBM PC or PS/2 computer, running DOS, with a color monitor, the screen
memory begins at segment 0xB800, offset 0. In a video text mode, to examine the first
character currently displayed on the screen, the following code could be used:

extern void main()
{

segment screen;
char based(void) * scrptr;

screen = 0xB800;
scrptr = 0;
printf("Top left character is ’%c’.\n",

*(screen:>scrptr));
}

The general form of the :> operator is:

segment :> offset

where segment is an expression of type segment, and offset is an expression of type
based(void) *.

70

Advanced Types

7.3.3.4 Self Based Pointers

A self based pointer infers its segment value from itself. It is particularly useful for structures
such as linked lists, where all of the list elements are in the same segment. A self based
pointer pointing to one element may be used to access the next element, and the compiler will
use the same segment as the original pointer.

The following example illustrates a function which will print the values stored in the last two
members of a linked list:

struct a {
struct a based(self) * next;
int number;

};

extern void PrintLastTwo(struct a far * list)
{

segment seg;
struct a based(seg) * aptr;

seg = FP SEG(list);
aptr = FP OFF(list);
for(; aptr != NULLOFF; aptr = aptr->next) {

if(aptr->next == NULLOFF) {
printf("Last item is %d\n", aptr->number);

} else if(aptr->next->next == NULLOFF) {
printf("Second last item is %d\n", aptr->number);

}
}

}

The parameter to the function PrintLastTwo is a far pointer, pointing to a linked list
structure anywhere in memory. It is assumed that all members of a particular linked list of
this type reside in the same segment of the computer’s memory. (Another instance of the
linked list might reside entirely in a different segment.) The object seg is given the segment
portion of the far pointer. The object aptr is given the offset portion, and is described as
being based in the segment stored in seg.

The expression aptr->next refers to the next member of the structure stored in memory
at the offset stored in aptr and the segment implied by aptr, which is the value stored in
seg. So far, the behavior is no different than if next had been declared as,

struct a * next;

The expression aptr->next->next illustrates the difference of using a self based pointer.
The first part of the expression (aptr->next) occurs as described above. However, using
the result to point to the next member occurs by using the offset value found in the next
member and combining it with the segment value of the pointer used to get to that member,

71

Language Reference

which is still the segment implied by aptr, which is the value stored in seg. If next had
not been declared using based(self), then the second pointing operation would
refer to the offset value found in the next member, but with the default data segment
(DGROUP), which may or may not be the same segment as stored in seg.

7.4 Void
The void type has several purposes:

1. To declare an object as being a pointer to no particular type. For example,

void * membegin;

defines membegin as being a pointer. It does not point to anything without a cast
operator. The statement,

*(char *) membegin = ’\0’;

will place a zero in the character at which membegin points.

2. To declare a function as not returning a value. For example,

void rewind(FILE * stream);

declares the standard library function rewind which takes one parameter and
returns nothing.

3. To evaluate an expression for its side-effects, discarding the result of the expression.
For example,

(void) getchar();

calls the library function getchar, which normally returns a character. In this
case, the character is discarded, effectively advancing one character in the file
without caring what character is read. This use of void is primarily for readability,
because casting the expression to the void type will be done automatically. The
above example could also be written as,

getchar();

The keyword void is also used in one other instance. If a function takes no parameters,
void may be used in the declaration. For example,

72 Void

Advanced Types

int getchar(void);

declares the standard library function getchar, which takes no parameters and returns an
integer.

No object (other than a function) may be declared with type void.

7.5 The const and volatile Declarations
An object may be declared with the keyword const. Such an object may not be modified
directly by the program. For objects with static storage duration, this type qualifier describes
to the compiler which objects may be placed in read-only memory, if the computer supports
such a concept. It also provides the opportunity for the compiler to detect attempts to modify
the object. The compiler may also generate better code when it knows that an object will not
be modified.

Even though an object is declared to be constant, it is possible to modify its value indirectly
by storing its address (using a cast) in another object declared to be a pointer to the same type
(without the const), and then using the second object to modify the value to which it points.
However, this should be done with caution, and may fail on computers with protected
memory.

If the declaration of an object does not include *, that is to say it is not a pointer of any kind,
then the keyword const appearing anywhere in the type specifier (including any
typedef’s) indicates that the object is constant and may not be changed. If the object is a
pointer and const appears to the left of the *, the object is a pointer to a constant value,
meaning that the value to which the pointer points may not be modified, although the pointer
value may be changed. If const appears to the right of the *, the object is a constant pointer
to a value, meaning that the pointer to the value may not be changed, although what the
pointer points to may be changed. If const appears on both sides of the *, the object is a
constant pointer to a constant value, meaning that the pointer and the object to which it points
may not be changed.

If the declaration of a structure, union or array includes const, then each member of the
type, when referred to, is treated as if const had been specified.

The declarations,

const int baseyear = 1900;
const int * byptr;

The const and volatile Declarations 73

Language Reference

declare the object baseyear to be an integer whose value is constant and set to 1900, and
the object byptr to be a pointer to a constant object of integer type. If byptr was made to
point to another integer that was not, in fact, declared to be constant, then byptr could not be
used to modify that value. byptr may be used to get a value from an integer object, and
never to change it. Another way of stating it is that what byptr points to is constant, but
byptr itself is not constant.

The declarations,

int baseyear;
int * const byptr = &baseyear;

declare the object byptr as a constant pointer to an integer, in this case the object
baseyear. The value of baseyear may be modified via byptr, but the value of byptr
itself may not be changed. In this case, byptr itself is constant, but what byptr points to is
not constant.

An object may be declared with the keyword volatile. Such an object may be freely
modified by the program, and its value also may be modified through actions outside the
program. For example, a flag may be set when a given interrupt occurs. The keyword
volatile indicates to the compiler that care must be taken when optimizing code referring
to the object, so that the meaning of the program is not altered. An object that the compiler
might otherwise have been able to keep in a register for an extended period of time will be
forced to reside in normal storage so that an external change to it will be reflected in the
program’s behavior.

If the declaration of an object does not include *, that is to say it is not a pointer of any kind,
then the keyword volatile appearing anywhere in the type specifier (including any
typedef’s) indicates that the object is volatile and may be changed at any time without the
program knowing. If the object is a pointer and volatile appears to the left of the *, the
object is a pointer to a volatile value, meaning that the value to which the pointer points may
be changed at any time. If volatile appears to the right of the *, the object is a volatile
pointer to a value, meaning that the pointer to the value may be changed at any time. If
volatile appears on both the left and the right of the *, the object is a volatile pointer to a
volatile value, meaning that the pointer or the value to which it points may be changed at any
time.

If the declaration of a structure, union or array includes volatile, then each member of the
type, when referred to, is treated as if volatile had been specified.

The declarations,

volatile int attncount;
volatile int * acptr;

74 The const and volatile Declarations

Advanced Types

declare the object attncount to be an integer whose value may be altered at any time (say
by an asynchronous attention handler), and the object acptr to be a pointer to a volatile
object of integer type.

If both const and volatile are included in the declaration of an object, then that object
may not be modified by the program, but it may be modified through some external action.
An example of such an object is the clock in a computer, which is modified periodically
(every clock "tick"), but programs are not allowed to change it.

The const and volatile Declarations 75

Language Reference

76 The const and volatile Declarations

8 Storage Classes

The storage class of an object describes:

• the duration of the existence of the object. An object may exist throughout the
execution of the program, or only during the span of time that the function in which it
is defined is executing. In the latter case, each time the function is called, a new
instance of the object is created, and that object is destroyed when the function returns.

• the scope of the object. An object may be declared so that it is only accessible within
the function in which it is defined, within the module or throughout the entire program.

A storage class specifier is one of:

auto
register
extern
static
typedef

typedef is included in the list of storage class specifiers for convenience, because the
syntax of a type definition is the same as for an object declaration. A typedef declaration
does not create an object, only a synonym for a type, which does not have a storage class
associated with it.

Only one of these keywords (excluding typedef) may be specified in a declaration of an
object.

If an object or function is declared with a storage class, but no type specifier, then the type of
the object or function is assumed to be int.

While a storage class specifier may be placed following a type specifier, this tends to be
difficult to read. It is recommended that the storage class (if present) always be placed first in
the declaration. The ANSI C standard states that the ability to place the storage class specifier
other than at the beginning of the declaration is an obsolescent feature.

Storage Classes 77

Language Reference

8.1 Type Definitions
A typedef declaration introduces a synonym for another type. It does not introduce a new
type.

The general form of a type definition is:

typedef type-information typedef-name;

The typedef-name may be a comma-separated list of identifiers, all of which become
synonyms for the type. The names are in the same name space as ordinary object names, and
can be redefined in inner blocks. However, this can be confusing and should be avoided.

The simple declaration,

typedef signed int COUNTER;

declares the identifier COUNTER to be equivalent to the type signed int. A subsequent
declaration like,

COUNTER ctr;

declares the object ctr to be a signed integer. If, later on, it is necessary to change all
counters to be long signed integers, then only the typedef would have to be changed, as
follows:

typedef long signed int COUNTER;

All declarations of objects of that type will use the new type.

The typedef can be used to simplify declarations elsewhere in a program. For example,
consider the following structure:

struct complex {
double real;
double imaginary;

};

To declare an object to be an instance of the structure requires the following declaration:

struct complex cnum;

78 Type Definitions

Storage Classes

Now consider the following structure definition with a type definition:

typedef struct {
double real;
double imaginary;

} COMPLEX;

In this case, the identifier COMPLEX refers to the entire structure definition, including the
keyword struct. Therefore, an object can be declared as follows:

COMPLEX cnum;

While this is a simple example, it illustrates a method of making object declarations more
readable.

Consider the following example, where the object fnptr is being declared as a pointer to a
function which takes two parameters, a pointer to a structure dim3 and an integer. The
function returns a pointer to the structure dim3. The declarations could appear as follows:

struct dim3 {
int x;
int y;
int z;

};

struct dim3 * (*fnptr)(struct dim3 *, int);

or as:

typedef struct {
int x;
int y;
int z;

} DIM3;

DIM3 * (*fnptr)(DIM3 *, int);

or as:

typedef struct {
int x;
int y;
int z;

} DIM3;

Type Definitions 79

Language Reference

typedef DIM3 * DIM3FN(DIM3 *, int);

DIM3FN * fnptr;

The last example simply declares fnptr to be a pointer to a DIM3FN, while DIM3FN is
declared to be a function with two parameters, a pointer to a DIM3 and an integer. The
function returns a pointer to a DIM3. DIM3 is declared to be a structure of three
co-ordinates.

8.1.1 Compatible Types

Some operations, such as assignment, are restricted to operating on two objects of the same
type. If both operands are already the same type, then no special conversion is required.
Otherwise, the compiler may alter automatically one or both operands to make them the same
type. The integral promotions and arithmetic conversions are examples. Other types may
require an explicit cast.

The compiler decides whether or not an explicit cast is required based on the concept of
compatible types. The following types are compatible:

• two types that are declared exactly the same way,

• two types that differ only in the ordering of the type specifiers, for example,
unsigned long int and int long unsigned,

• two arrays of members of compatible type, where both arrays have the same size, or
where one array is declared without size information,

• two functions that return the same type, one containing no parameter information, and
the other containing a fixed number of parameters (no ",...") that are not affected by
the default argument promotions,

• two structures, defined in separate modules, that have the same number and names of
members, in the same order, with compatible types,

• two unions, defined in separate modules, that have the same number and names of
members, with compatible types,

• two enumerated types, defined in separate modules, that have the same number of
enumeration constants, with the same names and the same values,

• two pointers to compatible types.

80

Storage Classes

8.2 Static Storage Duration
An object with static storage duration is created and initialized only once, prior to the
execution of the program. Any value stored in such an object is retained throughout the
program unless it is explicitly altered by the program (or it is declared with the volatile
keyword).

Any object that is declared outside the scope of a function has static storage duration.

There are three types of static objects:

1. objects whose values are only available within the function in which they are
defined (no linkage). For example,

extern void Fn(int x)
{

static int ObjCount;
/* ... */
}

2. objects whose values are only available within the module in which they are defined
(internal linkage). For example,

static int ObjCount;

extern void Fn(int x)
{
/* ... */
}

3. objects whose values are available to all components of the program (external
linkage). For example,

extern int ObjCount = { 0 };

extern void Fn(int x)
{
/* ... */
}

The first two types are defined with the keyword static, while the third is defined with the
(optional) keyword extern.

Static Storage Duration 81

Language Reference

8.2.1 The static Storage Class

Any declaration of an object may be preceded by the keyword static. A declaration inside
a function indicates to the compiler that the object has no linkage, meaning that it is available
only within the function. A declaration not inside any function indicates to the compiler that
this object has internal linkage, meaning that it is available in all functions within the module
in which it is defined. Other modules may not refer to the specific object. They may have
their own object defined with the same name, but this is a questionable programming practice
and should be avoided.

The value of the object will be preserved between function calls. Any value placed in an
object with static storage duration will remain unchanged until changed by a function within
the same module. It is also possible for a pointer to the object to be passed to a function
outside the module in which the object is defined. This pointer could be used to modify the
value of the object.

8.2.2 The extern Storage Class

If an object is declared with the keyword extern inside a function, then the object has
external linkage, meaning that its value is available to all modules, and to the function(s)
containing the definition in the current module. No initializer list may be specified in this
case, which implies that the space for the object is allocated in some other module.

If an object is declared outside of the definition of a function, and the declaration does not
contain either of the keywords static or extern, then the space for the object is created at
this point. The object has external linkage, meaning that it is available to other modules in the
program.

The following examples illustrate the creation of external objects, provided the declarations
occur outside any function:

int X;
float F;

If the declaration for an object, outside of the definition of a function, contains the keyword
extern and has an initializer list, then space for the object is created at this point, and the
object has external linkage. If, however, the declaration does not include an initializer list,
then the compiler assumes that the object is declared elsewhere. If, during the remainder of
the compilation of the module, no further declarations of the object are found, or more
declarations with extern and no initializer list are found, then the object must have space
allocated for it in another module. If a subsequent declaration in the same module does have

82

Storage Classes

an initializer list or omits the extern keyword, then the space for the object is created at that
point.

The following examples also illustrate the creation of external objects:

extern LIST * ListHead = 0;
int StartVal = 77;

However, the next examples illustrate the tentative definition of external objects. If no further
definition of the object of a form shown above is found, then the object is found outside of the
module.

extern LIST * ListEl;
extern int Z;

Another module may define its own object with the same name (provided it has static storage
class), but it will not be able to access the external one. However, this can be confusing and is
a questionable programming practice.

Any value placed in an object declared with the extern keyword will remain unchanged
until changed by a function within the same or another module.

A function that is declared without the keyword static has external linkage.

Suppose a module declares an object (outside of any function definition) as follows:

struct list el * ListTop;

where the structure list el is defined elsewhere. This declaration allocates space for and
declares the object ListTop to be a pointer to a structure list el, with external linkage.
Another module with the declaration,

extern struct list el * ListTop;

refers to the same object ListTop, and states that it is found outside of the module.

Within a program, possibly consisting of more than one module, each object or function with
external linkage must be defined (have space allocated for it) exactly once.

8.3 Automatic Storage Duration
The most commonly used object in a C program is one that has meaning only within the
function in which it is defined. The object is created when execution of the function is begun

Automatic Storage Duration 83

Language Reference

and destroyed when execution of the function is completed. Such an object is said to have
automatic storage duration. The scope of the object is said to be the function in which it is
defined.

If such an object has the same name as another object defined outside the function (using
static or extern), then the outside object is hidden from the function.

Within a function, any object that does not have its declaration preceded by the keyword
static or extern has automatic storage duration.

It is possible to declare an object as automatic within any block of a function. The scope of
such an object is the block in which it is declared, including any blocks inside it. Any outside
block is unable to access such an object.

Automatic objects may be initialized as described in the chapter "Initialization of Objects".
Initialization of the object only occurs when the block in which the object is declared is
entered normally. In particular, a jump into a block nested within the function will not
initialize any objects declared in that block. This is a questionable programming practice, and
should be avoided.

The following function checks a string to see if it contains nothing but digits:

extern int IsInt(const char * ptr)
/**********************************/
{

if(*ptr == ’\0’) return(0);
for(;;) {

char ch;

ch = *(ptr++);
if(ch == ’\0’) return(1);
if(!isdigit(ch)) return(0);

}
}

The object ch has a scope consisting only of the for loop. Any statements before or after the
loop cannot access ch.

8.3.1 The auto Storage Class

The declaration of an object in a function that does not contain the keywords static,
extern or register declares an object with automatic storage duration. Such an object
may precede its declaration with the keyword auto for readability.

84

Storage Classes

An object declared with no storage class specifier or with auto is "addressable", which
means that the address-of operator may be applied to it.

The programmer should not assume any relationship between the storage locations of multiple
auto objects declared in a function. If relative placement of objects is important, a structure
should be used.

The following function illustrates a use for auto objects:

extern int FindSize(struct thing * thingptr)
/**/
{

auto char * start;
auto char * finish;

FindEnds(thingptr, &start, &finish);
return(finish - start + 1);

}

The addresses of the automatic objects start and finish are passed to FindEnds,
which, presumably, modifies them.

8.3.2 The register Storage Class

An object that is declared within a function, and whose declaration includes the keyword
register, is considered to have automatic storage duration. The register keyword
merely provides a hint to the compiler that this object is going to be heavily used, allowing the
compiler to try to put it into a high-speed access part of the machine, such as a machine
register. The compiler may, however, ignore such a directive for any number of reasons, such
as,

• the compiler does not support objects in registers,
• there are no available registers, or,
• the compiler makes its own decisions about register usage.

Only certain types of objects may be placed in registers, although the set of such types is
implementation-defined.

The Watcom C16 and C32 compilers may place any object that is sufficiently small,
including a small structure, in one or more registers.

The compiler will decide which objects will be placed in registers. The register
keyword is ignored, except to prevent taking the address of such an object.

85

Language Reference

Objects declared with or without register may generally be treated in the same way. An
exception to this rule is that the address-of operator (&) may not be applied to a register
object, since registers are generally not within the normal storage of the computer.

86

9 Initialization of Objects

Any definition of an object may include a value or list of values for initializing it, in which
case the declaration is followed by an equal sign (=) and the initial value(s).

The initial value for an object with static storage duration may be any expression that
evaluates to a constant value, including using the address-of operator to take the address of a
function or object with static storage duration.

The initial value for an object with automatic storage duration may be any expression that
would be valid as an assignment to that object, including references to other objects. The
evaluations of the initializations occur in the order in which the definitions of the objects
occur.

9.1 Initialization of Scalar Types
The initial value for a scalar type (pointers, integers and floating-point types) may be enclosed
in braces, although braces are not required.

The following declarations might appear inside a function:

static int MaxRecLen = 1000;
static int MaxMemSize = { 1000 * 8 + 10000 };

float Pi = 3.14159;
auto int x = 3;
register int y = x * MaxRecLen;

9.2 Initialization of Arrays
For arrays of characters being initialized with a string literal, and for arrays of wchar t
being initialized with a wide string literal, the braces around initial values are optional. For
other arrays, the braces are required.

If an array of unknown size is initialized, then the size of the array is determined by the
number of initializing values provided. In particular, an array of characters of unknown size
may be initialized using a string literal, in which case the size of the array is the number of

Initialization of Arrays 87

Language Reference

characters in the string, plus one for the terminating null character. Each character of the
string is placed in successive elements of the array. Consider the following array declarations:

char StartPt[] = "Starting point...";
int Tabs[] = { 1, 9, 17, 25, 33, 41 };
float Roots[] = { 1., 1.414, 1.732, 2., 2.236 };

The object StartPt is an array of 18 characters, Tabs is an array of 6 integers, and Roots
is an array of 5 floating-point numbers.

If an array is declared to have a certain number of elements, then the maximum number of
values in the initialization list is the number of elements in the array. An exception is made
for arrays of characters, where the initializer may be a string with the same length as the
number of characters in the array. Each character from the string is assigned to the
corresponding element of the array. The null character at the end of the string literal is
ignored.

If there are fewer initialization values than elements of the array, then any elements not
receiving a value from the list are assigned the value zero (for arithmetic types), or the null
pointer constant (for pointers). Consider the following examples:

char Vowels1[6] = "aeiouy";
char Vowels2[6] = { ’a’, ’e’, ’i’, ’o’, ’u’, ’y’ };
int Numbers[10] = { 100, 10, 1 };
float Blort[5] = { 5.6, -2.2 };

The objects Vowels1 and Vowels2 are both arrays of six characters, and both contain
exactly the same values in each of their corresponding elements. The object Numbers is an
array of 10 integers, the first three of which are initialized to 100, 10 and 1, and the
remaining seven are set to zero. The object Blort is an array of 5 floating-point numbers.
The first two elements are initialized to 5.6 and -2.2, and the remaining three are set to
zero.

If an array of more than one dimension is initialized, then each subarray may be initialized
using a brace-enclosed list of values. This form will work for an arbitrary number of
dimensions. Consider the following two-dimensional case:

int Box[3][4] = { { 11, 12, 13, 14 },
{ 21, 22, 23, 24 },
{ 31, 32, 33, 34 } };

The object Box is an array of 3 arrays of 4 integers. There are three values in the
initialization list, corresponding to the first dimension (3 rows). Each initialization value is
itself a list of values corresponding to the second dimension (4 columns). In other words, the
first list of values { 11, 12, 13, 14 } is assigned to the first row of Box, the second

88 Initialization of Arrays

Initialization of Objects

list of values { 21, 22, 23, 24 } is assigned to the second row of Box, and the third
list of values { 31, 32, 33, 34 } is assigned to the third row of Box.

If all values are supplied for initializing an array, or if only elements from the end of the array
are omitted, then the sub-levels need not be within braces. For example, the following
declaration of Box is the same as above:

int Box[3][4] = { 11, 12, 13, 14,
21, 22, 23, 24,
31, 32, 33, 34 };

The same rules about incomplete initialization lists apply to multi-dimensional arrays. The
following example defines a mathematical 3-by-3 identity matrix:

int Identity[3][3] = { { 1 },
{ 0, 1 },
{ 0, 0, 1 } };

The missing values are replaced with zeroes. The initialization also could have been given as,

int Identity[3][3] = { { 1, 0, 0 },
{ 0, 1, 0 },
{ 0, 0, 1 } };

or as,

int Identity[3][3] = { 1, 0, 0,
0, 1, 0,
0, 0, 1 };

9.3 Initialization of Structures
Structures may be initialized in a manner similar to arrays. The initializer list must be
specified within braces.

For example,

struct printformat {
int pagewid;
char carr ctl;
char * buffer;

};

Initialization of Structures 89

Language Reference

char PrBuffer[256];

struct printformat PrtFmt = { 80, ’ ’, PrBuffer };

Each value from the initializer list is assigned to each successive member of the structure.
Any unnamed gaps between members or at the end of the structure (caused by alignment) are
ignored during initialization. If there are more members of the structure than values specified
by the initializer list, then the remaining members are initialized to zero (for arithmetic types)
or the null pointer constant (for pointers).

If a structure member is itself an array, structure or union, then the sub-members may be
initialized using a brace-enclosed initializer list. If braces are not specified, then for the
purposes of initialization, the sub-members are treated as if they are members of the outer
structure, as each subsequent initializer value initializes a sub-member, until no more
sub-members are found, in which case the next member of the outer structure is initialized.

9.4 Initialization of Unions
Initializations of unions is the same as for structures, except that only the first member of the
union may be initialized, using a brace-enclosed initializer.

Consider the following example:

struct first3 {
char first, second, third;

};

union ustr {
char string[20];
struct first3 firstthree;

};
union ustr Str = { "Hello there" };

The object Str is declared to be a union of two types, the first of which is an array of 20
characters, and the second of which is a structure that allows direct access to the first three
characters of the string contained in the array. The array is initialized to the string "Hello
there". The three characters of struct first3 will have the characters ’H’, ’e’
and ’l’. Had the declaration of ustr been,

union ustr {
struct first3 firstthree;
char string[20];

};

90 Initialization of Unions

Initialization of Objects

then the initialization could only set the first three characters.

9.5 Uninitialized Objects
An object with static storage duration, and no explicit initialization, will be initialized as if
every member that has arithmetic type was assigned zero and every member that has a pointer
type was assigned a null (zero) pointer.

An object with automatic storage duration, and no explicit initialization, is not initialized.
Hence, a reference to such an automatic object that has not been assigned a value will yield
undefined behavior. On most systems, the value of the object will be arbitrary and
unpredictable.

Uninitialized Objects 91

Language Reference

92 Uninitialized Objects

10 Expressions

An expression is a sequence of operators and operands that describes how to,

• calculate a value (eg. addition)
• create side-effects (eg. assignment, increment)

or both.

The order of execution of the expression is usually determined by a mixture of,

1. parentheses (), which indicate to the compiler the desired grouping of operations,

2. the precedence of operators, which describes the relative priority of operators in the
absence of parentheses,

3. the common algebraic ordering,

4. the associativity of operators.

In most other cases, the order of execution is determined by the compiler and may not be
relied upon. Exceptions to this rule are described in the relevant section. Most users will find
that the order of execution is well-defined and intuitive. However, when in doubt, use
parentheses.

The table below summarizes the levels of precedence in expressions.

Operations at a higher level in the table will occur before those below. All operators
involving more than one operand associate from left to right, except for the conditional and
assignment operators, which associate from right to left. Operations at the same level, except
where discussed in the relevant section, may be executed in any order that the compiler
chooses (subject to the usual algebraic rules). In particular, the compiler may regroup
sub-expressions that are both associative and commutative in order to improve the efficiency
of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by a function call) is
also subject to alteration by the compiler.

Expressions 93

Language Reference

Expression Type Operators

primary identifier
constant
string
(expression)

postfix a[b]
f()
a.b a->b
a++ a--

unary sizeof u sizeof(a)
++a --a
&a *a
+a -a ~a !a

cast (type) a

multiplicative a * b a / b a % b

additive a + b a - b

shift a << b a >> b

relational a < b a > b a <= b a >= b

equality a == b a != b

bitwise AND a & b

bitwise exclusive OR a ^ b

bitwise inclusive OR a | b

logical AND a && b

logical OR a || b

conditional † a ? b : c

assignment † a = b
a += b a -= b
a *= b a /= b a %= b
a &= b a ^= b a |= b
a <<= b a >>= b

comma a,b

† associates from right to left

94 Expressions

Expressions

An exception occurs when the operands for an operator are invalid. For example, division by
zero may cause an exception. If an exception occurs, the behavior is undefined. If an
exception is a possibility, the program should be prepared to handle it.

In the following sections, a formal syntax is used to describe each level in the precedence
table. This syntax is used in order to completely describe the relationships between the
various levels.

10.1 Lvalues
In order to understand certain components of expressions, it is important to understand the
term lvalue.

An lvalue is an expression that designates an object. The simplest form of lvalue is an
identifier which is an object (for example, an integer).

The type of the expression may not be void or a function. The term lvalue is derived from
left value, which refers to the fact that an lvalue is typically on the left side of an assignment
expression.

If ptr is a pointer to a type other than void or a function, then both ptr and *ptr are
lvalues.

A modifiable lvalue is an lvalue whose type is not an array or an incomplete type, whose
declaration does not contain the keyword const, and, if it is a structure or union, then none
of its members contains the keyword const.

10.2 Primary Expressions
primary-expression:

identifier
or

constant
or

string-literal
or

(expression)

A primary expression is the simplest part of an expression. It consists of one of the following:

Primary Expressions 95

Language Reference

identifier An identifier that designates a function is called a function designator. An
identifier that designates an object is an lvalue.

constant A constant is a primary expression whose type depends on its form. See
"Constants".

string-literal A string literal is a primary expression whose type is "array of char". A
string literal is also an lvalue (but is not modifiable).

expression inside parentheses
The type and value of a parenthesized expression are the same as for the
expression without parentheses. It may be an lvalue, function designator
or void expression.

Given these declarations,

int count;
int * ctrptr;
int f(int);
int g(int);

the following are all valid primary expressions:

count
3
3.2
’a’
"Hello there"
(count + 3)
(*(ctrptr+1))
(f(++i) * g(j++))

96 Primary Expressions

Expressions

10.3 Postfix Operators
postfix-expression:

primary-expression
or

array-subscripting-expression
or

function-call-expression
or

member-designator-expression
or

post-increment-expression
or

post-decrement-expression

10.3.1 Array Subscripting

array-subscripting-expression:
postfix-expression[expression]

The general form for array subscripting is,

array[index]

where array must have the type "array of type" or "pointer to type", and index must have
an integral type. The result has type "type".

array[index] is equivalent to (*(array+index)), or the index-th element of the
array array, where the first element is numbered zero. Note that index is scaled
automatically to account for the size of the elements of array.

An alternate form for array subscripting is,

index[array]

although this form is not commonly used.

Postfix Operators 97

Language Reference

10.3.2 Function Calls

function-call-expression:
postfix-expression()

or
postfix-expression (argument-expression-list)

argument-expression-list:
one or more assignment-expressions separated by commas

A postfix-expression followed by parentheses containing zero or more comma-separated
expressions is a function-call-expression. The postfix-expression denotes the function to be
called, and must evaluate to a pointer to a function. The simplest form of this expression is an
identifier which is the name of a function. For example, Fn() calls the function Fn.

The expressions within the parentheses denote the arguments to the function. If a function
prototype has been declared, then the number of arguments must match the parameter list in
the prototype, and the arguments are converted to the types specified in the prototype.

If the postfix-expression is simply an identifier, and no function prototype declaration for that
identifier is in scope, then an implicit,

extern int identifier();

declaration is placed in the innermost block containing the function call. This declares the
function as having external linkage, no information about its parameters is available, and the
function returns an integer.

The expressions are evaluated (in an undefined order) and the values assigned to the
parameters for the function. All arguments are passed by value, allowing the function to
modify its parameters without affecting the arguments used to create the parameters.
However, an argument can be a pointer to an object, in which case the function may modify
the object to which the pointer points.

If a function prototype is in scope at both a call to a function and its definition (and if the
prototypes are the same), then the compiler will ensure that the required number and type of
parameters are present.

If no function prototype is in scope at a call to a function, then the default argument
promotions are performed. (Integral types such as char and short int are converted to
int, while float values are converted to double.) When the function definition is
encountered, if the parameter types do not match the default argument promotions, then the
behavior is undefined. (Usually, the parameters to the function will receive incorrect values.)

98

Expressions

If a function prototype has been declared at a call to a function, then each argument is
converted, as if by assignment, to the type of the corresponding parameter. When the function
definition is encountered, if the types of the parameters do not match the types of the
parameters in the function prototype, the behavior is undefined.

If the ellipsis (,...) notation is used in a function prototype, then those arguments in a
function call that correspond to the ellipsis have only the default argument promotions
performed on them. (See the chapter "Functions" for a complete description of the ellipsis
notation.)

Function calls may be recursive. Functions may call themselves either directly, or via other
functions.

The following are some examples of function calls:

putchar(’x’);
chr = getchar();
valid = isdigit(chr);
printf("chr = %c, valid = %2x\n", chr, valid);
fnptr = &MyFunction;
(*fnptr)(parm1, parm2);
fnptr(parm1, parm2);

10.3.3 Structure and Union Members

member-designator-expression:
postfix-expression . identifier

or
postfix-expression->identifier

The first operand of the . operator must be an object with a structure or union type. The
second operand must be the name of a member of that type. The result is the value of the
member, and is an lvalue if the first operand is also an lvalue.

The first operand of the -> operator must be a pointer to an object with a structure or union
type. The second operand must be the name of a member of that type. The result is the value
of the member of the structure or union to which the first expression points, and is an lvalue.

99

Language Reference

10.3.4 Post-Increment and Post-Decrement

post-increment-expression:
postfix-expression++

post-decrement-expression:
postfix-expression--

The operand of post-increment and post-decrement must be a modifiable lvalue, and a scalar
(not a structure, union or array).

The effect of the operation is that the operand is incremented or decremented by 1, adjusted
for the type of the operand. For example, if the operand is declared to be a "pointer to type",
then the increment or decrement will be by the value sizeof(type).

The result of both post-increment and post-decrement (if it is just a subexpression of a larger
expression) is the original, unmodified value of the operand. In other words, the original
value of the operand is used in the expression, and then it is incremented or decremented.
Whether the operand is incremented immediately after use or after completion of execution of
the expression is undefined. Consider the statements,

int i = 2;
int j;

j = (i++) + (i++);

Depending on the compiler, j may get the value 4 or 5. If the increments are delayed until
after the expression is evaluated, j gets the value 2 + 2. If the increment of i happens
immediately after its value is retrieved, then j gets the value 2 + 3.

To avoid ambiguity, the above expression could be written as:

j = i + i;
i += 2;

100

Expressions

10.4 Unary Operators
unary-expression:

postfix-expression
or

pre-increment-expression
or

pre-decrement-expression
or

unary-operator cast-expression
or

sizeof-expression

unary-operator: one of
& * + - ~ !

10.4.1 Pre-Increment and Pre-Decrement Operators

pre-increment-expression:
++ unary-expression

pre-decrement-expression:
-- unary-expression

The operand of the pre-increment and pre-decrement operators must be a modifiable lvalue,
and a scalar (not a structure, union or array).

The operand is incremented or decremented by 1, adjusted for the type of the operand. For
example, if the operand is declared to be a "pointer to type", then the increment or decrement
will be by the value sizeof(type).

The expression ++obj is equivalent to (obj += 1), while --obj is equivalent to (obj
-= 1).

10.4.2 Address-of and Indirection Operators

unary-expression:
& cast-expression

or
* cast-expression

Unary Operators 101

Language Reference

The unary & symbol denotes the address-of operator. Its operand must designate a function or
an array, or be an lvalue that designates an object that is not a bit-field and is not declared
with the register storage-class specifier. If the type of the operand is "type", then the type
of the result is "pointer to type" and the result is the address of the operand.

If the type of the operand is "array of type", then the type of the result is "pointer to type" and
the result is the address of the first element of the array.

The * symbol, in its unary form, denotes the indirection or pointer operator. Its operand must
be a pointer type, except that it may not be a pointer to void. If the operand is a "pointer to
type", then the type of the result is "type", and the result is the object to which the operand
points.

No checking is performed to ensure that the value of the pointer is valid. If an invalid pointer
value is used, the behavior of * is undefined.

Examples:

int counter;
int * ctrptr;
void (*fnptr)(int, int *);

ctrptr = &counter;
*ctrptr = 3;

fnptr = FnRetVoid;
fnptr(*ctrptr, &counter);

10.4.3 Unary Arithmetic Operators

unary-expression:
+ cast-expression

or
- cast-expression

or
~ cast-expression

or
! cast-expression

The + symbol, in its unary form, simply returns the value of its operand. The type of its
operand must be an arithmetic type (character, integer or floating-point). Integral promotion
is performed on the operand, and the result has the promoted type.

102

Expressions

The - symbol, in its unary form, is the negation or negative operator. The type of its operand
must be an arithmetic type (character, integer or floating-point). The result is the negative of
the operand. Integral promotion is performed on the operand, and the result has the promoted
type. The expression -obj is equivalent to (0-obj).

The ~ symbol is the bitwise complement, 1’s complement or bitwise not operator. The type of
the operand must be an integral type, and integral promotion is performed on the operand.
The type of the result is the type of the promoted operand. Each bit of the result is the
complement of the corresponding bit in the operand, effectively turning 0 bits to 1, and 1 bits
to 0.

The ! symbol is the logical not operator. Its operand must be a scalar type (not a structure,
union or array). The result type is int. If the operand has the value zero, then the result
value is 1. If the operand has some other value, then the result is 0.

10.4.4 The sizeof Operator

sizeof-expression:
sizeof unary-expression

or
sizeof(type-name)

The sizeof operator gives the size (in bytes) of its operand. The operand may be an
expression, or a type in parentheses. In either case, the type must not be a function, bit-field
or incomplete type (such as void, or an array that has not had its length declared).

Note that an expression operand to sizeof is not evaluated. The expression is examined to
determine the result type, from which the size is determined.

If the operand has a character type, then the result is 1.

If the type is a structure or union, then the result is the total number of bytes in the structure or
union, including any internal or trailing padding included by the compiler for alignment
purposes. The size of a structure can be greater than the sum of the sizes of its members.

If the type is an array, then the result is the total number of bytes in the array, unless the
operand is a parameter in the function definition enclosing the current block, in which case the
result is the size of a pointer.

The type of the result of the sizeof operator is implementation-defined, but it is an unsigned
integer type, and is represented by size t in the <stddef.h> header.

For the Watcom C16 and C32 compilers, the macro size t is unsigned int.

103

Language Reference

Example:

struct s {
struct s * next;
int obj1;
int obj2;

};

static struct s * SAllocAndFill(const struct s * def s)
/***/
{

struct s * sptr;

sptr = malloc(sizeof(struct s));
if(sptr != NULL) {

memcpy(sptr, def s, sizeof(struct s));
}
return(sptr);

}

The function SAllocAndFill receives a pointer to a struct s. It allocates such a
structure, and copies the contents of the structure pointed to by def s into the allocated
memory. A pointer to the allocated structure is returned.

The library function malloc takes the number of bytes to allocate as a parameter and
sizeof(struct s) provides that value. The library function memcpy also takes, as
the third parameter, the number of bytes to copy and again sizeof(struct s)
provides that value.

10.5 Cast Operator
cast-expression:

unary-expression
or

(type-name) cast-expression

When an expression is preceded by a type name in parentheses, the value of the expression is
converted to the named type. This is called a cast. Both the type name and the operand type
must be scalar (not a structure, union or array), unless the type name is void. If the type
name is void, the operand type must be a complete type (not an array of unknown size, or a
structure or union that has not yet been defined).

A cast does not yield an lvalue.

104 Cast Operator

Expressions

Pointers may be freely converted from "pointer to void" to any other pointer type without
using an explicit cast operator. Pointers also may be converted from any pointer type to
"pointer to void".

A pointer may be converted to a pointer to another type. However, the pointer may be invalid
if the resulting pointer is not properly aligned for the type. Converting a pointer to a pointer
to a type with less strict alignment, and back again, will yield the same pointer. However,
converting it to a pointer to a type with more strict alignment, and back again, may yield a
different pointer. On many computers, where alignment is not required (but may improve
performance), conversion of pointers may take place freely.

With Watcom C16 and C32, alignment of integers, pointers and floating-point
numbers is not required, so the compiler does not do any alignment. However,
aligning these types may make a program run slightly faster.

A command line switch may be used to force the compiler to do alignment on all
structures.

A pointer to a function may be converted to a pointer to a different type of function, and back
again. The resulting pointer will be the same as the original pointer.

If a pointer is converted to a pointer to a different type of function, and a call is made using
that pointer, the behavior is undefined.

A pointer may be converted to an integral type. The type of integer required to hold the value
of the pointer is implementation-defined. If the integer is not large enough to fully contain the
value, then the behavior is undefined.

An integer may be converted to a pointer. The result is implementation-defined.

With Watcom C16, for the purposes of conversion between pointers and integers,
near pointers are treated as unsigned int. far and huge pointers are

treated as unsigned long int, with the pointer’s segment value in the
high-order (most significant) two bytes. All the usual integer conversion rules then
apply. Note that huge pointers are not normalized in any way.

With Watcom C32, for the purposes of conversion between pointers and integers,
near pointers are treated as unsigned int. far16 and Seg16 pointers

are also treated as unsigned int, with the pointer’s segment value in the
high-order (most significant) two bytes. All the usual integer conversion rules then
apply. Note that far pointers may not be converted to an integer without losing
the segment information.

Cast Operator 105

Language Reference

10.6 Multiplicative Operators
multiplicative-expression:

cast-expression
or
multiplicative-expression * cast-expression
or
multiplicative-expression / cast-expression
or
multiplicative-expression % cast-expression

The * symbol, in its binary form, yields the product of its operands. The operands must have
arithmetic type, and have the usual arithmetic conversions performed on them.

The / symbol yields the quotient from the division of the first operand by the second operand.
The operands must have arithmetic type, and have the usual arithmetic conversions performed
on them. Note that when a division by zero occurs, the behavior is undefined.

When both operands of / are of integer type and positive value, and the division is inexact, the
result is the largest integer less than the algebraic (exact) quotient. (The result is rounded
down.)

When one or both operands of / is negative and the division is inexact, whether the compiler
rounds the value up or down is implementation-defined.

The Watcom C16 and C32 compilers always round the result of integer division
toward zero. This action is also called truncation.

The % symbol yields the remainder from the division of the first operand by the second
operand. The operands of % must have integral type.

When both operands of % are positive, the result is a positive value smaller than the second
operand. When one or both operands is negative, whether the result is positive or negative is
implementation-defined.

With the Watcom C16 and C32 compiler, the remainder has the same sign as the first
operand.

For integral types a and b, if b is not zero, then (a/b)*b + a%b will equal a.

106 Multiplicative Operators

Expressions

10.7 Additive Operators
additive-expression:

multiplicative-expression
or

additive-expression + multiplicative-expression
or

additive-expression - multiplicative-expression

The + symbol, in its binary form, denotes the sum of its operands.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on
them.

If one of the operands is a pointer, then the other operand must have an integral type. The
pointer operand may not be a pointer to void. Before being added to the pointer value, the
integral value is multiplied by the size of the object to which the pointer points. The result
type is the same as the pointer operand type. If the pointer value is a pointer to a member of
an array, then the resulting pointer will point to a member of the same array, provided the
array is large enough. If the resulting pointer does not point to a member of the array, then its
use with the unary * (indirection) or -> (arrow) operator will yield undefined behavior.

The - symbol, in its binary form, denotes the difference resulting from the subtraction of the
second operand from the first. If both operands have arithmetic type, then the usual arithmetic
conversions are performed on them.

If the first operand is a pointer, then the second operand must either be a pointer to the same
type or an integral type.

In the same manner as for adding a pointer and an integral value, the integral value is
multiplied by the size of the object to which the pointer points. The pointer operand may not
be a pointer to void. The result type is the same type as the pointer operand.

If both operands are pointers to the same type, the difference is divided by the size of the type,
representing the difference of the subscripts of the two array members (assuming the type is
"array of type"). The type of the result is implementation-defined, and is represented by
ptrdiff t (a signed integral type) defined in the <stddef.h> header.

With Watcom C16 and C32, ptrdiff t is int, unless the huge memory model is
being used, in which case ptrdiff t is long int.

Additive Operators 107

Language Reference

10.8 Bitwise Shift Operators
shift-expression:

additive-expression
or
shift-expression << additive-expression
or
shift-expression >> additive-expression

The << symbol denotes the left-shift operator. Both operands must have an integral type, and
the integral promotions are performed on them. The type of the result is the type of the
promoted left operand.

The result of op << amt is op left-shifted amt bit positions. Zero bits are filled on the
right. Effectively, the high bits shifted out of op are discarded, and the resulting set of bits is
re-interpreted as the result. Another interpretation is that op is multiplied by 2 raised to the
power amt.

The >> symbol denotes the right-shift operator. Both operands must have an integral type,
and the integral promotions are performed on them. The type of the result is the type of the
promoted left operand.

The result of op >> amt is op right-shifted amt bit positions. If op has an unsigned type,
or a signed type and a non-negative value, then op is divided by 2 raised to the power amt.
Effectively, the low bits shifted out of op are discarded, zero bits are filled on the left, and the
resulting set of bits is re-interpreted as the result.

If op has a signed type and negative value, then the behavior of op >> amt is
implementation-defined. Usually, the high bits vacated by the right shift are filled with the
sign bit from before the shift (arithmetic right shift), or with 0 (logical right shift).

With Watcom C16 and C32, a right shift of a negative value of a signed type causes
the sign bit to be propogated throughout the bits vacated by the shift. Essentially, the
vacated bits are filled with 1 bits.

For both bitwise shift operators, if the number of bits to shift exceeds the number of bits in the
type, the result is undefined.

108 Bitwise Shift Operators

Expressions

10.9 Relational Operators
relational-expression:

shift-expression
or
relational-expression < shift-expression
or
relational-expression > shift-expression
or
relational-expression <= shift-expression
or
relational-expression >= shift-expression

Each of the symbols < (less than), > (greater than), <= (less than or equal to), >= (greater
than or equal to), yields the value 1 if the relation is true, and 0 if the relation is false. The
result type is int.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on
them.

If one of the operands is a pointer, then the other operand must be a pointer to a compatible
type. The result depends on where (in the address space of the computer) the pointers actually
point.

If both pointers point to members of the same array object, then the pointer that points to the
member with a higher subscript will be greater than the other pointer.

If both pointers point to different members within the same structure, then the pointer pointing
to the member declared later in the structure will be greater than the other pointer.

If both pointers point to the same union object, then they will be equal.

All other comparisons yield undefined behavior. As discussed above, the relationship
between pointers is determined by the locations in the machine storage that the pointers
reference. Typically, the numeric values of the pointer operands are compared.

Relational Operators 109

Language Reference

10.10 Equality Operators
equality-expression:

relational-expression
or
equality-expression == relational-expression
or
equality-expression != relational-expression

The symbols == (equal to) and != (not equal to) yield the value 1 if the relation is true, and 0
if the relation is false. The result type is int.

If both operands have arithmetic type, then the usual arithmetic conversions are performed on
them.

If both operands are pointers to the same type and they compare equal, then they are pointers
to the same object.

If both operands are pointers and one is a pointer to void, then the other is converted to a
pointer to void.

If one of the operands is a pointer, the other may be a null pointer constant (zero).

No other combinations are valid.

10.11 Bitwise AND Operator
and-expression:

equality-expression
or
and-expression & equality-expression

The & symbol, in its binary form, denotes the bitwise AND operator. Each of the operands
must have integral type, and the usual arithmetic conversions are performed.

The result is the bitwise AND of the two operands. That is, the bit in the result is set if and
only if each of the corresponding bits in the operands are set.

110 Bitwise AND Operator

Expressions

The following table illustrates some bitwise AND operations:

Operation Result

0x0000 & 0x7A4C 0x0000
0xFFFF & 0x7A4C 0x7A4C
0x1001 & 0x0001 0x0001
0x29F4 & 0xE372 0x2170

10.12 Bitwise Exclusive OR Operator
exclusive-or-expression:

and-expression
or
exclusive-or-expression ^ and-expression

The ^ symbol denotes the bitwise exclusive OR operator. Each of the operands must have
integral type, and the usual arithmetic conversions are performed.

The result is the bitwise exclusive OR of the two operands. That is, the bit in the result is set
if and only if exactly one of the corresponding bits in the operands is set.

Another interpretation is that, if one of the operands is treated as a mask, then every 1 bit in
the mask causes the corresponding bit in the other operand to be complemented (0 becomes 1,
1 becomes 0) before being placed in the result, while every 0 bit in the mask causes the
corresponding bit in the other operand to be placed unchanged in the result.

The following table illustrates some exclusive OR operations:

Operation Result

0x0000 ^ 0x7A4C 0x7A4C
0xFFFF ^ 0x7A4C 0x85B3
0xFFFF ^ 0x85B3 0x7A4C
0x1001 ^ 0x0001 0x1000
0x29F4 ^ 0xE372 0xCA86

Bitwise Exclusive OR Operator 111

Language Reference

10.13 Bitwise Inclusive OR Operator
inclusive-or-expression:

exclusive-or-expression
or
inclusive-or-expression | exclusive-or-expression

The | symbol denotes the bitwise inclusive OR operator. Each of the operands must have
integral type, and the usual arithmetic conversions are performed.

The result is the bitwise inclusive OR of the two operands. That is, the bit in the result is set if
at least one of the corresponding bits in the operands is set.

The following table illustrates some inclusive OR operations:

Operation Result

0x0000 | 0x7A4C 0x7A4C
0xFFFF | 0x7A4C 0xFFFF
0x1100 | 0x0022 0x1122
0x29F4 | 0xE372 0xEBF6

10.14 Logical AND Operator
logical-and-expression:

inclusive-or-expression
or
logical-and-expression && inclusive-or-expression

The && symbol denotes the logical AND operator. Each of the operands must have scalar
type.

If both of the operands are not equal to zero, then the result is 1. Otherwise, the result is zero.
The result type is int.

If the first operand is zero, then the second operand is not evaluated. Any side effects that
would have happened if the second operand had been executed do not happen. Any function
calls encountered in the second operand do not take place.

112 Logical AND Operator

Expressions

10.15 Logical OR Operator
logical-or-expression:

logical-and-expression
or
logical-or-expression || logical-and-expression

The || symbol denotes the logical OR operator. Each of the operands must have scalar type.

If one or both of the operands is not equal to zero, then the result is 1. Otherwise, the result is
zero (both operands are zero). The result type is int.

If the first operand is not zero, then the second operand is not evaluated. Any side effects that
would have happened if the second operand had been executed do not happen. Any function
calls encountered in the second operand do not take place.

10.16 Conditional Operator
conditional-expression:

logical-or-expression
or
logical-or-expression ? expression : conditional-expression

The ? symbol separates the first two parts of a conditional operator, and the : symbol
separates the second and third parts. The first operand must have a scalar type (not a
structure, union or array).

The first operand is evaluated. If its value is not equal to zero, then the second operand is
evaluated and its value is the result. Otherwise, the third operand is evaluated and its value is
the result.

Whichever operand is evaluated, the other is not evaluated. Any side effects that might have
happened during the evaluation of the other operand do not happen.

If both the second and third operands have arithmetic type, then the usual arithmetic
conversions are performed on them, and the type of the result is the same type as the
converted operands.

If both operands have the same structure, union or pointer type, then the result has that type.

Conditional Operator 113

Language Reference

If both operands are pointers, and one is "pointer to void", then the result type is "pointer to
void".

If one operand is a pointer, and the other is a null pointer constant (0), the result type is that of
the pointer.

If both operands are void expressions, then the result is a void expression.

No other combinations of result types are permitted.

Note that, unlike most other operators, the conditional operator associates from right to left.
For example, the expression,

a = b ? c : d ? e : f;

is translated as if it had been parenthesized as follows:

a = b ? c : (d ? e : f);

This construct is confusing, and so should probably be avoided.

10.17 Assignment Operators
assignment-expression:

conditional-expression
or

simple-assignment-expression
or

compound-assignment-expression

An assignment operator stores a value in the object designated by the left operand. The left
operand must be a modifiable lvalue.

The result type and value are those of the left operand after the assignment.

Whether the left or right operand is evaluated first is undefined.

Note that, unlike most other operators, the assignment operators associate from right to left.
For example, the expression,

a += b = c;

114 Assignment Operators

Expressions

is translated as if it had been bracketed as follows:

a += (b = c);

10.17.1 Simple Assignment

simple-assignment-operator:
unary-expression = assignment-expression

The = symbol denotes simple assignment. The value of the right operand is converted to the
type of the left operand and replaces the value designated by the left operand.

The two operands must obey one of the following rules,

• both have arithmetic types,

• both have the same structure or union type, or the right operand differs only in the
presence of the const or volatile keywords,

• both are pointers to the same type,

• both are pointers and one is a pointer to void,

• the left operand is a pointer, and the right is a null pointer constant (0).

10.17.2 Compound Assignment

compound-assignment-expression:
unary-expression assignment-operator assignment-expression

assignment-operator: one of
+= -=
*= /= %=
&= ^= |=
<<= >>=

A compound assignment operator of the form a op= b is equivalent to the simple
assignment expression a = a op (b), except that the left operand a is evaluated only once.

The compound assignment operator must have operands consistent with those allowed by the
corresponding binary operator.

115

Language Reference

10.18 Comma Operator
expression:

assignment-expression
or

expression, assignment-expression

At the lowest precedence, the comma operator evaluates the left operand as a void expression
(it is evaluated and its result, if any, is discarded), and then evaluates the right operand. The
result has the type and value of the second operand.

In contexts where the comma is also used as a separator (function argument lists and
initializer lists), a comma expression must be placed in parentheses.

For example,

Fn((pi=3.14159,two pi=2*pi));

the function Fn has one parameter, which has the value 2 times pi.

for(i = 0, j = 0, k = 0;; i++, j++, k++)
statement;

The for statement allows three expressions. In this example, the first expression initializes
three objects and the third expression increments the three objects.

10.19 Constant Expressions
A constant expression may be specified in several places:

• the size of a bit-field member of a structure,
• the value of an enumeration constant,
• an initializer list,
• the number of elements in an array,
• the value of a case label constant,
• with the #if and #elif preprocessor directives.

In most cases, a constant expression consists of a series of constant values and operations that
evaluate to a constant value. Certain operations may only appear within the operand of the
sizeof operator. These include:

116 Constant Expressions

Expressions

• a function call,
• pre- or post-increment or decrement,
• assignment,
• comma operator,
• array subscripting,
• the . and, -> operators (structure member access),
• the unary & (address-of) operator (see exception below),
• the unary * (indirection) operator,
• casts to a type other than an integer type.

In a constant expression that is an initializer, floating-point constants and casts may be
specified. Objects that have static storage duration, and function designators (names), may be
used to provide addresses, either explicitly using the unary & (address-of) operator, or
implicitly by specifying the identifier only.

The following examples illustrate constant expressions that may be used anywhere:

3
256*3 + 27
OPSYS == OS DOS /* These are macro names */

The next set of examples are constant expressions that are only valid in an initializer:

&SomeObject
SomeFunction
3.5 * 7.2 / 6.5

In a constant expression that is part of a #if or #elif preprocessor directive, only integral
constants and operators are permitted (and macros that, when replaced, follow these same
rules).

Constant Expressions 117

Language Reference

118 Constant Expressions

11 Statements

A statement describes what actions are to be performed. Statements may only be placed
inside functions. Statements are executed in sequence, except where described below.

11.1 Labelled Statements
Any statement may be preceded by a label. Labelled statements are usually the target of a
goto statement, and hence occur infrequently.

A label is an identifier followed by a colon. Labels do not affect the flow of execution of a
program. A label that is encountered during execution is ignored.

The following example illustrates a statement with a label:

xyz: i = 0;

Labels can only precede statements. It follows that labels may only appear inside functions.

A label may be defined only once within any particular function.

The identifier used for a label may be the same as another identifier for an object, function or
tag, or a label in another function. The name space for labels is separate from non-label
identifiers, and each function has its own label name space.

11.2 Compound Statements
A compound statement is a set of statements grouped together inside braces. It may have its
own declarations of objects, with or without initializations, and may or may not have any
executable statements. A compound statement is also called a block.

The general form of a compound statement is:

{ declaration-list statement-list }

Compound Statements 119

Language Reference

where declaration-list is a list of zero or more declarations of objects to be used in the block.
statement-list is a list of zero or more statements to be executed when the block is entered.

Any declarations for objects that have automatic storage duration and initializers for them are
evaluated in the order in which they occur.

An object declared with the keyword extern inside a block may not be initialized in the
declaration, since the storage for that object is defined elsewhere.

An object declared in a block, without the keyword extern, may not be redeclared within
the same block, except in a block contained within the current block.

11.3 Expression Statements
A statement that is an expression is evaluated as a void expression for its side effects, such as
the assigning of a value with the assignment operator. The result of the expression is
discarded. This discarding may be made explicit by casting the expression as a void.

For example, the statement,

count = 3;

consists of the expression count = 3, which has the side effect of assigning the value 3 to
the object count. The result of the expression is 3, with the type the same as the type of
count. The result is not used any further. As another example, the statement,

(void) memcpy(dest, src, len);

indicates that, regardless of the fact that memcpy returns a result, the result should be ignored.
However, it is equally valid, and quite common, to write,

memcpy(dest, src, len);

As a matter of programming style, casting an expression as void should only be done when
the result of the expression might normally be expected to be used further. In this case,
casting to void indicates that the result was intentionally discarded and is not an error of
omission.

120 Expression Statements

Statements

11.4 Null Statements
A null statement, which is just a semi-colon, takes no action. It is useful for placing a label
just before a block-closing brace, or for indicating an empty block, such as in an iteration
statement. Consider the following examples of null statements:

{
gets(buffer);
while(*buffer++ != ’\0’)

;
/* ... */
endblk: ;

}

The while iteration statement skips over characters in buffer until the null character is
found. The body of the iteration is empty, since the controlling expression does all of the
work. The endblk: declares a label just before the final }, which might be used by a goto
to exit the block.

11.5 Selection Statements
A selection statement evaluates an expression, called the controlling expression, then based on
the result selects from a set of statements. These statements are then executed.

11.5.1 The if Statement

if(expression) statement
or
if(expression) statement else statement

In both cases, the type of the controlling expression (inside the parentheses) is a scalar type
(not a structure, union or array). If the controlling expression evaluates to a non-zero value,
then the first statement is executed.

In the second form, the else is executed if the controlling expression evaluates to zero.

Selection Statements 121

Language Reference

Each statement may be a compound statement. For example,

if(delay > 5) {
printf("Waited too long\n");
ok = FALSE;

} else {
ok = TRUE;

}

In the classic case of the dangling else, the else is bound to the nearest if that does not
yet have an else. For example,

if(x > 0)
if(y > 0)

printf("x > 0 && y > 0\n");
else

printf("x <= 0\n");

will print x <= 0 when x > 0 is true and y > 0 is false, because the else is bound to
the second if, not the first. To correct this example, it would have to be changed to,

if(x > 0) {
if(y > 0)

printf("x > 0 && y > 0\n");
} else

printf("x <= 0\n");

This example illustrates why it is a good idea to always use braces to explicitly state the
subject of the control structures, rather than relying on the fact that a single statement is also a
compound statement. A better way of writing the above example is,

if(x > 0) {
if(y > 0) {

printf("x > 0 && y > 0\n");
}

} else {
printf("x <= 0\n");

}

where all subjects of the control structures are contained within braces, leaving no doubt about
the meaning. A dangling else cannot occur if braces are always used.

If the statements between the if and the else are reached via a label, the statements
following the else will not be executed. However, jumping into a block is poor
programming practice, since it makes the program difficult to follow.

122

Statements

11.5.2 The switch Statement

switch(expression) statement

Usually, statement is a compound statement or block. Embedded within the statement are
case labels and possibly a default label, of the following form:

case constant-expression : statement
default : statement

The controlling expression and the constant-expressions on each case label all must have
integral type. No two of the case constant-expressions may be the same value. The
default label may appear at most once in any switch block.

The controlling statement is evaluated, and the integral promotion is performed on the result.
If the promoted value of the expression matches any of the case labels promoted to the same
type, control is given to the statement following that case label. Otherwise, control is given to
the statement following the default label (if present). If no default label is present, then no
statements in the switch block are executed.

When statements within a switch block are being executed and another case or default
is encountered, it is ignored and execution continues with the statement following the label.
The break statement may be used to terminate execution of the switch block.

In the following example,

int i;

for(i = 1; i <= 8; i++) {
printf("%d ", i);
switch(i) {

case 2:
case 4:

printf("less than 5 ");
case 6:
case 8:

printf("even\n");
break;

default:
printf("odd\n");

}
}

123

Language Reference

the following output is produced:

1 odd
2 less than 5 even
3 odd
4 less than 5 even
5 odd
6 even
7 odd
8 even

11.6 Iteration Statements
Iteration statements control looping. There are three forms of iteration statements: while,
do/while and for.

The controlling expression must have a scalar type. The loop body (often a compound
statement or block) is executed repeatedly until the controlling expression is equal to zero.

11.6.1 The while Statement

while (expression) statement

The evaluation of the controlling expression takes place before each execution of the loop
body (statement). If the expression evaluates to zero the first time, the loop body is not
executed at all.

The statement may be a compound statement.

For example,

char * ptr;
/* ... */
while(*ptr != ’\0’) {

if(*ptr == ’.’)break;
++ptr;

}

The loop will scan characters pointed at by ptr until either a null character or a dot is found.
If the initial value of ptr points at a null character, then no part of the loop body will be
executed, leaving ptr pointing at the null character.

124 Iteration Statements

Statements

11.6.2 The do Statement

do statement while (expression);

The evaluation of the controlling expression takes place after each execution of the loop body
(statement). If the expression evaluates to zero the first time, the loop body is executed
exactly once.

The statement may be a compound statement.

For example,

char * ptr;
char * endptr;
/* ... */
endptr = ptr + strlen(ptr);
do {

--endptr;
} while(endptr >= ptr && *endptr == ’ ’);

In this example, the loop will terminate when endptr finds a non-blank character starting
from the right, or when endptr goes past the beginning of the string. If a non-blank
character is found, endptr will be left pointing at that character.

11.6.3 The for Statement

The statement,

for (expr1; expr2; expr3) statement

is almost equivalent to,

expr1;
while (expr2) {
statement
expr3;
}

The difference is that the continue statement will pass control to the statement expr3 rather
than to the end of the loop body.

expr1 is an initialization expression and may be omitted.

125

Language Reference

expr2 is the controlling expression, and specifies an evaluation to be made before each
iteration of the loop body. If the expression evaluates to zero, the loop body is not executed,
and control is passed to the statement following the loop body. If expr2 is omitted, then a
non-zero (true) value is substituted in its place. In this case, the statements in the loop must
cause an explicit break from the loop.

expr3 specifies an operation to be performed after each iteration. A common operation would
be the incrementing of a counter. expr3 may be omitted.

The statement may be a compound statement.

For example,

char charvec[256];
int count;

for(count = 0; count <= 255; count++) {
charvec[count] = count;

}

This example will initialize the character array charvec to the values from 0 to 255.

The following are examples of for statements:

for(;;)
statement;

All statements in the body of the loop will be executed until a break or goto statement is
executed which passes control outside of the loop, or a return statement is executed which
exits the function. This is sometimes called loop forever.

for(i = 0; i <= 100; ++i)
statement;

The object i is given the initial value zero, and after each iteration of the loop is incremented
by one. The loop is executed 101 times, with i having the successive values 0, 1, 2 ...
99, 100, and having the value 101 after termination of the loop.

for(; *bufptr != ’\0’; ++bufptr)
statement;

The object bufptr is already initialized, and the loop will continue until bufptr points at a
null character. After each iteration of the loop, bufptr will be incremented to point at the
next character.

126

Statements

11.7 Jump Statements
A jump statement causes execution to continue at a specific place in a program, without
executing any other intervening statements. There are four jump statements: goto,
continue, break and return.

11.7.1 The goto Statement

goto identifier;

identifier is a label somewhere in the current function (including any block within the
function). The next statement executed will be the one following that label.

Note: it can be confusing to use the goto statement excessively. It is easy to create
spaghetti code, which is very difficult to understand, even by the person who wrote it. It is
recommended that the goto statement be used, at most, to jump out of blocks, never into
them.

11.7.2 The continue Statement
continue;

A continue statement may only appear within a loop body, and causes a jump to the
inner-most loop’s loop-continuation statement (the end of the loop body).

In a while statement, the jump is effectively back to the while.

In a do statement, the jump is effectively down to the while.

In a for statement, the jump is effectively to the closing brace of the compound-statement
that is the subject of the for loop. The third expression in the for statement, which is often
an increment or decrement, is then executed before control is returned to the top of the loop.

11.7.3 The break Statement
break;

A break statement may only appear in an iteration (loop) body or a switch statement.

In a loop, a break will cause execution to continue at the statement following the loop body.

Jump Statements 127

Language Reference

In a switch statement, a break will cause execution to continue at the statement following
the switch. If the loop or switch that contains the break is enclosed inside another loop or
switch, only the inner-most loop or switch is terminated. The goto statement may be
used to terminate more than one loop or switch.

11.7.4 The return Statement
return;
or
return expression;

A popular variation of the second form is,

return(expression);

The return statement causes execution of the current function to be terminated, and control
is passed to the caller. A function may contain any number of return statements.

If the function is declared with a return type of void (no value is returned), then no return
statement within that function may return a value.

If the function is declared as having a return type of other than void, then any return
statement with an expression will evaluate the expression and convert it to the return type.
That value will be the value returned by the function. If a return is executed without an
expression, and the caller uses the value returned by the function, the behavior is undefined
since no value was returned. An arbitrary value will probably be used.

Reaching the closing brace } that terminates the function is equivalent to executing a return
statement without an expression.

128

12 Functions

There are two forms for defining a function. The first form is,

storage-class return-type identifier (parameter-type-list)
{
declaration-list

statement-list
}

The storage-class may be one of extern or static. If storage-class is omitted, extern
is assumed.

The return-type may be any valid type except an array. If return-type is omitted, int is
assumed.

The identifier is the name of the function.

The parameter-type-list is either void or empty, meaning the function takes no parameters,
or a comma-separated list of declarations of the objects, including both type and parameter
name (identifier). If multiple arguments of the same type are specified, the type of each
argument must be given individually. The form,

type id1, id2

is not permitted within the parameter list.

If the parameter-type-list ends with ,... then the function will accept a variable number of
arguments.

Any parameter declared as "array of type" is changed to "pointer to type". Any parameter
declared as " function" is changed to "pointer to function".

The following examples illustrate several function definitions:

int F(void)

The function F has no parameters, and returns an integer.

Functions 129

Language Reference

void G(int x)

The function G has one parameter, an integer object named x, and does not return a
value.

void * H(long int len, long int wid)

The function H has two parameters, long integer objects named len and wid, and
returns a pointer which does not point to any particular type of object.

void I(char * format, ...)

The function I has one known parameter, an object named format that is a pointer to
a character (string). The function also accepts a variable number of parameters
following format. The function does not return a result.

This form of function definition also serves as a prototype declaration for any calls to the
function that occur later in the same module. With the function prototype in scope at the time
of a call to the function, the arguments are converted to the type of the corresponding
parameter prior to the value being assigned. If a call to the function is to be made prior to its
definition, or from another module, a function prototype should be specified for it in order to
ensure proper conversion of argument types. Failure to do this will result in the default
argument promotions being performed, with undefined behavior if the function parameter
types do not match the promoted argument types.

The second form of function definition is,

storage-class return-type identifier (identifier-list)
declaration-list
{
declaration-list

statement-list
}

The storage-class, return-type and identifier parts are all the same as for the first form of
definition. In this form, the identifier-list is a (possibly empty) comma-separated list of
identifiers (object names) without any type information. Following the closing parenthesis,
and before the opening brace of the body of the function, the declarations for the objects are
given, using the normal rules. Any object of type int need not be explicitly declared.

In the declarations of the parameter identifiers, register is the only storage-class specifier
that may be used.

130 Functions

Functions

A function prototype is created from the definition after the default argument promotions have
been performed on each parameter. All arguments to a function declared in this manner will
have the default argument promotions performed on them. The resulting types must match
the types of the declared parameters, after promotion. Otherwise, the behavior is undefined.

Note that it is impossible to pass an object of type float to a function declared in this
manner. The argument of type float will automatically be promoted to double, and the
parameter will also be promoted to double (assuming that it was declared as float). For
similar reasons, it is not possible to pass an object of type char or short int without
promotion taking place.

According to the ANSI standard for the C language, this form of function definition is
obsolete and should not be used. It is provided for historical reasons, in particular, for
compatibility with older C compilers. Using the first form of function definition often allows
the compiler to generate better code.

The following examples are the same as those given with the first form above, with the
appropriate modifications:

int F()

The function F has no parameters, and returns an integer.

void G(x)

The function G has one parameter, an integer object named x, and does not return a
value. This example could have also been written as,

void G(x)
int x;

which explicitly declares x to be an integer.

void * H(len, wid)
long int len;
long int wid;

The function H has two parameters, both integer objects named len and wid, and
returns a pointer which does not point to any particular type of object. Any call to this
function must ensure that the arguments are long integers, either by using an object so
declared, or by explicitly casting the object to the type.

The last example using the ellipsis (,...) notation is not directly representable using the
second form of function definition. With most compilers it is possible to handle variable

Functions 131

Language Reference

argument lists in this form, but knowledge of the mechanism used to pass arguments to
functions is required, and this mechanism may vary between different compilers.

12.1 The Body of the Function
Following the declaration of the function and the opening brace is the body of the function. It
consists of two portions, both of which are optional.

The first portion is the declaration list for any objects needed within the function. These
objects may have any type and any storage class. Objects with storage class register or
auto have automatic storage duration, meaning they are created when the function is called,
and destroyed when the function returns to the caller. (The value of the object is not
preserved between calls to the function.) Objects with storage class extern or static have
static storage duration, meaning they are created once, before the function is ever called, and
destroyed only when the program terminates. Any value placed in such an object will remain
even after the function has returned, so that the next time the function is called the value will
still be present (unless some other action is taken to change it, such as using another object
containing a pointer to the static object to modify the value).

Unless an explicit return statement is executed, the function will not return to the caller
until the brace at the end of the function definition is encountered. The return will be as if a
return statement with no expression was executed. If the function is declared as returning a
value, and the caller attempts to use the value returned in this manner, the behavior is
undefined. The value used will be arbitrary.

A function may call itself (recursion) directly, or it may call another function or functions
which in turn call it. Any objects declared with automatic storage duration are created as a
new instance of the object upon each recursion, while objects declared with static storage
duration only have one instance shared between the recursive instances of the function.

12.2 Function Prototypes
A function prototype is like a definition of a function, but without the body. A semi-colon is
specified immediately following the closing right parenthesis of the function’s declaration.
The prototype describes the name of the function, the types of parameters it expects (names
are optional) and the type of the return value. This information can be used by the C compiler
to do proper argument type checking and conversion for calls to the function, and to properly
handle the return value.

132 Function Prototypes

Functions

If no function prototype has been found by the time a call to a function is made, all arguments
have the default argument promotions performed on them, and the return type is assumed to
be int. If the actual definition of the function does not have parameters that match the
promoted types, the behavior is undefined. If the return type is not int and a return value is
required, the behavior is undefined.

The prototype for a function must match the function definition. Each parameter type and the
type of the return value must be the same, otherwise the behavior is undefined.

All library functions have prototypes in one of several header files. That header file should be
included whenever a function described therein is used. Refer to the Watcom C Library
Reference manual for details.

12.2.1 Variable Argument Lists

If the prototype (and definition) for a function has a parameter list that ends with ,... then
the function has a variable argument list or variable parameter list meaning that the number
of arguments to the function can vary. (The library function printf is an example.) At least
one argument must be provided before the variable portion. This argument usually describes,
in some fashion, how many other arguments to expect. It may be a simple count, or may
involve (as with printf) an encoding of the number and types of arguments.

All arguments that correspond to a variable argument list have the default argument
promotions performed on them, since it is not possible to determine, at compilation time, what
types will be required by the function.

Since the parameters represented by the ,... don’t have names, special handling is
required. The C language provides a special type and three macros for handling variable
argument lists. To be able to use these, the header <stdarg.h> must be included.

The type va list is an implementation-specific type used to store information about the
variable list. Within the function, an object must be declared with type va list. This
object is used by the macros and functions for processing the list.

The macro va start has the form,

void va start(va list parminfo, lastparm);

The object parminfo is set up by the macro with information describing the variable list. The
argument lastparm is the name (identifier) of the last parameter before the ,... and must
not have been declared with the storage class register.

133

Language Reference

The macro va start must be executed before any processing of the variable portion of the
parameter list is performed.

va start may be executed more than once, but only if an intervening va end is executed.

The macro va arg has the form,

type va arg(va list parminfo, type);

parminfo is the same object named in the call to va start. type is the type of argument
expected. The types expected should only be those that result from the default argument
promotions (int and long int and their unsigned varieties, double and long
double), and those that are not subject to promotion (pointers, structures and unions). The
type must be determined by the program. The va arg macro expands to an expression that
has the type and value of the next parameter in the variable list.

In the case of printf, the parameter type expected is determined by the "conversion
specifications" such as %s, %d and so on.

The first invocation of the va arg macro (after executing a va start) returns the value of
the parameter following lastparm (as specified in va start). Each subsequent invocation
of va arg returns the next parameter in the list. At each invocation, the value of parminfo is
modified (in some implementation-specific manner) to reflect the processing of the parameter
list.

If the type of the next parameter does not match type, or if no parameter was specified, the
behavior is undefined.

The macro va end has the form,

void va end(va list parminfo);

parminfo is the same object named in the corresponding call to va start. The function
va end closes off processing of the variable argument list, which must be done prior to
returning from the function. If va end is not called before returning, the behavior is
undefined.

If va end is called without a corresponding call to va start having been done, the
behavior is undefined.

After calling va end and prior to returning, it is possible to call va start again and
reprocess the variable list. It will be necessary to call va end again before returning.

134

Functions

The following function takes an arbitrary number of floating-point numbers as parameters
along with a count, and returns the average of the numbers:

#include <stdarg.h>

extern double Average(int count, ...)
/*************************************/
{

double sum = 0;
int i;
va list parminfo;

if(count == 0) {
return(0.0);

}
va start(parminfo, count);
for(i = 0; i < count; i++) {

sum += va arg(parminfo, double);
}
va end(parminfo);
return(sum / count);

}

12.3 The Parameters to the Function main
The function main has a special meaning in C. It is the function that receives control when a
program is started. The function main has the following definition:

extern int main(int argc, char * argv[])
/**/
{

statements
}

The objects argc and argv have the following properties:

• argc is the "argument count", or the number of parameters (including program name)
supplied to the program, and its value is greater than zero,

• argv is an array of pointers to strings containing the parameters,

• argv[0] is the program name, if available, otherwise it is a pointer to a string
containing only the null character,

The Parameters to the Function main 135

Language Reference

• argv[argc] is a null pointer, representing the end of the argument list,

• argv[1] through argv[argc-1] are pointers to strings representing the arguments
to the program. These strings are modifiable by the program, and exist throughout the
execution of the program. The strings will generally be in mixed (upper and lower)
case, although a system that cannot provide mixed case argument strings will provide
them in lower case.

The translation of the arguments to the program, as provided by the operating system (often
from the command-line used to invoke the program), into the strings contained in argv, is
implementation-defined.

With Watcom C16 and C32, each unquoted, blank-separated token on the command
line is made into a string that is an element of argv. Quoted strings are maintained
as one element without the quotes.

For example, the command line,

pgm 2+ 1 tokens "one token"

will result in argc having the value 5, and the elements of argv being the strings
"pgm", "2+", "1", "tokens" and "one token".

The function main may also be declared without any parameters, as,

extern int main(void)
/*********************/
{

statements
}

The return value of main is an integer, usually representing a termination status. If no return
value is specified (by using a return statement with no expression or encountering the
closing brace in the function), then the value returned is undefined.

The exit library function may be used to terminate the program at any point. The value of
the argument to exit is returned as if main had returned the value.

136 The Parameters to the Function main

13 The Preprocessor

The preprocessor, as its name suggests, is that part of the C compiler which processes certain
directives embedded in the source file(s) in advance of the actual compilation of the program.
Specifically, the preprocessor allows a source file to,

• include other files (perhaps referencing externally-defined objects, or containing the
definitions of structures or other types which are needed by more than one source file),

• compile certain portions of the code depending on some condition (such as the kind of
computer for which the code is being generated), and,

• replace macros with other text which is then compiled.

The preprocessing phase occurs after trigraphs have been converted and physical lines ending
with \ have been concatenated to create longer logical lines, but before escape sequences in
character constants have been converted, or adjacent string literals are concatenated.

Any line whose first non-blank character is a # marks the beginning of a preprocessing
directive. Spaces may appear between the # and the identifier for the directive. The
#include and #define directives are each contained on one line (after concatenation of
lines ending with \), while the conditional compilation directives span multiple lines.

A preprocessor directive is not terminated by a semi-colon.

13.1 The Null Directive
A preprocessing directive of the form,

#

(with no other tokens on the same line) has no effect and is discarded.

The Null Directive 137

Language Reference

13.2 Including Headers and Source Files
A directive of the form,

#include <name>

will search a sequence of places defined by the implementation for the header identified by
name. A header declares a set of library functions and any necessary types or macros needed
for their use. Headers are usually provided by the compiler, or by a library provided for use
with the compiler.

name may not contain a > character. If the header is found, the entire directive is replaced by
the contents of the header. If the header is not found, an error will occur.

A directive of the form,

#include "name"

will search for the source file identified by name. name may not contain a " (double-quote)
character. If the source file identified by name is found, then the entire directive is replaced
by the contents of the file. Otherwise, the directive is processed as if the,

#include <name>

form had been used.

A third form of #include directive is also supported. A directive of the form,

#include tokens

causes all macro substitutions (described below) to take place on tokens. After
substitution, the directive must match either the <name> or "name" forms described above
(including < and >, or quotes), in which case the #include is processed in the
corresponding manner.

See the User’s Guide for details about how the compiler searches for included files.

#include directives may be nested. Each implementation may allow different depths of
nesting, but all must allow at least 8 levels. (In other words, a source file may include another
file, which includes another file, and so on, up to a depth of eight files.)

The operating system may further limit the number of files that may be open at one
time. See the appropriate operating system manual for details.

138 Including Headers and Source Files

The Preprocessor

13.3 Conditionally Including Source Lines
A directive of the form,

#if constant-expression
body of #if
#endif

evaluates the constant-expression, and if it evaluates to a non-zero value, then the body of the
#if is processed by the preprocessor. Processing of the body ends when a corresponding
#elif, #else, or the terminating #endif is encountered.

The #if directive allows source and preprocessor lines to be conditionally processed by the
compiler.

If the constant-expression evaluates to zero, then the body of the #if is not processed, and
the corresponding #elif or #else (if present) is processed. If neither of these directives
are present, then the preprocessor skips to the #endif. Any preprocessing directives within
the body of the #if are not processed, but they are examined in order to determine any nested
directives, in order to find the matching #elif, #else or #endif.

The constant-expression is of the same form as used in the if statement, except that the
values used must be integer values (including character constants). No cast or sizeof
operators or enumeration constants may be used. Each identifier that is a macro name is
replaced (as described below), and remaining identifiers are replaced with 0L. All values are
converted to long integers using the usual arithmetic conversions. After each item has been
converted, the evaluation of the expression takes place using the arithmetic of the translation
environment. Any character constants are evaluated as members of the source character set.

With Watcom C16 and C32, character constants have the same value in both the
source and execution character sets.

The unary expression,

defined identifier
or
defined(identifier)

may be used to determine if an identifier is currently defined as a macro. Any macro name
that is part of this unary expression is not expanded. The above expressions evaluate to 1 if
the named identifier is currently a macro, otherwise they evaluate to 0.

Conditionally Including Source Lines 139

Language Reference

As discussed above, if the constant-expression of the #if evaluates to zero, the preprocessor
looks for a corresponding #elif. This directive means "else if", and has a similar form as
#if:

#elif constant-expression
body of #elif

An #elif may only be placed inside the body of an #if. The body of the #elif is
processed only if the constant-expression evaluates to a non-zero value and the
constant-expressions of the corresponding #if and (preceding) #elif statements evaluated
to zero. Otherwise the body is not processed, and the preprocessor skips to the next
corresponding #elif or #else, or to the #endif if neither of these directives is present.

The #else directive has the form,

#else
body of #else

The body of the #else is processed only if the constant expressions of the corresponding
#if and #elif statements evaluated to zero. The body of the #else is processed until the
corresponding #endif is encountered.

The form of the #endif directive is,

#endif

and marks the end of the #if.

The following are examples of conditional inclusion of source lines:

#if OPSYS == OS CMS
fn syntax = "filename filetype fm";

#elif OPSYS == OS MVS
fn syntax = "’userid.library.type(membername)’";

#elif OPSYS == OS DOS || OPSYS == OS OS2
fn syntax = "filename.ext";

#else
fn syntax = "filename";

#endif

The object fn syntax is set to the appropriate filename syntax string depending on the
value of the macro OPSYS. If OPSYS does not match any of the stated values, then
fn syntax is set to the default string "filename".

140 Conditionally Including Source Lines

The Preprocessor

#if HARDWARE == HW IBM370
#if OPSYS == OS CMS

escape cmd = "CMS";
#elif OPSYS == OS MVS

escape cmd = "TSO";
#else

escape cmd = "SYSTEM";
#endif

#else
escape cmd = "SYSTEM";

#endif

The object escape cmd is set to an appropriate string depending on the values of the
macros HARDWARE and OPSYS. The indentation of the directives clearly illustrates the flow
between various conditions and levels of directives.

13.3.1 The #ifdef and #ifndef Directives

The #ifdef directive is used to check if an identifier is currently defined as a macro. For
example, the directive,

#ifdef xyz

processes the body of the #ifdef only if the identifier xyz is currently a macro. This
example is equivalent to,

#if defined xyz

or

#if defined(xyz)

In a similar manner, the directive,

#ifndef xyz

is equivalent to,

#if !defined xyz

or

#if !defined(xyz)

141

Language Reference

13.4 Macro Replacement
A directive of the form,

#define identifier replacement-list

defines a macro with the name identifier. This particular form of macro is called an
object-like macro, because it is used like an object (as opposed to a function). Any source line
that contains a token matching the macro name has that token replaced by the
replacement-list. The tokens of the replacement-list are then rescanned for more macro
replacements.

For example, the macro,

#define TABLE LIMIT 256

defines the macro TABLE LIMIT to be equivalent to the token 256. This is sometimes
called a manifest constant, because it provides a descriptive term for a value that makes
programs easier to read. It is a very good idea to use descriptive names wherever appropriate
to improve the readability of a program. It may also save time if the same value is used many
different places, and the value must be changed at some point.

Care must be exercised when using more complicated object-like macros. Consider the
following example:

#define COUNT1 10
#define COUNT2 20
#define TOTAL COUNT COUNT1+COUNT2
/* ... */
memptr = malloc(TOTAL COUNT * sizeof(int));

If int is 2 bytes in size, this call to malloc will allocate 50 bytes of memory, instead of the
expected 60. This occurs because TOTAL COUNT * sizeof(int) becomes 10+20
* 2 after macro replacement, and the precedence rules for expression evaluation cause the
multiply to be done first. To solve this problem, the macro for TOTAL COUNT should be
defined as:

#define TOTAL COUNT (COUNT1+COUNT2)

A directive of the form,

#define identifier(identifier-list) replacement-list

142 Macro Replacement

The Preprocessor

is called a function-like macro, because it is used like a function call. No space may appear
between identifier and the left parenthesis in the macro definition. Any source line(s) that
contains what looks like a function call, where the name of the function matches a
function-like macro name, and the number of parameters matches the number of identifiers in
the identifier-list, has the entire function call replaced by the replacement-list, substituting the
actual arguments of the function call for the occurrences of the identifiers in the
replacement-list. If the left parenthesis following the macro name was created as the result of
a macro substitution, no further substitution will take place. If the macro name appears but is
not followed by a left parenthesis, no further substitution will take place.

Consider this example:

#define endof(string) \
(string + strlen(string))

The \ causes the two lines to be joined together into one logical line, making this equivalent
to,

#define endof(string) (string + strlen(string))

The function-like macro endof can be used to find a pointer to the null character terminating
a string. The statement,

endptr = endof(ptr);

will have the macro replaced, so it will then be parsed as,

endptr = (ptr + strlen(ptr));

Note that, in this case, the argument is evaluated twice. If StrFn(ptr) was specified
instead of ptr, then the function would get called twice, because the substitution would yield,

endptr = (StrFn(ptr) + strlen(StrFn(ptr)));

In gathering up the tokens used to identify the arguments, each sequence of tokens separated
by a comma constitutes an argument, unless that comma happens to be within a matched pair
of left and right parentheses. When a right parenthesis is found that matches the beginning
left parenthesis, and the number of arguments matches the number of identifiers in the macro
definition, then the gathering of the arguments is complete and the substitution takes place.

For example,

Macro Replacement 143

Language Reference

#define mymemcpy(dest, src, len) \
memcpy(dest, src, len)

/* ... */
mymemcpy(destptr, srcptr, (t=0, t=strlen(srcptr)));

will, for the parameters dest, src and len, use the arguments destptr, srcptr and
(t=0, t=strlen(srcptr)) respectively.

This form of macro is also useful for "commenting out" a function call that is used for
debugging the program. For example,

#define alive(where) printf("Alive at" where "\n")

could later be replaced by,

#define alive(where) /* */

Alternatively, the definition,

#define alive(where)

may be used. When the module or program is recompiled using this new definition for
alive, all of the calls to printf made as a result of the macro replacement will disappear,
without the necessity of deleting the appropriate lines in each module.

A directive of the form,

#undef identifier

causes the macro definition for identifier to be thrown away. No error is reported if no macro
definition for identifier exists.

13.5 Argument Substitution
The argument substitution capabilities of the C preprocessor are very powerful, but can be
tricky. The following sections illustrate the capabilities, and try to shed light on the problems
that might be encountered.

13.5.1 Converting An Argument to a String

In the replacement-string for a function-like macro, each occurrence of # must be followed by
a parameter to the macro. If so, both the # and the parameter are replaced by a string created

144 Argument Substitution

The Preprocessor

from the characters of the argument itself, with no further substitutions performed on the
argument. Each white space within the argument is converted to a single blank character. If
the argument contains a character constant or string literal, any occurrences of "
(double-quote) are replaced by \", and any occurrences of \ (backslash) are replaced by \\.

The following table gives a number of examples of the result of the application of the macro,

#define string(parm) # parm

as shown in the first column:

Argument After Substitution

string(abc) "abc"
string("abc") "\"abc\""
string("abc" "def") "\"abc\" \"def\""
string(\’/) "\\’/"
string(f(x)) "f(x)"

13.5.2 Concatenating Tokens

In the replacement-list, if a parameter is preceded or followed by ##, then the parameter is
replaced by the argument itself, without examining the argument for any further replacements.
After all such substitutions, each ## is removed and the tokens on either side are concatenated
together. The newly formed token is then examined for further macro replacement.

may not be either the first or last token in the replacement-list.

Assuming that the following macros are defined,

#define first "Piece"
#define last "of Earth"
#define firstlast "Peace on Earth"
#define first1 "Peas"

the following table gives a number of examples of the result of the application of the macro,

#define glue(x, y) x ## y

as shown in the first column. For the examples that span several lines, each successive line of
the "Result" column indicates successive expansions of the macros.

145

Language Reference

Argument After Substitution

glue(12, 34) 1234

glue(first, 1) first1
"Peas"

glue(first, 2) first2

glue(first, last) firstlast
"Peace on Earth"

13.5.3 Simple Argument Substitution

In the absence of either the # or ## operators, a parameter is replaced by its argument. Before
this happens, however, the argument is scanned again to see if there are any further macro
substitutions to be made, applying all of the above rules. The rescanning applies only to the
argument, not to any other tokens that might be adjacent to the argument when it replaces the
parameter. In other words, if the last token of the argument and the first token following in
the replacement list together form a valid macro, no substitution of that macro will take place.

Consider the following examples, with these macro definitions in place:

#define f(a) a
#define g(x) (1+x)
#define h(s,t) s t
#define i(y) 2-y
#define xyz printf
#define rcrs rcrs+2

146

The Preprocessor

Invocation After Substitution

f(c) c

f(f(c)) f(c)
c

f(g(c)) f((1+c))
(1+c)

h("hello",f("there")) h("hello","there")
"hello" "there"

f(xyz)("Hello\n") f(printf)("Hello\n")
printf("Hello\n")

13.5.4 Rescanning for Further Replacement

After all parameters in the replacement-list have been replaced, the resulting set of tokens is
re-examined for any further replacement. If, during this scan, an apparent invocation of the
macro currently being replaced is found, it is not replaced. Further invocations of the macro
currently being replaced are not eligible for replacement until a new set of tokens from the
source file, unrelated to the tokens resulting from the current substitution, are being processed.

147

Language Reference

Consider these examples, using the above macro definitions:

Invocation After Rescanning

f(g)(r) g(r)
(1+r)

f(f)(r) f(r)

h(f,(b)) f (b)
b

i(h(i,(b))) i(i (b))
2-i (b)

i(i (b)) i(2-b)
2-2-b

rcrs rcrs+2

In other words, if an apparent invocation of a macro appears, and its name matches the macro
currently being replaced, and the apparent invocation was manufactured by other
replacements, it is not replaced. If, however, the apparent invocation comes directly from an
argument to the macro replacement, then it is replaced.

After all replacements have been done, the resulting set of tokens replaces the invocation of
the macro in the source file, and the file is then rescanned starting at the replacement-list.
Any further macro invocations are then replaced. However, if as a result of scanning the
replacement-list with following tokens another apparent invocation of the macro just replaced
is found, then that macro name is not replaced. An invocation of the macro will again be
replaced only when a new invocation of the macro is found, unrelated to the just-replaced
macro.

If the replacement-list of tokens resembles a preprocessor directive, the preprocessor will not
process it.

A macro definition lasts until it is undefined (with #undef) or until the end of the module.

148

The Preprocessor

13.6 More Examples of Macro Replacement
The following examples are given in the ANSI C standard, and are presented here as a
complete guide to the way in which macros are replaced. The expansions are shown in stages
to better illustrate the process.

The first set of examples illustrates the rules for creating string literals (using the # operator)
and concatenating tokens (using the ## operator). The following definitions are used:

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", x ## s, x ## t)
#define INCFILE(n) vers ## n /* comment */
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

The following replacements are made. The final result shows adjacent string literals joined
together to form a single string. This step is not actually part of the preprocessor stage, but is
given for clarity.

debug(1, 2);
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
printf("x1= %d, x2= %s", x1, x2);

fputs(str(strncmp("abc\0d", "abc", ’\4’) /* this goes away */
== 0) str(: @\n), s);

fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n", s);
fputs("strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n", s);

#include xstr(INCFILE(2).h)
#include xstr(vers2.h)
#include str(vers2.h)
#include "vers2.h"

(and then the directive is replaced by the file contents)

glue(HIGH, LOW)
HIGHLOW
"hello"

xglue(HIGH, LOW)
xglue(HIGH, LOW ", world")
glue(HIGH, LOW ", world")
HIGHLOW ", world"
"hello" ", world"
"hello, world"

The following examples illustrate the rules for redefinition and re-examination of macros.
The following definitions are used:

More Examples of Macro Replacement 149

Language Reference

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a

The following substitutions are made:

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1)
f(x * (y+1)) + ...
f(2 * (y+1)) + f(f(z)) % t(t(g)(0) + t)(1)
... + f(f(x * (z))) % ...
... + f(f(2 * (z))) % ...
... + f(x * (f(2 * (z)))) % ...
... + f(2 * (f(2 * (z)))) % ...
... + f(2 * (f(2 * (z[0])))) % t(t(g)(0) + t)(1)
... % t(g(0) + t)(1)
... % t(f(0) + t)(1)
... % t(f(x * (0)) + t)(1)
... % t(f(2 * (0)) + t)(1)
f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1)

Another example:

g(2+(3,4)-w) | h 5) & m(f)^m(m)
f(2+(3,4)-w) | ...
f(2+(3,4)-0,1) | ...
f(x * (2+(3,4)-0,1)) | ...
f(2 * (2+(3,4)-0,1)) | h 5) & ...
... | g(~ 5) & ...
... | f(~ 5) & ...
... | f(x * (~ 5)) & ...
... | f(2 * (~ 5)) & m(f)^...
... & f(w)^...
... & f(0,1)^...
... & f(x * (0,1))^...
... & f(2 * (0,1))^m(m)
... ^m(w)
f(2 * (2+(3,4)-0,1)) | f(2 * (~ 5)) & f(2 * (0,1))^m(0,1)

13.7 Redefining a Macro
Once a macro has been defined, its definition remains until it is explicitly undefined (using the
#undef directive), or until the compilation of the source file is finished. If a macro is
undefined, then it may be redefined in some other (or the same) way. If, during a macro
replacement, the name of a macro that has been defined, undefined and then defined again is

150 Redefining a Macro

The Preprocessor

encountered, the current (most recent) definition of the macro is used, not the one that was in
effect when the macro being replaced was defined.

Consider this example:

#define MAXVAL 1000
#define g(x) CheckLimit(x, MAXVAL)

#undef MAXVAL
#define MAXVAL 200

g(10);

This macro invocation expands to,

CheckLimit(10, 200);

A macro that has been defined may be redefined (without undefining it first) only if the new
definition has a replacement-list that is identical to the original definition. Each preprocessing
token in both the original and new replacement lists must have the same ordering and spelling,
and there must be the same number of tokens. The number of spaces between tokens does not
matter, unless one definition has no spaces, and the other has spaces. Comments count as one
space.

The following examples illustrate valid redefinitions of macros:

#define OBJ LIKE (1-1)
#define OBJ LIKE /******/ (1-1) /****/
#define FN LIKE(a) (a)
#define FN LIKE(a) (/******/ \

a /******* \
*/)

The next examples illustrate invalid redefinitions of the same macros:

#define OBJ LIKE (0)

The token sequence is different.

#define OBJ LIKE (1 - 1)

The spacing is different (none versus one).

Redefining a Macro 151

Language Reference

#define FN LIKE(b) (a)

The parameter is a different name, and is used differently.

#define FN LIKE(b) (b)

The parameter is a different name.

13.8 Changing the Line Numbering and File Name
A directive of the form,

#line number

sets the line number that the compiler associates with the current line in the source file to the
specified number.

A directive of the form,

#line number string

sets the line number as above and also sets the name that the compiler associates with the
source file that is being read to the name contained in the string.

If the directive is not recognized as one of the two forms described above, then macro
substitution is performed (if possible) on the tokens on the line, and another attempt is made.
If the directive still does not match one of the two forms, an error is reported.

13.9 Displaying a Diagnostic Message
A directive of the form,

#error tokens

causes the compiler to display a diagnostic message containing the tokens from the directive.

152 Displaying a Diagnostic Message

The Preprocessor

13.10 Providing Other Information to the Compiler
A directive of the form,

#pragma tokens

informs the compiler about some aspect of the compilation, in an implementation-defined
manner.

See the User’s Guide for full details of the #pragma directive.

13.11 Standard Predefined Macros
The following macro names are reserved by the compiler:

DATE
The date of translation of the source file (a string literal). The form of the date is
"Mmm dd yyyy" where:

Mmm represents the month and is one of:

Jan Feb Mar Apr May Jun
Jul Aug Sep Oct Nov Dec

dd is the day of the month. The first character is a blank if the day is
less than 10.

yyyy is the year.

If the compiler cannot determine the current date, another date is provided.

With Watcom C16 and C32, the current date is always available.

FILE
The name of the current source file (a string literal). The name may be changed using
the #line directive.

LINE
The line number of the current source line (a decimal constant). The line number may
be changed using the #line directive.

Standard Predefined Macros 153

Language Reference

STDC
The decimal constant 1, meaning that the compiler is a standard-conforming
implementation.

TIME
The time of translation of the source file (a string literal). The form of the time is
"hh:mm:ss", with leading zeros provided for values less than 10.

If the compiler cannot determine the current time, another time is provided.

With Watcom C16 and C32, the current time is always available.

Any other macros predefined by the compiler will begin with an underscore (_) character.
None of the predefined macros, nor the identifier defined, may be undefined (with
#undef) or redefined (with #define).

13.12 Watcom C16 and C32 Predefined Macros
The Watcom C16 and C32 compilers also provide the following predefined macros for
describing the memory model being used:

COMPACT
The compact memory model is being used.

FLAT
The "flat" memory model is being used for the 80386 processor. All segment registers
refer to the same segment.

HUGE
The huge memory model is being used.

LARGE
The large memory model is being used.

MEDIUM
The medium memory model is being used.

SMALL
The small memory model is being used.

154 Watcom C16 and C32 Predefined Macros

The Preprocessor

The Watcom C16 and C32 compilers also provide the following macros for describing the
target operating system:

DOS
The program is being compiled for use on a DOS operating system.

NETWARE 386
The program is being compiled for use on the Novell Netware 386 operating system.

NT
The program is being compiled for use on the Windows NT operating system.

OS2
The program is being compiled for use on the OS/2 operating system.

QNX
The program is being compiled for use on the QNX operating system.

WINDOWS
The program is being compiled for use with Microsoft Windows.

WINDOWS 386
The program is being compiled for use with Microsoft Windows, using the Watcom
32-bit Windows interface.

The Watcom C16 compiler also provides the following miscellaneous macro:

CHEAP WINDOWS
The program is being compiled for use with Microsoft Windows using the "zW"
compiler option.

The Watcom C16 and C32 compilers also provide the following miscellaneous macros:

CHAR SIGNED
The program is being compiled using the "j" compiler option. The default char type
is treated as a signed quantity.

FPI
The program is being compiled using in-line floating point instructions.

INLINE FUNCTIONS
The program is being compiled using the "oi" compiler option.

Watcom C16 and C32 Predefined Macros 155

Language Reference

WATCOMC
The compiler being used is the Watcom C16 or Watcom C32 compiler. The value of
the macro is the version number of the compiler times 100.

386
The program is being compiled for the 80386 processor, using the Watcom
C32 compiler.

The Watcom C16 and C32 compilers also provide the following predefined macros for
compatibility with the Microsoft C compiler, even though most of these macros do not begin
with an underscore (_) character:

MSDOS
The program is being compiled for use on a DOS operating system.

M IX86
The program is being compiled for a specific target architecture. The macro is
identically equal to 100 times the architecture compiler option value (-0, -1, -2, -3, -4,
-5, etc.). If "-5" (Pentium instruction timings) was specified as a compiler option, then
the value of M IX86 would be 500.

M I86
The program is being compiled for use on the Intel 80x86 processor.

M I386
The program is being compiled for use on the Intel 80386 processor.

M I86CM
The compact memory model is being used.

M I86HM
The huge memory model is being used.

M I86LM
The large memory model is being used.

M I86MM
The medium memory model is being used.

M I86SM
The small memory model is being used.

NO EXT KEYS
The program is being compiled for ANSI/ISO conformance using the "za" (no
extended keywords) compiler option.

156 Watcom C16 and C32 Predefined Macros

The Preprocessor

13.13 The offsetof Macro
The macro,

offsetof(type, member);

expands to a constant expression with type size t. The value of the expression is the offset
in bytes of member from the start of the structure type. member should not be a bit-field.

To use this macro, include the <stddef.h> header.

13.14 The NULL Macro
The NULL macro expands to a null pointer constant, which is a value that indicates a pointer
does not currently point to anything.

It is recommended that NULL, instead of 0, be used for null pointer constants.

To use this macro, include the <stddef.h> header.

The NULL Macro 157

Language Reference

158 The NULL Macro

14 The Order of Translation

This chapter describes the sequence of steps that the C compiler takes in order to translate a
set of source files. Most programmers do not need to thoroughly understand these steps, as
they are intuitive. However, occasionally it will be necessary to examine the sequence to
solve a problem in the translation process.

Even though the steps of translation are listed as separate phases, the compiler may combine
them together. However, this should be transparent to the user.

The following are the phases of translation:

1. The characters of the source file(s) are mapped to the source character set. Any
end-of-line markers used in the file system are translated, as necessary, to new-line
characters. Any trigraphs are replaced by the appropriate single character.

2. Physical source lines are joined together wherever a line is terminated by a
backslash (\) character. Effectively, the \ and the new-line character are deleted,
creating a longer line from that record and the one following.

3. The source is broken down into preprocessing tokens and sequences of
"white-space" (space and tab) characters (including comments). Each token is the
longest sequence of characters that can be a token. Each comment is replaced by
one white-space character. The new-line characters are retained at this point.

4. Preprocessing directives are executed and macro invocations are substituted. A
header named in a #include directive is processed according to rules 1 to 4.

5. Members of the source character set and escape sequences in character constants
and string literals are converted to single characters in the execution character set.

6. Adjacent character string literal tokens and adjacent wide string literal tokens are
concatenated.

7. White-space characters separating tokens are discarded. Each preprocessing token
is converted to a token. The tokens are translated according to the syntactic and
semantic rules.

The Order of Translation 159

Language Reference

The final phase usually occurs outside of the compilation phase. In this phase, often called the
linking phase, all external object definitions are resolved, and an executable program image is
created. The completed image contains all the information necessary to run the program in
the appropriate execution environment.

160 The Order of Translation

Programmer’s Guide

Programmer’s Guide

162 Programmer’s Guide

15 Modularity

For many small programs, it is possible to write a single module which contains all of the C
source for the program. This module can then be compiled, linked and run.

However, for larger applications it is not possible to maintain one module with everything in
it. Or, if it is technically possible, compiling such a large module every time a change is made
to the source carries too great a time penalty with it. At this point, it becomes necessary to
break the program into pieces, or modules.

Dividing a program can be done quite easily. If the only issue is to reduce the size of the
modules that need to be compiled, then arbitrary divisions of the code into modules will
accomplish the goal.

There are other advantages, however, to planning program modularity. Some of these
advantages are:

• recompilation time is reduced,

• code can be grouped into logically-connected areas, making it easier to find things,

• data structures can be hidden in one module, avoiding the temptation of letting an
outside piece of code "peek" into a structure it really should not access directly,

• whole modules can be rewritten or redesigned without affecting other modules,

• areas of the code that depend on the hardware or operating system can be isolated for
easy replacement when the program is ported. This may extend to replacing the
module with an assembly language equivalent for increased performance.

The following sections discuss each of these points in more detail.

15.1 Reducing Recompilation Time
As discussed above, merely breaking a program into pieces will reduce the amount of time
spent recompiling the source. A bug is often a simple coding error, requiring only a one or

Reducing Recompilation Time 163

Programmer’s Guide

two line change. Recompiling only a small percentage of the code and relinking will be faster
than recompiling everything.

Occasionally, recompiling all of the modules will be required. This usually arises when a data
structure, constant, macro or other item that is used by several modules is changed. With
good program design, such a change would occur in a header file, and all modules that include
that header would be recompiled.

15.2 Grouping Code With Related Functionality
The best way to break programs into modules is to designate each module as having some
overall purpose. For example, one module may deal exclusively with interacting with the
user. Another module may manage a table of names, while yet another may process some
small subset of the set of actions that may be performed by the program.

Many of the modules then become resource managers, and every part of the code that needs
to do something significant with that resource must act through that resource manager.

Using the example of the names table manager, it is likely that the manager will need to do
things like create and delete a name entry in the table. These actions would translate directly
to two functions with external linkage.

By dividing up a program along lines of related functionality, it is usually easy to know where
to look when a problem is being tracked.

Module names that clearly state the purpose of the module also help to locate things.

15.3 Data Hiding
Sometimes a module is written that has exclusive ownership of a data structure, such as a
linked list. All other modules that wish to access the structure must call a function in the
module that owns it. This technique is known as data hiding. The actual data is hidden in the
structure, and only the functional interface (also called the procedural interface) may be used
to access it. The functional interface is just the set of functions provided for accessing the
structure.

The main advantage of data hiding is that the data structure may be changed with little or no
impact on other modules. Also, access to the structure is controlled, leading to fewer errors
because of misuse of the structure.

164 Data Hiding

Modularity

It is possible to have different levels of data hiding. Complete data hiding occurs when no
outside module has access to the structure at all. Partial data hiding occurs when elements of
the structure can be accessed, but the overall structure may not be manipulated.

Note that these rules work only if the programmer respects them. The rules are not enforced
by the compiler. If a module includes a header that describes the data structures being used by
another module that wants exclusive access to the structures, a rule is being broken. Whether
this is good or bad depends entirely on the judgement of the programmer.

15.3.1 Complete Data Hiding

With complete data hiding, having a pointer to an element of the structure has no intrinsic
value except as a parameter to the functional interface. Getting or setting a value in the
structure requires a function call.

The advantage of this technique is that the complete data structure may be totally redesigned
without affecting other modules. The definitions of the individual structures (struct’s,
union’s, arrays) may be changed and no other module will have to be changed, or even
recompiled.

The main disadvantage of complete data hiding is that even simple accesses require a function
call, which is less efficient than just referencing a storage location.

Function-like macros may also be used to implement complete data hiding, avoiding the
function call but hiding the true structure of the data. Recompilation of all modules may be
required if the data structures change.

15.3.2 Partial Data Hiding

Partial data hiding occurs when the structure itself (for example, a linked list) is not accessible
in its entirety, but elements of the structure (an element of the linked list) are accessible.

Using the names table manager as an example, it may be necessary to call the names table
manager to create a name entry, but once the name is created, a pointer to the name is returned
as the return value of the create function. This pointer points to a structure which is defined in
a header that any module can include. Therefore, the contents of an element of the data
structure can be manipulated directly.

This method is more efficient than the complete data hiding technique. However, when the
structure used for the names table is changed, all modules that refer to that structure must be
recompiled.

165

Programmer’s Guide

15.4 Rewriting and Redesigning Modules
With modular program design and data hiding, it is often possible to completely replace a
module without affecting others. This is usually only possible when the functional interface
does not change. With partial data hiding, the actual types used to implement the structure
would have to remain unchanged, otherwise at least a recompilation would be required.
Changing a struct, for example, would probably require a recompilation if only the types
changed, or new members were added. If, however, the names of the members changed, or
some other fundamental change occurred, then source code changes in these other modules
would be necessary.

15.5 Isolating System Dependent Code in Modules
System dependencies are only relevant if the program being developed is to be run on
different computers or operating systems. Isolating system dependent code is discussed more
thoroughly in the chapter "Writing Portable Programs".

It is quite difficult, sometimes, to identify what constitutes system dependent code. The first
time a program is ported to a new system, a number of problem areas usually arise. These
areas should be carefully examined, and the code that is dependent on the host environment
should be isolated. Isolation may be accomplished by placing the code in a separate module
marked as system dependent, or by placing macros in the code to compile differently for the
different systems.

166 Isolating System Dependent Code in Modules

16 Writing Portable Programs

Portable software is software that is written in such a way that it is relatively easy to get the
software running on a new and different computer. By choosing the C language, the first step
has been taken to reduce the effort involved in porting, but there are many other things that
must be done. Some of these things include:

• isolating the portions of the code that depend on the hardware or operating system
being used,

• being aware of what features of the C language are implementation-defined and
avoiding them, or taking them into account,

• being aware of the various ranges of values that may be stored in certain types, and
declaring objects appropriately,

• being aware of special features available on some systems that might be useful.

No programmer can seriously expect to write a large portable program the first time. The first
port of the program will take a significant period of time, but the final result will be a program
which is much more portable than before. Generally, each subsequent port will be easier and
take less time. Of course, if the new target system has a new concept that was not considered
in the original program design (such as a totally different user-interface), then porting will
necessarily take longer.

16.1 Isolating System Dependent Code
The biggest problem when trying to port a program is to uncover all the places in the code
where an assumption about the underlying hardware or operating system was made, and
which proves to be incorrect on the new system. Many of these differences are hidden in
library routines, but they can still cause problems.

Consider, for example, the issue of distinguishing between alphabetic and non-alphabetic
characters. The library provides the function isalpha which takes a character argument and
returns a non-zero value if the character is alphabetic, and 0 otherwise. Suppose a
programmer, writing a FORTRAN compiler, wanted to know if a variable name started with

Isolating System Dependent Code 167

Programmer’s Guide

the letters ’I’ through ’N’, in order to determine if it should be an integer variable. The
programmer might write,

upletter = toupper(name[0]);
if(upletter >= ’I’ && upletter <= ’N’) {

/* ... */
}

If the program was being developed on a machine using the ASCII character set, this code
would work fine, since the upper case letters have 26 consecutive values. However, porting
the program to a machine using the EBCDIC character set, problems may arise because
between the letters ’I’ and ’J’ are 7 other characters, including ’}’. Thus, the name "}VAR"
might be considered a valid integer variable name, which it is not. To solve this problem, the
programmer could write,

if(isalpha(name[0])) {
upletter = toupper(name[0]);
if(upletter >= ’I’ && upletter <= ’N’) {

/* ... */
}

}

In this case, it is not necessary to isolate the code because a relatively simple coding change
covers both cases. But there are cases where each system will require a new set of functions
for some aspect of the program.

Consider the user interface of a program. If the program just displays lines of output to a
scrolling terminal, and accepts lines of input in the same way, the user interface probably
won’t need to change between systems. But suppose the program has a sophisticated user
interface involving full-screen presentation of data, windows, and menus, and uses a mouse
and the keyboard for input. In the absence of standards for such interfaces, it is quite likely
that each system will require a customized set of functions. Here is where program portability
can become an art.

An approach to this problem is to completely isolate the user interface code of the program.
The processing of data occurs independently of what appears on the screen. At the
completion of processing, a function is called which updates the screen. This code may or
may not be portable, depending on how many layers of functions are built between the
physical screen and the generic program. At a level fairly close to the screen hardware, a set
of functions should be defined which perform the set of actions that the program needs. The
full set of functions will depend extensively on the requirements of the program, but they
should be functions that can reasonably be expected to work on any system to which the
program will eventually be ported.

Other areas that may be system dependent include:

168 Isolating System Dependent Code

Writing Portable Programs

• The behavior and capabilities of devices, including printers. Some printers support
multiple fonts, expanded and compressed characters, underlining, graphics, and so on.
Others support only relatively simple text output.

• Accessing memory regions outside of normally addressable storage. A good example
is the Intel 80x86 family of processors. With the Watcom C16 16-bit compiler, the
addressable storage is 1024 kilobytes, but a 16-bit address can only address 64
kilobytes. Special steps must be taken when compiling in order to address the full
storage space. Many compilers for the 8086, including Watcom C16 and C32,
introduce new keywords that describe pointer types beyond the 16-bit pointer.

• Code that has been written in assembly language for speed. As code generation
technology advances, assembly language code should become less necessary.

• Code that accesses some special feature of the system. As an example, many systems
provide the ability to temporarily exit to the operating system level, and later return to
the program. The method of doing this varies between systems, and the requirements
of the program often change as well.

• Handling the command line parameters. While C breaks the list of parameters down
into strings, the interpretation of those strings may vary between systems. A program
probably should attempt to conform to any conventions of the system on which it is
being run.

• Handling other startup requirements. Allocation of memory, initializing devices, and
so on, may be done at this point.

16.2 Beware of Long External Names
According the C Language standard, a compiler may limit external names (functions and
global objects) to 6 significant characters. This limitation is often imposed by the "linking"
stage of the development process.

In practice, most systems allow many more significant characters. However, the developer of
a portable program should be aware of the potential for porting the program to a system that
has a small limit, and name external objects accordingly.

If the developer must port a program with many names that are not unique within the
limitations imposed by the target development system, the preprocessor may be used to
provide shorter unique names for all objects. Note that this method may seriously impair any
symbolic debugging facilities provided by the development system.

Beware of Long External Names 169

Programmer’s Guide

16.3 Avoiding Implementation-Defined Behavior
Several aspects of the code generated by the C compiler depend on the behavior of the
particular C compiler being used. A portable program should avoid these where possible, and
take them into consideration where they can’t be avoided. It may be possible to use macros to
avoid some of these issues.

An important behavior that varies between systems is the number of characters of external
objects and functions that the system recognizes. The standard states that a system must
recognize a minimum of 6 characters, although future standards may remove or extend this
limit. Most systems allow more than 6 characters, but several recognize only 8 characters.
For true portability, a function or object that has external linkage should be kept unique in the
first 6 characters. Sometimes this requires ingenuity when thinking of names, but developing
a system for naming objects goes a long way towards fitting within this restriction. The goal,
of course, is to still have meaningful object names. If all systems that will eventually be used
have a higher limit, then the programmer may decide to go past the 6 character limit. If a port
is done to a system with the 6 character limit, a lot of source changes may be required.

To solve this problem, macros could be used to map the actual function names into more
cryptic names that fit within the 6 character limit. This technique may have the adverse affect
of making debugging very difficult because many of the function and object names will not be
the same as contained in the source code.

Another implementation-defined behavior occurs with the type char. The standard does not
impose a signed or unsigned interpretation on the type. A program that uses an object of
type char that requires the values to be interpreted as signed or unsigned should explicitly
declare the object with that type.

16.4 Ranges of Types
The range of an object of type int is not specified by the standard, except to say that the
minimum range is -32767 to 32767. If an object is to contain an integer value, then thought
should be given as to whether or not this range of values is acceptable on all systems. If the
object is a counter that will never go outside the range 0 to 255, then the range will be
adequate. However, if the object is to contain values that may exceed this range, then a long
int may be required.

The same argument applies to objects with type float. It may make more sense to declare
them with type double.

170 Ranges of Types

Writing Portable Programs

When converting floating-point numbers to integers, the rounding behavior can also vary
between compilers and systems. If it is important to know how the rounding behaves, then the
program should refer to the macro FLT ROUNDS (defined in the header <float.h>),
which is a value describing the type of rounding performed.

16.5 Special Features
Some systems provide special features that may or may not exist on other systems. For
example, many provide the ability to exit to the operating system, run some other programs,
then return to the program that was running. Other systems may not provide this ability. In
an interactive program, this feature may be very useful. By isolating the code that deals with
this feature, a program may remain easily portable. On the systems that don’t support this
feature, it may be necessary to provide a stub function which does nothing, or displays a
message.

16.6 Using the Preprocessor to Aid Portability
The preprocessor is particularly useful for providing alternate code sequences to deal with
portability issues. Conditional compilation provided by the #if directive allows the insertion
of differing code sequences depending on some criteria. Defining a set of macros which
describe the various systems, and another macro that selects a particular system, makes it easy
to add system-dependent code.

For example, consider the macros,

#define OS DOS 0
#define OS CMS 1
#define OS MVS 2
#define OS OS2 3
#define OS QNX 4

#define HW IBMPC 0
#define HW IBM370 1

#define PR i8086 0
#define PR 370 1

They describe a set of operating systems (OS), hardware (HW) and processors (PR), which
together can completely describe a computer and its operating system. If the program was
being ported to a IBM 370 running the MVS operating system, then it could include a header
defining the macros above, and declare the macros,

Using the Preprocessor to Aid Portability 171

Programmer’s Guide

#define OPSYS OS MVS
#define HARDWARE HW IBM370
#define PROCESSOR PR 370

The following code sequence would include the call only if the program was being compiled
for a 370 running MVS:

#if HARDWARE == HW IBM370 && OPSYS == OS MVS
DoMVSStuff(x, y);

#endif

In other cases, code may be conditionally compiled based only on the hardware regardless of
the operating system, or based only on the operating system regardless of the hardware or
processor.

This technique may work well if used in moderation. However, a module that is filled with
these directives becomes difficult to read, and that module becomes a candidate for being
rewritten entirely for each system.

172 Using the Preprocessor to Aid Portability

17 Avoiding Common Pitfalls

Even though a C program is much easier to write than the corresponding assembly language
program, there are a few areas where most programmers make mistakes, and spend a great
deal of time staring at the code trying to figure out why the program doesn’t work.

The bugs that are the most difficult to find often occur when the compiler doesn’t give an
error or warning, but the code generated is not what the programmer expected. After a great
deal of looking, the programmer spots the error and realizes that the compiler generated the
correct code, but it wasn’t the code that was wanted.

Some compilers, including Watcom C16 and C32, have optional checking for common errors
built into them, providing warnings when these conditions arise. It is probably better to
eliminate the code that causes the warning than to turn off the checking done by the compiler.

The following sections illustrate several common pitfalls, and discuss how to avoid them.

17.1 Assignment Instead of Comparison
The code fragment,

chr = getc();
if(chr = ’a’) {

printf("letter is ’a’\n");
} else {

printf("letter is not ’a’\n");
}

will never print the message letter is not ’a’, regardless of the value of chr.

The problem occurs in the second line of the example. The statement,

if(chr = ’a’) {

assigns the character constant ’a’ to the object chr. If the value of chr is not zero, then
the statement that is the subject of the if is executed.

Assignment Instead of Comparison 173

Programmer’s Guide

The value of the constant ’a’ is never zero, so the first part of the if will always be
executed. The second part might as well not even be there!

Of course, the correct way to code the second line is,

if(chr == ’a’) {

changing the = to ==. This statement says to compare the value of chr against the constant
’a’ and to execute the subject of the if only if the values are the same.

Using one equal sign (assignment) instead of two (comparison for equality) is a common
errors made by programmers, often by those who are familiar with languages such as Pascal,
where the single = means "comparison for equality".

17.2 Unexpected Operator Precedence
The code fragment,

if(chr = getc() != EOF) {
printf("The value of chr is %d\n", chr);

}

will always print 1, as long as end-of-file is not detected in getc. The intention was to
assign the value from getc to chr, then to test the value against EOF.

The problem occurs in the first line, which says to call the library function getc. The return
value from getc (an integer value representing a character, or EOF if end-of-file is detected),
is compared against EOF, and if they are not equal (it’s not end-of-file), then 1 is assigned to
the object chr. Otherwise, they are equal and 0 is assigned to chr. The value of chr is,
therefore, always 0 or 1.

The correct way to write this code fragment is,

if((chr = getc()) != EOF) {
printf("The value of chr is %d\n", chr);

}

The extra parentheses force the assignment to occur first, and then the comparison for equality
is done.

Note: doing assignment inside the controlling expression of loop or selection statements is
not a good programming practice. These expressions tend to be difficult to read, and

174 Unexpected Operator Precedence

Avoiding Common Pitfalls

problems such as using = instead of == are more difficult to detect when, in some cases, = is
desired.

17.3 Delayed Error From Included File
Suppose the source file mytypes.h contained the line,

typedef int COUNTER

and the main source file being compiled started with,

#include "mytypes.h"

extern int main(void)
/*********************/
{

COUNTER x;
/* ... */
}

Attempting to compile the main source file would report a message such as,

Error! Expecting ’;’ but found ’extern’ on line 3

Examining the main source file does not show any problem. The problem actually occurs in
the included source file, since the typedef statement does not end with a semi-colon. It is
this semi-colon that the compiler is expecting to find. The next token found is the extern
keyword, so the error is reported in the main source file.

When an error occurs shortly after an #include directive, and the error is not readily
apparent, the error may actually be caused by something in the included file.

17.4 Extra Semi-colon in Macros
The next code fragment illustrates a common error when using the preprocessor to define
constants:

#define MAXVAL 10;

/* ... */

if(value >= MAXVAL) break;

Extra Semi-colon in Macros 175

Programmer’s Guide

The compiler will report an error message like,

Error! Expecting ’)’ but found ’;’ on line 372

The problem is easily spotted when the macro substitution is performed on line 372. Using
the definition for MAXVAL, the substituted version of line 372 reads,

if(value >= 10;) break;

The semi-colon (;) in the definition was not treated as an end-of-statement indicator as
expected, but was included in the definition of the macro (manifest constant) MAXVAL. The
substitution then results in a semi-colon being placed in the middle of the controlling
expression, which yields the syntax error.

17.5 The Dangling else
In the code fragment,

if(value1 > 0)
if(value2 > 0)

printf("Both values greater than zero\n");
else

printf("value1 is not greater than zero\n");

suppose value1 has the value 3, while value2 has the value -7. This code fragment will
cause the message,

value1 is not greater than zero

to be displayed.

The problem occurs because of the else. The program is indented incorrectly according to
the syntax that the compiler will determine from the statements. The correct indentation
should clearly show where the error lies:

if(value1 > 0)
if(value2 > 0)

printf("Both values greater than zero\n");
else

printf("value1 is not greater than zero\n");

176 The Dangling else

Avoiding Common Pitfalls

The else belongs to the second if, not the first. Whenever there is more than one if
statement without braces and without an else statement, the next else will be matched to
the most recent if statement.

This code fragment clearly illustrates the usefulness of using braces to state program structure.
The above example would be (correctly) written as,

if(value1 > 0) {
if(value2 > 0) {

printf("Both values greater than zero\n");
}

} else {
printf("value1 is not greater than zero\n");

}

17.6 Missing break in switch Statement
In the code fragment,

switch(value) {
case 1:

printf("value is 1\n");
default:

printf("value is not 1\n");
}

if value is 1, the following output will appear:

value is 1
value is not 1

This unexpected behavior occurs because, when value is 1, the switch causes control to
be passed to the case 1: label, where the first printf occurs. Then the default label
is encountered. Labels are ignored in execution, so the next statement executed is the second
printf.

To correct this example, it should be changed to,

Missing break in switch Statement 177

Programmer’s Guide

switch(value) {
case 1:

printf("value is 1\n");
break;

default:
printf("value is not 1\n");

}

The break statement causes control to be passed to the statement following the closing brace
of the switch statement.

17.7 Side-effects in Macros
In the code fragment,

#define endof(ptr) ptr + strlen(ptr)
/* ... */
endptr = endof(ptr++);

the statement gets expanded to,

endptr = ptr++ + strlen(ptr++);

The parameter ptr gets incremented twice, rather than once as expected.

The only way to avoid this pitfall is to be aware of what macros are being used, and to be
careful when using them. Several library functions may be implemented as macros on some
systems. These functions include,

getc putc
getchar putchar

The ANSI standard requires that documentation states which library functions evaluate their
arguments more than once.

178 Side-effects in Macros

18 Programming Style

Programming style is as individual as a person’s preference in clothing. Unfortunately, just as
some programmers wouldn’t win a fashion contest, some code has poor style. This code is
usually easy to spot, because it is difficult to understand.

Good programming style can make the difference between programs that are easy to debug
and modify, and those that you just want to avoid.

There are a number of aspects to programming style. There is no perfect style that is
altogether superior to all others. Each programmer must find a style that makes him or her
comfortable. The intention is to write code that is easy to read and understand, not to try to
stump the next person who has to fix a problem in the code.

Good programming style will also lead to less time spent writing a program, and certainly less
time spent debugging or modifying it.

The following sections discuss various aspects of programming style. They reflect the
author’s own biases, but they are biases based on years of hacking his way through code,
mostly good and some bad, and much of it his own!

18.1 Consistency
Perhaps the most important aspect of style is consistency. Try, as much as possible, to use the
same rules throughout the entire program. Having a mixed bag of styles within one program
will confuse even the best of programmers trying to decipher the code.

If more than one programmer is involved in the project, it may be appropriate, before the first
line of code is written, to discuss general rules of style. Some rules are more important than
others. Make sure everyone understands the rules, and are encouraged to follow them.

18.2 Case Rules for Object and Function Names
When examining a piece of code, the scope of an object is sometimes difficult to determine.
One needs to examine the declarations of objects within the function, then those declared

Case Rules for Object and Function Names 179

Programmer’s Guide

outside of any functions, then those declared included from other source files. If no strict
rules of naming objects are followed, each place will need to be laboriously searched each
time.

Using mixed case object names, with strict rules, can make the job much easier. It does not
matter what rules are established, as long as the rules are consistently applied throughout the
program.

Consider the following sample set of rules, used throughout this book:

1. objects declared within a function with automatic storage duration are entirely in
lower case,

int x, counter, limit;
float save global;
struct s * sptr;

2. objects with static storage duration (global objects) start with an upper case letter,
and words or word fragments also start with upper case,

static int TotalCount;
extern float GlobalAverage;
static struct s SepStruct;

3. function names start with an upper case letter, and words or word fragments also
start with upper case, (distinguishable from global objects by the left parenthesis),

extern int TrimLength(char * ptr, int len);
static field * CreateField(char * name);

4. all constants are entirely in upper case.

#define FIELD LIMIT 500
#define BUFSIZE 32

enum { INVALID, HELP, ADD, DELETE, REPLACE };

5. all typedef tags are in upper case.

typedef struct {
float real;
float imaginary;

} COMPLEX;

180 Case Rules for Object and Function Names

Programming Style

Thus, the storage duration and scope of each identifier can be determined without regard to
context. Consider this program fragment:

chr = ReadChar();
if(chr != EOF) {

GlbChr = chr;
}

Using the above rules,

1. ReadChar is a function,

2. chr is an object with automatic storage duration defined within the current
function,

3. EOF is a constant,

4. GlbChr is an object with static storage duration.

Note: the library functions do not use mixed case names. Also, the function main does not
begin with an upper case M. Using the above coding style, library functions would stand out
from other functions because of the letter-case difference.

18.3 Choose Appropriate Names
The naming of objects can be critical to the ease with which bugs can be found, or changes
can be made. Using object names such as linecount, columns and rownumber will
make the program more readable. Of course, short forms will creep into the code (few
programmers like to type more than is really necessary), but they should be used judiciously.

Consistency of naming also helps to make the code more readable. If a structure is used
throughout the program, and many different routines need a pointer to that structure, then the
name of each object that points to it could be made the same. Using the example of a symbol
table, the object name symptr might be used everywhere to mean "pointer to a symbol
structure". A programmer seeing that object will automatically know what it is declared to be.

Appropriate function names are also very important. Names such as DoIt, while saving the
original programmer from trying to think of a good name, make it more difficult for the next
programmer to figure out what is going on.

Choose Appropriate Names 181

Programmer’s Guide

18.4 Indent to Emphasize Structure
The following is a valid function:

static void BubbleSort(int list[], int n)
/**********************************/ { int index1
= 0; int index2; int temp; if(n < 2)return; do {
index2 = index1 + 1; do { if(list[index1] >
list[index2]) { temp = list[index1]; list[
index1] = list[index2]; list[index2] = temp;
} } while(++index2 < n); } while(++index1 < n-1
); }

(The compiler will know that it’s valid, but the programmer would find it difficult to validate.)
Here is the same function, but using indenting to clearly illustrate the function structure:

static void BubbleSort(int list[], int n)
/***/

{
int index1 = 0;
int index2;
int temp;

if(n < 2)return;
do {

index2 = index1 + 1;
do {

if(list[index1] > list[index2]) {
temp = list[index1];
list[index1] = list[index2];
list[index2] = temp;

}
} while(++index2 < n);

} while(++index1 < n-1);
}

Generally, it is good practice to indent each level of code by a consistent amount, for example
4 spaces. Thus, the subject of an if statement is always indented 4 spaces inside the if. In
this manner, all loop and selection statements will stand out, making it easier to determine
when the statements end.

The following are some recommended patterns to use when indenting statements. These
patterns have been used throughout the book.

182 Indent to Emphasize Structure

Programming Style

int Fn(void)
/************/
{

/* indent 4 */
}

if(condition) {
/* indent 4 */

} else {
/* indent 4 */

}

if(condition) {
/* indent 4 */

} else if(condition) {
/* indent 4 from first if */
if(condition) {

/* indent 4 from nearest if */
}

} else {
/* indent 4 from first if */

}

switch(condition) {
case VALUE:

/* indent 4 from switch */
case VALUE:
default:

}

do {
/* indent 4 */

while(condition);

while(condition) {
/* indent 4 */

}

for(a; b; c) {
/* indent 4 */

}

Indent to Emphasize Structure 183

Programmer’s Guide

Two other popular indenting styles are,

if(condition)
{

statement
}

and,

if(condition)
{

statements
}

It is not important which style is used. However, a consistent style is an asset.

18.5 Visually Align Object Declarations
A lengthy series of object declarations can be difficult to read if care is not taken to improve
the readability. Consider the declarations,

struct flentry *flptr;
struct fldsym *sptr;
char *bufptr,*wsbuff;
int length;

Now, consider the same declarations, but with some visual alignment done:

struct flentry * flptr;
struct fldsym * sptr;
char * bufptr;
char * wsbuff;
int length;

It is easier to scan a list of objects when their names all begin in the same column.

18.6 Keep Functions Small
A function that is several hundred lines long can be difficult to comprehend, especially if it is
being looked at on a terminal, which might only have 25 lines. Large functions also tend to
have a lot of nesting of program structures, making it difficult to follow the logic.

184 Keep Functions Small

Programming Style

A function that fits entirely within the terminal display can be studied and understood more
easily. Program constructs don’t get as complicated. Large functions often can be broken up
into smaller functions which are easier to maintain.

18.7 Use static for Most Functions
Most functions do not need to be called from routines outside of the current module. Yet, if
the keyword static is not used in the function declaration, then the function is
automatically given external linkage. This can lead to a proliferation of external symbols,
which may cause naming conflicts. Also, some linking programs may impose limitations.

Only those functions that must have external linkage should be made external. All other
definitions of functions should start with the keyword static.

It also is a good idea to start definitions for external functions with the keyword extern,
even though it is the default case.

18.8 Group Static Objects Together
Static objects that are declared outside of any function definition, and are used throughout the
module, generally should be declared together, for example before the definition of the first
function. Placing the declarations of these objects near the beginning of the module makes
them easier to find.

18.9 Do Not Reuse the Names of Static Objects
If an object with static storage duration exists in one module, but has internal linkage, then
another object with the same name should not be declared in another module. The
programmer may confuse them.

Even more importantly, if an object exists with external linkage, a module should not declare
another object with the same name with internal linkage. This second object will overshadow
the first within the module, but the next programmer to look at the code will likely be
confused.

Do Not Reuse the Names of Static Objects 185

Programmer’s Guide

18.10 Use Included Files to Organize Structures
Included source files can be used to organize data structures and related information. They
should be used when the same structure is needed in different modules. They should even be
considered when the structure is used only in one place.

Generally, each included source file should contain structures and related information for one
aspect of the program. For example, a file that describes a symbol table might contain the
actual structures or other types that are required, along with any manifest constants that are
useful.

18.11 Use Function Prototypes
Function prototypes are very useful for eliminating common errors when calling functions. If
every function in a program is prototyped (and the prototypes are used), then it is difficult to
pass the wrong number or types of arguments, or to misinterpret the return value.

Using the symbol table example, the included source file that describes the symbol table
structure and any related global objects or constant values could also contain the function
prototypes for the functions used to access the table. Another approach is to have separate
source files containing the function prototypes, possibly using a different naming convention
for the file. For example,

#include "symbols.h"
#include "symbols.fn"

would include the structures and related values from symbols.h, and the function
prototypes from symbols.fn.

18.12 Do Not Do Too Much In One Statement
In the same manner that a big function that does too much can be confusing, so too can a long
statement. Historically, a programmer might combine many operations into a single statement
in order to get the compiler to produce better code. With current compilers, splitting the
statement into two or more simpler statements will produce equivalent code, and will make
the program easier to understand.

A common example of a statement that can be split is,

if((c = getchar()) != EOF) {

186 Do Not Do Too Much In One Statement

Programming Style

Historically, this statement might have allowed the compiler to avoid storing the value of c
and then reloading it again to compare with EOF. However, the equivalent,

c = getchar();
if(c != EOF) {

is more readable, and most compilers will produce the same code.

18.13 Do Not Use goto Too Much
The goto statement is a very powerful tool, but it is very easy to misuse. Here are some
general rules for the use of goto’s:

• don’t use them!

If that rule is not satisfactory, then these should be followed:

• Never goto a label that is above. That is the beginning of spaghetti code. Loop
statements can always be used.

• Never goto the middle of a block (compound-statement). A block should always be
entered by passing over the opening brace.

• Use goto to jump out of nested blocks, where the break statement is not appropriate.

Above all, keep the use of goto’s to a minimum.

18.14 Use Comments
Comments are crucial to good programming style. Regardless of how well the program is
written, some code will be difficult to understand. Comments make it possible to give a full
explanation for what the code is trying to do.

Each function definition should begin with a short comment describing what the function
does.

Each module should begin with comments describing the purpose of the module. It is also a
good idea to type in who wrote it, when it was written, who modified it and why, and when it
was modified. This last collection of information is commonly called an audit trail, as it
leaves a trail allowing a programmer to see the evolution of the module, along with who has
been changing it.

Use Comments 187

Programmer’s Guide

The following audit trail is from one module in an actual product:

/* Modified: By: Reason:
* ======== == ======
* 84/04/23 Dave McClurkin Initial implementation
* 84/11/08 Jim Graham Implemented TOTAL non-combinable;
* added MAXIMUM,MINIMUM,AVERAGE
* 84/12/12 Steve McDowell Added call to CheckBreak
* 85/01/12 ... Fixed overflow problems
* 85/01/29 Alex Kachura Saves value of TYP field
* 86/01/31 Steve McDowell Switched to use of numeric accumulator
* 86/12/10 ... Removed some commented code
* 87/02/24 ... Made all commands combinable
*/

188 Use Comments

Appendices

Appendices

190 Appendices

Compiler Keywords

A. Compiler Keywords

The following topics are discussed:

• Standard Keywords

• Watcom C16 and C32 Keywords

A.1 Standard Keywords
The following is the list of keywords reserved by the C language:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

A.2 Watcom C16 and C32 Keywords
The Watcom C16 and C32 compilers also reserve the following keywords:

based fortran near segment
cdecl huge Packed segname
export interrupt pascal self
far loadds saveregs syscall

The Watcom C32 compiler also reserves the following keywords:

far16 Seg16 stdcall

Watcom C16 and C32 Keywords 191

Appendices

The keywords based, segment, segname and self are described in the
section "Based Pointers for Watcom C16 and C32". Watcom C16 and C32 provide the
predefined macro based for convenience and compatibility with the Microsoft C compiler.
It may be used in place of based. Watcom C16 and C32 provide the predefined macro
segment for convenience and compatibility with the Microsoft C compiler. It may be used

in place of segment. Watcom C16 and C32 provide the predefined macro segname
for convenience and compatibility with the Microsoft C compiler. It may be used in place of
segname. Watcom C16 and C32 provide the predefined macro self for convenience

and compatibility with the Microsoft C compiler. It may be used in place of self.

The keywords far, huge and near are described in the sections "Special Pointer
Types for Watcom C16" and "Special Pointer Types for Watcom C32". Watcom C16 and
C32 provide the predefined macros far and far for convenience and compatibility with
the Microsoft C compiler. Watcom C16 provides the predefined macro SOMDLINK for
convenience and compatibility with the Microsoft C compiler. They may be used in place of
far. Watcom C16 and C32 provide the predefined macros huge and huge for

convenience and compatibility with the Microsoft C compiler. They may be used in place of
huge. Watcom C16 and C32 provide the predefined macros near and near for

convenience and compatibility with the Microsoft C compiler. They may be used in place of
near.

The keywords far16 and Seg16 are described in the section "Special Pointer Types for
Watcom C32". Watcom C16 and C32 provide the predefined macros far16 and Far16
for convenience and compatibility with the Microsoft C compiler. It may be used in place of
far16.

The Packed keyword is described in the section "Structures".

The cdecl keyword may be used with function definitions, and indicates that the calling
convention for the function is the same as that used by Microsoft C. All parameters are
pushed onto the stack, instead of being passed in registers. This calling convention may be
controlled by a #pragma directive. See the User’s Guide. Watcom C16 and C32 provide the
predefined macros cdecl, cdecl and Cdecl for convenience and compatibility with
the Microsoft C compiler. Watcom C16 provides the predefined macro SOMLINK for
convenience and compatibility with the Microsoft C compiler. They may be used in place of
cdecl.

The fortran keyword may be used with function definitions, and indicates that the
calling convention for the function is suitable for calling a function written in FORTRAN. By
default, this keyword has no effect. This calling convention may be controlled by a
#pragma directive. See the User’s Guide. Watcom C16 and C32 provide the predefined
macros fortran and fortran for convenience and compatibility with the Microsoft C
compiler. They may be used in place of fortran.

192 Watcom C16 and C32 Keywords

Compiler Keywords

The pascal keyword may be used with function definitions, and indicates that the calling
convention for the function is suitable for calling a function written in Pascal. All parameters
are pushed onto the stack, but in reverse order to the order specified by cdecl. This
calling convention may be controlled by a #pragma directive. See the User’s Guide.
Watcom C16 and C32 provide the predefined macros pascal and pascal for
convenience and compatibility with the Microsoft C compiler. They may be used in place of
pascal.

The syscall keyword may be used with function definitions, and indicates that the
calling convention used is compatible with OS/2 (version 2.0 or higher). This calling
convention may be controlled by a #pragma directive. See the User’s Guide. Watcom
C16 and C32 provide the predefined macros syscall, and System for convenience and
compatibility with the Microsoft C compiler. Watcom C32 provides the predefined macros
SOMLINK and SOMDLINK for convenience and compatibility with the Microsoft C compiler.
They may be used in place of syscall.

The stdcall keyword may be used with function definitions, and indicates that the
calling convention used is compatible with Win32. This calling convention may be controlled
by a #pragma directive. See the User’s Guide.

The export keyword may be used with objects with static storage duration (global
objects) and with functions, and describes that object or function as being a known object or
entry point within a Dynamic Link Library in OS/2 or Microsoft Windows. The object or
function must also be declared as having external linkage (using the extern keyword). In
addition, any call back function whose address is passed to Windows (and which Windows
will "call back") must be defined with the export keyword, otherwise the call will fail
and cause unpredictable results. The export keyword may be omitted if the object or
function is exported by an option specified using the linker. See the Watcom Linker User’s
Guide. Watcom C16 and C32 provide the predefined macro export for convenience and
compatibility with the Microsoft C compiler. It may be used in place of export.

The interrupt keyword may be used with function definitions for functions that handle
computer interrupts. All registers are saved before the function begins execution and restored
prior to returning from the interrupt. The machine language return instruction for the function
is changed to iret (interrupt return). Functions written using interrupt are suitable
for attaching to the interrupt vector using the library function dos setvect. Watcom
C16 and C32 provide the predefined macros interrupt and interrupt for
convenience and compatibility with the Microsoft C compiler. They may be used in place of
interrupt.

The loadds keyword may be used with functions, and causes the compiler to generate
code that will force the DS register to be set to the default data segment (DGROUP) so that
near pointers will refer to that segment. This keyword is normally used with functions written
for Dynamic Link Libraries in Windows and OS/2. Watcom C16 and C32 provide the

Watcom C16 and C32 Keywords 193

Appendices

predefined macro loadds for convenience and compatibility with the Microsoft C
compiler. It may be used in place of loadds.

The saveregs keyword may be used with functions. It is provided for compatibility
with Microsoft C, and has no effect in Watcom C16 and C32. Watcom C16 and C32 provide
the predefined macro saveregs for convenience and compatibility with the Microsoft C
compiler. It may be used in place of saveregs.

194 Watcom C16 and C32 Keywords

Trigraphs

B. Trigraphs

The following is the list of trigraphs. In a C source file, all occurrences (including inside
quoted strings and character constants) of any of the trigraph sequences below are replaced by
the corresponding single character.

Trigraph
Character Sequence

[??(
] ??)
{ ??<
} ??>
| ??!
??=
\ ??/
^ ??’
~ ??-

No other trigraphs exist. Any question mark (?) that does not belong to one of the trigraphs is
not changed.

To get a sequence of characters that would otherwise be a trigraph, place a \ before the
second question mark. This will cause the trigraph to be broken up so that it is not
recognized, but later in the translation process, the \? will be converted to ?. For
example, ?\?= will be translated to ??=.

Trigraphs 195

Appendices

196 Trigraphs

Escape Sequences

C. Escape Sequences

The following are the escape sequences and their meanings:

Escape
Sequence Meaning

\a Causes an audible or visual alert
\b Back up one character
\f Move to the start of the next page
\n Move to the start of the next line
\r Move to the start of the current line
\t Move to the next horizontal tab
\v Move to the next vertical tab

Each escape sequence maps to a single character. When such a character is sent to a display
device, the action corresponding to that character is performed.

Escape Sequences 197

Appendices

198 Escape Sequences

Operator Precedence

D. Operator Precedence

The table below summarizes the levels of precedence in expressions.

Operations at a higher level in the table will occur before those below. All operators
involving more than one operand associate from left to right, except for the conditional and
assignment operators, which associate from right to left. Operations at the same level, except
where discussed in the relevant section, may be executed in any order that the compiler
chooses (subject to the usual algebraic rules). In particular, the compiler may regroup
sub-expressions that are both associative and commutative in order to improve the efficiency
of the code, provided the meaning (i.e. types and results) of the operands and result are not
affected by the regrouping.

The order of any side-effects (for example, assignment, or action taken by a function call) is
also subject to alteration by the compiler.

Operator Precedence 199

Appendices

Expression Type Operators

primary identifier
constant
string
(expression)

postfix a[b]
f()
a.b a->b
a++ a--

unary sizeof u sizeof(a)
++a --a
&a *a
+a -a ~a !a

cast (type) a

multiplicative a * b a / b a % b

additive a + b a - b

shift a << b a >> b

relational a < b a > b a <= b a >= b

equality a == b a != b

bitwise AND a & b

bitwise exclusive OR a ^ b

bitwise inclusive OR a | b

logical AND a && b

logical OR a || b

conditional † a ? b : c

assignment † a = b
a += b a -= b
a *= b a /= b a %= b
a &= b a ^= b a |= b
a <<= b a >>= b

comma a,b

† associates from right to left

200 Operator Precedence

Formal C Grammar

E. Formal C Grammar

This appendix presents the formal grammar of the C programming language. The following
notation is used:

{digit}(0)
Zero or more occurrences of digit are allowed.

{digit}(1)
One or more occurrences of digit are allowed.

〈integer-suffix 〉
integer-suffix is optional, with only one occurrence being allowed if present.

A | B | C
Choose one of A, B or C.

E.1 Lexical Grammar
The following topics are discussed:

• Tokens

• Keywords

• Identifiers

• Constants

• String Literals

• Operators

• Punctuators

Lexical Grammar 201

Appendices

E.1.1 Tokens

token
keyword

or identifier
or constant
or string-literal
or operator
or punctuator

E.1.2 Keywords

keyword
standard-keyword

or Watcom-C-keyword
or Watcom-C32-keyword

standard-keyword
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Watcom-C-keyword
based fortran near segment
cdecl huge Packed segname
export interrupt pascal self
far loadds saveregs syscall

Watcom-C32-keyword
far16 Seg16 stdcall

E.1.3 Identifiers

identifier
nondigit {nondigit | digit}(0)

202

Formal C Grammar

nondigit
a | b | ... | z | A | B | ... | Z |

digit
0 | 1 | ... | 9

E.1.4 Constants

constant
floating-constant

or integer-constant
or enumeration-constant
or character-constant

floating-constant
fractional-constant 〈exponent-part 〉 〈floating-suffix 〉

or digit-sequence exponent-part 〈floating-suffix 〉

exponent-part
e|E 〈+|- 〉 digit-sequence

floating-suffix
 f | F | l | L

fractional-constant
 〈digit-sequence 〉 . digit-sequence

or digit-sequence .

digit-sequence
{digit}(1)

integer-constant
decimal-constant 〈integer-suffix 〉

or octal-constant 〈integer-suffix 〉
or hexadecimal-constant 〈integer-suffix 〉

integer-suffix
u|U 〈l|L 〉

or l|L 〈u|U 〉

decimal-constant
nonzero-digit{digit}(0)

203

Appendices

nonzero-digit
 1 | 2 | ... | 9

octal-constant
0{octal-digit}(0)

octal-digit
0 | 1 | ... | 7

hexadecimal-constant
0x|0X{hexadecimal-digit}(1)

hexadecimal-digit
0 | 1 | ... | 9 |
a | b | ... | f | A | B | ... | F

enumeration-constant
identifier

character-constant
’{c-char}(1)’

or L’{c-char}(1)’

c-char
any character in the source character set except
the single-quote ’, backslash \, or new-line character

or escape-sequence

escape-sequence is one of
\’ \" \\
\o \oo \ooo
\x{hexadecimal-digit}(1)
\a \b \f \n \r \t \v

E.1.5 String Literals

string-literal
"{s-char}(0)"

or L"{s-char}(0)"

204

Formal C Grammar

s-char
any character in the source character set except
the double-quote ", backslash \, or new-line character

or escape-sequence

E.1.6 Operators

operator is one of
[] () . ->
++ -- & * + - ~ ! sizeof
/ % << >> < > <= >= == != ^ | && ||
? :
= *= /= %= += -= <<= >>= &= ^= |=
, # ##
:>

E.1.7 Punctuators

punctuator
[] () { } * , : = ; ... #

E.2 Phrase Structure Grammar
The following topics are discussed:

• Expressions

• Declarations

• Statements

• External Definitions

E.2.1 Expressions

constant-expression
conditional-expression

expression
assignment-expression{ , assignment-expression}(0)

Phrase Structure Grammar 205

Appendices

assignment-expression
conditional-expression

or unary-expression assignment-operator assignment-expression

assignment-operator is one of
= *= /= %= += -= <<= >>= &= ^= |=

conditional-expression
logical-OR-expression 〈? expression : conditional-expression 〉

logical-OR-expression
logical-AND-expression{|| logical-AND-expression}(0)

logical-AND-expression
inclusive-OR-expression {&& inclusive-OR-expression}(0)

inclusive-OR-expression
exclusive-OR-expression {| exclusive-OR-expression}(0)

exclusive-OR-expression
AND-expression {^ AND-expression}(0)

AND-expression
equality-expression {& equality-expression}(0)

equality-expression
relational-expression {==|!= relational-expression}(0)

relational-expression
shift-expression {<|>|<=|>= shift-expression}(0)

shift-expression
additive-expression {<<|>> additive-expression}(0)

additive-expression
multiplicative-expression {+|- multiplicative-expression}(0)

multiplicative-expression
cast-expression {*|/|% cast-expression}(0)

cast-expression
unary-expression

or (type-name) cast-expression

206

Formal C Grammar

unary-expression
postfix-expression

or ++ | -- | sizeof unary-expression
or sizeof(type-name)
or unary-operator cast-expression

unary-operator is one of
& * + - ~ !

postfix-expression
primary-expression

or postfix-expression [expression]
or postfix-expression (〈argument-expression-list 〉)
or postfix-expression . identifier
or postfix-expression -> identifier
or postfix-expression ++
or postfix-expression --

argument-expression-list
assignment-expression {, assignment-expression}(0)

primary-expression
identifier

or constant
or string-literal
or (expression)

E.2.2 Declarations

declaration
declaration-specifiers 〈init-declarator-list 〉;

declaration-specifiers
storage-class-specifier 〈declaration-specifiers 〉

or type-specifier 〈declaration-specifiers 〉

init-declarator-list
init-declarator {, init-declarator}(0)

init-declarator
declarator 〈= initializer 〉

207

Appendices

storage-class-specifier
typedef | extern | static | auto | register

type-specifier
void | char | short | int | long | float |
double | signed | unsigned

or struct-or-union-specifier
or enum-specifier
or typedef-name
or type-qualifier

type-qualifier
const | volatile

or Watcom-C-type-qualifier
or Watcom-C32-type-qualifier

Watcom-C-type-qualifier
based fortran near segment
cdecl huge Packed segname
export interrupt pascal self
far loadds saveregs syscall

Watcom-C32-type-qualifier
far16 Seg16 stdcall

struct-or-union-specifier
struct-or-union 〈identifier 〉 { struct-declaration-list }

or struct-or-union identifier

struct-or-union
struct | union

struct-declaration-list
{struct-declaration}(1)

struct-declaration
type-specifier-list struct-declarator-list;

type-specifier-list
{type-specifier}(1)

struct-declarator-list
struct-declarator {, struct-declarator}(0)

208

Formal C Grammar

struct-declarator
declarator

or 〈declarator 〉 : constant-expression

enum-specifier
enum 〈identifier 〉 { enumerator-list }

or enum identifier

enumerator-list
enumerator {, enumerator}(0)

enumerator
enumeration-constant 〈= constant-expression 〉

declarator
 〈pointer 〉 direct-declarator

direct-declarator
identifier

or (declarator)
or direct-declarator [〈constant-expression 〉]
or direct-declarator (parameter-type-list)
or direct-declarator (〈identifier-list 〉)

pointer
{* 〈type-specifier-list 〉}(1)

parameter-type-list
parameter-list 〈, ... 〉

parameter-list
parameter-declaration {, parameter-declaration}(0)

parameter-declaration
declaration-specifiers declarator

or declaration-specifiers 〈abstract-declarator 〉

identifier-list
identifier {, identifier}(0)

type-name
type-specifier-list 〈abstract-declarator 〉

209

Appendices

abstract-declarator
pointer

or 〈pointer 〉 direct-abstract-declarator

direct-abstract-declarator
(abstract-declarator)

or 〈direct-abstract-declarator 〉 [〈constant-expression 〉]
or 〈direct-abstract-declarator 〉 (〈parameter-type-list 〉)

typedef-name
identifier

initializer
assignment-expression

or {initializer-list 〈, 〉}

initializer-list
initializer {, initializer}(0)

E.2.3 Statements

statement
labelled-statement

or compound-statement
or expression-statement
or selection-statement
or iteration-statement
or jump-statement

labelled-statement
identifier : statement

or case constant-expression : statement
or default : statement

compound-statement
{ 〈declaration-list 〉 〈statement-list 〉}

declaration-list
{declaration}(1)

statement-list
{statement}(1)

210

Formal C Grammar

expression-statement
 〈expression 〉;

selection-statement
if (expression) statement

or if (expression) statement else statement
or switch (expression) statement

iteration-statement
while (expression) statement

or do statement while (expression);
or for (〈expression 〉; 〈expression 〉; 〈expression 〉) statement

jump-statement
goto identifier;

or continue;
or break;
or return 〈expression 〉;

E.2.4 External Definitions

file
{external-definition}(1)

external-definition
function-definition

or declaration

function-definition
 〈declaration-specifiers 〉 declarator 〈declaration-list 〉

compound-statement

E.3 Preprocessing Directives Grammar
preprocessing-file

group

group
{group-part}(1)

Preprocessing Directives Grammar 211

Appendices

group-part
 〈pp-token 〉 new-line

or if-section
or control-line

if-section
if-group {elif-group}(0) 〈else-group 〉 endif-line

if-group
if const-expression new-line 〈group 〉
ifdef identifier new-line 〈group 〉
ifndef identifier new-line 〈group 〉

elif-group
elif constant-expression new-line 〈group 〉

else-group
else new-line 〈group 〉

endif-line
endif new-line

control-line
include pp-tokens new-line
define identifier 〈pp-tokens 〉 new-line
define identifier (〈identifier-list 〉) 〈pp-tokens 〉 new-line
undef identifier new-line
line pp-tokens new-line
error 〈pp-tokens 〉 new-line
pragma 〈pp-tokens 〉 new-line
new-line

pp-tokens
{preprocessing-token}(1)

preprocessing-token
header-name (only within a #include directive)

or identifier (no keyword distinction)
or constant
or string-literal
or operator
or punctuator
or each non-white-space character that cannot be one of the above

212 Preprocessing Directives Grammar

Formal C Grammar

header-name
<{h-char}(0)>

h-char
any character in the source character set except new-line and >

new-line
the new-line character

Preprocessing Directives Grammar 213

Appendices

214 Preprocessing Directives Grammar

Translation Limits

F. Translation Limits

All standard-conforming C compilers must be able to translate and execute a program that
contains one instance of every one of the following limits. Each limit is the minimum limit
(the smallest maximum) that the compiler may impose.

The Watcom C16 and C32 compilers do not impose any arbitrary restrictions in any
of these areas. Restrictions arise solely because of memory limitations.

• 15 nesting levels of compound statements, iteration control structures (for,
do/while, while), and selection control structures (if, switch),

• 8 nesting levels of conditional inclusion (#if),

• 12 pointer, array and function declarators (in any order) modifying an arithmetic,
structure, union or incomplete type in a declaration,

• 31 nesting levels of parenthesized declarators within a full declarator,

• 32 nesting levels of parenthesized expressions within a full expression,

• 31 significant initial characters in an internal identifier or a macro name,

• 6 significant initial characters in an external identifier,

• 511 external identifiers in one translation unit (module),

• 127 identifiers with block scope declared in one block,

• 1024 macro identifiers simultaneously defined in one translation unit (module),

• 31 parameters in one function definition,

• 31 arguments in one function call,

• 31 parameters in one macro definition,

Translation Limits 215

Appendices

• 31 parameters in one macro invocation,

• 509 characters in a logical (continued) source line,

• 509 characters in a character string literal or wide string literal (after concatenation),

• 32767 bytes in an object,

• 8 nesting levels for #included files,

• 257 case labels for a switch statement (excluding those for any nested switch
statements),

• 127 members in a single structure or union,

• 127 enumeration constants in a single enumeration,

• 15 levels of nested structure or union definitions in a single struct-declaration-list
(structure or union definition).

216 Translation Limits

Macros for Numerical Limits

G. Macros for Numerical Limits

Although the various numerical types may have different ranges depending on the
implementation of the C compiler, it is still possible to write programs that can adapt to these
changing ranges. In most circumstances, it is clear whether an integer object is sufficiently
large to contain all necessary values for it, regardless of whether or not the integer is only 16
bits.

However, a programmer may want to be able to conditionally compile code based on
information about the range of certain types. The header <limits.h> defines a set of
macros that describe the range of the various integer types. The header <float.h> defines
another set of macros that describe the range and other characteristics of the various
floating-point types.

G.1 Numerical Limits for Integer Types
The following macros are replaced by constant expressions that may be used in #if
preprocessing directives. For a compiler to conform to the C language standard, the
magnitude of the value of the expression provided by the compiler must equal or exceed the
ANSI value given below, and have the same sign. (Positive values must be greater than or
equal to the ANSI value. Negative values must be less than or equal to the ANSI value.) The
values for the actual compilers are shown following the ANSI value.

• the number of bits in the smallest object that is not a bit-field (byte)

Macro: CHAR BIT Value

ANSI >= 8
Watcom C16 and C32 8

Numerical Limits for Integer Types 217

Appendices

• the minimum value for an object of type signed char

Macro: SCHAR MIN Value

ANSI <= -127
Watcom C16 and C32 -128

• the maximum value for an object of type signed char

Macro: SCHAR MAX Value

ANSI >= 127
Watcom C16 and C32 127

• the maximum value for an object of type unsigned char

Macro: UCHAR MAX Value

ANSI >= 255
Watcom C16 and C32 255

• the minimum value for an object of type char

If char is unsigned (the default case)

Macro: CHAR MIN Value

ANSI 0
Watcom C16 and C32 0

If char is signed (by using the command-line switch to force it to be signed), then
CHAR MIN is equivalent to SCHAR MIN

Macro: CHAR MIN Value

ANSI <= -127
Watcom C16 and C32 -128

218 Numerical Limits for Integer Types

Macros for Numerical Limits

• the maximum value for an object of type char

If char is unsigned (the default case), then CHAR MAX is equivalent to
UCHAR MAX

Macro: CHAR MAX Value

ANSI >= 255
Watcom C16 and C32 255

If char is signed (by using the command-line switch to force it to be signed), then
CHAR MAX is equivalent to SCHAR MAX

Macro: CHAR MAX Value

ANSI >= 127
Watcom C16 and C32 127

• the maximum number of bytes in a multibyte character, for any supported locale

Macro: MB LEN MAX Value

ANSI >= 1
Watcom C16 and C32 2

• the minimum value for an object of type short int

Macro: SHRT MIN Value

ANSI <= -32767
Watcom C16 and C32 -32768

• the maximum value for an object of type short int

Macro: SHRT MAX Value

ANSI >= 32767
Watcom C16 and C32 32767

Numerical Limits for Integer Types 219

Appendices

• the maximum value for an object of type unsigned short int

Macro: USHRT MAX Value

ANSI >= 65535
Watcom C16 and C32 65535

• the minimum value for an object of type int

Macro: INT MIN Value

ANSI <= -32767
Watcom C16 -32768
Watcom C32 -2147483648

• the maximum value for an object of type int

Macro: INT MAX Value

ANSI >= 32767
Watcom C16 32767
Watcom C32 2147483647

• the maximum value for an object of type unsigned int

Macro: UINT MAX Value

ANSI >= 65535
Watcom C16 65535
Watcom C32 4294967295

• the minimum value for an object of type long int

Macro: LONG MIN Value

ANSI <= -2147483647
Watcom C16 and C32 -2147483648

220 Numerical Limits for Integer Types

Macros for Numerical Limits

• the maximum value for an object of type long int

Macro: LONG MAX Value

ANSI >= 2147483647
Watcom C16 and C32 2147483647

• the maximum value for an object of type unsigned long int

Macro: ULONG MAX Value

ANSI >= 4294967295
Watcom C16 and C32 4294967295

G.2 Numerical Limits for Floating-Point Types
The following macros are replaced by expressions which are not necessarily constant. For a
compiler to conform to the C language standard, the magnitude of the value of the expression
provided by the compiler must equal or exceed the ANSI value given below, and have the
same sign. (Positive values must be greater than or equal to the ANSI value. Negative values
must be less than or equal to the ANSI value.) The values for the actual compilers are shown
following the ANSI value. Most compilers will exceed some of these values.

For those characteristics that have three different macros, the macros that start with FLT
refer to type float, DBL refer to type double and LDBL refer to type long
double.

• the radix (base) of representation for the exponent

Macro: FLT RADIX Value

ANSI >= 2
Watcom C16 and C32 2

Numerical Limits for Floating-Point Types 221

Appendices

• the precision, or number of digits in the floating-point mantissa, expressed in terms of
the FLT RADIX

Macro: FLT MANT DIG Value

ANSI no value specified
Watcom C16 and C32 23

Macro: DBL MANT DIG Value

ANSI no value specified
Watcom C16 and C32 52

Macro: LDBL MANT DIG Value

ANSI no value specified
Watcom C16 and C32 52

• the number of decimal digits of precision

Macro: FLT DIG Value

ANSI >= 6
Watcom C16 and C32 6

Macro: DBL DIG Value

ANSI >= 10
Watcom C16 and C32 15

Macro: LDBL DIG Value

ANSI >= 10
Watcom C16 and C32 15

222 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

• the minimum negative integer n such that FLT RADIX raised to the power n, minus 1,
is a normalized floating-point number, or,

• the minimum exponent value in terms of FLT RADIX, or,
• the base FLT RADIX exponent for the floating-point value that is closest, but

not equal, to zero

Macro: FLT MIN EXP Value

ANSI no value specified
Watcom C16 and C32 -127

Macro: DBL MIN EXP Value

ANSI no value specified
Watcom C16 and C32 -1023

Macro: LDBL MIN EXP Value

ANSI no value specified
Watcom C16 and C32 -1023

• the minimum negative integer n such that 10 raised to the power n is in the range of
normalized floating-point numbers, or,

• the base 10 exponent for the floating-point value that is closest, but not equal, to
zero

Macro: FLT MIN 10 EXP Value

ANSI <= -37
Watcom C16 and C32 -38

Macro: DBL MIN 10 EXP Value

ANSI <= -37
Watcom C16 and C32 -307

Numerical Limits for Floating-Point Types 223

Appendices

Macro: LDBL MIN 10 EXP Value

ANSI <= -37
Watcom C16 and C32 -307

• the maximum integer n such that FLT RADIX raised to the power n, minus 1, is a
representable finite floating-point number, or,

• the maximum exponent value in terms of FLT RADIX, or,
• the base FLT RADIX exponent for the largest valid floating-point value

Macro: FLT MAX EXP Value

ANSI no value specified
Watcom C16 and C32 127

Macro: DBL MAX EXP Value

ANSI no value specified
Watcom C16 and C32 1023

Macro: LDBL MAX EXP Value

ANSI no value specified
Watcom C16 and C32 1023

• the maximum integer n such that 10 raised to the power n is a representable finite
floating-point number, or,

• the base 10 exponent for the largest valid floating-point value

Macro: FLT MAX 10 EXP Value

ANSI >= 37
Watcom C16 and C32 38

224 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

Macro: DBL MAX 10 EXP Value

ANSI >= 37
Watcom C16 and C32 308

Macro: LDBL MAX 10 EXP Value

ANSI >= 37
Watcom C16 and C32 308

• the maximum representable finite floating-point number

Macro: FLT MAX Value

ANSI >= 1E+37
Watcom C16 and C32 3.402823466E+38

Macro: DBL MAX Value

ANSI >= 1E+37
Watcom C16 and C32 1.79769313486231560E+308

Macro: LDBL MAX Value

ANSI >= 1E+37
Watcom C16 and C32 1.79769313486231560E+308

• the difference between 1.0 and the least value greater than 1.0 that is representable in
the given floating-point type, or,

• the smallest number eps such that (1.0 + eps) != 1.0

Macro: FLT EPSILON Value

ANSI <= 1E-5
Watcom C16 and C32 1.192092896E-15

Numerical Limits for Floating-Point Types 225

Appendices

Macro: DBL EPSILON Value

ANSI <= 1E-9
Watcom C16 and C32 2.2204460492503131E-16

Macro: LDBL EPSILON Value

ANSI <= 1E-9
Watcom C16 and C32 2.2204460492503131E-16

• the minimum positive normalized floating-point number

Macro: FLT MIN Value

ANSI <= 1E-37
Watcom C16 and C32 1.175494351E-38

Macro: DBL MIN Value

ANSI <= 1E-37
Watcom C16 and C32 2.22507385850720160E-308

Macro: LDBL MIN Value

ANSI <= 1E-37
Watcom C16 and C32 2.22507385850720160E-308

As discussed in the section "Integer to Floating-Point Conversion", the macro FLT ROUNDS
is replaced by a constant expression whose value indicates what kind of rounding occurs
following a floating-point operation. The following table gives the value of FLT ROUNDS
and its meaning:

226 Numerical Limits for Floating-Point Types

Macros for Numerical Limits

FLT ROUNDS Technique

-1 indeterminable
0 toward zero
1 to nearest number
2 toward positive infinity
3 toward negative infinity

If FLT ROUNDS has any other value, the rounding mechanism is implementation-defined.

For the Watcom C16 and C32 compiler, the value of FLT ROUNDS is 1, meaning
that floating-point values are rounded to the nearest representable number.

Numerical Limits for Floating-Point Types 227

Appendices

228 Numerical Limits for Floating-Point Types

Implementation-Defined Behavior

H. Implementation-Defined Behavior

This appendix describes the behavior of Watcom C16 and C32 when the standard describes
the behavior as implementation-defined. The term describing each behavior is taken directly
from the ANSI/ISO C Language standard. The numbers in parentheses at the end of each
term refers to the section of the standard that discusses the behavior.

H.1 Translation
How a diagnostic is identified (5.1.1.3).

A diagnostic message appears as:

filename(line-number): error-type! msg-number: msg_text

where:

filename is the name of the source file where the error was detected. If the error
was found in a file included from the source file specified on the
compiler command line, then the name of the included file will appear.

line-number is the source line number in the named file where the error was
detected.

error-type is either the word Error for errors that prevent the compile from
completing successfully (no code will be generated), or Warning for
conditions detected by the compiler that may not do what the
programmer expected, but are otherwise valid. Warnings will not
prevent the compiler from generating code. The issuance of warnings
may be controlled by a command-line switch. See the User’s Guide
for details.

msg-number is the letter E (for errors) followed by a four digit error number, or the
letter W (for warnings) followed by a three digit warning number. Each
message has its own unique message number.

Translation 229

Appendices

msg-text is a descriptive message indicating the problem.

Example:

test.c(35): Warning! W301: No prototype found for ’GetItem’
test.c(57): Error! E1009: Expecting ’}’ but found ’,’

H.2 Environment
The semantics of the arguments to main (5.1.2.2.1).

Each blank-separated token, except within quoted strings, on the command line is made
into a string that is an element of argv. Quoted strings are maintained as one element.

For example, for the command line,

pgm 2+ 1 tokens "one token"

argc would have the value 5, and the five elements of argv would be,

pgm
2+
1
tokens
one token

What constitutes an interactive device (5.1.2.3).

For Watcom C16 and C32, the keyboard and the video display are considered interactive
devices.

H.3 Identifiers
The number of significant initial characters (beyond 31) in an identifier without external
linkage (6.1.2).

Unlimited.

230 Identifiers

Implementation-Defined Behavior

The number of significant initial characters (beyond 6) in an identifier with external
linkage (6.1.2).

The Watcom C16 and C32 compilers do not impose a limit. The Watcom Linker limits
significant characters to 40.

Whether case distinctions are significant in an identifier with external linkage (6.1.2).

The Watcom C16 and C32 compilers produce object names in mixed case. The Watcom
Linker provides an option to respect or ignore case when resolving linkages. By default,
the linker ignores case. See the Watcom Linker User’s Guide for details.

H.4 Characters
The members of the source and execution character sets, except as explicitly specified in
the standard (5.2.1).

The full IBM PC character set is available in both the source and execution character
sets. The set of values between 0x20 and 0x7F are the ASCII character set.

The shift states used for the encoding of multibyte characters (5.2.1.2).

There are no shift states in the support for multibyte characters.

The number of bits in a character in the execution character set (5.2.4.2.1).

8

The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (6.1.3.4).

Both the source and execution character sets are the full IBM PC character set for
whichever code page is in effect. In addition, the following table shows escape
sequences available in the source character set, and what they translate to in the
execution character set.

Characters 231

Appendices

Escape Hex
Sequence Value Meaning

\a 07 Bell or alert
\b 08 Backspace
\f 0C Form feed
\n 0A New-line
\r 0D Carriage return
\t 09 Horizontal tab
\v 0B Vertical tab
\’ 27 Apostrophe or single quote
\" 22 Double quote
\? 3F Question mark
\\ 5C Backslash
\ddd Octal value
\xddd Hexadecimal value

The value of an integer character constant that contains a character or escape sequence
that is not represented in the execution character set or the extended character set for a
wide character constant (6.1.3.4).

Not possible. Both the source and execution character sets are the IBM PC character set.
Thus, all characters in the source character set map directly to the execution character
set.

The value of an integer character constant that contains more than one character or a
wide character constant that contains more than one multibyte character (6.1.3.4).

A multi-character constant is stored with the right-most character in the lowest-order
(least significant) byte, and subsequent characters (moving to the left) being placed in
higher-order (more significant) bytes. Up to four characters may be placed in a character
constant.

The current locale used to convert multibyte characters into corresponding wide
characters (codes) for a wide character constant (6.1.3.4).

The Watcom C16 and C32 compilers currently support only the "C" locale, using North
American English, and translates code page 437 to UNICODE.

To support multibyte characters, a command line switch can be used to indicate which
multibyte character set to use. See the User’s Guide for details.

232 Characters

Implementation-Defined Behavior

Whether a plain char has the same range of values as signed char or unsigned
char (6.2.1.1).

Watcom C16 and C32 treat char as unsigned, although a compiler command line
switch can be used to make it signed.

H.5 Integers
The representations and sets of values of the various types of integers (6.1.2.5).

Integers are stored using 2’s complement form. The high bit of each signed integer is a
sign bit. If the sign bit is 1, the value is negative.

The ranges of the various integer types are described in the section "Integer Types".

The result of converting an integer to a shorter signed integer, or the result of converting
an unsigned integer to a signed integer of equal length, if the value cannot be
represented (6.2.1.2).

When converting to a shorter type, the high-order bits of the longer value are discarded,
and the remaining bits are interpreted according to the new type.

For example, converting the signed long integer -15584170 (hexadecimal
0xFF123456) to a signed short integer yields the result 13398 (hexadecimal
0x3456).

When converting an unsigned integer to a signed integer of equal length, the bits are
simply re-interpreted according to the new type.

For example, converting the unsigned short integer 65535 (hexadecimal 0xFFFF) to a
signed short integer yields the result -1 (hexadecimal 0xFFFF).

The results of bitwise operations on signed integers (6.3).

The sign bit is treated as any other bit during bitwise operations. At the completion of
the operation, the new bit pattern is interpreted according to the result type.

The sign of the remainder on integer division (6.3.5).

The remainder has the same sign as the numerator (left operand).

Integers 233

Appendices

The result of a right shift of a negative-valued signed integral type (6.3.7).

A right shift of a signed integer will leave the higher, vacated bits with the original value
of the high bit. In other words, the sign bit is propogated to fill bits vacated by the shift.

For example, the result of ((short) 0x0123) >> 4 would be 0x0012. The
result of ((short) 0xFEFE) >> 4 will be 0xFFEF.

H.6 Floating Point
The representations and sets of values of the various types of floating-point numbers
(6.1.2.5).

These are discussed in the section "Floating-Point Types". The floating-point format
used is the IEEE Standard for Binary Floating-Point Arithmetic as defined in the
ANSI/IEEE Standard 754-1985.

The direction of truncation when an integral number is converted to a floating-point
number that cannot exactly represent the original value (6.2.1.3).

Truncation is only possible when converting a long int (signed or unsigned) to
float. The 24 most-significant bits (including sign bit) are used. The 25th is
examined, and if it is 1, the value is rounded up by adding one to the 24-bit value. The
remaining bits are ignored.

The direction of truncation or rounding when a floating-point number is converted to a
narrower floating-point number (6.2.1.4).

The value is rounded to the nearest value in the smaller type.

H.7 Arrays and Pointers
The type of integer required to hold the maximum size of an array — that is, the type of
the sizeof operator, size t (6.3.3.4, 7.1.1).

unsigned int

234 Arrays and Pointers

Implementation-Defined Behavior

The result of casting an integer to a pointer or vice versa (6.3.4).

Watcom C16 conversion of pointer to integer:

Pointer short int
Type int long int

near result is pointer value result is DS register in
high-order 2 bytes, pointer
value in low-order 2 bytes

far segment is discarded, result result is segment in high-
huge is pointer offset (low-order order 2 bytes, offset in

2 bytes of pointer) low-order 2 bytes

Watcom C16 conversion of integer to pointer:

Integer far pointer
Type near pointer huge pointer

short int result is integer value result segment is DS
int register, offset is

 integer value

long int result is low-order 2 bytes result segment is high-
of integer value order 2 bytes, offset is
 low-order 2 bytes

Watcom C32 conversion of pointer to integer:

Pointer int
Type short long int

near result is low-order 2 bytes result is pointer value
of pointer value

far segment is discarded, result segment is discarded, result
huge is low-order 2 bytes of is pointer offset

pointer value

Arrays and Pointers 235

Appendices

Watcom C32 conversion of integer to pointer:

Integer far pointer
Type near pointer huge pointer

short int result is integer value, result segment is DS
with zeroes for high-order register, offset is integer
2 bytes value, with zeroes for
 high-order 2 bytes

int result is integer value result segment is DS
long int register, offset is

 integer value

The type of integer required to hold the difference between two pointers to elements of
the same array, ptrdiff t (6.3.6, 7.1.1).

If the huge memory model is being used, ptrdiff t has type long int.

For all other memory models, ptrdiff t has type int.

If two huge pointers are subtracted and the huge memory model is not being used, then
the result type will be long int even though ptrdiff t is int.

H.8 Registers
The extent to which objects can actually be placed in registers by use of the register
storage-class specifier (6.5.1).

The Watcom C16 and C32 compilers may place any object that is sufficiently small,
including a small structure, in one or more registers.

The number of objects that can be placed in registers varies, and is decided by the
compiler. The keyword register does not control the placement of objects in
registers.

236 Registers

Implementation-Defined Behavior

H.9 Structures, Unions, Enumerations and Bit-Fields
A member of a union object is accessed using a member of a different type (6.3.2.3).

The behavior is undefined. Whatever bit values are present as were stored via one
member will be extracted via another.

The padding and alignment of members of structures (6.5.2.1).

The Watcom C16 and C32 compilers do not align structure members by default. A
command line switch, or the pack pragma, may be used to force the compiler to do
alignment. See the User’s Guide for details.

Whether a "plain" int bit-field is treated as a signed int bit-field or as an
unsigned int bit-field (6.5.2.1).

signed int

The order of allocation of bit-fields within a unit (6.5.2.1).

Low-order (least significant) bit to high-order bit.

Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

Bit-fields may not straddle storage-unit boundaries. If there is insufficient room to store
a subsequent bit-field in a storage-unit, then it will be placed in the next storage-unit.

The integer type chosen to represent the values of an enumeration type (6.5.2.2).

By default, Watcom C16 and C32 will use the smallest integer type that can
accommodate all values in the enumeration.

Watcom C16 will choose the first appropriate type from the following table:

Type Smallest Value Largest Value

signed char -128 127
unsigned char 0 255
signed int -32768 32767
unsigned int 0 65535

Structures, Unions, Enumerations and Bit-Fields 237

Appendices

Watcom C32 will choose the first appropriate type from the following table:

Type Smallest Value Largest Value

signed char -128 127
unsigned char 0 255
signed short -32768 32767
unsigned short 0 65535
signed int -2147483648 2147483647
unsigned int 0 4294967295

Both compilers have a command-line switch that force all enumerations to type int.
See the User’s Guide for details.

H.10 Qualifiers
What constitutes an access to an object that has volatile-qualified type (6.5.5.3).

Any reference to a volatile object is also an access to that object.

H.11 Declarators
The maximum number of declarators that may modify an arithmetic, structure or union
type (6.5.4).

Limited only by available memory.

H.12 Statements
The maximum number of case values in a switch statement (6.6.4.2).

Limited only by available memory.

238 Statements

Implementation-Defined Behavior

H.13 Preprocessing Directives
Whether the value of a single-character character constant in a constant expression that
controls conditional inclusion matches the value of the same character constant in the
execution character set. Whether such a character constant may have a negative value
(6.8.1).

The character sets are the same so characters will match. Character constants are
unsigned quantities, so no character will be negative.

The method for locating includable source files (6.8.2).

See the User’s Guide for full details of how included files are located.

The support of quoted names for includable source files (6.8.2).

See the User’s Guide for full details of how included files are located.

The mapping of source file character sequences (6.8.2).

The source and execution character sets are the same. Escape sequences are not
supported in preprocessor directives.

The behavior of each recognized #pragma directive (6.8.6).

See the User’s Guide.

The definitions for DATE and TIME when respectively, the date and time of
translation are not available (6.8.8).

The date and time are always available.

H.14 Library Functions
The null pointer constant to which the macro NULL expands (7.1.6).

For Watcom C16, the NULL macro expands to 0 for the small and medium (small data)
memory models, and to 0L for the compact, large and huge (big data) memory models.

For Watcom C32, the NULL macro expands to 0.

Library Functions 239

Appendices

The implementation-defined behavior of the library functions is described in the Watcom C
Library Reference manual.

240 Library Functions

Examples of Declarations

I. Examples of Declarations

This chapter presents a series of examples of declarations of objects and functions. Along
with each example is a description that indicates how to read the declaration.

This chapter may be used as a "cookbook" for declarations. Some complicated but commonly
required declarations are given here.

The first examples are very simple, and build in complexity. Some of the examples given
near the end of each section are unlikely to ever be required in a real program, but hopefully
they will provide an understanding of how to read and write C declarations.

To reduce the complexity and to better illustrate how a small difference in the declaration can
mean a big difference in the meaning, the following rules are followed:

1. if an object is being declared, it is called x or X,

2. if a function is being declared, it is called F,

3. if an object is being declared, it usually has type int, although any other type may
be substituted,

4. if a function is being declared, it usually returns type int, although any other type
may be substituted.

Storage class specifiers (extern, static, auto or register) have purposely been
omitted.

I.1 Object Declarations
Here are some examples of object (variable) declarations:

int x;
2 1

(1)x is an (2)integer.

Object Declarations 241

Appendices

int * x;
3 2 1

(1)x is a (2)pointer to an (3)integer.

int ** x;
4 32 1

(1)x is a (2)pointer to a (3)pointer to an (4)integer.

const int x;
2 3 1

(1)x is a (2)constant (3)integer.

int const x;
3 2 1

(1)x is a (2)constant (3)integer (same as above).

const int * x;
3 4 2 1

(1)x is a (2)pointer to a (3)constant (4)integer. The value of x may change, but the
integer that it points to may not be changed. In other words, *x cannot be modified.

int * const x;
4 3 2 1

(1)x is a (2)constant (3)pointer to an (4)integer. The value of x may not change, but
the integer that it points to may change. In other words, x will always point at the
same location, but the contents of that location may vary.

const int * const x;
4 5 3 2 1

(1)x is a (2)constant (3)pointer to a (4)constant (5)integer. The value of x may not
change, and the integer that it points to may not change. In other words, x will always
point at the same location, which cannot be modified via x.

int x[];
3 12

(1)x is an (2)array of (3)integers.

242 Object Declarations

Examples of Declarations

int x[53];
4 123

(1)x is an (2)array of (3)53 (4)integers.

int * x[];
4 3 12

(1)x is an (2)array of (3)pointers to (4)integer.

int (*x)[];
4 21 3

(1)x is a (2)pointer to an (3)array of (4)integers.

int * (*x)[];
5 4 21 3

(1)x is a (2)pointer to an (3)array of (4)pointers to (5)integer.

int (*x)();
4 21 3

(1)x is a (2)pointer to a (3)function returning an (4)integer.

int (*x[25])();
6 4123 5

(1)x is an (2)array of (3)25 (4)pointers to (5)functions returning an (6)integer.

I.2 Function Declarations
Here are some examples of function declarations:

int F();
3 12

(1)F is a (2)function returning an (3)integer.

int * F();
4 3 12

(1)F is a (2)function returning a (3)pointer to an (4)integer.

Function Declarations 243

Appendices

int (*F())();
5 312 4

(1)F is a (2)function returning a (3)pointer to a (4)function returning an (5)integer.

int * (*F())();
6 5 312 4

(1)F is a (2)function returning a (3)pointer to a (4)function returning a (5)pointer to
an (6)integer.

int (*F())[];
5 312 4

(1)F is a (2)function returning a (3)pointer to an (4)array of (5)integers.

int (*(*F())[])();
7 5 312 4 6

(1)F is a (2)function returning a (3)pointer to an (4)array of (5)pointers to
(6)functions returning an (7)integer.

int * (*(*F())[])();
8 7 5 312 4 6

(1)F is a (2)function returning a (3)pointer to an (4)array of (5)pointers to
(6)functions returning a (7)pointer to an (8)integer.

I.3 _ _far, _ _near and _ _huge Declarations
The following examples illustrate the use of the far and huge keywords.

The use of the near keyword is symmetrical with the use of the far keyword, so no
examples of near are shown.

int far X;
3 2 1

(1)X is a (2)far (3)integer.

244 _ _far, _ _near and _ _huge Declarations

Examples of Declarations

int * far x;
4 3 2 1

(1)x is (2)far, and is a (3)pointer to an (4)integer.

int far * x;
4 2 3 1

(1)x is a (2)far (3)pointer to an (4)integer.

int far * far x;
5 3 4 2 1

(1)x is (2)far, and is a (3)far (4)pointer to an (5)integer.

int far X[];
4 2 13

(1)X is a (2)far (3)array of (4)integers.

int huge X[];
4 2 13

(1)x is a (2)huge (3)array of (4)integers (X is an array that can exceed 64K in size.)

int * far X[];
5 4 2 13

(1)X is a (2)far (3)array of (4)pointers to (5)integers.

int far * X[];
5 3 4 12

(1)X is an (2)array of (3)far (4)pointers to (5)integers.

int far * far X[];
6 4 5 2 13

(1)X is a (2)far (3)array of (4)far (5)pointers to (6)integers.

int far F();
4 2 13

(1)F is a (2)far (3)function returning an (4)integer.

_ _far, _ _near and _ _huge Declarations 245

Appendices

int * far F();
5 4 2 13

(1)F is a (2)far (3)function returning a (4)pointer to an (5)integer.

int far * F();
5 3 4 12

(1)F is a (2)function returning a (3)far (4)pointer to an (5)integer.

int far * far F();
6 4 5 2 13

(1)F is a (2)far (3)function returning a (4)far (5)pointer to an (6)integer.

int (far * x)();
5 2 3 1 4

(1)x is a (2)far (3)pointer to a (4)function returning an (5)integer.

int far * (* x)();
6 4 5 2 1 3

(1)x is a (2)pointer to a (3)function returning a (4)far (5)pointer to an (6)integer.

int far * (far * x)();
7 5 6 2 3 1 4

(1)x is a (2)far (3)pointer to a (4)function returning a (5)far (6)pointer to
an (7)integer.

I.4 _ _interrupt Declarations
The following example illustrates the use of the interrupt keyword.

void interrupt far F();
5 3 2 14

(1)F is a (2)far (3)interrupt (4)function returning (5)nothing.

246 _ _interrupt Declarations

A Sample Program

J. A Sample Program

This chapter presents an entire C program, to illustrate many of the features of the language,
and to illustrate elements of programming style.

This program implements a memo system suitable for maintaining a set of memos, and
displaying them on the screen. The program allows the user to display memos relevant to
today’s date, move through the memos adding new ones and replacing or deleting existing
ones. The program displays help information whenever an invalid action is entered, or when
the sole parameter to the program is a question mark.

The program is in complete conformance to the ANSI C standard. It should be able to run,
without modification, on any system that provides an ANSI-conforming C compiler.

J.1 The memos.h File
The source file memos.h contains the structures used for storing the memos:

/* This structure is for an individual line in a memo.
*/

typedef struct text line {
struct text line * next;
char text[1];

} TEXT LINE;

/* This structure is the head of an individual memo.
*/

typedef struct memo el {
struct memo el * prev;
struct memo el * next;
TEXT LINE * text;
char date[9];

} MEMO EL;

The memos.h File 247

Appendices

J.2 The memos.c File
The source for the program follows:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <time.h>

#include "memos.h"

/* This program implements a simple memo facility.
* Memos may be added to a memo file, displayed
* on the screen, and deleted.
*
* Modified by reason
* ======== == ======
* 87/10/02 Steve McDowell Initial implementation.
* 88/09/20 Steve McDowell Fixed up some style issues,
* introduced use of TRUE and
* FALSE.
*/

/* Define some constants to make the code more readable.
*/

#define TRUE 1
#define FALSE 0
#define NULLCHAR ’\0’

static const char FileName[] = { "memos.db" };
static const char TempName[] = { "tempmemo.db" };

static MEMO EL * MemoHead = NULL;
static int MemosModified = FALSE;
static int QuitFlag = TRUE;

typedef enum {
INVALID,
HELP,
ADD,
DELETE,
REPLACE,
SHOW,
UP,
DOWN,
TOP,
TODAY,
SAVE,
QUIT

} ACTION;

248 The memos.c File

A Sample Program

/* This table maps action keywords onto the "actions" defined
* above. The table also defines short forms for the keywords.
*/

typedef struct {
ACTION act;
char * keyword;

} ACTION MAP;

static ACTION MAP KeywordMap[] = {
HELP, "help",
HELP, "h",
ADD, "add",
ADD, "a",
DELETE, "delete",
DELETE, "del",
REPLACE, "replace",
REPLACE, "rep",
SHOW, "show",
SHOW, "sh",
UP, "up",
UP, "u",
DOWN, "down",
DOWN, "d",
DOWN, "",
TOP, "top",
TODAY, "today",
TODAY, "tod",
SAVE, "save",
SAVE, "sa",
QUIT, "quit",
QUIT, "q",

INVALID, "" };

/* Maximum buffer length (maximum length of line of memo).
*/

#define MAXLEN 80

/* Function prototypes.
*/

static TEXT LINE * AddLine();
static MEMO EL * AddMemo();
static MEMO EL * DeleteMemo();
static MEMO EL * DoActions();
static MEMO EL * DoDownAction();
static MEMO EL * DoUpAction();
static MEMO EL * EnterAMemo();
static ACTION GetAction();
static void * MemoMAlloc();
static ACTION PromptAction();
static ACTION ReadAction();
static MEMO EL * ReadAMemo();
static MEMO EL * ShowTodaysMemos();

The memos.c File 249

Appendices

extern int main(int argc, char * argv[])
/**/
{

int index;
MEMO EL * el;

printf("Memo facility\n");

/* Check for a single argument that is a question mark,
* If found, then display the usage notes.
*/

if(argc == 2 && strcmp(argv[1], "?") == 0) {
Usage();
exit(0);

}
ReadMemos();
MemosModified = FALSE;
QuitFlag = FALSE;

/* Use the command line parameters, if any, as the first
* actions to be performed on the memos.
*/

el = NULL;
for(index = 1; index < argc; ++index) {

el = DoActions(el, GetAction(argv[index]));
if(QuitFlag) {

return(FALSE);
}

}
HandleMemoActions(el);
return(FALSE);

}

static void ReadMemos(void)
/***************************/

/* Read the memos file, building the structure to contain it.
*/

{
FILE * fid;
MEMO EL * new el;
MEMO EL * prev el;
int mcount;

fid = fopen(FileName, "r");
if(fid == NULL) {

printf("Memos file not found."
" Starting with no memos.\n");

return;
}

250 The memos.c File

A Sample Program

/* Loop reading entire memos.
*/

prev el = NULL;
for(mcount = 0;; mcount++) {

new el = ReadAMemo(fid);
if(new el == NULL) {

printf("%d memo(s) found.\n", mcount);
fclose(fid);
return;

}
if(prev el == NULL) {

MemoHead = new el;
new el->prev = NULL;

} else {
prev el->next = new el;
new el->prev = prev el;

}
new el->next = NULL;
prev el = new el;

}
}

static int ReadLine(char buffer[], int len, FILE * fid)
/***/

/* Read a line from the memos file. Handle any I/O errors and
* EOF. Return the length read, not counting the newline on
* the end.
*/

{
if(fgets(buffer, len, fid) == NULL) {

if(feof(fid)) {
return(EOF);

}
perror("Error reading memos file");
abort();

}
return(strlen(buffer) - 1);

}

static MEMO EL * ReadAMemo(FILE * fid)
/**************************************/

/* Read one memo, creating the memo structure and filling it
* in. Return a pointer to the memo (NULL if none read).
*/

{
MEMO EL * el;
int len;
TEXT LINE * line;
char buffer[MAXLEN];

len = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {

return(NULL);
}

The memos.c File 251

Appendices

/* First line must be of the form "Date:" or "Date:YY/MM/DD":
*/

if((len != 5 && len != 13)
|| strncmp(buffer, "Date:", 5) != 0) {

BadFormat();
}
buffer[len] = NULLCHAR;
el = MemoMAlloc(sizeof(MEMO EL));
el->text = NULL;
strcpy(el->date, buffer + 5);
line = NULL;
for(;;) {

len = ReadLine(buffer, MAXLEN, fid);
if(len == EOF) {

BadFormat();
}
buffer[len] = NULLCHAR;
if(strcmp(buffer, "====") == 0) {

return(el);
}
line = AddLine(buffer, el, line);

}
}

static TEXT LINE * AddLine(char buffer[],
MEMO EL * el,
TEXT LINE * prevline)

/**/

/* Add a line of text to the memo, taking care of all the
* details of modifying the structure.
*/

{
TEXT LINE * line;

line = MemoMAlloc(sizeof(TEXT LINE) + strlen(buffer));
strcpy(line->text, buffer);
line->next = NULL;
if(prevline == NULL) {

el->text = line;
} else {

prevline->next = line;
}
return(line);

}

static ACTION PromptAction(void)
/********************************/

/* The user didn’t specify an action on the command line,
* so prompt for it.
*/

{
ACTION act;

for(;;) {
printf("\nEnter an action:\n");
act = ReadAction();

252 The memos.c File

A Sample Program

if(act != INVALID) {
return(act);

}
printf("\nThat selection was not valid.\n");
Help();

}
}

static ACTION ReadAction(void)
/******************************/

/* Read an action from the terminal.
* Return the action code.
*/

{
char buffer[80];

if(gets(buffer) == NULL) {
perror("Error reading action");
abort();

}
return(GetAction(buffer));

}

static ACTION GetAction(char buffer[])
/**************************************/

/* Given the string in the buffer, return the action that
* corresponds to it.
* The string in the buffer is first zapped into lower case
* so that mixed-case entries are recognized.
*/

{
ACTION MAP * actmap;
char * bufptr;

for(bufptr = buffer; *bufptr != NULLCHAR; ++bufptr) {
*bufptr = tolower(*bufptr);

}
for(actmap = KeywordMap; actmap->act != INVALID; ++actmap) {

if(strcmp(buffer, actmap->keyword) == 0) break;
}
return(actmap->act);

}

static void HandleMemoActions(MEMO EL * el)
/***/

/* Handle all the actions entered from the keyboard.
*/

{
for(;;) {

el = DoActions(el, PromptAction());
if(QuitFlag) break;

}
}

The memos.c File 253

Appendices

static MEMO EL * DoActions(MEMO EL * el, ACTION act)
/**/

/* Perform one action on the memos.
*/

{
MEMO EL * new el;
MEMO EL * prev el;

switch(act) {
case HELP:

Help();
break;

case ADD:
new el = AddMemo(el);
if(new el != NULL) {

el = new el;
MemosModified = TRUE;

}
break;

case DELETE:
el = DeleteMemo(el);
MemosModified = TRUE;
break;

case REPLACE:
prev el = el;
new el = AddMemo(el);
if(new el != NULL) {

DeleteMemo(prev el);
MemosModified = TRUE;

}
break;

case SHOW:
DisplayMemo(el);
break;

case UP:
el = DoUpAction(el);
break;

case DOWN:
el = DoDownAction(el);
break;

case TOP:
el = NULL;
break;

case TODAY:
el = ShowTodaysMemos();
break;

case SAVE:
if(SaveMemos()) {

MemosModified = FALSE;
}
break;

case QUIT:
if(WantToQuit()) {

QuitFlag = TRUE;
el = NULL;

}
}

254 The memos.c File

A Sample Program

return(el);
}

static MEMO EL * AddMemo(MEMO EL * el)
/**************************************/

/* Add a memo following the current one.
*/

{
MEMO EL * new el;
MEMO EL * next;

new el = EnterAMemo();
if(new el == NULL) {

return(NULL);
}
if(el == NULL) {

next = MemoHead;
MemoHead = new el;

} else {
next = el->next;
el->next = new el;

}
new el->prev = el;
new el->next = next;
if(next != NULL) {

next->prev = new el;
}
return(new el);

}

static MEMO EL * EnterAMemo(void)
/*********************************/

/* Read a memo from the keyboard, creating the memo structure
* and filling it in. Return a pointer to the memo (NULL if
* none read).
*/

{
MEMO EL * el;
int len;
TEXT LINE * line;
char buffer[MAXLEN];

printf("What date do you want the memo displayed"
" (YY/MM/DD)?\n");

if(gets(buffer) == NULL) {
printf("Error reading from terminal.\n");
return(NULL);

}
len = strlen(buffer);
if(len != 0

&& (len != 8
|| buffer[2] != ’/’
|| buffer[5] != ’/’)) {

printf("Date is not valid.\n");
return(NULL);

}

The memos.c File 255

Appendices

el = MemoMAlloc(sizeof(MEMO EL));
el->text = NULL;
strcpy(el->date, buffer);
line = NULL;
printf("\nEnter the text of the memo.\n");
printf("To terminate the memo,"

" enter a line starting with =\n");
for(;;) {

if(gets(buffer) == NULL) {
printf("Error reading from terminal.\n");
return(NULL);

}
if(buffer[0] == ’=’) {

return(el);
}
line = AddLine(buffer, el, line);

}
}

static MEMO EL * DeleteMemo(MEMO EL * el)
/***/

/* Delete the current memo.
* Return a pointer to another memo, usually the following one.
*/

{
MEMO EL * prev;
MEMO EL * next;
MEMO EL * ret el;

if(el == NULL) {
return(MemoHead);

}
prev = el->prev;
next = el->next;
ret el = next;
if(ret el == NULL) {

ret el = prev;
}

/* If it’s the first memo, set a new MemoHead value.
*/

if(prev == NULL) {
MemoHead = next;
if(next != NULL) {

next->prev = NULL;
}

} else {
prev->next = next;
if(next != NULL) {

next->prev = prev;
}

}
DisposeMemo(el);
return(ret el);

}

256 The memos.c File

A Sample Program

static MEMO EL * DoUpAction(MEMO EL * el)
/***/

/* Perform the UP action, including displaying the memo.
*/

{
if(el == NULL) {

DisplayTop();
} else {

el = el->prev;
DisplayMemo(el);

}
return(el);

}

static MEMO EL * DoDownAction(MEMO EL * el)
/***/

/* Perform the DOWN action, including displaying the memo.
*/

{
MEMO EL * next el;

next el = (el == NULL) ? MemoHead : el->next;
if(next el == NULL) {

printf("No more memos.\n");
} else {

el = next el;
DisplayMemo(el);

}
return(el);

}

static MEMO EL * ShowTodaysMemos(void)
/**************************************/

/* Show all memos that either:
* (1) match today’s date
* (2) don’t have a date stored.
* Return a pointer to the last displayed memo.
*/

{
MEMO EL * el;
MEMO EL * last el;
time t timer;
struct tm ltime;
char date[9];

/* Get today’s time in YY/MM/DD format.
*/

time(&timer);
ltime = *localtime(&timer);
strftime(date, 9, "%y/%m/%d", <ime);
last el = NULL;

The memos.c File 257

Appendices

for(el = MemoHead; el != NULL; el = el->next) {
if(el->date[0] == NULLCHAR

|| strcmp(date, el->date) == 0) {
DisplayMemo(el);
last el = el;

}
}
return(last el);

}

static void DisplayMemo(MEMO EL * el)
/*************************************/

/* Display a memo on the screen.
*/

{
TEXT LINE * tline;

if(el == NULL) {
DisplayTop();
return;

}
if(el->date[0] == NULLCHAR) {

printf("\nUndated memo\n");
} else {

printf("\nDated: %s\n", el->date);
}
for(tline = el->text; tline != NULL; tline = tline->next) {

printf(" %s\n", tline->text);
}

}

static int SaveMemos(void)
/**************************/

/* Save the memos to the memos file.
*/

{
FILE * fid;
MEMO EL * el;
TEXT LINE * tline;
char buffer[20];

if(MemoHead == NULL) {
printf("No memos to save.\n");
return(FALSE);

}

/* Open a temporary filename in case something goes wrong
* during the save.
*/

fid = fopen(TempName, "w");
if(fid == NULL) {

printf("Unable to open \"%s\" for writing.\n", TempName);
printf("Save not performed.\n");
return(FALSE);

}

258 The memos.c File

A Sample Program

for(el = MemoHead; el != NULL; el = el->next) {
sprintf(buffer, "Date:%s", el->date);
if(!WriteLine(buffer, fid)) {

return(FALSE);
}
tline = el->text;
for(; tline != NULL; tline = tline->next) {

if(!WriteLine(tline->text, fid)) {
return(FALSE);

}
}
if(!WriteLine("====", fid)) {

return(FALSE);
}

}

/* Now get rid of the old file, if it’s there, then rename
* the new one.
*/

fclose(fid);
fid = fopen(FileName, "r");
if(fid != NULL) {

fclose(fid);
if(remove(FileName) != 0) {

perror("Can’t remove old memos file");
return(FALSE);

}
}
if(rename(TempName, FileName) != 0) {

perror("Can’t rename new memos file");
return(FALSE);

}
return(TRUE);

}

static int WriteLine(char * text, FILE * fid)
/***/
{

if(fprintf(fid, "%s\n", text) < 0) {
perror("Error writing memos file");
return(FALSE);

}
return(TRUE);

}

/* Routines for displaying HELP and other simple text.
*/

static void Usage(void)
/***********************/
{

printf("Usage:\n");
printf(" memos ?\n");
printf(" displays this text\n");
printf(" or\n");
printf(" memos\n");
printf(" prompts for all actions.\n");
printf(" or\n");

The memos.c File 259

Appendices

printf(" memos action\n");
printf(" performs the action.\n");
printf(" More than one action may be specified.\n");
printf(" action is one of:\n");
ShowActions();

}

static void ShowActions(void)
/*****************************/
{

printf(" Help (display this text)\n");
printf(" Add (add new memo here)\n");
printf(" DELete (delete current memo)\n");
printf(" REPlace (replace current memo)\n");
printf(" SHow (show the current memo again)\n");
printf(" Up (move up one memo)\n");
printf(" Down (move down one memo)\n");
printf(" TOP (move to the top of the list\n");
printf(" TODay (display today’s memos)\n");
printf(" SAve (write the memos to disk)\n");

}

static void Help(void)
/**********************/
{

printf("Choose one of:\n");
ShowActions();
printf(" Quit\n");

}

static void DisplayTop(void)
/****************************/
{

printf("Top of memos.\n");
}

static int WantToQuit(void)
/***************************/

/* Check to see if the memos have been modified, but not saved.
* If so, query the user to make sure that he/she wants to quit
* without saving the memos.
*/

{
char buffer[MAXLEN];

if(!MemosModified || MemoHead == NULL) {
return(TRUE);

}
printf("\nThe memos have been modified but not saved.\n");
printf("Do you want to leave without saving them?\n");
gets(buffer);
return(tolower(buffer[0]) == ’y’);

}

260 The memos.c File

A Sample Program

static void BadFormat(void)
/***************************/
{

printf("Invalid format for memos file\n");
abort();

}

static void * MemoMAlloc(int size)
/**********************************/

/* Allocate the specified size of memory, dealing with the
* case of a failure by displaying a message and quitting.
*/

{
register char * mem;

mem = malloc(size);
if(mem == NULL) {

printf("Unable to allocate %d characters of memory\n",
size);

abort();
}
return(mem);

}

static void DisposeMemo(MEMO EL * el)
/*************************************/

/* Dispose of a memo, including its lines.
*/

{
TEXT LINE * tline;
TEXT LINE * next;

tline = el->text;
while(tline != NULL) {

next = tline->next;
free(tline);
tline = next;

}
free(el);

}

The memos.c File 261

Appendices

262 The memos.c File

Glossary

K. Glossary

address An address is a location in a computer’s memory. Each storage location
(byte) has an address by which it is referenced. A pointer is an address.

aggregate An aggregate type is either an array or a structure. The term aggregate
refers to the fact that arrays and structures are made up of other types.

alignment On some computers, objects such as integers, pointers and floating-point
numbers may be stored only at certain addresses (for example, only at
even addresses). An attempt to reference an object that is not properly
aligned may cause the program to fail. Other computers may not require
alignment, but may suggest it in order to increase the speed of execution
of programs.

C compilers align all objects that require it, including putting padding
characters within structures and arrays, if necessary. However, it is still
possible for a program to attempt to reference an improperly-aligned
object.

The Watcom C16 and C32 compilers do not align objects by
default. A command line switch, or the pack pragma, may be
used to force the compiler to align objects.

See the User’s Guide for details.

argument An argument to a function call is an expression whose value is assigned to
the parameter for the function. The function may modify the parameter,
but the original argument is unaffected. This method of passing values to
a function is often called call by value.

The argument may be a pointer to an object, in which case the function
may modify the object to which the pointer points, while the argument
value (the pointer) is unaffected.

Glossary 263

Appendices

array An array is a set of objects of the same type, grouped into adjacent
memory locations. References to elements of the array are made by
subscripts or indices.

assignment Assignment is the storing of a value into an object, which is usually done
with the = operator.

automatic storage duration
An object with automatic storage duration is created when the function in
which it is defined is invoked, and is destroyed when the function returns
to the caller.

bit A bit is the smallest possible unit of information, representing one of two
values, 0 or 1. If the bit is 0, it is said to be off. If the bit is 1, it is said to
be on.

A bit is not representable by an address, but is part of a byte, which does
have an address.

Most processors, including the Intel 80x86 family of processors,
have 8 bits in a byte.

bit-field A bit-field is a type that contains a specified number of bits.

block A block is a part of a function that begins with { and ends with } and
contains declarations of objects and statements that perform some action.
A block is also called a compound statement.

byte A byte is the smallest unit of storage representable by a unique address,
usually capable of holding one character of information.

Most processors, including the Intel 80x86 family of processors,
have 8 bits in a byte.

cast To cast an object is to explicitly convert it to another type.

character constant
A character constant is usually one character (possibly a trigraph or
escape sequence) contained within single-quotes (for example, ’a’,
’??(’ and ’\n’).

The Watcom C16 and C32 compilers allow character constants
with one, two, three or four characters.

264 Glossary

Glossary

comment A comment is a sequence of characters, outside of a string literal or
character constant, starting with /* and ending with */. The comment
is only examined to find the */ that terminates it. Hence, a comment may
not contain another comment.

compiler A compiler is a program which reads a file containing programming
language statements and translates it into instructions that the computer
can understand.

For example, a C compiler translates statements described in this book.

compound statement
A compound statement is a part of a function that begins with { and ends
with } and contains declarations of objects and statements that perform
some action. A compound statement is also called a block.

declaration A declaration describes the attributes of an object or function, such as the
storage duration, linkage, and type. The space for an object is reserved
when its definition is found. The declaration of a function describes the
function arguments and type and is also called a function prototype. The
declaration of a function does not include the statements to be executed
when the function is called.

decrement To decrement a number is to subtract (one) from it. To decrement a
pointer is to decrease its value by the size of the object to which the
pointer points.

definition A definition of an object is the same as a declaration, except that the
storage for the object is reserved when its definition is found. A function
definition includes the statements to be executed when the function is
called.

exception An exception occurs when an operand to an operator has an invalid value.
Division by zero is a common exception.

floating-point A floating-point number is a member of a subset of the mathematical set
of real numbers, containing (possibly) a fraction and an exponent. The
floating-point type is represented by one of the keywords float,
double or long double.

function A function is a collection of declarations and statements, preceded by a
declaration of the name of the function and the parameters to it, as well as
a possible return value. The statements describe a series of steps to be
taken after the function is called, and before it finishes.

Glossary 265

Appendices

header A header contains C source, usually function prototypes, structure and
union definitions, linkages to externally-defined objects and macro
definitions. A header is included using the #include preprocessor
directive.

identifier An identifier is a sequence of characters, starting with a letter or
underscore, and consisting of letters, digits and underscores. An identifier
is used as the name of an object, a tag, function, typedef, label, macro or
member of a structure or union.

implementation-defined behavior
Behavior that is implementation-defined depends on how a particular C
compiler handles a certain case. All C compilers must document their
behavior in these cases.

incomplete type An incomplete type is one which has been declared, but its size or
structure has not yet been stated. An example is an array of items that was
declared without specifying how many items. The void type is also an
incomplete type, but it can never be completed.

increment To increment a number is to add (one) to it. To increment a pointer is to
increase its value by the size of the object to which the pointer points.

index An index (or subscript) is a number used to reference an element of an
array. It is an integral value. The first element of an array has the index
zero.

indirection Indirection occurs when an object that is a pointer to an object is actually
used to point to it. The unary form of the * operator, or the -> operator
are used for indirection.

initialization The initialization of an object is the act of giving it its first (initial) value.
This may be done by giving an initialization value when the object is
declared, or by explicitly assigning it a value.

integer An integer is a type that is a subset of the mathematical set of integers. It
is represented by the keyword int, and has a number of variations
including signed char, unsigned char, short signed int,
short unsigned int, signed int, unsigned int, long
signed int and long unsigned int.

integral promotion
An object or constant that is a char, short int, int bit-field, or of
enum type, that is used in an expression, is promoted to an int (if int is

266 Glossary

Glossary

large enough to contain all possible values of the smaller type) or
unsigned int.

keyword A keyword is an identifier that is reserved for use by the compiler. No
object name or other use of an identifier may use a keyword.

label A label is an identifier that corresponds to a particular statement in a
function. It may be used by the goto statement. default is a special
label which is used with the switch statement.

library function A library function is a function provided with the C compiler that
performs some commonly needed action. The C language standard
describes a set of functions that all C compilers must provide. Whether or
not the function actually generates a function call is
implementation-defined.

line A line is conceptually similar to a line as seen in a text editor. The line in
a text editor may be called a physical line. Several physical lines may be
joined together into one logical line (or just "line") by ending all but the
last line with a \ symbol. C does not normally require statements to fit
onto one line, so using the \ symbol is usually only necessary when
defining macros.

linkage An object with external linkage may be referenced by any module in the
program. An object with internal linkage may be referenced only within
the module in which it is defined. An object with no linkage may only be
referenced within the block in which it is defined.

lint lint is a utility program, often provided with the compiler, which detects
problems that the compiler will accept as syntactically valid, but likely are
not what the programmer intended.

lvalue An lvalue is an expression that designates an object. The term originally
comes from the assignment expression,

L = R

in which the left operand L to the assignment operator must be a
modifiable value. The most common form of lvalue is the identifier of an
object.

If an expression E evaluates to a pointer to an object, then *E is an lvalue
that designates the object to which E points. In particular, if E is declared

Glossary 267

Appendices

as a "pointer to int", then both E and *E are lvalues having the
respective types "pointer to int" and int.

macro There are two kinds of macros. An object-like macro is an identifier that
is replaced by a sequence of tokens. A function-like macro is an apparent
function call which is replaced by a sequence of tokens.

module Referred to in the C language standard as a translation unit, a module is
usually a file containing C source code. A module may include headers or
other source files, and have conditional compilation (preprocessing
directives), object declarations, and/or functions. A module is thus
considered to be a C source file after the included files and conditional
compilation have been processed.

name space A name space is a category of identifiers. The same identifier may appear
in different name spaces. For example, the identifier thing may be a
label, object name, tag and member of a structure or union, all at the same
time, since each of these has its own name space. The syntax of the use of
the identifier resolves which category the identifier falls into.

nesting Nesting is placing something inside something else. For example, a for
statement may, as part of its body, contain another for statement. The
second for is said to be nested inside the first. Another form of nesting
occurs when source files include other files.

null pointer constant
The value zero, when used in a place where a pointer type is expected, is
considered to be a null pointer constant, which is a value that indicates that
the pointer does not currently point to anything. The compiler interprets
the zero as a special value, and does not guarantee that the actual value of
the pointer will be zero.

The macro NULL is often used to represent the null pointer constant.

null character The character with all bits set to zero is used to terminate strings, and is
called the null character. It is represented by the escape sequence \0 in a
string, or as the character constant ’\0’.

object An object is a collection of bytes in the storage of the computer, used to
represent values. The size and meaning of the object is determined by its
type. A scalar object is often referred to as a variable.

parameter A parameter to a function is a "local copy" of the argument values
determined in the call to the function. Any modification of a parameter

268 Glossary

Glossary

value does not affect the argument to the function call. However, an
argument (and hence a parameter) may be a pointer to an object, in which
case the function may modify the object to which its parameter points.

pointer An object that contains the address of another object is said to be a pointer
to that object.

portable Portable software is written in such a way that it is relatively easy to make
the software run on different hardware or operating systems.

precedence Precedence is the set of implicit rules for determining the order of
execution of an expression in the absence of parentheses.

preprocessor The preprocessor:

• examines tokens for macros and does appropriate substitutions if
necessary,

• includes headers or other source files, and,
• includes or excludes input lines based on #if directives

before the compiler translates the source.

recursion Recursion occurs when a function calls itself either directly, or by calling
another function which calls it. See recursion. (!)

register A register is a special part of the computer, usually not part of the
addressable storage. Registers may contain values and are generally faster
to use than storage.

The keyword register may be used when declaring an object with
automatic storage duration, indicating to the compiler that this object will
be heavily used, and the compiler should attempt to optimize the use of
this object, possibly by placing it in a machine register.

return value A return value is the value returned by a function via the return
statement.

rounding A value is rounded when the representation used to store a value is not
exact. The value may be increased or decreased to the nearest value that
may be accurately represented.

scalar A scalar is an object that is not a structure, union or array. Basically, it is
a single item, with type such as character, any of the various integer types,
or floating-point.

Glossary 269

Appendices

scope The scope of an identifier identifies the part of the module that may
refererence it. An object with block scope may only be referenced within
the block in which it is defined. An object with file scope may be referred
to anywhere within the file in which it is defined.

sequence point A sequence point is a point at which all side-effects from previously
executed statements will have been resolved, and no side-effects from
statements not yet executed will have occurred. Normally, the
programmer will not need to worry about sequence points, as it is the
compiler’s job to ensure that side-effects are resolved at the proper time.

side-effect A side-effect modifies a value of an object, causing a change in the state of
the program. The most common side-effect is assignment, whereby the
value of the left operand is changed.

signed A signed value can represent both negative and positive values.

The keyword signed may be used with the types char, short int,
int and long int.

statement A statement describes the actions that are to be taken by the program.
(Statements are distinct from the declarations of objects.)

static storage duration
An object with static storage duration is created when the program is
invoked, and destroyed when the program exits. Any value stored in the
object will remain until explicitly modified.

string A string is a sequence of characters terminated by a null character. A
reference to a string is made with the address of the first character.

string literal A string literal is a sequence of zero or more characters enclosed within
double-quotes and is a constant. Adjacent string literals are concatenated
into one string literal. The value of a string literal is the sequence of
characters within the quotes, plus a null character (\0) placed at the end.

structure A structure is a type which is a set of named members of (possibly
different) types, which reside in memory starting at adjacent and
sequentially increasing storage locations.

subscript A subscript (or index) is a number used to reference an element of an
array. It is a non-negative integral value. The first element of an array
has the subscript zero.

270 Glossary

Glossary

tag A tag is an identifier which names a structure, union or enumeration. In
the declaration,

enum nums { ZERO, ONE, TWO } value;

nums is the tag of the enumeration, while value is an object declared
with the enumeration type.

token A token is the unit used by the preprocessor for scanning for macros, and
by the compiler for scanning the input source lines. Each identifier,
constant and comment is one token, while other characters are each,
individually, one token.

type The type of an object describes the size of the object, and what
interpretation is to be used when using the value of the object. It may
include information such as whether the value is signed or unsigned,
and what range of values it may contain.

undefined behavior
Undefined behavior occurs when an erroneous program construct or bad
data is used, and the standard does not impose a behavior. Possible
actions of undefined behavior include ignoring the problem, behaving in a
documented manner, terminating the compilation with an error, and
terminating the execution with an error.

union A union is a type which is a set of named members of (possibly different)
types, which reside in memory starting at the same memory location.

unsigned An unsigned value is one that can represent only non-negative values.

The keyword unsigned may be used with the types char, short
int, int and long int.

variable A variable is generally the same thing as an object. It is most often used to
refer to scalar objects.

void The void type is a special type that really indicates "no particular type".
An object that is a "pointer to void" may not be used to point at anything
without it first being cast to the appropriate type.

The keyword void is also used as the type of a function that has no return
value, and as the parameter list of a function that requires no parameters.

Glossary 271

Index

ASCII character set 168
assignment 264_ assignment operator 114-115, 264
associativity of operators 93
audit trail 187
auto 84_based predefined macro 192

initialization 84, 87_cdecl predefined macro 192
automatic storage duration 83, 120, 132, 180, 264_export predefined macro 193

_far predefined macro 60, 192
_far16 predefined macro 192
_fortran predefined macro 192 B_huge predefined macro 63, 192
_interrupt predefined macro 193
_loadds predefined macro 194
_near predefined macro 62, 192 base operator 70
_pascal predefined macro 193 basic type 20
_saveregs predefined macro 194 big code 58
_segment predefined macro 192 big data 59, 239
_segname predefined macro 192 bit 264
_self predefined macro 192 bit-field 52, 55, 116, 237, 264
_syscall, predefined macro 193 bitwise AND 110
_System predefined macro 193 bitwise complement 103

bitwise exclusive OR 111
bitwise inclusive OR 112
bitwise NOT 103A block 119, 123-124, 264-265
block scope 20
break statement 123, 127, 187
byte 264addition 107

address 263
address-of operator 85-87, 102
aggregate 263 Calignment 51, 105, 263
argc 135, 230
argument 263, 268
argv 135, 230 call back function 193
arithmetic conversion 46, 80 call by value 263
array 29, 264 calling a function 98

index 22, 29 case label 116, 123, 216, 238
initialization 87 case sensitive 13-14
specifying size 116 cast 80, 264
subscripting 97 cast operator 72, 104

arrow operator 51, 99, 266

273

Index

cdecl, predefined macro 192 in a for 127
character constant 12, 36, 264-265 in a while 127

wide 39 controlling expression 121, 174
character set 11 conversion

ASCII 168, 231 float to integer 45
EBCDIC 168 integer to float 45
execution 11, 231 signed integer 44
source 11, 231 type 43

character type 233 unsigned integer 44
comma operator 116 converting types explicitly 104
comment 12, 14, 187, 265 creating an external object 82
commenting out 144 cross-compile 11
common error

; in #define 175
= instead of == 173
dangling else 176 D
delayed error from included file 175
missing break in switch 177
mixing operator precedence 174

data hiding 164side-effects in macros 178
complete 165compact memory model 57, 64, 154, 156, 239
partial 165compatible types 80

declaration 265compiler 265
of function 17complement operator 103
of object 17complete data hiding 165

decrement 100-101, 265compound assignment 115
default argument promotion 47, 130-131compound statement 18, 20, 119, 123-124,
default label 123264-265
defining a type 26conditional compilation 139
definition 18, 265conditional operator 113
diagnostic 229const 73
difference 107constant 33
division#define 142, 176, 180, 186

rounding 106character 36, 264-265
truncation 106enumeration 142, 176, 180, 186

do statement 125floating-point 35
dot operator 51, 99integer 33

manifest 142, 176, 180, 186
string-literal 40

constant expression 116
in #if or #elif 117

continuation lines 137, 159, 216
continue statement 125, 127

in a do 127

274

Index

constant 35
emulation 25E limits 221
number 25

FLT_ROUNDS predefined macro 45
for statement 116, 125EBCDIC character set 168
form feed 11ellipsis 99
fortran predefined macro 192else statement 121
function 265empty statement 121

call 98emulation
call back 193floating-point 25
declaration 17entry point 135
definition 129enumerated type 26-27
designator 96enumeration constant 13, 26, 116
far 58enumeration name 13
main 135, 181equal to 110
name 13escape sequences 38, 137, 159, 197, 231, 264
near 58exception 265
prototype 61, 65, 132execution character set 11
recursion 99, 132expression 93
scope 20constant 116
type 20precedence 93, 199

function prototype scope 20primary 95
functional interface 164priority 93, 199

extern 29
extern storage class 82
external linkage 13, 81-82, 98, 169, 185, 193 Gexternal object

creating 82

glossary 6
goto statement 121, 127, 187, 267F grammar

C language 201
greater than 109
greater than or equal to 109far 58-59

far pointer 60
far predefined macro 60, 192
file scope 20
float

conversion to integer 45
rounding 45

floating-point 265

275

Index

array 87
auto 84, 87H static 87
struct 89
union 90

input/output 6header 12, 133, 138, 164, 239, 266
integer 266<float.h> 25, 45, 171, 217

constant 33<limits.h> 23, 217
conversion 44<malloc.h> 68
conversion to float 45<stdarg.h> 133
division<stddef.h> 39, 41, 57, 103, 107, 157

rounding 106including 138
truncation 106hiding data 164

limits 217history 3
integral promotion 43, 47, 80, 266horizontal tab 11
internal linkage 81-82, 185huge memory model 58, 107, 154, 156, 236, 239
interrupt 193huge pointer 62
interrupt predefined macro 193huge predefined macro 63, 192
iteration 124

I K

identifier 12-13, 266
keyword 12-13, 21, 68, 191, 202, 208, 267external

_ _based 21, 68, 192significant characters 14
_ _cdecl 192reserved 14
_ _export 193if statement 121
_ _far 21, 60-64, 105, 192, 244implementation-defined behavior 6, 170, 229, 266
_ _far16 21, 66-67, 105, 192implementation-specific behaviour 6, 12-15,
_ _fortran 19221-25, 27, 38-39, 41, 43-46, 49, 51-55, 57,
_ _huge 21, 62-63, 105, 192, 24460, 62-63, 85, 103, 105-108, 136, 138-139,
_ _interrupt 193, 246153-154, 215, 227, 263-264
_ _loadds 193-194include 138
_ _near 21, 61-63, 65, 105, 192, 244nested 138
_ _pascal 193included file 186
_ _saveregs 194incomplete type 29, 266
_ _segment 21, 68-70, 192increment 100-101, 266
_ _segname 21, 68, 192index 22, 29, 264, 266
_ _self 21, 68, 192indirection 266
_ _stdcall 193indirection operator 102, 266
_ _syscall 193initialization 87, 116, 266

276

Index

_Packed 21, 52, 192 signed 21-23, 43, 53, 170, 218-219, 233,
_Seg16 21, 67, 105, 192 270-271
auto 17, 19, 77, 84-85, 132, 241 signed char 218, 233, 266
break 123, 126-128, 178, 187 signed int 33, 43, 52, 54, 78, 237, 266
case 116, 123, 216, 238 signed long 33
char 21-23, 32, 39-41, 43, 52, 57, 65-67, 96, signed long int 44

98, 131, 170, 218-219, 233, 266, signed short int 23, 43-44
270-271 size_t 103, 157, 234

const 21-22, 73, 75, 95, 115 sizeof 103, 116, 139, 234
continue 125, 127 static 17, 77, 81-84, 129, 132, 185, 241
default 123, 267 struct 52, 79, 165-166
do 124, 127, 215 switch 123, 127-128, 177-178, 215-216, 238,
double 21-22, 25, 35, 46-47, 98, 131, 134, 170, 267

221, 265 typedef 73-74, 77-78, 175, 180
else 121-122, 176-177 union 165
enum 10, 266 unsigned 21-23, 43-44, 53, 170, 218-219, 233,
extern 17, 77, 81-84, 120, 129, 132, 185, 193, 271

241 unsigned char 43, 52, 218, 233, 266
float 21-22, 25, 35, 46-47, 61, 98, 131, 170, unsigned int 33, 43, 52-53, 103, 105, 220, 234,

221, 234, 265 237, 266-267
for 84, 116, 124, 126-127, 215, 268 unsigned long 23
goto 119, 121, 126-128, 187, 267 unsigned long int 23, 33, 44, 80, 105, 221
if 122, 139, 173-174, 177, 182, 215 unsigned short 39, 41
int 21-24, 26-28, 36, 39, 43, 47, 52-54, 56, 66, unsigned short int 43-44, 52, 220

77, 98, 103, 107, 109-110, 112-113, va_list 133
129-130, 133-134, 142, 170, 220, void 19, 21, 56, 72-73, 95, 102-105, 107, 110,
236-238, 241, 266, 268, 270-271 114-115, 120, 128-129, 266, 271

int long unsigned 80 volatile 21-22, 74-75, 81, 115
list of 12 wchar_t 39, 41, 87
long 21-23 while 121, 124, 127, 215
long double 25, 35, 46, 134, 221, 265
long int 23-24, 33, 43, 107, 134, 170, 220-221,

234, 236, 270-271
long signed int 266 L
long unsigned int 266
ptrdiff_t 107, 236
register 17, 19, 77, 84-86, 102, 130, 132-133,

label 119, 267236, 241, 269
name 13return 126-128, 132, 136, 269

large memory model 58, 64, 154, 156, 239short 21-23
leading underscore 14short int 23-24, 43, 52, 98, 131, 219, 266,
left shift 108270-271
length of a string 31short signed int 266
less than 109short unsigned int 266

277

Index

less than or equal to 109 function-like 143
library function 6, 138, 178, 181, 267 numerical limits 217

_bheapseg 70 object-like 142
_dos_setvect 193 offsetof 157
exit 136 predefined 153-154
getc 174 _ _386_ _ 156
getchar 72-73 _ _CHAR_SIGNED_ _ 155
isalpha 167 _ _CHEAP_WINDOWS_ _ 155
malloc 104, 142 _ _COMPACT_ _ 154
mbtowc 39, 41 _ _DATE_ _ 153, 239
memcpy 104, 120 _ _DOS_ _ 155
printf 133-134, 144, 177 _ _FILE_ _ 153
rewind 72 _ _FLAT_ _ 154

line 267 _ _FPI_ _ 155
continuation 137, 159, 216 _ _HUGE_ _ 154
logical 137, 216 _ _INLINE_FUNCTIONS_ _ 155
physical 137 _ _LARGE_ _ 154

linkage 267 _ _LINE_ _ 153
external 13, 81-82, 98, 185, 193 _ _MEDIUM_ _ 154
internal 81-82, 185 _ _NETWARE_386_ _ 155
no 81-82 _ _NT_ _ 155

linker _ _OS2_ _ 155
case sensitive 14 _ _QNX_ _ 155
external identifer _ _SMALL_ _ 154

significant characters 14 _ _STDC_ _ 154
linking 160 _ _TIME_ _ 154, 239
lint 267 _ _WATCOMC_ _ 156
logical AND 112 _ _WINDOWS_ _ 155
logical NOT 103 _ _WINDOWS_386_ _ 155
logical OR 113 _based 192
long names 169 _cdecl 192
loop forever 126 _export 193
looping 124 _far 60, 192
lvalue 95-96, 267 _far16 192

modifiable 95 _fortran 192
_huge 63, 192
_interrupt 193
_loadds 194
_M_IX86 156M
_near 62, 192
_NULLOFF 68
_NULLSEG 68

macro 267-268 _pascal 193
defining 142 _saveregs 194

278

Index

_segment 192 memory model 57
_segname 192 big code 58
_self 192 big data 59, 239
_syscall, 193 compact 57, 64, 154, 156, 239
_System 193 huge 58, 107, 154, 156, 236, 239
cdecl, 192 large 58, 64, 154, 156, 239
far 60, 192 medium 58, 63-64, 154, 156, 239
FLT_ROUNDS 45 mixing 59
fortran 192 small 57, 64, 154, 156, 239
huge 63, 192 small code 58
interrupt 193 small data 59, 239
M_I386 156 minus
M_I86 156 binary 107
M_I86CM 156 unary 103
M_I86HM 156 modifiable lvalue 95
M_I86LM 156 modifier
M_I86MM 156 type 20
M_I86SM 156 modularity 163
MSDOS 156 module 268
near 62, 192 module name 164
NO_EXT_KEYS 156 modulus 106
NULL 57, 68, 157, 239, 268 multibyte character 12, 39, 41
pascal 193
SOMDLINK 192-193
SOMLINK 192-193
va_arg 134 N
va_end 134
va_start 133-134

undefining 144
namevariable argument

enumeration 13va_arg 134
function 13va_end 134
label 13va_start 133
macro 13macro name 13
mixed case 180main 135
object 13parameters to 135
scope 20return value 136
structure 13manifest constant 142, 176, 180, 186
structure member 13math chip 25
union 13math coprocessor 25
union member 13medium memory model 58, 63-64, 154, 156, 239
variable 13member 49

name space 78, 268of structure 51, 99
enumeration 26of union 99

279

Index

labels 119 declaration 17
structure members 50 initialization 87
structures 49 type 20
union members 55 offset of member 157
unions 54 offsetof 157

naming modules 164 ones complement 103
near 58-59 operand 93
near pointer 61 operator 93
near predefined macro 62, 192 ! 103
negative != 110

unary 103 % 106
nesting 268 %= 115

include 138 & 85, 87, 102, 110
new line 11 && 112
new type 26 &= 115
no linkage 81-82 * 102, 266
non-graphic characters *= 115

escape sequences 38, 197, 231 ++ 100-101
not equal to 110 += 115
not greater than 109 , 116
not less than 109 -- 100-101
NOT operator -= 115

bitwise 103 -> 51, 99, 266
logical 103 . 51, 99

notation 9 / 106
null /= 115

character 30-31, 40, 88, 268 1’s complement 103
macro 57 :> 70
pointer 57, 115, 157, 239, 268 < 109
statement 121 <<= 115

NULL macro 157, 239 <= 109
NULL predefined macro 57, 68, 157, 239, 268 = 115, 264
numeric coprocessor 25 == 110
numerical limits 217 > 109

floating-point 221 >= 109
integer 217 >>= 115

? 113
^ 111
^= 115
addition 107O
address-of 85-87, 102
arrow 51, 99, 266
assignment 114-115

object 13, 268, 271 associativity 93

280

Index

binary & 110 remainder 106
binary * 106 right shift 108
binary + 107 simple assignment 115
binary - 107 sizeof 103, 234
bitwise AND 110 subtraction 107
bitwise complement 103 sum 107
bitwise exclusive OR 111 times 106
bitwise inclusive OR 112 unary 101
bitwise NOT 103 unary & 102
cast 72, 104 unary * 102, 266
comma 116 unary minus 103
complement 103 | 112
compound assignment 115 |= 115
conditional 113 || 113
difference 107 ~ 103
division 106 order of operation 93, 199
dot 51, 99 order of translation 159
equal to 110 OS/2 convention 193
greater than 109 output 6
greater than or equal to 109
indirection 102, 266
left shift 108
less than 109 P
less than or equal to 109
logical AND 112
logical NOT 103

parameter 263, 268logical OR 113
to mainmodulus 106

argc 135, 230negative 103
argv 135, 230not 103

parentheses 93not equal to 110
partial data hiding 165not greater than 109
pascal predefined macro 193not less than 109
pitfallplus 102

; in #define 175pointer 102
= instead of == 173post-decrement 100
dangling else 176post-increment 100
delayed error from included file 175postfix 97
missing break in switch 177pre-decrement 101
mixing operator precedence 174pre-increment 101
side-effects in macros 178precedence 93, 199

pluspriority 93, 199
binary 107product 106
unary 102quotient 106

281

Index

plus operator 102 programming style 179
pointer 56, 269 promotion

far 60 integer 43
far16 66 prototype
huge 62 function 132
near 61 ptrdiff_t 107, 236
null 57, 115, 239, 268
offset 58, 64, 66
on the 8086 169
segment 58, 64 Q
selector 64, 66
to void 56, 105

pointer operator 102
qualifiers 20portable 167, 269
quotient 106post-decrement 100

post-increment 100
postfix operator 97
pre-decrement 101 Rpre-increment 101
precedence 93, 199, 269
predefined macro 153-154
preprocessor 137, 269 recursion 99, 132, 269
preprocessor directive reducing recompile time 163

137 reference to structure member 51
#define 137, 142, 154 register 85, 133, 269

operator 144 remainder 106
operator 145 reserved identifier 12, 14

#elif 116-117, 139-140 resource manager 164
#else 139-140 return statement 128
#endif 139-140 return value 269
#error 152 right shift 108
#if 15, 116-117, 139-140, 171, 215, 217, 269 rounding 45, 106, 269
#ifdef 141
#ifndef 141
#include 137-138, 159, 175, 216, 266
#line 152-153 S
#pragma 52, 67, 153, 192-193, 239
#undef 144, 148, 150, 154
null 137

primary expression 95 scalar 269
priority of operators 93 scope 19-20, 77, 84, 270
procedural interface 164 block 20
product 106 file 20
production 95 function 20

282

Index

function prototype 20 storage class 77
selection statement 121 auto 84
sequence point 270 extern 29, 82
shift following a type specifier 77

left 108 register 85, 133
right 108 static 81-82

side-effect 270 storage duration
sign extension 44 automatic 120, 132, 180
signed 270 static 132, 180, 185, 193
simple assignment 115 string 31, 96, 265, 270
size_t 103, 157, 234 length 31
sizeof operator 103 string literal 12, 31, 40, 96, 216, 265, 270
small code 58 wide 41, 216
small data 59, 239 struct
small memory model 57, 64, 154, 156, 239 initialization 89
SOMDLINK predefined macro 192-193 structure 49, 270
SOMLINK predefined macro 192-193 bit-field 52
source character set 11 member 49, 51, 99
spaghetti code 127, 187 name 13
specifier member reference 51

storage class 18 name 13
type 20 style 179

standard conforming 154 aligning declarations 184
statement 119, 270 case rules 180

break 123, 127, 187 comments 187
compound 18, 20, 119, 123-124 complicated statements 186
continue 125, 127 consistency 179
do 125 function prototypes 186
empty 121 goto 187
for 116, 125 included files 186
goto 121, 127, 187, 267 indenting 182
if 121 object names 181
iteration 124 reusing names 185
label 119 small functions 184
looping 124 static objects 185
null 121 subscript 97, 264, 270
return 128 subtraction 107
selection 121 sum 107
switch 123, 216, 238 switch statement 123, 216, 238
while 124 syntax

static 81 C language 201
initialization 87 system dependencies 166

static storage class 82
static storage duration 132, 180, 185, 193, 270

283

Index

T U

tag 26, 49, 271 unary operator 101
termination status 136 & 102
tilde 103 * 102, 266
token 271 + 102
translation limits 215 - 103
translation order 159 minus 103
trigraphs 12, 38, 137, 159, 195, 264 negative 103
truncation 106 plus 102
type 20, 271 undefined behavior 271

array 29 undefining a macro 144
basic 20 underscore
char 22, 170, 233 leading 14
compatible 80 uninitialized objects 91
const 73 union 54, 271
conversion 43 initialization 90
defining 26 member 99
double 25 name 13
enumerated 26-27 name 13
float 25, 170 unsigned 271
floating-point 25 unsigned integer conversion 44
int 170 usual arithmetic conversion 46
integer 22
long 22-23
long double 25
modifier 20 V
new 26
pointer 56-57
qualifiers 20

va_arg 134short 22-23
va_arg predefined macro 134specifier 18, 20
va_end 134string 31
va_end predefined macro 134structure 270
va_list type 133union 271
va_start 133va_list 133
va_start predefined macro 133-134void 72, 271
variable 271volatile 74

type 20type definition 13, 78, 180
variable argument list 133typedef 13, 78
variable name 13

284

Index

vertical tab 11
visually aligning object declarations 184
void 56, 72, 271

pointer to 105
volatile 74

W

wchar_t 39, 41, 87
while statement 124
wide character constant 39
wide string literal 41, 216
Win32 convention 193

285

