Watcom FORTRAN 77

Programmer’s Guide

Edition 11.0c

Notice of Copyright

Copyright 00 2000 Sybase, Inc. and itssubsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Portions of this manual are reprinted with permission from Tenberry Software, Inc.

Printed in U.SA.

Preface

The Watcom FORTRAN 77 Programmer’s Guide includes the following major components:
* DOS Programming Guide
» The DOS/AGW DOS Extender
» Windows 3.x Programming Guide
» Windows NT Programming Guide
» OS2 Programming Guide
» AutoCAD ADS Programming Guide
* Novell NLM Programming Guide
» Mixed Language Programming

» Common Problems

Acknowledgements

This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. Inthis system, writers use an ASCI| text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on avariety of operating systems, interprets the tags to format the text into aform
such as you see here. Writers can produce output for avariety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result istype-set quality copy containing
integrated text and graphics.

Many users have provided valuable feedback on earlier versions of the Watcom FORTRAN
77 compilers and related tools. Their comments were greatly appreciated. If you find
problems in the documentation or have some good suggestions, we would like to hear from
youl.

September, 2000.

Trademarks Used in this Manual

AutoCAD Development System is atrademark of Autodesk, Inc.

DOS/4G and DOS/16M are trademarks of Tenberry Software, Inc.

0S/2 isatrademark of International Business Machines Corp. IBM Developer’s
WorkFrame/2, Presentation Manager, and OS/2 are trademarks of International Business
Machines Corp. IBM isaregistered trademark of International Business Machines Corp.
Intel and Pentium are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT is atrademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

UNIX isaregistered trademark of UNIX System Laboratories, Inc.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

1 Watcom FORTRAN 77 Application DevelOpmentccoeveverereneeneeneeieneneneenens

DOS Programming GUITEcoueerueiriiiriieniiieiesieies ettt st

2 Creating 16-bit DOS APPHICALIONSceoveuirieiirieirieierieesieere e
2.1 The Sample APPHCALIONccccveeeeieiese e
2.2 Building and Running the Sample DOS Applicationcccccoevvevvivnereiennnn.
2.3 Debugging the Sample DOS AppliCationc.cccoevieveviecevereeieerescee e

3 Creating 32-bit Phar Lap 386|DOS-Extender Applicationsccccoveveierierienicnenenn
3.1 The Sample APPHICALTIONccccoiiiiiiiieese e
3.2 Building and Running the Sample 386|DOS-Extender Application
3.3 Debugging the Sample 386|DOS-Extender Applicationcccccccveevevnnennn.

4 Creating 32-bit DOS/AGW APPIICALIONSccceveeeierieierieie et
4.1 The Sample APPlICALIONccoccevericese e e
4.2 Building and Running the Sample DOS/4GW Applicationcccccccveennee.
4.3 Debugging the Sample DOS/AGW Applicationcccccceeveeivvieniesenenenenn,

5 32-bit Extended DOS Application Developmentccoevereeenrienienene e
5.1 INEIOTUCTION ..ttt
5.2 How can | write directly to video memory using a DOS extender?
5.3 How do | issue interruptsin a DOS/IAGW application?cccceceveenieennnne,
5.4 How do | get information about free memory in the 32-bit environment? ..

The DOS/AGW DOS EXLENAEYc.cieirieirieieieisie sttt st se st se st sessesesseseesesens
6 The Tenberry Software DOS/AGW DOS EXtENdercccceveevivveerieeeeecee e,

7 LiNEar EXECULBDIEScccveeiiiieieecee ettt ettt ettt et e ne e sar e e beeeane et
7.1 The Linear Executabl@ FOrmMatccoveveeiiiciiecee et

7.1.1 The Stub Programccoeceriirinesieneseseeeseeesee e

T2MEMONY USE ..ottt

8 Configuring DOSIAGW ...ttt et r e sne b sne e s
8.1 The DOSAG Environment Variableccocoveiveinnincineneseseeens

8.2 Changing the Switch Mode Settingccocevevinieve e

8.3 Fine Control of Memory USAJEcccceeveieerie e

8.3.1 Specifying a Range of Extended Memorycccoeveveieneeccnenne.

8.3.2USING EXIraMEMOIYocviiiieeieieieeeeeesese e

Table of Contents

8.4 Setting RUNLIME OPLIONScoueiuiriiiiiiesie et 38

8.5 Controlling AdAresS LinNE 20cocooeiirereneriere e e 40

DV MM ettt ettt et e bRt e e n Rt et 41
9.1 VMM Default Parameerscccoveeieieeeeeeeeese s eeeneenes 41

9.2 Changing the DEfAUILSccoeiiiiriiice s 42
9.2.1The WVMC FIE ..o 42

10 Interrupt 21H FUNCLIONSovcieeciceeee et s sre s 43
10.1 Functions 25H and 35H: Interrupt Handling in Protected Mode 47

10.1.1 32-Bit GAES ...coeerererieieiririeieeresieie ettt 47

10.1.2 Chaining 16-bit and 32-bit Handlers ... 48

10.1.3 Getting the Address of the Interrupt Handlercccoeevveinens 48

11 Interrupt 31H DPMI FUNCLIONSoviviieieieeienieieriecriecsie ettt 49
11.1 Using Interrupt 31H FUNCLion CallSccooeivieirireecee e 49

11.2 Int31H FUNCHON CallS ..o s 50

11.2.1 Local Descriptor Table (LDT) Management Services 51

11.2.2 DOS Memory Management SEIVICEScccvevvereereereeiesieeeseniesnens 57

11.2.3 INLEITUPL SEIVICES ..ottt 58

11.2.4 Tranglation SEIVICESccveeevirerrireerireeieseeesiee s 61

11.2.5 DPMI VEISION ..ottt 70

11.2.6 Memory Management SENVICESceovveereierenisieneseseeeseee e 70

11.2.7 Page LOCKING SEIVICEScoveuirieierieireeerieisieesie e 72

11.2.8 Demand Paging Performance Tuning Servicesccovveneeneas 74

11.2.9 Physical Address Mappingcccceeveerererennienneneeesees e 75

11.2.10 Virtual Interrupt State FUNCLIONSccccoeivvvveevierere e 76

11.2.11 Vendor Specific EXIENSIONScccoveveeveeieereieeee e 78

11.2.12 COPrOCESSON SEALUS ..eevvviveeriiiisiieseesiessresssessreeseeesneessessssesssee s 79

L2 UBHHTIES vttt bbbt b et 81
12.1 DOSAGWV ..ottt ettt sttt sttt st ettt sttt 82

122 PMINFO ottt e 83

123 PRIVATXIM ottt sttt sttt 85

2 Y\ S 86

L3 EITOr MESSAgES ...ccuveiveeeeiteesiesieestessees e sseesteeseeste et esseeeesaeeneesseesesseesesseesessennsessennsenns 89
13.1 Kernel Error MESSAgESccceoeeeeiireiesesesiestesiesieseesaeseesaeessessessessessessesnens 89

13.2 DOS/AG EITOIS ..cuviieeereiereriereienesissesee st sss e sesseneesesnas 93

14 DOS/AGW Commonly AsKed QUESLIONScceeererierierierieseeieee e seeas 101
14.1 Accessto Technical SUPPOITooereerierieieee e 101

\Y

Table of Contents

14.2 Differences Within the DOS/4G Product Lineccccvevnennennennen 103

G N (o 1= oo [OOSR 106

14.4 Interrupt and Exception Handlingcccvevrinninnneceenecceseees 108

14.5 MemOory ManagemeNtccocevirirererisese e 111

14.6 DOS, BIOS, anNd MOUSE SEIVICESeeeeverieeereeireeeeeeeeeseeesveessesesvesssessnres 111

TA.T7 Virtual MEMOIY ..ottt s 112

14.8 DEDUGUING cvveveeueererrererresiesteseestesteseesessseeeeesessessessessessessessessessensensesessessenses 115

14.9 ComMPaLiDIlITY ..ocveveeeececee e s 120
Windows 3.X Programming GUITEcocoeiereeiirireneeiese et 123
15 Creating 16-bit Windows 3.X APPliCALIONScceovreirerereniinieesieesieeseeeseeeseeseens 125
15.1 The Sample APPHICALIONcceieirirereree e 125

15.2 Building and Running the Sample Windows 3.x Application 126

15.3 Debugging the Sample Windows 3.x Applicationcccocecvevrennencnnnn. 127

16 Porting Non-GUI Applications to 16-bit WindowS 3.Xccccceeeveeeeeenieniesesese e 129
16.1 Console Devicein aWindowed ENVironmentccccovvreenereneenenennns 129

16.2 The Sample Non-GUI AppliCationccceoeverinieneienesenee e 130

16.3 Building and Running the Non-GUI Windows 3.x Application 130

16.4 Debugging the Non-GUI Windows 3.x Applicationcccccooveeiinenenne 131

16.5 Default Windowing Library FUNCLIONSccoeireinieineneesees e 132

17 Creating 32-bit Windows 3.X APPliCALIONSccoeeeruireriirininieinieeneeese e 135
17.1 The Sample APPHICALIONcccoeiiirieereee e 135

17.2 Building and Running the Sample Windows 3.x Applicationc.......... 136

17.3 Debugging the Sample Windows 3.xX Applicationccccevvvvevereeceeennene 138

18 Porting Non-GUI Applications to 32-bit WindowWS 3.Xcccoveeeieieninienenenene e 141
18.1 Console Devicein aWindowed Environmentccccoevnennennennenenn 141

18.2 The Sample Non-GUI AppliCationcccceoeveieneneienene e 142

18.3 Building and Running the Non-GUI Windows 3.x Application 142

18.4 Debugging the Non-GUI Windows 3.X Applicationccoeeevevereenenens 145

18.5 Default Windowing Library FUNCLIONScccovirrinieeneneeseeseseee 146

19 The Watcom 32-bit Windows 3.X EXIENAENcccovrrrireiiinreee e 149
LO. 1 POINTESS ..ouvvreeeereseereee sttt 149

19.2 Implementation OVEIVIEWccccveeeeieeieieneeese et e e sresaesesaeseesasessessens 150

19.3 SYSLEIM SITUCLUIEeeeeieeciee ettt st es 152

19.4 SYSLEM OVEIVIEW ..ttt 153

19.5 Stepsto Obtaining a 32-bit Application ... 154

vii

Table of Contents

20 Windows 3.x 32-bit Programming OVEIVIEWccccoeeieireninene e e 155
20.LWINAPLFL ottt e 156

20.2 ENVIroNMENt NOLESocviiieriereeieieseeeeeeee et eneas 156

20.3 Floating-point EMUIGLIONcccoeiieirieinieireesieeseeeeseee e 157

20.4 MUILIPIE INSLBNCESeviviieicrieeeie ettt sb e e eb e 157

20.5 PoINter HANAIING ..cvoverieiiiieirieeriesees et 158

20.5.1 When To Convert Incoming POINLE'Sccceveverereereereerenienennens 159

20.5.2 When To Convert Outgoing POINLErSccceeveveeeeceniesenene e, 160

20.5.2.1 SendMessage and SendDlIgltemMessageccceeevnee. 160

20.5.3 GlobalAlloc and LOCAIAIIOCccvciveeirciieeeeeeee e 162

20.5.4 Callback FUNCtion POINLErScccoeveeireeireesee e 162

20.5.4.1 Window Sub-Classingccccocevenenenienieneneeeeeeesesee 164

20.6 Calling 16-Dit DLLScuiiiiirieeneririe ettt 166

20.7 _L16 FUNCLIONSoiviuiitieetereete st sttt sttt s eb e s eb e e b seenesrene 167

21 Windows 32-Bit Dynamic Link Librariesccocovereenenieneneeseeseseseseenes 169
21.1 Introduction t0 32-Bit DLLScoceeireriereierrreeeresee s 169

21.2 A SaMPlE 32-Dit DLL ..o 170

21.3 Cdlling Functionsin a 32-bit DLL from a 16-bit Application 172

21.4 Calling Functionsin a 32-bit DLL from a 32-bit Application 174

21.5 A Sample 32-bit DLL USINg @ SrUCIUIEc.evvieeiriiieeieeie e 175

21.6 Creating and Debugging Dynamic Link Librariesccccooeveieinnnccnnne 180

21.6.1 Building the AppliCatioNScccoeerenirienniieeees e 181

21.6.2 Ingtalling the Examples under Windowsccccoeevnenneneennns 181

21.6.3 Running the EXamples ... 181

21.6.4 Debugging @32-Dit DLLc.ccoieirieirieeierereeee e 182

21.6.5 SUMMEIY ..cviieeeiieee e e see et ae e et e e e eee e e seesneesnesneesnenneens 183

22 Interfacing Visual Basic and Watcom FORTRAN 77 DLLSccccccvveveveviecieeene, 185
22.1 Introduction to Visual Basic and DLLScccccoievnenninnineeneeeee 185

22.2 A WOrKing EXaMPIEc.ooiiiiiriiie et 187

22.3 Sample Visual Basic DLL Programscccccoerereinienienienenesese e 189

22.3.1 Source Code for VBDLL32.DLL ..oooiviiiiiiiienee e 189

22.3.2 Source code for COVERLB.DLLccovvvieeviienene e 191

22.4 Compiling and Linking the EXamples ..o 192

23 WINSB6 Library SUDPrOgramsccvevveverieierieseseeseeeesesseeessessesessessessessessesssseens 193
ANOCATESLE ... s 194

ANOCHUQGEALIBSLOoocveeeieiecieeceee e 195

QLB s 196

DEfINEDLLENLIY ..o 198

DefiNEUSEIPIOCLEoceeieieeeeeeeeeeriere e 200

viii

Table of Contents

[S ST AN L= 1 TR
FreeHUQEATTESLEcccooeiiieiieeeeeee e
FreelndirectFunctionHandlecccoeoveieecceccie e,
GetlndirectFunctionHandlecccoveeieieeccec et
GEIPIOCLE ... e n
INVOKEINAITECLFUNCLION ...ttt
V= o T L 1S o = |
PASS WORD_AS POINTERcccoeiiveievereecee e
REIEASEPIOCLOoocvveveceiietece ettt

24 32-bit Extended Windows Application Developmentccccorvrienienenenesieniens
24.1 Can you call 16-bit code from a 32-bit Windows application?
24.2 How do | add my WindOWS reSOUICES?cccceverererienenienesiesesie s

24.3 All function pointers passed to Windows must be 16-bit far pointers,
(001 (= ot OSSPSR PR PSPPI
24.4 Why are 32-bit callback routineS FAR?ccoeiiinnirrereereeee e
24.5Why usethe 16 APl fUNCLIONS?ccocvvive e

25 Special WindowsS APl FUNCLIONScocooiciiiiice et sneenens

Windows NT Programming GUIAEcoeeerieieeiirineneniese e s

26 Windows NT Programming OVEIVIEWccveerieirieninienisesse e
26.1 Windows NT Character-mode Versus GUIcccveoreinennencneneseee,
26.2 Windows NT Character-mode AppliCationScccoeveereennienseneeneeens

27 Porting Non-GUI Applicationsto Windows NT GUIcccoveevevniveciesene e
27.1 Console Device in aWindowed EnVironmentccooeeeennneenienneeeenes
27.2 The Sample Non-GUI APPlICALIONcoeverininiiereeere e
27.3 Building and Running the Non-GUI Windows NT Application
27.4 Debugging the Non-GUI Windows NT Applicationc.ccoceveveneneneenns
27.5 Default Windowing Library FUNCLIONScccoceoieiieninennereseeeeseeieee

28 Windows NT Multi-threaded AppPliCALIONSccceirieireireere e
28.1 Programming CoNSIAErationscccoeereerienerienesenisesieesee e

28.2 Creating THrEAOScceveeeeeeeeeceee st s e ere e nne s

28.2.1 Creating aNew Threadccccvcvvevieveneiese e

28.2.2 Terminating the Current Threadccccooeeeveveveveveececeeeeeenns

28.2.3 Getting the Current Thread Identifiercccccvieveiieinvieiienens

28.3 A Multi-threaded EXamPlecccoeirriininene e

Table of Contents

29 Windows NT Dynamic Link Libraries ... 241
29.1 Creating Dynamic Link Librariescccoocoeiirinenenenere e 241

29.2 Creating a Sample Dynamic Link Libraryccccccoeoveoneineineicseene 242

29.3 Using Dynamic Link Libraries ..o 246

29.4 The Dynamic Link Library Da@ATEaccceceveireieneeneseeee e 247

29.5 Dynamic Link Library Initialization/Terminationc.cccceeevevevnieneennns 248

OS/2 Programming GUIEcceeueiierieiieieeeietesesesestestestestestesaessessesaessessssessessessessessessessessens 251
30 Creating 16-bit OS/2 1.X APPlICALIONScceeviiiriiriiniereerieeeee e 253
30.1 The Sample APPliCaLIONccccooiiiiirere e e 253

30.2 Building and Running the Sample OS/2 1.x Applicationc.ccccoeeeneene 254

30.3 Debugging the Sample OS/2 1.X Applicationcccveveveeereieneierecneens 255

31 Creating 32-bit OS/2 APPlICALIONSc.ooeevirieiiririirieirieerie e 257
31.1 The Sample APPliCaHIONcccovveveeieese e 257

31.2 Building and Running the Sample OS/2 Applicationccccocvvvvieveiennn. 258

31.3 Debugging the Sample OS/2 AppliCationcccccvevveveiievesesesee e 259

32 052 2.x Multi-threaded APPliCALIONScccoviiiiinie e 261
32.1 Programming CONSIAEralionNSccevereerierieneeeeeneseeresie s s 261

32.2 Creating THreadscoceieiiireee e 261

32.2.1 Creating aNew Thread ... 262

32.2.2 Terminating the Current Thread ... 262

32.2.3 Getting the Current Thread [dentifiercccocveeveiveininnienens 263

32.3 A Multi-threaded EXamPIecccovcceieeeeeecese e e 263

32.4 THread LIMILS ..o 265
33052 2.x Dynamic LinK Librari€scccooeeoeieeie s 267
33.1 Creating Dynamic Link Librariesc.ccccoevirinineneenereneeeeee s 267

33.2 Creating a Sample Dynamic Link Libraryccccovenienineneneneeeeenen 268

33.3 Using Dynamic Link Libraries ..o 270

33.4 The Dynamic Link Library DA@ATEacccccvveireiineeeeeese e 271

33.5 Dynamic Link Library Initialization/Terminationccccooevvveneiennennns 272

34 Programming for OS/2 Presentation Managerccocveevereereeeeeeeseseseseeseeseeseenes 275
34.1 Porting Existing FORTRAN 77 AppliCationsccccceeveveeeeeienieniesesesnsnens 275

34.1.1 Console Device in aWindowed Environmentc.coceeveererenae 276

34.1.2 AN EXAMPIE .ottt s 276

34.2 Default Windowing Library FUNCLIONSccoevireneneeeeceeeeneseeieiee 277

34.3 Calling Presentation Manager APl FUNCLIONSccooeiiiininininenecee e 278

Table of Contents

35 Using the IBM OS/2 WOrKFrame/2cooieiiiiininine e 283
AUtOCAD ADS Programming GUITEcccrueerieerieniriiireiees e 285
36 Creating AUOCAD APPIICALIONScovereriirerierieierieierieerieese e 287
36.1 Compiling an ADS APPlIiCaHIONccccevevireresce e 287
36.2 Linking an ADS APPlICAIONccecveierieieceeeeeeees e 288
36.3 One-Step Compiling and LinKiNgccccccvvevenineie e 288
36.4 Debugging an ADS APPlICALIONcccooeriereriereiee e 289
Novell NLM Programming GUITEcccoeererinenineieesesie st 291
37 Creating NetWare 386 NLM ApPPliCatioNScoeirieireirieirecreseeeee e 293
Mixed Language Programimingcccccccceeererenesieseseesseseeseeesessessessessessessesseseessessessessssssessenns 295
38 Inter-Language calls: C and FORTRANccooiiieie e 297
38.1 Symbol Naming CONVENLIONccoereriiieieeeesereee e e 297
38.2 Argument Passing CONVENIONccoeruerierieneeieeieeseses e 298
38.3 Memory Model Compatibilitycccoeoreirinnireeeeee e 299
38.4 Linking CONSIEIALIONScoveervierriierireeiesieie s 299
38.5 Integer Type Compatibility ..o 300
38.6 How do | passintegers from C to a FORTRAN function?cccoceveneene. 300
38.7 How do | passintegers from FORTRAN to a C function?cccceevenenee. 301
38.8 How do | pass a string from a C function to FORTRAN?ccccceevevennne. 303
38.9 How do | pass a string from FORTRAN to a C function?cccceevenenne. 304
38.10 How do | access a FORTRAN common block from within C? 305
38.11 How do | call aC function that accepts a variable number of
BFGUIMENTES? ..ttt sttt ettt esae e sae e e e saeesaesaeesbesseenbeennanes 307
L001010070] 0 1 10] o] =0 1S 309
39 Commonly Asked QUESEIONS AN ANSWES'Sc.ccvrereeerereseesesieseeseeeeseeseeeeeseenens 311
39.1 Determining my current patch [evelccooevcvciececee e 312
39.2 Converting to WatCOM F77 ..ot 313
39.3 What you should know about optimizationc.cceeeveereneneneneesieieeene 313
39.4 Reading a stream of binary datafrom afile ... 314
39.5 Redefining math error handling with Watcom F77ccoooeiiiiiiiiiiinens 315

Xi

Table of Contents

39.6 The compiler cannot find my include files ... 322
39.7 The linker reports a"stack segment not found” errorccoceceeevevenienn. 323
39.8 Resolving an "Undefined Reference” linker errorcooceeeeeveveececcnennne 323
39.9 Why local variable values are not maintained between subprogram
Lo | SRS 324

39.10 What "Stack Overflow!" Meanscocvveverirerenerereneeseeeeese s 324
39.11 What are the probable causes of a General Protection Fault in 32-bit

2T o] o T Tor= (0] 1S 325
39.12 Which floating-point compiler option should | use for my

BPPHCALIONT ..ttt e 326
39.13 How more than 20 filesat atime can be openedccooeieieiiiiinicnnne 327
39.14 How source files can be seen in the debugger ... 329
39.15 The difference between the "d1" and "d2" compiler options 331
39.16 The difference between the "debug" and "d2" compiler options 332

Xii

List of Figures

Figure 1. BasiC MEMOIY LAYOULoouiiiieieieiieeeeetenie et b e st s a et e e s 31
Figure 2. Physical Memory/Linear AAAreSS SPACEccoceririireririene e s seens 32
Figure 3. ACCESS RIGNES/ TYPE ...oviuiieiiiieisteest ettt sn e n e 54
Figure 4. Extended ACCESS RIGNES/ TYPE ...ooviiiiiiriiieiiieerieieree ettt 55
FIgUre 5. WINS8E SITUCLUIEc.ecviieiirieiirieicrteeet ettt ettt sttt 152
Figure 6. 32-bit APPliCation SLIUCIUIEcc.ciriiiriiiierieee e e 153

Xiii

Xiv

1 Watcom FORTRAN 77 Application
Development

This document contains guides to application development for several environments including
16-bit DOS, 32-hit extended DOS, Windows 3.x, 32-bit extended Windows 3.x, Windows
NT, OS2, AutoCAD and Novell NLMs. [t also describes mixed language (C, FORTRAN)
application development. It concludes with a chapter on some general questions and the
answers to them.

This document covers the following topics:
* DOS Programming Guide

Creating 16-bit DOS Applications

Creating 32-bit Phar Lap 386|DOS-Extender Applications
Creating 32-bit DOS/AGW Applications

32-hit Extended DOS Application Devel opment

* The DOS/4GW DOS Extender

The Tenberry Software DOS/AGW DOS Extender
Linear Executables

Configuring DOS/4AGW

VMM

Interrupt 21H Functions

Interrupt 31H DPMI Functions

Utilities

Error Messages

DOS/4GW Commonly Asked Questions

» Windows 3.x Programming Guide

Watcom FORTRAN 77 Application Development 1

Chapter 1

Creating 16-bit Windows 3.x Applications

Porting Non-GUI Applicationsto 16-bit Windows 3.x
Creating 32-bit Windows 3.x Applications

Porting Non-GUI Applications to 32-bit Windows 3.x
The WATCOM 32-bit Windows Extender

Windows 3.x 32-bit Programming Overview
Windows 32-Bit Dynamic Link Libraries

Interfacing Visual Basic and Watcom FORTRAN 77 DLLs
WIN386 Library Subprograms

32-hit Extended Windows Application Devel opment
Special Windows API Functions

» Windows NT Programming Guide
Windows NT Programming Overview
Creating Windows NT GUI Applications
Porting Non-GUI Applicationsto Windows NT GUI
Windows NT Multi-threaded Applications
Windows NT Dynamic Link Libraries
» OS/2 Programming Guide
Creating 16-bit OS/2 1.x Applications
Creating 32-bit OS/2 Applications
0S/2 Multi-threaded Applications
OS/2 Dynamic Link Libraries
Programming for OS/2 Presentation Manager
Using the IBM OS/2 WorkFrame/2
» AutoCAD ADS Programming Guide
Creating AutoCAD Applications
* Novell NLM Programming Guide
Creating NetWare 386 NLM Applications

» Mixed Language Programming

2 Watcom FORTRAN 77 Application Development

Watcom FORTRAN 77 Application Development

Inter-Language calls: C and FORTRAN
» Common Problems

Commonly Asked Questions and Answers

Watcom FORTRAN 77 Application Development 3

Chapter 1

4 Watcom FORTRAN 77 Application Development

DOS Programming Guide

DOS Programming Guide

2 Creating 16-hit DOS Applications

This chapter describes how to compile and link 16-bit DOS applications simply and quickly.

We will illustrate the steps to creating 16-bit DOS applications by taking a small sample
application and showing you how to compile, link, run and debug it.

2.1 The Sample Application

To demonstrate the creation of 16-bit DOS applications using command-line oriented tools,
we introduce a simple sample program. For our example, we are going to use the "sieve"
program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI T NONE
I NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOGE CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15,A15)")
DO 1 = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO 1 = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Primes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

The Sample Application 7

DOS Programming Guide

2.2 Building and Running the Sample DOS Application

To compile and link our example program which is stored in the file SI EVE. FOR, enter the
following command:

Cwl /1 =dos sieve

The typical messages that appear on the screen are shown in the following illustration.

Cw | /1 =dos sieve
WATCOM F77/16 Conpile and Link Utility
Copyri ght by WATCOM | nternati onal Corp. 1990, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wfc sieve.for
WATCOM FORTRAN 77/ 16 Opti m zing Conpil er
Copyri ght by WATCOM | nternati onal Corp. 1984, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 311 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a DOS executabl e

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

Cssi eve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. EXE (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries). Itis Sl EVE. EXE that
isrun by DOS when you enter the "sieve” command.

2.3 Debugging the Sample DOS Application

8

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL

Debugging the Sample DOS Application

Creating 16-bit DOS Applications

command, thisisfairly straightforward. WFL recognizes the Watcom F77 compiler "debug"
options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwl /1 =dos /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Cwfl /1 =dos /d2 sieve
WATCOM F77/ 16 Conpile and Link Utility
Copyright by WATCOM | nternati onal Corp. 1990, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wfc sieve.for /d2
WATCOM FORTRAN 77/ 16 Optim zing Conpil er
Copyright by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statements, 392 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyri ght by WATCOM I nternational Corp. 1985, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a DOS executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
resultsin fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

Cwd si eve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

Debugging the Sample DOS Application 9

DOS Programming Guide

10 Debugging the Sample DOS Application

3 Creating 32-bit Phar Lap 386|DOS-Extender

Applications

This chapter describes how to compile and link 32-bit Phar Lap 386|DOS-Extender
applications simply and quickly.

We will illustrate the steps to creating 32-bit Phar Lap 386|DOS-Extender applications by
taking a small sample application and showing you how to compile, link, run and debug it.

3.1 The Sample Application

To demonstrate the creation of 32-bit Phar Lap 386|DOS-Extender applications using
command-line oriented tools, we introduce a simple sample program. For our example, we
are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes al gorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO I = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO I = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The Sample Application

11

DOS Programming Guide

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe
famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

3.2 Building and Running the Sample
386|DOS-Extender Application

To compile and link our example program which is stored in the file SI EVE. FOR, enter the
following command:

Cwfl 386 /| =pharl ap sieve

The typical messages that appear on the screen are shown in the following illustration.

Cwfil 386 /| =pharlap sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve.for
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM I nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

C>run386 sieve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. EXP (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries). Itis Sl EVE. EXP that
isrun by DOS when you enter the "run386 sieve" command.

12 Building and Running the Sample 386|DOS-Extender Application

Creating 32-bit Phar Lap 386|DOS-Extender Applications

3.3 Debugging the Sample 386|DOS-Extender
Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwf 1 386 /| =pharlap /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Cwfl 386 /1 =pharlap /d2 sieve
WATCOM F77/ 32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve. for /d2
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a tradenark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Phar Lap sinple executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL 386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

Debugging the Sample 386|DOS-Extender Application 13

DOS Programming Guide

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

Cwd/ trap=pls sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

14 Debugging the Sample 386|DOS-Extender Application

4 Creating 32-bit DOS/4GW Applications

This chapter describes how to compile and link 32-bit DOS/AGW applications simply and
quickly.

We will illustrate the steps to creating 32-bit DOS/4GW applications by taking a small sample
application and showing you how to compile, link, run and debug it.

4.1 The Sample Application

To demonstrate the creation of 32-bit DOS/4GW applications using command-line oriented
tools, we introduce a simple sample program. For our example, we are going to use the
"sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15,A,15)")
DO 1 = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO 1 = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRI MES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Primes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this program isto count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

The Sample Application 15

DOS Programming Guide

4.2 Building and Running the Sample DOS/4GW
Application

To compile and link our example program which is stored in the file SI EVE. FOR, enter the
following command:

Cwf | 386 /| =dos4g si eve

The typical messages that appear on the screen are shown in the following illustration.

Cwil 386 /1 =dos4g sieve
WATCOM F77/ 32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve. for
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statements, 172 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a tradenark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a DOS/ 4G execut abl e

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

C>si eve
The Nunber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
S| EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. EXE (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries). Itis Sl EVE. EXE that
isrun by DOS when you enter the "sieve" command.

4.3 Debugging the Sample DOS/AGW Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to

16 Debugging the Sample DOS/AGW Application

Creating 32-bit DOS/AGW Applications

include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL 386 recognizes the Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwfl 386 /1 =dos4g /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Cw |1 386 /1 =dos4g /d2 sieve
WATCOM F77/32 Conpile and Link Utility
Copyright by WATCOM | nternati onal Corp. 1990, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve. for /d2
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyright by WATCOM | nternati onal Corp. 1984, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyri ght by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a DOS/ 4G executabl e

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL 386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

Cwd/ trap=rsi sieve

It would be too ambitious to describe the debugger in this introductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

Debugging the Sample DOS/AGW Application 17

DOS Programming Guide

18 Debugging the Sample DOS/AGW Application

5 32-bit Extended DOS Application
Development

5.1 Introduction

The purpose of this chapter is to anticipate common programming questions for 32-bit
extended DOS application development. Note that these programming solutions may be
DOS-extender specific and therefore may not work for other DOS extenders.

The following topics are discussed in this chapter:

* How can | write directly to video memory using DOS/AGW?

* How do | issueinterruptsin a DOS/4GW application?

* How do | get information about free memory with DOS/AGW?
Please refer to the DOS Protected-Mode | nterface (DPMI) Specification for information on
DPMI services. Inthe past, the DPMI specification could be obtained free of charge by
contacting Intel Literature JP26 at 800-548-4725 or by writing to the address below. We have
been advised that the DPMI specification is no longer available in printed form.

Intel Literature JP26

3065 Bowers Avenue

P.O. Box 58065

Santa Clara, California

U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Hereisthe URL.

ftp://ftp.intel.com pub/lAL/software_specs/dpm vl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

Introduction 19

DOS Programming Guide

5.2 How can | write directly to video memory using a
DOS extender?

Many programmers require access to video RAM in order to directly manipulate data on the
screen. Under DOS, it was standard practice to use afar pointer, with the segment part of the
far pointer set to the screen segment. Under DOS extenders, this practice is not so standard.
Each DOS extender provides its own method for accessing video memory. The following
program demonstrates the method used with DOS/AGW.

* FSCREEN. FOR
* The foll ow ng program shows how to access screen menory
* froma FORTRAN program under the DOS/ 4GW DOS ext ender

* Conmpile & Link: wfl 386 /|=dos4g fscreen
program screen

* Al ocatabl e arrays nust be declared by specifying their
* di mensions using colons only (see WATCOM FORTRAN 77
* Language Reference on the ALLOCATE statenent for details)

character*1 screen(:,:)
i nt eger SCRSI ZE,

paraneter (SCRSIZE = 80*25)
Under DCS/4GWN the first negabyte of physical nenory - the
real nenory - is nmapped as a shared |inear address space
This allows your application to access video RAMusing its
linear address. The DOS segnent: of fset of B800: 0000
corresponds to a |linear address of B8000

* % k%

al | ocate(screen(0:1, 0: SCRSI ZE- 1), |ocation="B8000’ x)
doi =0, SCRSIZE - 1

screen(0,i) = "'*’
enddo

end

5.3 How do I issue interrupts in a DOS/4GW
application?
The Watcom F77 library files contain the FINTR subroutine which allows the user to perform

interrupt calls within a FORTRAN 77 program. This subroutine is described in the
Subprogram Library section of the Watcom FORTRAN 77 User’s Guide.

20 How do | issue interrupts in a DOS/4GW application?

32-bit Extended DOS Application Development

The following sample program illustrates the use of the FINTR subroutine to set up the
register information required for Interrupt 21h. The register information is loaded into the
regs structure. This structure is defined in the DOS.FI file located in the
\WATCOM\SRC\FORTRAN\DOS directory. Assign valuesto the register elements
according to the interrupt call requirements. For example, Interrupt 21h, function 4Eh needs
valid values for the AH, ECX, DS and EDX to set up the registers for the Interrupt 21h call.
This procedure can be used to perform any interrupt calls that are supported in protected mode
by DOS/4GW.

DTA. FOR

Thi s program denonstrates the use of the FINIR
function to list the files of the current directory.
Interrupt 21 Functions for FIND FIRST, FIND NEXT
and GET DTA are used.

* %k ok ok

*

Conpil e & Link: set finclude=\watcom src\fortran\dos
* wfl 386 /1 =dos4g dta

*$pragma aux GetDS = "npv ax, ds" val ue [ax]

program dta

implicit integer*2 (i-n)

integer*2 res

i nteger*2 GetDS

i nteger*4 dir, addr

integer*1 dta(:)

character fname*1(12), fnanme2*12

equi val ence (fnane, fnane2)
DTA is declared as a FAR array. Wen referencing an array
el enent, the pointer to the array is a FAR pointer. Wth a
character variable, the result is a pointer to a string
control block (SCB). The run-tinme library expects the SCB
to contain a near pointer. To get around the problem we
define the DTA as a byte array, then use the CHAR function
to get the character equivalent for printing a fil enane

L

*$pragma array dta far
i ncl ude ’dos.fi
*

* Listing of current directory

*
call fsystem('"dir/w *.*"//char(0))
dir = loc('"*.*" //char(0))

0
i+ 1

i
10 i

How do | issue interrupts in a DOS/4GW application? 21

DOS Programming Guide

if(i .eq. 1)then

* Find first file

AH = " 4FE x
ECX = 0
DS = Get DS()
EDX = dir

el se

* Find next file

AH = " 4F x
endi f
call fintr("21'x, regs)
res = AX

if(res .eq. 0)then
* Extract filenanme from DTA

AH = ' 2F x
call fintr("21'x, regs)

addr = ISHL(I AND(INT(ES), '0000FFFF x), 16)
addr = | OR(addr, I AND(|INT(BX), 'O0000FFFF x))
al l ocate(dta(0:42), |ocation=addr)

fname2 ="'

do j = 30, 41

if(dta(j) .eq. 0) goto 20
fname(j - 29) = char(dta(j))
enddo
20 print *, fname2
deal | ocate(dta)
goto 10
endi f

end

5.4 How do | get information about free memory in the
32-bit environment?

Under avirtual memory system, programmers are often interested in the amount of physical
memory they can allocate. Information about the amount of free memory that is availableis
always provided under a DPMI host, however, the manner in which thisinformation is
provided may differ under various environments. Keep in mind that in a multi-tasking
environment, the information returned to your task from the DPMI host can easily become
obsolete if other tasks alocate memory independently of your task.

DOS/4GW provides a DPMI interface through interrupt 0x31. This allows you to use DPMI

service 0x0500 to get free memory information. The following program illustrates this
procedure.

22 How do | get information about free memory in the 32-bit environment?

32-bit Extended DOS Application Development

FMEMORY. FOR

Thi s exanpl e shows how to get information about free
menory using DPM call 0500h under DOS/ 4GW usi ng WATCOM
FORTRAN 77. Note that only the first field of the
structure is guaranteed to contain a valid value; any
field not returned by DOS/4GWNis set to -1 (OFFFFFFFFh).

I

*

Conpi |l e & Link: set finclude=\watcom src\fortran\dos
* wf | 386 /| =dos4g fnenory

* Pragma to get the default data segnent
*$pragma aux GetDS = "npv ax, ds" value [ax] nodify exact [ax]

pr ogr am menory
inplicit none
include 'dos.fi’

structure /meni nfo/
nt eger*4 Largest Bl ockAvai |
nt eger *4 MaxUnl ockedPage
nt eger *4 Lar gest Lockabl ePage
nt eger *4 Li nAddr Space
nt eger *4 Nunfr eePagesAvai |
nt eger *4 NunPhysi cal PagesFr ee
nt eger *4 Tot al Physi cal Pages
nt eger *4 FreelLi nAddr Space
nteger*4 SizeOf PageFil e
nt eger *4 Reservedl
nt eger *4 Reserved2

end structure
* Set up the register information for the interrupt call

record /mem nfo/ Mem nfo
i nteger interrupt_no
i nteger*2 Cet DS

paraneter(interrupt_no="31"Xx)
DS=FS=GS=0

EAX = ' 00000500’ x

ES = Get DS()

EDI = | oc(Mem nf o)

call fintr(interrupt_no, regs)

How do | get information about free memory in the 32-bit environment? 23

DOS Programming Guide

* Report the information returned by the DPM host

PriNt * e !

print *,’Largest available block (in bytes): ',
Mem nf o. Lar gest Bl ockAvai |

int *,’ Maxi mum unl ocked page al |l ocation: ',
Menl nf 0. MaxUnl ockedPage

int *, ' Pages that can be allocated and |ocked: ',
Mem nf o. Lar gest Lockabl ePage

int *, 'Total |inear address space including //
" allocated pages:’, Mem nfo.LinAddr Space

int *," Nunber of free pages available: ',
Mem nf o. Nunfr eePagesAvai |

int *,’ Nunber of physical pages not in use: ',
Mem nf o. NunPhysi cal PagesFr ee

int *, ' Total physical pages managed by host: ',
Mem nf o. Tot al Physi cal Pages

int *,"Free |linear address space (pages): ',
Menl nf o. Fr eeLi nAddr Space

int *,’Size of paging/file partition (pages): ',
Mem nf o. Si zeOf PageFi | e

el el el el el el el
= = = = = = =

20_020 R__RR__R_R_R_R_ R

end

24 How do | get information about free memory in the 32-bit environment?

The DOS/4AGW DOS Extender

The DOS/4GW DOS Extender

26

6 The Tenberry Software DOS/4GW DOS
Extender

The chaptersin this section describe the 32-bit Tenberry Software DOS4GW DOS Extender
which is provided with the Watcom F77 package. DOS4GW is a subset of Tenberry
Software’ s DOS/4G product. DOS4GW is customized for use with the Watcom F77 package.
Key differences are:

» DOS4GW will only execute programs built with a WATCOM 32-bit compiler such as
Watcom F77 and linked with its run-time libraries.

* The DOS4GW virtual memory manager (VMM), included in the package, isrestricted
to 32MB of memory.

» DOS/4GW does not provide extra functionality such as TSR capability and VMM
performance tuning enhancements.

If your application has requirements beyond those provided by DOS4GW, you may wish to
acquire DOS/AGW Professional or DOS/4G from:

Tenberry Software, Inc.,
220 No. Main St
Natick, Massachusetts,
U.S.A. 01760.

Telephone: (508)653-6006
Facsimile: (508)655-2753
Internet: dosAgw@ratsys.com
CompuServe: 73667,1753

Programs devel oped to use the restricted version of DOS4GW which isincluded in the
Watcom F77 package can be distributed on aroyalty-free basis, subject to the licensing terms
of the product.

The Tenberry Software DOS/4GW DOS Extender 27

The DOS/4GW DOS Extender

28 The Tenberry Software DOS/4GW DOS Extender

{ Linear Executables

To build alinear executable, compile and link it as described in the chapter entitled "Creating
32-bit DOS/AGW Executables’. The resulting file will not run independently: you can run it
under the Watcom Debugger, Tenberry Software Instant-D debugger, or with the standalone
"DOSAGW.EXE".

7.1 The Linear Executable Format

DOS4GW works with files that use the Linear Executable (LE) file format. The format
represents a protected-mode program in the context of a 32-bit 386 runtime environment with
linear to physical address translation hardware enabled. It uses aflat address space.

Thisfile format is similar to the Segmented Executable (NE) format used in OS/2 1.x and MS
Windows. Both support Dynamic Linking, Resources, and are geared toward protected-mode
programs. Both formats use tables of "counted ASCII" names, and they use similar relocation
formats.

Both formats begin with a DOS style stub program that sophisticated loaders skip. This stub
program executes when the DOS4GW loader is not present, displaying the message, This
program cannot run in DOS mode.

When the Watcom Linker isused to link a DOS/4GW application, it automatically replaces
the default stub program with one that calls DOSAGW.

7.1.1 The Stub Program

The stub at the beginning of alinear executable is a real-mode program that you can modify
asyou like. For example, you can:

» make the stub program do a checksum on the "DOSAGW.EXE" file to make sureit’s
the correct version.

* COpy protect your program.

» specify a search path for the "DOSAGW.EXE" file.

The Linear Executable Format 29

The DOS/4GW DOS Extender

* add command line arguments.

The SRC directory contains source code for a sample stub program. "WSTUB.C" isasimple
example, agood base to start from when you construct your own stub. Please note that you
will require a 16-bit C compiler to compile a new stub program. Following isthe codein
"WSTUB.C":

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <process. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>

/* Add environnent strings to be searched here */
char *paths_to_check[] = {

" DOS4GPATH" ,
"PATH'};
char *dos4g_pat h()
{
static char full path[80];
int i;
for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[O0]);
i++) |
_searchenv("dos4gw. exe", paths_to _check[i], fullpath);
if(fullpath{0]) return(& ullpath)
}
for(i = 0;
i < sizeof(paths_to_check) / sizeof(paths_to_check[O0]);
i++) |
_searchenv("dos4g.exe", paths_to_check[i], fullpath);
if(fullpath{0]) return(& ullpath)
return("dos4gw. exe");
}
mai n(int argc, char *argv[])
{
char *av[4];
auto char cmdl i ne[128] ;
av[0] = dos4g_path(); /* Locate the DOS/ 4G | oader */
av[1l] = argv[O0]; /* name of executable to run */
av[2] = getcnd(cmdline); /* command |ine */
av[3] = NULL; /* end of list */
#i fdef QUIET
put env(" DOSAG=QUI ET"); /* di sabl es DOS/ 4G Copyri ght banner */
#endi f
execvp(av[O0], av);
puts("Stub exec failed:");
puts(av[O0]);
puts(strerror(errno));
exit(1); /* indicate error */
}

30 The Linear Executable Format

Linear Executables

If you do not have a C compiler, you can create an assembly language version of the above
sample stub program and use it to create your own version of the stub program.

7.2 Memory Use

This section explains how a DOS4GW application uses the memory on a 386-based PC/AT.
The basic memory layout of an AT machine consists of 640KB of DOS memory, 384K B of
upper memory, and an undetermined amount of extended memory. DOS memory and upper
memory together compose real memory, the memory that can be addressed when the
processor isrunning in real mode.

Extended
Memory
1MB —»
ROMs and
Upper Hardware
Memory D
640 KB —»
DOS DOS and
Memory Real-Mode
Software
1KB —» Interrupt
Vectors

Figure 1. Basic Memory Layout

Under DOS4GW, the first megabyte of physical memory — the real memory — is mapped as
ashared linear address space. This allows your application to use absolute addresses in real
memory, to access video RAM or BIOS ROM, for example. Because the real memory is
available to all processes, you are not guaranteed to be able to allocate a particular areain real
memory: another process may have allocated it already.

Memory Use 31

The DOS/4GW DOS Extender

Most code and datais placed in apaged linear address space starting at 4AMB. The linear
address space starts at 4AMB, the first address in the second page table, to avoid conflicts with
VCPI system software.

This split mapping — an executable that is linked to start at 4AMB in the linear address space,
with the first MB in the address space mapped to the first MB of physical memory — is called
asplit flat model.

Theillustration below shows the layout of physical memory on the left, and the layout of the
linear address space on the right.

Process code
A 4 MB—» and data
Mapped
as 1-4 MB unmapped
needed VCPI code for VCPI
compatibility
4KB pages
1MB—» A A
DOS and
640 KB—» Real-Mode
Software
Mapped Mapped into
to all process as
processes needed
4 KB
1KB— P> v v

Figure 2. Physical Memory/Linear Address Space

The 1KB label in the diagram indicates the top of the real-mode interrupt vectors. 4KB marks
the end of the first page.

32 Memory Use

8 Configuring DOS/AGW

This chapter explains various options that can be specified with the DOSAG environment
variable including how to suppress the banner that is displayed by DOS4GW at startup. It
also explains how to use the DOS16M environment variable to select the switch mode setting,
if necessary, and to specify the range of extended memory in which DOS4GW will operate.
DOY4GW is based on Tenberry Software’'s DOS/16M 16-bit Protected-M ode support; hence
the DOS16M environment variable name remains unchanged.

8.1 The DOS4G Environment Variable

A number of options can be selected by setting the DOSAG environment variable. The syntax
for setting optionsis:

set

DOS4G=opt i onl, option2, ...

Do not insert a space between DOSAG and the equal sign. A space to the right of the equal
sign isoptional.

Options:

QUIET

VERBOSE

Use this option to suppress the DOS4GW banner.

The banner that is displayed by DOS4GW at startup can be suppressed by
issuing the following command:

set DOS4G=qui et

Note: Use of the quiet switch isonly permitted pursuant to the terms and
conditions of the WATCOM Software License Agreement and the additional
redistribution rights described in the Getting Started manual. Under these
terms, suppression of the copyright by using the quiet switch is not permitted for
applications which you distribute to others.

Use this option to maximize the information available for postmortem
debugging.

The DOS4G Environment Variable 33

The DOS/4GW DOS Extender

Before running your application, issue the following command:
set DOS4G=ver bose
Reproduce the crash and record the output.
NULLP Use this option to trap references to the first sixteen bytes of physical memory.
Before running your application, issue the following command:

set DOS4G=nul | p
To select acombination of options, list them with commas as separators.

Example:
set DOS4G=nul | p, ver bose

8.2 Changing the Switch Mode Setting

In almost all cases, DOS4GW programs can detect the type of machine that is running and
automatically choose an appropriate real- to protected-mode switch technique. For the few
casesin which this default setting does not work we provide the DOS16M DOS environment
variable, which overrides the default setting.

Change the switch mode settings by issuing the following command:

set DOS16Meval ue

Do not insert a space between DOS16M and the equal sign. A space to the right of the equal
signisoptional.

The table below lists the machines and the settings you would use with them. Many settings
have mnemonics, listed in the column "Alternate Name", that you can use instead of the
number. Settings that you must set with the DOS16M variable have the notation req’'d in the
first column. Settings you may use are marked option, and settings that will automatically be
set are marked auto.

34 Changing the Switch Mode Setting

Configuring DOS/4GW

Alternate
Status | Machine Setting Name Comment
auto | 386/486 w/ DPMI 0 None Set automatically if DPMI is active
regd |[NEC 98-series 1 9801 Must be set for NEC 98-series
auto PS/2 2 None Set automatically for PS/2
auto 386/486 3 386, 80386 | Set automatically for 386 or 486
auto | 386 INBOARD None 386 with Intel Inboard
req’'d |Fujitsu FMR-70 5 None Must be set for Fujitsu FMR-70
auto 386/486 w/ VCPI 11 None Set automaticaly if VCPI detected
req’d |Hitachi B32 14 None Must be set for Hitachi B32
req’d | OKI if800 15 None Must be set for OK1 if800
option |IBM PS/55 16 None May be needed for some PS/55s

The following procedure shows you how to test the switch mode setting.

1. If you have one of the machines listed below, set the DOS16M environment
variable to the value shown for that machine and specify arange of extended
memory. For example, if your machineisaNEC 98-series, set DOS16M=1
@M 4M Seethe section entitled "Fine Control of Memory Usage" on page 36in
this chapter for more information about setting the memory range.

Machine Setting
NEC 98-series 1
Fujitsu FMR-60,-70 5
Hitachi B32 14
OK1 if800 15

Before running DOS4GW applications, check the switch mode setting by
following this procedure:

2. Run PMINFO and note the switch setting reported on the last line of the display.
(PMINFO, which reports on the protected-mode resources available to your
programs, is described in more detail in the chapter entitled "Utilities" on page 81)

If PMINFO runs, the setting is usable on your machine.

3. If you changed the switch setting, add the new setting to your AUTOEXEC.BAT

file.

Changing the Switch Mode Setting 35

The DOS/4GW DOS Extender

Note: PMINFO will run successfully on 286 machines. If your DOS/4GW application does
not run, and PMINFO does, check the CPU type reported on the first line of the display.

Y ou are authorized (and encouraged) to distribute PMINFO to your customers. Y ou may aso
include a copy of this section in your documentation.

8.3 Fine Control of Memory Usage

In addition to setting the switch mode as described above, the DOS16M environment variable
enables you to specify which portion of extended memory DOS4GW will use. The variable
also alows you to instruct DOS/4GW to search for extramemory and useit if it is present.

8.3.1 Specifying a Range of Extended Memory

Normally, you don’t need to specify arange of memory with the DOS16M variable. You
must use the variable, however, in the following cases:

* You are running on a Fujitsu FMR-series, NEC 98-series, OK| if800-series or Hitachi
B-series machine.

* You have older programs that use extended memory but don’t follow one of the
standard disciplines.

* Y ou want to shell out of DOS4GW to use another program that requires extended
memory.

If none of these conditions applies to you, you can skip this section.

The genera syntax is:

set DOS16M- [switch_node] [@tart _address [- end_address]] [:size]

In the syntax shown above, st art _addr ess, end _addr ess and si ze represent
numbers, expressed in decimal or in hexadecimal (hex requiresa Ox prefix). The number
may end with aK to indicate an address or size in kilobytes, or an M to indicate megabytes. If
no suffix is given, the address or size is assumed to be in kilobytes. If both asize and arange
are specified, the more restrictive interpretation is used.

The most flexible strategy is to specify only asize. However, if you are running with other
software that does not follow a convention for indicating its use of extended memory, and
these other programs start before DOS4GW, you will need to calculate the range of memory
used by the other programs and specify arange for DOS4GW programs to use.

36 Fine Control of Memory Usage

Configuring DOS/4GW

DOS4GW ignores specifications (or parts of specifications) that conflict with other
information about extended memory use. Below are some examples of memory usage
control:

set DOS16M= 1 @2m-4m Mode 1, for NEC 98-series machines, and use
extended memory between 2.0 and 4.0MB.

set DOS16M=:1M Use the last full megabyte of extended memory, or
as much as available limited to 1IMB.

set DOS16M= @2m Use any extended memory available above 2MB.

set DOS16M= @0 - 5m Use any available extended memory from 0.0

(really 1.0) to 5.0MB.
set DOS16M=:0 Use no extended memory.

As adefault condition DOS/4GW applications take all extended memory that is not otherwise
inuse. Multiple DOS4GW programs that execute simultaneously will share the reserved
range of extended memory. Any non-DOS4GW programs started while DOS4GW programs
are executing will find that extended memory above the start of the DOS4GW rangeis
unavailable, so they may not be ableto run. Thisisvery safe. Therewill be aconflict only if
the other program does not check the BIOS configuration call (Interrupt 15H function 88H,
get extended memory size).

To create a private pool of extended memory for your DOS4GW application, use the
PRIVATXM program, described in the chapter entitled "Utilities" on page 81.

The default memory allocation strategy is to use extended memory if available, and overflow
into DOS (low) memory.

InaVCPI or DPMI environment, the st art _addr ess and end_addr ess arguments are
not meaningful. DOS4GW memory under these protocolsis not allocated according to
specific addresses because VCPI and DPMI automatically prevent address conflicts between
extended memory programs. Y ou can specify a si ze for memory managed by VCPI or
DPMI, but DOS4GW will not necessarily allocate this memory from the highest available
extended memory address, as it does for memory managed under other protocols.

Fine Control of Memory Usage 37

The DOS/4GW DOS Extender

8.3.2 Using Extra Memory

Some machines contain extra non-extended, non-conventional memory just below 16MB.
When DOS/4GW runs on a Compaq 386, it automatically uses this memory because the
memory is alocated according to a certain protocol, which DOS4GW follows. Other
machines have no protocol for allocating this memory. To use the extra memory that may
exist on these machines, set DOS16M with the + option.

set DOS16M:=+

Setting the + option causes DOS/4GW to search for memory in the range from FA000O to
FFFFFF and determine whether the memory is usable. DOS4GW does this by writing into
the extramemory and reading what it has written. In some cases, this memory is mapped for
DOS or BIOS usage, or for other system uses. |f DOS4GW finds extra memory that is
mapped this way, and is not marked read-only, it will write into that memory. Thiswill cause
acrash, but won’'t have any other effect on your system.

8.4 Setting Runtime Options

The DOS16M environment variable sets certain runtime options for all DOS4GW programs
running on the same system.

To set the environment variable, the syntax is:

set DOS16M-[switch_npde_setting] “options.

Note: Some command line editing TSRs, such as CED, usethe caret (") asadelimiter. If
you want to set DOS16M using the syntax above while one of these TSRs is resident, modify
the TSR to use a different delimiter.

These are the options:

0x01 check A20 line -- This option forces DOS4GW to wait until the A20 lineis
enabled before switching to protected mode. When DOS/4GW switches to real
mode, this option suspends your program’s execution until the A20 lineis
disabled, unless an XM S manager (such asHIMEM.SY S) isactive. If an XMS
manager is running, your program’ s execution is suspended until the A20 lineis
restored to the state it had when the CPU was last in real mode. Specify this
option if you have amachine that runs DOS4GW but is not truly
AT-compatible. For more information on the A20 line, see the section entitled
"Controlling Address Line 20" on page 40.

38 Setting Runtime Options

Configuring DOS/4GW

0x02

0x04

0x10

0x20

0x40

0x80

prevent initialization of VCPI -- By default, DOS4GW searches for aVCPI
server and, if oneis present, forcesit on. Thisoption isuseful if your
application does not use EM S explicitly, is not aresident program, and may be
used with 386-based EMS simulator software.

directly pass down keyboard status calls -- When this option is set, status
requests are passed down immediately and unconditionally. When disabled,
pass-downs are limited so the 8042 auxiliary processor does not become
overloaded by keyboard polling loops.

restore only changed interrupts -- Normally, when a DOS4GW program
terminates, all interrupts are restored to the values they had at the time of
program startup. When you use this option, only the interrupts changed by the
DOS4GW program are restored.

set new memory to 00 -- When DOS/4GW allocates a new segment or increases
the size of a segment, the memory is zeroed. This can help you find bugs having
to do with uninitialized memory. Y ou can also useit to provide a consistent
working environment regardless of what programs were run earlier. This option
only affects segment allocations or expansions that are made through the
DOS4GW kernel (with DOS function 48H or 4AH). This option does not affect
memory allocated with acompiler’s mal | oc function.

set new memory to FF -- When DOS4GW allocates a new segment or increases
the size of a segment, the memory is set to OxFF bytes. Thisishelpful in
making reproducible cases of bugs caused by using uninitialized memory. This
option only affects segment allocations or expansions that are made through the
DOS4GW kernel (with DOS function 48H or 4AH). This option does not affect
memory allocated with acompiler’s mal | oc function.

new selector rotation -- When DOS4GW allocates a new selector, it usually
looks for the first available (unused) selector in numerical order starting with the
highest selector used when the program was loaded. When this option is set, the
new selector search begins after the last selector that was alocated. This causes
new selectors to rotate through the range. Use this option to find references to
stale selectors, i.e., segments that have been cancelled or freed.

Setting Runtime Options 39

The DOS/4GW DOS Extender

8.5 Controlling Address Line 20

This section explains how DOS4GW uses address line 20 (A20) and describes the related
DOS16M environment variable settings. It is unlikely that you will need to use these settings.

Because the 8086 and 8088 chips have 20-bit address spaces, their highest addressable
memory location is one byte below 1IMB. If you specify an address at 1MB or over, which
would require atwenty-first bit to set, the address wraps back to zero. Some parts of DOS
depend on this wrap, so on the 286 and 386, the twenty-first address bit isdisabled. To
address extended memory, DOS/4GW enables the twenty-first address bit (the A20 line). The
A20 line must be enabled for the CPU to run in protected mode, but it may be either enabled
or disabled in real mode.

By default, when DOS/AGW returns to real mode, it disablesthe A20 line. Some software
depends on the line being enabled. DOS4GW recognizes the most common software in this
class, the XM S managers (such as HIMEM.SY S), and enables the A20 line when it returns to
real mode if an XM S manager is present. For other software that requires the A20 line to be
enabled, use the A20 option. The A20 option makes DOSAGW restore the A20 lineto the
setting it had when DOS/4GW switched to protected mode. Set the environment variable as
follows:

set DOS16M=A20
To specify more than one option on the command line, separate the options with spaces.

The DOS16M variable also lets you to specify the length of the delay between a DOS4GW
instruction to change the status of the A20 line and the next DOS/4GW operation. By defaullt,
this delay is 1 loop instruction when DOS4GW is running on a 386 machine. 1n some cases,
you may need to specify alonger delay for amachine that will run DOS4GW but is not truly
AT-compatible. To changethe delay, set DOS16M to the desired number of loop
instructions, preceded by a comma:

set DOS16M=, | oops

40 Controlling Address Line 20

O vMM

The Virtual Memory Manager (VMM) uses aswap file on disk to augment RAM. With
VMM you can use more memory than your machine actually has. When RAM is not
sufficient, part of your program is swapped out to the disk file until it is needed again. The
combination of the swap file and available RAM isthe virtual memory.

Y our program can use VMM if you set the DOS environment variable, DOSAGVM, as
follows. To set the DOSAGVM environment variable, use the format shown below.

set DOSAGVME= [option[#val ue]] [option[#val ue]]
A "#" is used with options that take values since the DOS command shell will not accept "=".
If you set DOSAGVM equal to 1, the default parameters are used for all options.

Example:
C>set DOS4GVMEL

9.1 VMM Default Parameters

VMM parameters control the options listed below.

MINMEM The minimum amount of RAM managed by VMM. The defaultis
512KB.

MAXMEM The maximum amount of RAM managed by VMM. The default is
4AMB.

SWAPMIN The minimum or initial size of the swap file. If thisoption is not used,
the size of the swap fileis based on VIRTUALSI ZE (see below).

SWAPINC The size by which the swap file grows.

SWAPNAME The swap file name. The default name is"DOSAGVM.SWP'. By

default the fileisin the root directory of the current drive. Specify the
complete path name if you want to keep the swap file somewhere else.

VMM Default Parameters 41

The DOS/4GW DOS Extender

DELETESWAP Whether the swap file is deleted when your program exits. By default
thefileisnot deleted. Program startup is quicker if thefileis not
deleted.

VIRTUALSIZE The size of the virtual memory space. The default is 16MB.

9.2 Changing the Defaults

Y ou can change the defaults in two ways.

1. Specify different parameter values as arguments to the DOSAGVM environment
variable, as shown in the example below.

set DOS4GVM=del et eswap maxmen#8192

2. Create aconfiguration file with the filetype extension ".VMC", and use that as an
argument to the DOSAGVM environment variable, as shown below.

set DOSAGYM=E@NEWIG VMC

9.2.1 The .VMC File

A " VMC" file contains VMM parameters and settings as shown in the example below.
Comments are permitted. Comments on lines by themselves are preceded by an exclamation
point (). Comments that follow option settings are preceded by white space. Do not insert
blank lines: processing stops at the first blank line.

| Sanple .VMC file
!This file shows the default paraneter val ues

m nmem = 512 At |least 512K bytes of RAMis required.
maxmem = 4096 Uses no nore than 4MB of RAM
virtual size = 16384 Swap file plus allocated nenory is 16MB

! To delete the swap file automatically when the programexits, add
I del et eswap

! To store the swap file in a directory called SWAPFI LE, add

I swapnane = c:\swapfil e\ dos4gvm swp

42 Changing the Defaults

10 Interrupt 21H Functions

When you call an Interrupt 21H function under DOS4GW, the 32-hit registers in which you
pass values are trand ated into the appropriate 16-bit registers, since DOS works only with 16
bits. However, you can use 32-bit valuesin your DOS calls. Y ou can allocate blocks of
memory larger than 64K B or use an address with a 32-bit offset, and DOS4GW will translate
the call appropriately, to use 16-bit registers. When the Interrupt 21H function returns, the
value iswidened - placed in a 32-bit register, with the high order bits zeroed.

DOS4GW uses the following rules to manage registers:

» When you pass a parameter to an Interrupt 21H function that expects a 16-bit quantity
in agenera register (for example, AX), pass a 32-hit quantity in the corresponding
extended register (for example, EAX). When a DOS function returns a 16-bit quantity
in ageneral register, expect to receiveit (with high-order zero bits) in the corresponding
extended register.

» When an Interrupt 21H function expectsto receive a 16:16 pointer in a
segment:general register pair (for example, ES:BX), supply a 16:32 pointer using the
same segment register and the corresponding extended general register (ES:EBX).
DOS4GW will copy data and translate pointers so that DOS ultimately receives a 16:16
real-mode pointer in the correct registers.

» When DOS returns a 16:16 real-mode pointer, DOS4GW trand ates the segment value
into an appropriate protected-mode selector and generates a 32-bit offset that resultsin a
16:32 pointer to the same location in the linear address space.

» Many DOS functions return an error code in AX if the function fails. DOS4GW
checks the status of the carry flag, and if it is set, indicating an error, zero-extends the
code for EAX. It does not change any other registers.

* If the valueis passed or returned in an 8-bit register (AL or AH, for example),
DOS4GW puts the value in the appropriate location and leaves the upper half of the
32-bit register untouched.

The table below lists al the Interrupt 21h functions. For each, it shows the registersthat are
widened or narrowed. Footnotes provide additional information about some of the interrupts
that require special handling. Following the table is a section that provides a detailed
explanation of interrupt handling under DOS4GW.

Interrupt 21H Functions 43

The DOS/4GW DOS Extender

Function Purpose Managed Registers
00H Terminate Process None
01H Character Input with Echo None
02H Character Output None
03H Auxiliary Input None
04H Auxiliary Output None
05H Print Character None
06H Direct Console 1/O None
07H Unfiltered Character Input Without Echo None
08H Character Input Without Echo None
09H Display String EDX
0AH Buffered Keyboard Input EDX
0BH Check Keyboard Status None
OCH Flush Buffer, Read Keyboard EDX
ODH Disk Reset None
OEH Select Disk None
OFH Open File with FCB EDX
10H Close File with FCB EDX
11H Find First File EDX
12H Find Next File EDX
13H Delete File EDX
14H Sequential Read EDX
15H Sequentia Write EDX
16H Create File with FCB EDX
17H Rename File EDX
19H Get Current Disk None
1AH Set DTA Address EDX
1BH Get Default Drive Data Returnsin EBX, ECX, and EDX
1CH Get Drive Data Returnsin EBX, ECX, and EDX
21H Random Read EDX
22H Random Write EDX
23H Get File Size EDX
24H Set Relative Record EDX
25H Set Interrupt Vector EDX
26H Create New Program Segment Prefix None
27H Random Block Read EDX, returnsin ECX
28H Random Block Write EDX, returnsin ECX
29H Parse Filename ESl, EDI, returnsin EAX, ESI and EDI (1.)
2AH Get Date Returnsin ECX
2BH Set Date None
2CH Get Time None

44 Interrupt 21H Functions

Interrupt 21H Functions

2DH
2EH
2FH

30H
31H
33H
34H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH

40H
41H
42H
43H
44H

45H
46H
47H
48H

OOH
01H
02H
03H
04H
O5H
06H
O7H
08H
O9H
0AH
0BH
OCH
ODH
OEH
OFH

Set Time
Set/Reset Verify Flag
Get DTA Address

Get MS-DOS Version Number
Terminate and Stay Resident
Get/Set Control-C Check Flag
Return Address of InDOS Flag
Get Interrupt Vector

Get Disk Free Space

Get/Set Current Country
Create Directory

Remove Directory

Change Current Directory
Create File with Handle

Open File with Handle
CloseFile

Read File or Device

Write File or Device

Delete File

Move File Pointer

Get/Set File Attribute

IOCTL

Get Device Information
SetDevice Information

Read Control Datafrom CDD
Write Control Datato CDD

Read Control Datafrom BDD
Write Control Datato BDD
Check Input Status

Check Output Status

Check if Block Deviceis Removeable
Check if Block Device is Remote
Check if Handle is Remote
Change Sharing Retry Count

Generic 1/0O Control for Character Devices
Generic 1/0O Control for Block Devices

Get Logical Drive Map

Set Logical Drive Map
Duplicate File Handle
Force Duplicate File Handle
Get Current Directory
Allocate Memory Block

None
None
Returnsin EBX

Returnsin ECX

None

None

Returnsin EBX

Returnsin EBX

Returnsin EAX, EBX, ECX, and EDX
EDX, returnsin EBX

EDX

EDX

EDX

EDX, returnsin EAX

EDX, returnsin EAX

None

EBX, ECX, EDX, returnsin EAX (2.)

EBX, ECX, EDX, returnsin EAX (2.)
EDX

Returnsin EDX, EAX
EDX, returnsin ECX
(3)

Returnsin EDX
None

EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
EDX, returnsin EAX
None

None

Returnsin EAX
Returnsin EDX
Returnsin EDX
None

EDX

EDX

None

None

Returnsin EAX
None

ES|

Returnsin EAX

Interrupt 21H Functions 45

The DOS/4GW DOS Extender

46

49H

4AH
4BH
4CH
4DH
4EH
4FH

52H
54H
56H
57H
58H
59H
5AH
5BH
5CH
SEH

5FH

62H
63H
65H
66H
67H

OOH
02H
03H

02H
03H
04H

Free Memory Block

Resize Memory Block

L oad and Execute Program (EXEC)
Terminate Process with Return Code
Get Return Code of Child Process
Find First File

Find Next File

Get List of Lists

Get Verify Flag

Rename File

Get/Set Date/Time of File
Get/Set Allocation Strategy

Get Extended Error Information
Create Temporary File

Create New File

Lock/Unlock File Region

Network Machine Name/Printer Setup

Get Machine Name

Set Printer Setup String

Get Printer Setup String
Get/Make Assign List Entry
Get Redirection List Entry
Redirect Device

Cancel Device Redirection

Get Program Segment Prefix Address

Get Lead Byte Table (version 2.25 only)

Get Extended Country Information
Get or Set Code Page
Set Handle Count

None
None
EBX, EDX (4.)
None
None
EDX
None

(not supported)

None

EDX, EDI

Returnsin ECX, and EDX
Returnsin EAX

Returnsin EAX

EDX, returnsin EAX and EDX
EDX, returnsin EAX

None

EDX
ESI
EDI, returnsin ECX

ESI, EDI, returnsin ECX
ESl, EDI
ESI

Returnsin EBX
Returnsin ESI
EDI

None

None

Thislist of functionsis excerpted from The MS-DOS Encyclopedia, Copyright (c) 1988 by
Microsoft Press. All Rights Reserved.

1.

by the call.

For Function 29H, DS.ESI and ES.EDI contain pointer values that are not changed

Y ou can read and write quantities larger than 64K B with Functions 3FH and 40H.

DOS4GW bresks your request into chunks smaller than 64K B, and callsthe DOS
function once for each chunk.

Interrupt 21H Functions

Interrupt 21H Functions

3. Youcan't transfer more than 64K B using Function 44h, subfunctions 02H, O3H,
04H, or 05H. DOS/4GW does not break larger requests into DOS-sized chunks, as
it does for Functions 3FH and 40H.

4. When you cal Function 4B under DOS/4GW, you pass it a data structure that
contains 16:32 bit pointers. DOS4GW tranglates these into 16:16 bit pointersin
the structure it passesto DOS.

10.1 Functions 25H and 35H: Interrupt Handling in
Protected Mode

By default, interrupts that occur in protected mode are passed down: the entry inthe IDT
pointsto code in DOS4GW that switches the CPU to real mode and resignalsthe interrupt. If
you install aninterrupt handler using Interrupt 21H, Function 25H, that handler will get
control of any interrupts that occur while the processor isin protected mode. If the interrupt
for which you installed the handler isin the autopassup range, your handler will also get
control of interrupts signalled in real mode.

The autopassup range runs from 08H to 2EH inclusive, but excluding 21H. If theinterrupt is
in the autopassup range, the real-mode vector will be modified when you install the
protected-mode handler to point to code in the DOS/4AGW kernel. This code switches the
processor to protected mode and resignals the interrupt-where your protected-mode handler
will get control.

10.1.1 32-Bit Gates

The DOSAGW kernel always assigns a 32-hit gate for the interrupt handlersit installs. 1t does
not distinguish between 16-bit and 32-bit handlers for consistency with DPMI.

This 32-hit gate points into the DOS4GW kernel. When DOS4GW handles the interrupt, it
switches to its own 16-bit stack, and from there it calls the interrupt handler (yours or the
default). Thistrandlation istransparent to the handler, with one exception: since the current
stack is not the one on which the interrupt occurred, the handler cannot look up the stack for
the address at which the interrupt occurred.

Functions 25H and 35H: Interrupt Handling in Protected Mode 47

The DOS/4GW DOS Extender

10.1.2 Chaining 16-bit and 32-bit Handlers

If your program hooks an interrupt, write a normal service routine that either handles the
interrupt and IRETSs or chains to the previous handler. As part of handling the interrupt, your
handler can PUSHF/CALL to the previous handler. The handler must IRET (or IRETD) or
chain.

For each protected-mode interrupt, DOS4GW maintains separate chains of 16-bit and 32-bit
handlers. If your 16-bit handler chains, the previous handler is a 16-bit program. If your
32-hit handler chains, the previous handler is a 32-hit program.

If a 16-bit program hooks a given interrupt before any 32-bit programs hook it, the 16-bit
chain is executed first. If all the 16-bit handlers unhook later and a new 16-bit program hooks
the interrupt while 32-bit handlers are still outstanding, the 32-bit handlers will be executed
first.

If the first program to hook an interrupt is 32-bit, the 32-bit chain is executed first.

10.1.3 Getting the Address of the Interrupt Handler

When you signal Interrupt 21H, Function 35, it always returns a non-null address even if no
other program of your bitness (i.e., 16-bit or 32-bit) has hooked the interrupt. The address
points to adummy handler that looks to you as though it does an IRET to end the chain. This
means that you can’t find an unused interrupt by looking for aNULL pointer. Sincethis
technique is most frequently used by programs that are looking for an unclaimed real-mode
interrupt on which to install a TSR, it shouldn’t cause you problems.

48 Functions 25H and 35H: Interrupt Handling in Protected Mode

11 Interrupt 31H DPMI Functions

When a DOS4GW application runs under aDPMI host, such as Windows 3.1 in enhanced
mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY), or
QEMM/QDPMI (with EXTCHKOFF), the DPMI host provides the DPMI services, not
DOS4GW. The DPMI host also provides virtual memory, if any. Performance (speed and
memory use) under different DPMI hosts varies greatly due to the quality of the DPMI
implementation.

DPMI services are accessed using Interrupt 31H.

The following describes the services provided by DOS4GW and DOS/AGW Professional in
the absence of aDPMI host. DOS4GW supports many of the common DPMI system
services. Not all of the services described below are supported by other DPMI hosts.

Some of the information in this chapter was obtained from the the DOS Protected-Mode

Interface (DPMI) specification. Itisno longer in print; however the DPMI 1.0 specification
can be obtained from the Intel ftp site. Hereisthe URL.

ftp://ftp.intel.com pub/|AL/software_specs/dpm vl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

11.1 Using Interrupt 31H Function Calls

Interrupt 31H DPMI function calls can be used only by protected-mode programs.
The general ground rules for Interrupt 31H calls are as follows:

* All Interrupt 31H calls modify the AX register. Unsupported or unsuccessful calls
return an error codein AX. Other registers are saved unless they contain specified
return values.

o All Interrupt 31H calls modify flags: Unsupported or unsuccessful calls return with the

carry flag set. Successful calls clear the carry flag. Only memory management and
interrupt flag management calls modify the interrupt flag.

Using Interrupt 31H Function Calls 49

The DOS/4GW DOS Extender

» Memory management calls can enable interrupts.
* All calls are reentrant.

The flag and register information for each call islisted in the following descriptions of
supported Interrupt 31H function calls.

11.2 Int31H Function Calls

The Interrupt 31H subfunction calls supported by DOS4GW are listed below by category:
* Local Descriptor Table (LDT) management services
» DOS memory management services
* Interrupt services
* Tranglation services
* DPMI version
» Memory management services
* Page locking services
» Demand paging performance tuning services
* Physical address mapping
* Virtual interrupt state functions
* Vendor specific extensions
 Coprocessor status

Only the most commonly used Interrupt 31H function calls are supported in this version.

50 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.1 Local Descriptor Table (LDT) Management Services

Function 0000H This function allocates a specified number of descriptors from the LDT and
returns the base selector. Pass the following information:

AX = 0000H
CX =number of descriptorsto be allocated

If the call succeeds, the carry flagis clear and the base selector is returned in
AX. If the call fails, the carry flag is set.

An allocated descriptor is set to the present data type, with a base and limit of
zero. The privilege level of an allocated descriptor is set to match the code
segment privilege level of the application. To find out the privilege level of a
descriptor, usethe | ar instruction.

Allocated descriptors must be filled in by the application. If more than one
descriptor is alocated, the returned selector isthe first of a contiguous array.
Use Function 0003H to get the increment for the next selector in the array.

Function 0001H This function frees the descriptor specified. Pass the following information:

AX = 0001H
BX =the selector to free

Use the selector returned with function 0000h when the descriptor was all ocated.
To free an array of descriptors, call this function for each descriptor. Use
Function 0003H to find out the increment for each descriptor in the array.

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Y ou can use this function to free the descriptors allocated for the program’s
initial CS, DS, and SS segments, but you should not free other segments that
were not allocated with Function 0000H or Function O00DH.

Function 0002H This function converts a real-mode segment to a descriptor that a
protected-mode program can address. Pass the following information:

Int31H Function Calls 51

The DOS/4GW DOS Extender

AX = 0002H
BX = real-mode segment address

If the call succeeds, it clears the carry flag and returns the selector mapped to the
real-mode segment in AX. If the call fails, the carry flag is set.

If you call this function more than once with the same real-mode segment
address, you get the same selector value each time. The descriptor limit is set to
64KB.

The purpose of this function is to give protected-mode programs easy accessto
commonly used real-mode segments. However, because you cannot modify or
free descriptors created by this function, it should be used infrequently. Do not
use this function to get descriptors for private data aress.

To examine real-mode addresses using the same selector, first allocate a
descriptor, and then use Function 0007H to change the linear base address.

Function 0003H This function returns the increment value for the next selector. Usethis
function to get the value you add to the base address of an allocated array of
descriptors to get the next selector address. Pass the following information:
AX =0003H

This call always succeeds. Theincrement valueisreturned in AX. Thisvalueis
always a power of two, but no other assumptions can be made.

Function 0006H This function gets the linear base address of a selector. Pass the following
information:

AX = 0006H
BX = selector

If the call succeeds, the carry flagis clear and CX:DX contains the 32-bit linear
base address of the segment. If the call fails, it sets the carry flag.

If the selector you specify in BX isinvalid, the call fails.
Function 0007H This function changes the base address of a specified selector. Only

descriptors allocated through Function 0000H should be modified. Passthe
following information:

52 Int31H Function Calls

Interrupt 31H DPMI Functions

AX = 0007H
BX = selector
CX:DX =thenew 32-bit linear base addressfor the segment

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.
If the selector you specify in BX isinvalid, the call fails.

Function 0008H This function sets the upper limit of a specified segment. Use this function
to modify descriptors allocated with Function 0000H only. Pass the following
information:

AX = 0008H
BX = selector
CX:DX = 32-bit segment limit

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.

The cdll failsif the specified selector isinvalid, or if the specified limit cannot
be set.

Segment limits greater than 1IMB must be page-aligned. This means that limits
greater than IMB must have the low 12 bits set.

To get the limit of a segment, use the 32-bit form of | sl for segment limits
greater than 64K B.

Function 0009H This function sets the descriptor access rights. Use this function to modify
descriptors allocated with Function 0000H only. To examine the access rights
of adescriptor, usethe | ar instruction. Pass the following information:

AX = 0009H

BX = selector

CL = Accessrightstype byte

CH = 386 extended accessrights/type byte

If the call succeeds, the carry flag is clear; if unsuccessful, the carry flag is set.
If the selector you specify in BX isinvalid, the call fails. Thecall also failsif
the access rights/type byte does not match the format and meet the requirements
shown in the figures below.

Int31H Function Calls 53

The DOS/4GW DOS Extender

o4

The access rights/type byte passed in CL has the format shown in the figure
below.

P DPL 1 C/D E/C WIR A

i

0 => Not accessed
1 => Accessed

Data: 0 => Read, 1=> R/W
v Code: Must be 1 (readable)

Data: 0=> Exp-up, 1=> Exp-dn
v Code: Must be 0 (non-conform)

0 => Data, 1=> Code

v
Must be 1

v
Must equal caller's CPL

v
0 = > Absent, 1=> Present

Figure 3. Access Rights/Type

Int31H Function Calls

Interrupt 31H DPMI Functions

The extended access rights/type byte passed in CH has the following format.

G B/D 0 Avl Reserved
7 6 5 4 3 2 1 Q
Ignored
v
CanbeOorl
v
Must be 0
v
0 => Default 16-bit., 1=> Default 32-bit
v

0 => Byte Granular, 1=> Page Granular

Figure 4. Extended Access Rights/Type

Function 000AH This function creates an alias to a code segment. This function creates a
data descriptor that has the same base and limit as the specified code segment
descriptor. Pass the following information:

AX = 000AH
BX = code segment selector

If the call succeeds, the carry flagis clear and the new data selector is returned
in AX. If the call fails, the carry flagis set. The call failsif the selector passed
in BX isnot avalid code segment.

To deallocate an dias to a code segment, use Function 0001H.

After the dliasis created, it does not change if the code segment descriptor

changes. For example, if the base or limit of the code segment change later, the
alias descriptor stays the same.

Int31H Function Calls 55

The DOS/4GW DOS Extender

56

Function 000BH This function copies the descriptor table entry for a specified descriptor.

The copy iswritten into an 8-byte buffer. Pass the following information:

AX =000BH
BX = selector
ES.EDI = apointer to the 8-byte buffer for the descriptor copy

If the call succeeds, the carry flagis clear and ES.EDI contains a pointer to the
buffer that contains a copy of the descriptor. If the call fails, the carry flag is set.
The cdll failsif the selector passed in BX isinvalid or unallocated.

Function 000CH This function copies an 8-byte buffer into the LDT for a specified

descriptor. The descriptor must first have been allocated with Function O000H.
Pass the following information:

AX =000CH
BX = selector
ES.EDI = apointer to the 8-byte buffer containing the descriptor

If the call succeeds, the carry flagis clear; if it fails, the carry flag isset. The
call failsif the descriptor passed in BX isinvalid.

The type byte, byte 5, has the same format and requirements as the access
rights/type byte passed to Function 0009H in CL. The format is shown in the
first figure presented with the description of Function 0009H.

The extended type byte, byte 6, has the same format and requirements as the
extended access rights/type byte passed to Function 0009H in CH, except that
the limit field can have any value, and the low order bits marked reserved are
used to set the upper 4 bits of the descriptor limit. The format is shown in the
second figure presented with the description of Function 0009H.

Function 000DH This function allocates a specific LDT descriptor. Pass the following

information:

AX = 000DH
BX = selector

If the call succeeds, the carry flagis clear and the specified descriptor is
allocated. If thecall fails, the carry flag is set.

The call failsif the specified selector isalready in use, or if itisnot avalid LDT
descriptor. Thefirst 10h (16 decimal) descriptors are reserved for this function,

Int31H Function Calls

Interrupt 31H DPMI Functions

and should not be used by the host. Some of these descriptors may bein use,
however, if another client application is already |oaded.

To free the descriptor, use Function 0001H.

11.2.2 DOS Memory Management Services

Function 0100H This function alocates memory from the DOS free memory pool. This
function returns both the real-mode segment and one or more descriptors that
can be used by protected-mode applications. Pass the following information:

AX =0100H
BX =the number of paragraphs (16-byte blocks) requested

If the call succeeds, the carry flagisclear. AX containstheinitial real-mode
segment of the allocated block and DX contains the base selector for the
allocated block.

If the call fails, the carry flag isset. AX containsthe DOS error code. If
memory is damaged, code 07H isreturned. If there is not enough memory to
satisfy the request, code 08H isreturned. BX contains the number of paragraphs
in the largest available block of DOS memory.

If you request a block larger than 64K B, contiguous descriptors are allocated.
Use Function 0003H to find the value of the increment to the next descriptor.
The limit of the first descriptor is set to the entire block. Subsequent descriptors
have alimit of 64KB, except for the final descriptor, which hasalimit of

bl ocksi ze MOD 64KB.

Y ou cannot modify or deallocate descriptors allocated with this function.
Function 101H deall ocates the descriptors automatically.

Function 0101H This function frees a DOS memory block allocated with function 0100H.
Pass the following information:

AX = 0101H
DX = sdlector of the block to be freed

If the call succeeds, the carry flag is clear.
If the call fails, the carry flag is set and the DOS error code isreturned in AX. If

the incorrect segment was specified, code 09H isreturned. If memory control
blocks are damaged, code O7H is returned.

Int31H Function Calls 57

The DOS/4GW DOS Extender

All descriptors allocated for the specified memory block are deallocated
automatically and cannot be accessed correctly after the block is freed.

Function 0102H This function resizes a DOS memory block allocated with function 0100H.

Pass the following information:

AX = 0102H
BX =the number of paragraphs (16-byte blocks) in theresized block
DX = selector of block toresize

If the call succeeds, the carry flagis clear.

If the call fails, the carry flag is set, the maximum number of paragraphs
availableisreturned in BX, and the DOS error codeisreturned in AX. If
memory code blocks are damaged, code 07H isreturned. If thereisn’t enough
memory to increase the size as requested, code 08H is returned. If the incorrect
segment is specified, code 09h is returned.

Because of the difficulty of finding additional contiguous memory or
descriptors, this function is not often used to increase the size of amemory
block. Increasing the size of amemory block might well fail because other DOS
allocations have used contiguous space. If the next descriptor inthe LDT is not
free, alocation also fails when the size of ablock grows over the 64KB
boundary.

If you shrink the size of amemory block, you may a so free some descriptors
allocated to the block. The initial selector remains unchanged, however; only
the limits of subsequent selectors will change.

11.2.3 Interrupt Services

58

Function 0200H This function gets the value of the current task’ s real-mode interrupt vector

for the specified interrupt. Pass the following information:

AX = 0200H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are
supported by the host. When the call returns, the carry flag is clear, and the
segnent : of f set of thereal-mode interrupt handler isreturned in CX:DX.

Int31H Function Calls

Interrupt 31H DPMI Functions

Because the address returned in CX is a segment, and not a selector, you cannot
put it into a protected-mode segment register. If you do, a general protection
fault may occur.

Function 0201H This function sets the value of the current task’ s real-mode interrupt vector
for the specified interrupt. Pass the following information:

AX =0201H
BL =interrupt number
CX:DX = segment:offset of the real-mode interrupt handler

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

The address passed in CX:DX should be areal-mode segnent : of f set,
such as function 0200H returns. For this reason, the interrupt handler must
reside in DOS addressable memory. Y ou can use Function 0100H to allocate
DOS memory. This version does not support the real-mode callback address
function.

If you are hooking a hardware interrupt, you have to lock all segmentsinvolved.
These segments include the segment in which the interrupt handler runs, and any
segment it may touch at interrupt time.

Function 0202H This function gets the processor exception handler vector. This function
returns the CS:EIP of the current protected-mode exception handler for the
specified exception number. Pass the following information:

AX =0202H
BL = exception/fault number (00h - 1Fh)

If the call succeeds, the carry flagis clear and the sel ect or: of f set of the
protected-mode exception handler isreturned in CX:EDX. If it fails, the carry
flagis set.

The value returned in CX isavalid protected-mode selector, not a real-mode
segment.

Function 0203H This function sets the processor exception handler vector. Thisfunction
allows protected-mode applications to intercept processor exceptions that are not
handled by the DPMI environment. Programs may wish to handle exceptions
such as "not present segment faults' which would otherwise generate a fatal
error. Passthe following information:

Int31H Function Calls 59

The DOS/4GW DOS Extender

60

AX =0203H
BL = exception/fault number (00h - 1Fh)
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flagisclear. If it fails, the carry flag is set.

The address passed in CX must be avalid protected-mode selector, such as
Function 204H returns, and not a real-mode segment. A 32-bit implementation
must supply a 32-bit offset in the EDX register. If the handler chainsto the next
handler, it must use a 32-bit interrupt stack frame to do so.

The handler should return using afar return instruction. The original SS:ESP,
CS:EIP and flags on the stack, including the interrupt flag, will be restored.

All fault stack frames have an error code. However the error codeis only valid
for exceptions 08h, 0Ah, OBh, OCh, ODh, and OEh.

The handler must preserve and restore al registers.

The exception handler will be called on alocked stack with interrupts disabled.
The original SS, ESP, CS, and EIP will be pushed on the exception handler stack
frame.

The handler must either return from the call by executing afar return or jump to
the next handler in the chain (which will execute afar return or chain to the next
handler).

The procedure can modify any of the values on the stack pertaining to the
exception before returning. This can be used, for example, to jump to a
procedure by modifying the CS.EIP on the stack. Note that the procedure must
not modify the far return address on the stack — it must return to the original
caller. The caller will then restore the flags, CS:EIP and SS:ESP from the stack
frame.

If the DPMI client does not handle an exception, or jumps to the default
exception handler, the host will reflect the exception as an interrupt for
exceptions 0, 1, 2, 3,4, 5and 7. Exceptions 6 and 8 - 1Fh will be treated as fatal
errors and the client will be terminated.

Exception handlers will only be called for exceptions that occur in protected
mode.

Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0204H Thisfunction getsthe CS:EIP sel ect or : of f set of the current
protected-mode interrupt handler for a specified interrupt number. Passthe
following information:

AX =0204H
BL =interrupt number

This call always succeeds. All 100H (256 decimal) interrupt vectors are
supported by the host. When the call returns, the carry flag is clear and
CX:EDX containsthe protected-mode sel ect or : of f set of the exception
handler.

A 32-bit offset isreturned in the EDX register.

Function 0205H This function sets the address of the specified protected-mode interrupt
vector. Pass the following information:

AX = 0205H
BL =interrupt number
CX:EDX = selector:offset of the exception handler

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.
The address passed in CX must be avalid protected-mode selector, such as
Function 204H returns, and not a real-mode segment. A 32-bit implementation

must supply a 32-bit offset in the EDX register. If the handler chains to the next
handler, it must use a 32-bit interrupt stack frame to do so.

11.2.4 Translation Services

These services are provided so that protected-mode programs can call real-mode software that
DPMI does not support directly. The protected-mode program must set up a data structure
with the appropriate register values. This"real-mode call structure” is shown below.

Int31H Function Calls 61

The DOS/4GW DOS Extender

Offset Register
O0H EDI
04H ESI

08H EBP
OCH Reserved by system
10H EBX
14H EDX
18H ECX
1CH EAX
20H Flags
22H ES

24H DS

26H FS

28H GS
2AH IP

2CH CS

2EH SP

30H SS

After the call or interrupt is complete, all real-mode registers and flags except SS, SP, CS, and
IP will be copied back to the real-mode call structure so that the caller can examine the
real-mode return values.

The values in the segment registers should be real-mode segments, not protected-mode
selectors.

62 Int31H Function Calls

Interrupt 31H DPMI Functions

The trandlation services will provide areal-mode stack if the SS:SP fields are zero. However,
the stack provided isrelatively small. If the real-mode procedure/interrupt routine uses more
than 30 words of stack space then you should provide your own real-mode stack.

Function 0300H This function simulates areal-mode interrupt. This function simulates an
interrupt in real mode. 1t will invoke the CS:IP specified by the real-mode
interrupt vector and the handler must return by executingan i ret . Passthe
following information:;

AX =0300H

BL =interrupt number

BH =flags Bit 0= 1 resetstheinterrupt controller and A20 line. Other flags
are reserved and must be O.

CX =number of wordsto copy from protected-mode stack to real-mode

stack

ES.EDI =theselector:offset of real-mode call structure

If the call fails, the carry flag is set.

If the call succeeds, the carry flagis clear and ES.EDI contains the
sel ect or: of f set of the modified real-mode call structure.

The CS:IPin the real-mode call structure isignored by this service. The
appropriate interrupt handler will be called based on the value passed in BL.

The flags specified in the real-mode call structure will be pushed on the
real-mode stack i r et frame. Theinterrupt handler will be called with the
interrupt and trace flags clear.

It isup to the caller to remove any parameters that were pushed on the
protected-mode stack.

Theflag to reset the interrupt controller and the A20 lineisignored by DPMI
implementations that run in Virtual 8086 mode. It causes DPMI
implementations that return to real mode to set the interrupt controller and A20
address line hardware to its normal real-mode state.

Function 0301H (DOS/4GW Professional only) This function calls a real-mode procedure

with a FAR return frame. The called procedure must execute a FAR return
when it completes. Pass the following information:

Int31H Function Calls 63

The DOS/4GW DOS Extender

AX =0301H
BH =flags Bit 0= 1 resetstheinterrupt controller and A20 line. Other flags

reserved and must be O.

CX = Number of wordsto copy from protected-modeto real-mode stack
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and ES.EDI containsthe
sel ect or : of f set of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1

The CS:IPin the real-mode call structure specifies the address of the
real-mode procedure to call.

The real-mode procedure must execute a FAR return when it has
compl eted.

If the SS:SP fields are zero then areal-mode stack will be provided by
the DPMI host. Otherwise, the real-mode SS:SP will be set to the
specified values before the procedureis called.

When the Int 31h returns, the real-mode call structure will contain the
values that were returned by the real-mode procedure.

It isup to the caller to remove any parameters that were pushed on the
protected-mode stack.

The flag to reset the interrupt controller and A20 lineisignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real-mode
State.

Function 0302H (DOS/AGW Professional only) This function calls a real-mode procedure
withani r et frame. The called procedure must executean i r et when it
completes. Pass the following information:;

64 Int31H Function Calls

Interrupt 31H DPMI Functions

AX =0302H
BH =flags Bit 0= 1 resetstheinterrupt controller and A20 line. Other flags

reserved and must be O.

CX = Number of wordsto copy from protected-modeto real-mode stack
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flagis clear and ES.EDI containsthe
sel ect or : of f set of modified real-mode call structure.

If the call fails, the carry flag is set.

Notes:

1

The CS:IPin the real-mode call structure specifies the address of the
real-mode procedure to call.

The real-mode procedure must execute an i r et when it has
compl eted.

If the SS:SP fields are zero then areal-mode stack will be provided by
the DPMI host. Otherwise, the real-mode SS:SP will be set to the
specified values before the procedureis called.

When the Int 31h returns, the real-mode call structure will contain the
values that were returned by the real-mode procedure.

The flags specified in the real-mode call structure will be pushed the
real-mode stack i r et frame. The procedure will be called with the
interrupt and trace flags clear.

It isup to the caller to remove any parameters that were pushed on the
protected-mode stack.

The flag to reset the interrupt controller and A20 line isignored by
DPMI implementations that run in Virtual 8086 mode. It causes
DPMI implementations that return to real mode to set the interrupt
controller and A20 address line hardware to its normal real-mode
state.

Function 0303H (DOS/4GW Professional only) This function allocates a real-mode callback
address. This serviceis used to obtain a unique real-mode SEG:OFFSET that
will transfer control from real mode to a protected-mode procedure.

Int31H Function Calls 65

The DOS/4GW DOS Extender

66

At timesit is necessary to hook areal-mode interrupt or device callback in a
protected-mode driver. For example, many mouse drivers call an address
whenever the mouse is moved. Software running in protected mode can use a
real-mode callback to intercept the mouse driver calls. Passthe following
information:

AX =0303H
DS.ESI = selector:offset of procedureto call
ES.EDI = selector:offset of real-mode call structure

If the call succeeds, the carry flag is clear and CX:DX contains the
segnent : of f set of real-mode callback address.

If the call fails, the carry flag is set.
Callback Procedure Parameters

Interrupts disabled

DS.ESI = selector:offset of real-mode SS:SP
ES.EDI = selector:offset of real-mode call structure
SS:ESP = Locked protected-mode API stack

All other registers undefined

Return from Callback Procedure

Execute an IRET to return
ES.EDI = selector:offset of real-mode call structure
to restore (see note)

Notes:

1. Sincethereal-mode call structureis static, you must be careful when
writing code that may be reentered. The simplest method of avoiding
reentrancy isto leave interrupts disabled throughout the entire call.
However, if the amount of code executed by the callback islarge then
you will need to copy the real-mode call structure into another buffer.
Y ou can then return with ES:EDI pointing to the buffer you copied
the data to — it does not have to point to the original real mode call
structure.

2. Thecalled procedureis responsible for modifying the real-mode
CS:IP before returning. 1f the real-mode CS:IP isleft unchanged then
the real-mode callback will be executed immediately and your
procedure will be called again. Normally you will want to pop a

Int31H Function Calls

Interrupt 31H DPMI Functions

return address off of the real-mode stack and place it in the real-mode
CS:IP. The example code in the next section demonstrates chaining
to another interrupt handler and simulating areal-mode i r et .

3. Toreturn valuesto the real-mode caller, you must modify the
real-mode call structure.

4. Remember that all segment valuesin the real-mode call structure will
contain real-mode segments, not selectors. |f you need to examine
data pointed to by a real-mode seg:offset pointer, you should not use
the segment to selector service to create a new selector. Instead,
allocate a descriptor during initialization and change the descriptor’s
base to 16 times the real-mode segment’ svalue. Thisisimportant
since selectors alocated though the segment to selector service can
never be freed.

5. DPMI hosts should provide a minimum of 16 callback addresses per
task.

The following code is a sample of areal-mode interrupt hook. It hooksthe DOS
Int 21h and returns an error for the delete file function (AH=41h). Other cals
are passed through to DOS. This example is somewhat silly but it demonstrates
the techniques used to hook areal modeinterrupt. Note that since DOS calls are
reflected from protected mode to real mode, the following code will intercept al
DOS calls from both real mode and protected mode.

Int31H Function Calls 67

The DOS/4GW DOS Extender

B R R R

; This procedure gets the current Int 21h real - nnde

; Seg: Offset, allocates a real -node cal | back address
; and sets the real-node Int 21h vector to the call-
; back address
|

ckkkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk*

nitialization_Code

; Create a code segnent alias to save data in

nmov ax, 000Ah
nmv bx, cs
int 31h

jc ERROR
nmov ds, ax

ASSUMES DS, _TEXT

; Get current Int 21h real -node SEG OFFSET

nov ax, 0200h

nov bl, 21h

int 31h

jc ERROR

nmv [Orig_Real _Seqg], cx
nov [Oig_Real Ofset], dx

; Allocate a real -node cal |l back

nov ax, 0303h

push ds

nov bx, cs

nov ds, bx

nov si, OFFSET My_Int _21 Hook

pop es

nov di, OFFSET My_Real Modde_Call _Struc
int 31h

jc ERROR

; Hook real -node int 21h with the call back address

nmov ax, 0201h
nov bl, 21h
int 31h

jc ERROR

khkkhkkhkhkkhkkhhkkhkhhhhkhkhkhkhhkhkhhkhkhhkkhkhkhkhkkhhkkhkhkkhkhkhkkkhkhkkkkhkkkkkkkkk*k*k*x*%x

This is the actual Int 21h hook code. It will return
an "access denied" error for all calls made in rea
nmode to delete a file. Oher calls will be passed
through to DOCS.

ENTRY:
DS: SI -> Real -nmpbde SS: SP
ES: DI -> Real -nobde call structure
I nterrupts disabled

EXIT

68 Int31H Function Calls

Interrupt 31H DPMI Functions

; ES: Dl -> Real -node call structure

ckkkkhkkhkkkkkkkkkk*

My _I nt _21_Hook:

cnp
j ne

carry flag,

cld

| odsw
nov

| odsw
nov

| odsw
or

nov
add
nov
Jmp

Chain to original

es: [di

. Real Mode_AH], 41h

Chai n_To_DOCs

es: [di
es: [di

ax, 1
es: [di
es: [di
es: [di

This is a delete file call (AH=41h). Sinmulate an
iret on the real -node stack, set the real - node

and set the real-nmbde AX to 5 to indicate
an access denied error.

; Get real-node ret IP
. Real Mode_I P], ax

; Get real-node ret CS
. Real Mbde_CS], ax

; Get real -node flags

; Set carry flag
. Real Mode_Fl ags], ax
. Real Mbde_SP], 6
. Real Mode_AX], 5

My _Hook _Exi t

Int 21h vector by replacing the

real -node CS:IP with the original Seg: Ofset.

Chai n_To_DCS:
nov
nov
nov
nov

My _Hook _Exi t :
iret

ax, cs:[Oig_Real _Seq]

es: [di

. Real Mbde_CS], ax

ax, cs:[Oig_Real Ofset]

es: [di

. Real Mode_I P], ax

Function 0304H (DOS/4GW Professional only) This function frees a real-mode callback
address that was allocated through the all ocate real-mode callback address
service. Passthe following information:

AX =0304H

CX:DX = Real-mode callback addressto free

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Notes:

1. Rea-mode callbacks are alimited resource. Y our code should free
any break point that it is no longer using.

Int31H Function Calls 69

The DOS/4GW DOS Extender

11.2.5 DPMI Version

Function 0400H This function returns the version of DPMI services supported. Note that this

is not necessarily the version of any operating system that supports DPMI. 1t
should be used by programs to determine what calls are legal in the current
environment. Pass the following information:

AX = 0400H
The information returned is;

AH = Major version

AL =Minor version

BX =Flags Bit 0= 1if running under an 80386 DPMI implementation. Bit 1
= 1if processor is returned to real mode for reflected interrupts (as
opposed to Virtual 8086 mode). Bit 2 =1 if virtual memory is
supported. Bit 3isreserved and undefined. All other bits are zero
and reserved for later use.

CL = Processor type

02 = 80286

03 = 80386

04 = 80486

05 = Pentium
DH = Current value of virtual master PIC baseinterrupt
DL = Current value of virtual dave PIC baseinterrupt
Carry flag clear (call cannot fail)

11.2.6 Memory Management Services

70

Function 0500H This function gets information about free memory. Pass the following

information:

AX = 0500H
ES.EDI =the selector:offset of a 30H byte buffer.

If the call fails, the carry flag is set.

If the call succeeds, the carry flagis clear and ES:EDI containsthe
sel ect or: of f set of abuffer with the structure shown in the figure below.

Int31H Function Calls

Interrupt 31H DPMI Functions

Offset Description

OOH Largest available block, in bytes

04H Maximum unlocked page allocation

08H Largest block of memory (in pages) that could
be allocated and then locked

OCH Total linear address space size, in pages, including
already allocated pages

10H Total number of free pages and pages currently
unlocked and available for paging out

14H Number of physical pagesnot in use

18H Total number of physical pages managed by host

1CH Free linear address space, in pages

20H Size of paging/file partition, in pages

24H - Reserved

2FH

Only thefirst field of the structure is guaranteed to contain avalid value. Any
field that is not returned by DOS/4AGW is set to -1 (OFFFFFFFFH).

Function 0501H This function allocates and commits linear memory. Pass the following
information:

AX =0501H
BX:CX = size of memory to allocate, in bytes.

If the call succeeds, the carry flagis clear, BX:CX contains the linear address of
the allocated memory, and SI:DI contains the memory block handle used to free
or resizethe block. If thecall fails, the carry flag is set.

No selectors are allocated for the memory block. The caller must allocate and
initialize selectors needed to access the memory.

Int31H Function Calls 71

The DOS/4GW DOS Extender

If VMM is present, the memory is allocated as unlocked, page granular blocks.
Because of the page granularity, memory should be allocated in multiples of
4KB.

Function 0502H This function frees ablock of memory alocated through function 0501H.
Pass the following information:

AX = 0502H
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flag is clear; if it fails, the carry flagisset. You
must also free any selectors allocated to point to the freed memory block.

Function 0503H This function resizes a block of memory allocated through the 0501H
function. If you resize ablock of linear memory, it may have anew linear
address and anew handle. Pass the following information:

AX = 0503H
BX:CX = new size of memory block, in bytes
SI:DI = handlereturned with function 0501H when memory was allocated

If the call succeeds, the carry flagis clear, BX:CX contains the new linear
address of the memory block, and SI:DI contains the new handle of the memory
block. If the call fails, the carry flag is set.

If either the linear address or the handle has changed, update the selectors that
point to the memory block. Use the new handle instead of the old one.

Y ou cannot resize amemory block to zero bytes.

11.2.7 Page Locking Services

72

These services are only useful under DPMI implementations that support virtual memory.
Although memory ranges are specified in bytes, the actual unit of memory that will be locked
will be one or more pages. Page locks are maintained as a count. When the count is
decremented to zero, the page is unlocked and can be swapped to disk. Thismeansthat if a
region of memory is locked three times then it must be unlocked three times before the pages
will be unlocked.

Int31H Function Calls

Interrupt 31H DPMI Functions

Function 0600H This function locks a specified linear address range. Pass the following
information:

AX = 0600H
BX:CX = starting linear address of memory to lock
SI:DI =size of region to lock (in bytes)

If the call fails, the carry flag is set and none of the memory will be locked.

If the call succeeds, the carry flagisclear. If the specified region overlaps part
of apage at the beginning or end of aregion, the page(s) will be locked.

Function 0601H This function unlocks a specified linear address range that was previously
locked using the "lock linear region” function (0600h). Pass the following
information:

AX =0601H
BX:CX = starting linear address of memory to unlock
SI:DI =size of region to unlock (in bytes)

If the call fails, the carry flag is set and none of the memory will be unlocked.
An error will be returned if the memory was not previously locked or if the
specified region isinvalid.

If the call succeeds, the carry flagis clear. If the specified region overlaps part
of apage at the beginning or end of aregion, the page(s) will be unlocked. Even

if the call succeeds, the memory will remain locked if the lock count is not
decremented to zero.

Function 0604H This function gets the page size for Virtual Memory (VM) only. This
function returns the size of a single memory page in bytes. Pass the following
information:

AX =0604H
If the call succeeds, the carry flagis clear and BX:CX = Page size in bytes.

If the call fails, the carry flag is set.

Int31H Function Calls 73

The DOS/4GW DOS Extender

11.2.8 Demand Paging Performance Tuning Services

Some applications will discard memory objects or will not access objects for long periods of
time. These services can be used to improve the performance of demand paging.

Although these functions are only relevant for DPMI implementations that support virtual
memory, other implementations will ignore these functions (it will always return carry clear).
Therefore your code can always call these functions regardless of the environment it is
running under.

Since both of these functions are smply advisory functions, the operating system may choose
to ignore them. In any case, your code should function properly even if the functions fail.

Function 0702H (DOS/4GW Professional only) This function marks a page as a demand
paging candidate. Thisfunction is used to inform the operating system that a
range of pages should be placed at the head of the page out candidate list. This
will force these pages to be swapped to disk ahead of other pages even if the
memory has been accessed recently. However, all memory contents will be
preserved.

Thisisuseful, for example, if aprogram knows that a given piece of data will
not be accessed for along period of time. That dataisideal for swapping to disk
since the physical memory it now occupies can be used for other purposes. Pass
the following information:

AX =0702H

BX:CX = Starting linear address of pagesto mark

SI:DI = Number of bytesto mark as paging candidates

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Notes:

1. Thisfunction does not force the pages to be swapped to disk
immediately.

2. Partial pageswill not be discarded.
Function 0703H (DOS/4GW Professional only) This function discards page contents. This
function discards the entire contents of a given linear memory range. Itisused

after amemory object that occupied a given piece of memory has been
discarded.

74 Int31H Function Calls

Interrupt 31H DPMI Functions

The contents of the region will be undefined the next time the memory is
accessed. All values previoudly stored in this memory will belost. Passthe
following information:

AX =0703H

BX:CX = Starting linear address of pagesto discard

SI:DI = Number of bytesto discard

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.

Notes:

1. Partial pageswill not be discarded.

11.2.9 Physical Address Mapping

Memory mapped devices such as network adapters and displays sometimes have memory
mapped at physical addresses that lie outside of the normal 1Mb of memory that is
addressable in real mode. Under many implementations of DPMI, all addresses are linear
addresses since they use the paging mechanism of the 80386. This service can be used by
device driversto convert a physical addressinto alinear address. The linear address can then
be used to access the device memory.

Function 0800H This function is used for Physical Address Mapping.
Some implementations of DPMI may not support this call becauseit could be
used to circumvent system protection. This call should only be used by
programs that absolutely require direct access to a memory mapped device.
Pass the following information:
AX =0800H
BX:CX = Physical address of memory
SI:DI = Size of region to map in bytes

If the call succeeds, the carry flag is clear and BX:CX = Linear Address that can
be used to access the physical memory.

If the call fails, the carry flag is set.

Int31H Function Calls 75

The DOS/4GW DOS Extender

Notes:
1. Under DPMI implementations that do not use the 80386 paging
mechanism, the call will always succeed and the address returned will
be equal to the physical address parameter passed into this function.

2. ltisuptothecaler to build an appropriate selector to access the
memory.

3. Do not use this service to access memory that is mapped in the first
megabyte of address space (the real-mode addressable region).

Function 0801H Thisfunction is used to free Physical Address Mapping. Passthe following
information:

AX =0801H
BX:CX = Linear addressreturned by Function 0800H.

If the call succeeds, the carry flagis clear; if it fails, the carry flag is set.
Notes:
1. Theclient should call thisfunction when it is finished using a device

previously mapped to linear addresses with the Physical Address
Mapping function (Function 0800H).

11.2.10 Virtual Interrupt State Functions

76

Under many implementations of DPMI, the interrupt flag in protected mode will always be set
(interrupts enabled). Thisis because the program is running under a protected operating
system that cannot allow programs to disable physical hardware interrupts. However, the
operating system will maintain a"virtual" interrupt state for protected-mode programs. When
the program executes a CL1 instruction, the program’ s virtual interrupt state will be disabled,
and the program will not receive any hardware interrupts until it executes an ST1 to reenable
interrupts (or calls service 0901h).

When a protected-mode program executes a PUSHF instruction, the real processor flags will
be pushed onto the stack. Thus, examining the flags pushed on the stack is not sufficient to
determine the state of the program’ s virtual interrupt flag. These services enable programs to
get and modify the state of their virtual interrupt flag.

The following sample code enters an interrupt critical section and then restores the virtual
interrupt state to it’s previous state.

Int31H Function Calls

Interrupt 31H DPMI Functions

; Disable interrupts and get previous interrupt state

nmov ax, 0900h
int 31h

. At this point AX = 0900h or 0901h

; Restore previous state (assunes AX unchanged)
i nt 31h
Function 0900H This function gets and disables Virtual Interrupt State. This function will
disable the virtual interrupt flag and return the previous state of the virtual
interrupt flag. Pass the following information:

AX =0900H

After the call, the carry flag is clear (this function always succeeds) and virtual
interrupts are disabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtua interrupts were previously enabled.

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the
previous state, simply execute an Int 31h.

Function 0901H This function gets and enables the Virtual Interrupt State. This function will
enable the virtual interrupt flag and return the previous state of the virtual
interrupt flag. Pass the following information:

AX =0901H

After the call, the carry flag is clear (this function always succeeds) and virtual
interrupts are enabled.

AL = 0if virtua interrupts were previously disabled.
AL = 1if virtual interrupts were previously enabled.

Int31H Function Calls 77

The DOS/4GW DOS Extender

Notes:

1. AH will not be changed by this procedure. Therefore, to restore the
previous state, simply execute an Int 31h.

Function 0902H This function getsthe Virtual Interrupt State. This function will return the
current state of the virtual interrupt flag. Pass the following information:

AX =0902H
After the call, the carry flag is clear (this function always succeeds).
AL = 0if virtual interrupts are disabled.
AL = 1if virtual interrupts are enabled.
11.2.11 Vendor Specific Extensions
Some DOS extenders provide extensions to the standard set of DPMI calls. Thiscall isused
to obtain an address which must be called to use the extensions. The caller points DS:ESI to a
null terminated string that specifies the vendor name or some other unique identifier to obtain

the specific extension entry point.

Function OAOOH This function gets Tenberry Software’s APl Entry Point. Passthe following
information:

AX = 0AO0H
DS.ESI = Pointer to null terminated string " RATIONAL DOS/4G"

If the call succeeds, the carry flagis clear and ES.EDI = Extended APl entry
point. DS, FS, GS, EAX, EBX, ECX, EDX, ESI, and EBP may be modified.

If the call fails, the carry flag is set.
Notes:
1. Executeafar cal to call the API entry point.
2. All extended API parameters are specified by the vendor.

3. Thestring comparison used to return the API entry point is case
sensitive.

78 Int31H Function Calls

Interrupt 31H DPMI Functions

11.2.12 Coprocessor Status
Function OEOOH This function gets the coprocessor status. Pass the following information:
AX = OEOOH

If the call succeeds, the carry flagis clear and AX contains the coprocessor

status.
Bit Significance
0 MPv (MP bit in the virtual M SW/CROQ).

0 = Numeric coprocessor is disabled for this client.
1 = Numeric coprocessor is disabled for this client.
1 EMv (EM bit in the virtual MSW/CRO).
0 = Client is not emulating coprocessor instructions.
1 = Client is emulating coprocessor instructions.
2 MPr (MP bit from the actual M SW/CRO).
0 = Numeric coprocessor is not present.
1 = Numeric coprocessor is present.
1 EMr (EM hit from the actual MSW/CRO0).
0 = Host is not emulating coprocessor instructions.
1 =Host is emulating coprocessor instructions.
4-7 Coprocessor type.

OOH = no coprocessor.

02H = 80287
03H = 80387
04H = 80486 with numeric coprocessor
05H = Pentium
8-15 Not applicable.

If the call fails, the carry flag is set.
Notes:

1. If therea EM (EMr) bit is set, the host is supplying or is capable of
supplying floating-point emulation.

2. If the MPv bit is not set, the host may not need to save the

coprocessor state for this virtual machine to improve system
performance.

Int31H Function Calls 79

The DOS/4GW DOS Extender

3. The MPr bit setting should be consistent with the setting of the
coprocessor type information. Ignore MPr bit information if itisin
conflict with the coprocessor type information.

4. If thevirtual EM (EMv) bit is set, the host delivers all coprocessor
exceptions to the client, and the client is performing its own
floating-point emulation (wether or not a coprocessor is present or the
host aso has a floating-point emulator). In other words, if the EMv
bit is set, the host sets the EM bit in the real CRO while the virtual
machineis active, and reflects coprocessor not present faults (int 7) to
the virtual machine.

5. A client can determine the CPU type with int 31H Function 0400H,
but a client should not draw any conclusions about the presence or
absence of a coprocessor based on the CPU type aone.

Function OEO1H This function sets coprocessor emulation. Pass the following information:

AX =0EO1H
BX = coprocessor bits
Bit Significance
0 New value of MPv bit for client’s virtual CRO.

0 = Disable numeric coprocessor for this client.
1 = Enable numeric coprocessor for this client.
1 New value of EMv bit for client’ s virtual CRO.
0 =client will not supply coprocessor emulation.
1 = client will supply coprocessor emulation.
2-15 Not applicable.

If the call succeeds, the carry flag is clear; if it fails, the carry flag is set.

80 Int31H Function Calls

12 Utilities

This chapter describes the Tenberry Software DOS/4GW utility programs provided with the
Watcom F77 package. Each program is described using the following format:

Purpose: Thisisabrief statement of what the utility program does. More specific
information is provided under "Notes".

Syntax: This shows the syntax of the program. The fixed portion of each commandisin a
typewriter font, whilevariable partsof the command areinitalics.
Optional parts are enclosed in [brackets].

Notes: These are explanatory remarks noting major features and possible pitfalls. We
explain anything special that you might need to know about the program.

See Also: Thisisacross-reference to any information that is related to the program.

Example: You'll find one or more sample uses of the utility program with an explanation of
what the program is doing.

Some of the utilities are DOS4GW-based, protected-mode programs. To determine which

programs run in protected mode and which in real, run the program. If you see the DOS4GW
banner, the program runs in protected mode.

Utilities 81

The DOS/4GW DOS Extender

12.1 DOS4GW

Purpose: Loads and executes linear executables.

Syntax: linear_executable

Notes: The stub program at the beginning of the linear executable invokes this program,
which loads the linear executable and starts up the DOS extender. The stub
program must be able to find DOSAGW: make sureit isin the path.

82 DOS4GW

Utilities

12.2 PMINFO

Purpose: Measures the performance of protected/real-mode switching and extended memory.
Syntax: PM NFO. EXE
Notes: We encourage you to distribute this program to your users.

The time-based measurements made by PMINFO may vary dightly from run to
run.

Example: The following example shows the output of the PMINFO program on a 386
AT-compatible machine.

C>pmi nfo
Prot ect ed Mbde and Extended Menory Performance Measurenment --
5.00
Copyright (c) Tenberry Software, Inc. 1987 - 1993

DCS nmenory Ext ended mnenory CPU performance equivalent to 67.0

MHz 80486
736 8012 K bytes configured (according to
BI CS) .
640 15360 K bytes physically present (SETUP).
651 7887 K bytes avail able for DOS/ 16M
prograns.
22.0 (3.0) 18.9 (4.0) MB/ sec word transfer rate (wait
states).
42.9 (3.0) 37.0 (4.0) MB/ sec 32-bit transfer rate (wait
states).

Overal |l cpu and nenory performance (non-floating point) for typical
DCS prograns is 10.36 & 1.04 tinmes an 8vHz | BM PC/ AT.

Protected/ Real switch rate = 36156/sec (27 usec/sw tch, 15 up + 11
down),
DCOs/ 16M swi tch node 11 (VCPI).

The top information line shows that the CPU performanceis equivalent to a67.0
MHz 80486. Below are the configuration and timings for both the DOS memory
and extended memory. If the computer is not equipped with extended memory, or
none is available for DOS4GW, the extended memory measurements may be
omitted ("--").

Theline "according to BIOS" shows the information provided by the BIOS
(interrupts 12h and 15h function 88h). Theline"SETUP", if displayed, isthe

PMINFO 83

The DOS/4GW DOS Extender

84 PMINFO

configuration obtained directly from the CMOS RAM as set by the computer’s
setup program. It isdisplayed only if the numbers are different from those in the
BIOS line. They will be different for computers where the BIOS has reserved
memory for itself or if another program has allocated some memory and is
intercepting the BIOS configuration requests to report less memory available than
isphysically configured. The"DOS/16M memory range”, if displayed, showsthe
low and high addresses available to DOS4GW in extended memory.

Below the configuration information isinformation on the memory speed (transfer
rate). PMINFO tries to determine the memory architecture. Some architectures
will perform well under some circumstances and poorly under others, PMINFO
will show both the best and worst cases. The architectures detected are cache,
interleaved, page-mode (or static column), and direct. Measurements are made
using 32-bit accesses and reported as the number of megabytes per second that can
be transferred. The number of wait statesis reported in parentheses. The wait
states can be afractional number, like 0.5, if there is await state on writes but not
on reads. Memory bandwidth (i.e., how fast the CPU can access memory) accounts
for 60% to 70% of the performance for typical programs (that are not heavily
dependent on floating-point math).

A performance metric developed by Tenberry Software is displayed, showing the
expected throughput for the computer relative to a standard 8VIHz IBM PC/AT
(disk accesses and floating point are excluded). Finally, the speed with which the
computer can switch between real and protected mode is displayed, both as the
maximum number of round-trip switches that can occur per second, and the time
for asingle round-trip switch, broken out into the real-to-protected (up) and
protected-to-real (down) components.

Utilities

12.3 PRIVATXM

Purpose:

Syntax:

Notes:

Example:

Creates a private pool of memory for DOS/4GW programs.
PRI VATXM [- r]
This program may be distributed to your users.

Without PRIVATXM, a DOS4GW program that starts up while another DOS4GW
program is active uses the pool of memory built by the first program. The new
program cannot change the parameters of this memory pool, so setting DOS16M to
increase the size of the pool has no effect. To specify that the two programs use
different pools of memory, use PRIVATXM.

PRIVATXM marks the active DOS4GW programs as private, preventing
subsequent DOS4GW programs from using the same memory pool. The first
DOS4GW program to start after PRIVATXM sets up anew pool of memory for
itself and any subsequent DOS4AGW programs. To release the memory used by the
private programs, use the PRIVATXM - r option.

PRIVATXM isa TSR that requires less than 500 bytes of memory. It is not
supported under DPMI.

The following example creates a 512K B memory pool that is shared by two
DOS4GW TSRs. Subsequent DOS4GW programs use a different memory pool.

C>set DOS16M=:512 Specifies the size of the memory pool.

C>TSR1 Sets up the memory pool at startup.

C>TSR2 This TSR shares the pool built by TSR1.

C>PRIVATXM Makes subsequent DOS4GW programs use a new
memory pool.

C>set DOS16M= Specifies an unlimited size for the new pool.

C>PROGRAM3 This program uses the new memory pool.

C>PRIVATXM -R Releases the 512K B memory pool used by the TSRs. (If

the TSRs shut down, their memory is not released unless
PRIVATXM isreleased.)

PRIVATXM 85

The DOS/4GW DOS Extender

12.4 RMINFO

Purpose: Supplies configuration information and the basis for real/protected-mode switching

Syntax:

Notes:

Example:

86 RMINFO

in your machine.

RM NFO. EXE

This program may be distributed to your users.

RMINFO starts up DOS4GW, but stops your machine just short of switching from
real mode to protected mode and displays configuration information about your
computer. The information shown by RMINFO can help determine why
DOS4GW applications won't run on a particular machine. Run RMINFO if

PMINFO does not run to completion.

The following example shows the output of the RMINFO program on an 386

AT-compatible machine.

Crmnfo

DOS/ 16M Real
Copyright (C) Tenberry Software,

Machi ne and Envi ronnent:

Processor

Machi ne type

A20 now

A20 switch rigor

DPM host found
Swi t chi ng Functi ons:

To PM switch:

To RM switch:

Nomi nal switch node:

Swi tch control flags
Menmory Interfaces

DPM nmay provi de:

Cont i guous DCS nenory:

Mode | nformation Program 5. 00

Inc. 1987 - 1993

i 386, coprocessor present
10 (AT-conpati bl e)
enabl ed

di sabl ed

DPM
DPM
0
0000

16384K returnabl e
463K

The information provided by RMINFO includes:

Machine and Environment:
Processor:

Machine type:

processor type, coprocessor present/not present

Utilities

(NEC 9801)
(PS/2-compatible)
(AT-compatible)
(FM R)

(AT&T 6300+)
(AT-compatible)
(C&T 230 chipset)
(AT-compatible)
(AT-compatible)
(Acer)

(Zenith)

(Hitachi)
(Okidata)

(PS/55)

A20 now: Current state of Addressline 20.

A20 switch rigor: Whether DOSAGW rigorously controls enabling and disabling of
Address line 20 when switching modes.

PSfeatureflag

XMS host found Whether your system has any software using extended memory
under the XM S discipline.

VCPI host found Whether your system has any software using extended memory
under the VCPI discipline.

page table 0 at: x000h

DPMI host found

DOS/16M resident with private/public memory
Switching Functions:

A20 switching:

To PM switch: reset catch:

pre-PM prep:
post-PM-switch:

RMINFO 87

The DOS/4GW DOS Extender

To RM switch:
pre-RM prep:
reset method:
post-reset:
reset uncatch:
Nominal switch mode: x
Switch control flags: xxxxh
Memory I nterfaces:
(VCPI remapping in effect)
DPMI may provide: xxxxxK returnable
VCPI may provide: xxxxxK returnable
Top-down
Other16M
Forced

Contiguous DOS memory:

88 RMINFO

13 Error Messages

The following lists DOS/AG error messages, with descriptions of the circumstances in which
the error is most likely to occur, and suggestions for remedying the problem. Some error
messages pertaining to features— like DLLs— that are not supported in DOS4GW will not
arise with that product. In the following descriptions, referencesto DOS/4G, DOSAG, or
DOSAG.EXE may be replaced by DOS/AGW, DOSAGW, or DOSAGW.EXE should the error
message arise when using DOS4AGW.

13.1 Kernel Error Messages

This section describes error messages from the DOS/16M kernel embedded in DOS/AG.
Kernel error messages may occur because of severe resource shortages, corruption of
DOSAGW.EXE, corruption of memory, operating system incompatibilities, or internal errors
in DOS/4GW. All of these messages are quite rare.

0. involuntary switch to real mode
The computer was in protected mode but switched to real mode without going through
DOS/16M. Thiserror most often occurs because of an unrecoverable stack segment
exception (stack overflow), but can also occur if the Global Descriptor Table or Interrupt
Descriptor Table is corrupted. Increase the stack size, recompile your program with stack
overflow checking, or look into ways that the descriptor tables may have been overwritten.
1. not enough extended memory

2. not a DOS/16M executable <filename>

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way.
Rebuild or recopy thefile.

3. no DOS memory for transparent segment
4. cannot make transparent segment

5. too many transparent segments

Kernel Error Messages 89

The DOS/4GW DOS Extender

6. not enough memory to load program

There is not enough memory to load DOS/4G. Make more memory available and try
again.

7. no relocation segment
8. cannot open file <filename>

The DOS/16M loader cannot load DOS/4G, probably because DOS has run out of file
units. Set alarger FILES= entry in CONFIG.SY S, reboot, and try again.

9. cannot allocate tstack

There is not enough memory to load DOS/AG. Make more memory available and try
again.

10. cannot allocate memory for GDT

There is not enough memory to load DOS/4G. Make more memory available and try
again.

11. no passup stack selectors-- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
12. no control program selectors-- GDT too small

This error indicates an internal error in DOS/4G or an incompatibility with other software.
13. cannot allocate transfer buffer

There is not enough memory to load DOS/4G. Make more memory available and try
again.

14. premature EOF

DOSAG.EXE, or abound DOS/4G application, has probably been corrupted in some way.
Rebuild or recopy thefile.

15. protected mode available only with 386 or 486

DOS/4G requires an 80386 (or later) CPU. It cannot run on an 80286 or earlier CPU.

90 Kernel Error Messages

Error Messages

16. cannot run under OS/2

17. system software does not follow VCPI or DPMI specifications
Some memory resident program has put your 386 or 486 CPU into Virtual 8086 mode.
Thisis done to provide special memory services to DOS programs, such asEMS
simulation (EMS interface without EM S hardware) or high memory. Inthismode, itis
not possible to switch into protected mode unless the resident software follows a standard
that DOS/16M supports (DPMI, VCPI, and XM S are the most common). Contact the
vendor of your memory management software.

18. you must specify an extended memory range (SET DOS16M=)
On some Japanese machines that are not IBM AT-compatible, and have no protocol for
managing extended memory, you must set the DOS16M environment variable to specify
the range of available extended memory.

19. computer must be AT- or PS/2- compatible

20. unsupported DOS16M switchmode choice

21. requiresDOS 3.0 or later

22. cannot free memory

This error probably indicates that memory was corrupted during execution of your
program.

23. no memory for VCPI pagetable

Thereis not enough memory to load DOS/4G. Make more memory available and try
again.

24. VCPI page table addressincorrect
Thisisan internal error.
25. cannot initialize VCPI

This error indicates an incompatibility with other software. DOS/16M has detected that
VCPI is present, but VCPI returns an error when DOS/16M tries to initialize the interface.

26. 8042 timeout

Kernel Error Messages 91

The DOS/4GW DOS Extender

27. extended memory is configured but it cannot be allocated

28. memory error, avail loop
This error probably indicates that memory was corrupted during execution of your
program. Using aninvalid or stale alias selector may cause this error. Incorrect
manipulation of segment descriptors may also cause it.

29. memory error, out of range

This error probably indicates that memory was corrupted during execution of your
program. Writing through an invalid or stale alias selector may cause this error.

30. program must be built -AUTO for DPMI

31. protected mode already in use in this DPMI virtual machine

32. DPMI host error (possibly insufficient memory)

33. DPMI host error (need 64K XMYS)

34. DPMI host error (cannot lock stack)
Any of these errors (32, 33, 34) probably indicate insufficient memory under DPMI.
Under Windows, you might try making more physical memory available by eliminating or
reducing any RAM drives or disk caches. Y ou might also try editing DEFAULT.PIF so
that at least 64KB of XMS memory is available to non-Windows programs. Under OS/2,
you want to increase the DPMI_MEMORY _LIMIT in the DOS box settings.

35. General Protection Fault

This message probably indicates an internal error in DOS/4G. Faults generated by your
program should cause error 2001 instead.

36. The DOS16M .386 virtual device driver was never loaded
37. Unableto reserve selectors for DOS16M.386 Windows driver
38. Cannot use extended memory: HIMEM.SYS not version 2
This error indicates an incompatibility with an old version of HHIMEM.SY S.

39. An obsolete version of DOS16M.386 was |oaded

92 Kernel Error Messages

Error Messages

40. not enough available extended memory (XMIN)

This message probably indicates an incompatibility with your memory manager or its
configuration. Try configuring the memory manager to provide more extended memory,
or change memory managers.

13.2 DOS/AG Errors

1000

1001 "

1003 "

1004 "

1005 "

1007 "

1008 "

"can’t hook interrupts”

A DPMI host has prevented DOS/AG from loading. Please contact Tenberry Technical
Support.

error in interrupt chain"
DOS/4G internal error. Please contact Tenberry Technical Support.
can’t lock extender kernel in memory"

DOS/AG couldn't lock the kernel in physical memory, probably because of a memory
shortage.

syntax is DOSAG <executable.xxx>"
Y ou must specify a program name.
not enough memory for dispatcher data”

There is not enough memory for DOS/4G to manage user-installed interrupt handlers
properly. Free some memory for the DOS/AG application.

can't find file <program> to load"

DOS/4G could not open the specified program. Probably thefiledidn’t exist. Itis
possible that DOS ran out of file handles, or that a network or similar utility has
prohibited read access to the program. Make sure that the file name was spelled
correctly.

can’t load executable format for file <filename> [<error code>]"

DOS/4G Errors 93

The DOS/4GW DOS Extender

DOS/4G did not recognize the specified file as avalid executable file. DOS/4G can
load linear executables (LE and LX) and EXPs (BW). Theerror codeisfor Tenberry
Software’ s use.

1009 " program <filename> is not bound"
This message does not occur in DOS/4G, only DOS/AGW Professional; the latter
requires that the DOS extender be bound to the program file. The error signals an
attempt to load

1010 " can’t initialize loader <loader> [<error code>]"
DOS/4G could not initialize the named loader, probably because of aresource
shortage. Try making more memory available. If that doesn’t work, please contact
Tenberry Technica Support. The error codeisfor Tenberry Software’ use.

1011 " VMM initialization error [<error code>]"
DOS/4G could not initialize the Virtual Memory Manager, probably because of a
resource shortage. Try making more memory available. If that doesn’t work, please
contact Tenberry Technical Support. The error codeisfor Tenberry Software’ use.

1012 " <filename> is not a WATCOM program’

This message does not occur in DOS/4G, only DOS/4GW and DOS/AGW
Professional. Those extenders only support WATCOM 32-bit compilers.

1013 "int 31h initialization error"

DOS/4G was unable to initialize the code that handles Interrupt 31h, probably because
of aninternal error. Please call Tenberry Technical Support.

1100 " assertion \" <statement>\" failed (<file>:<line>)"

DOS/AG internal error. Please contact Tenberry Technical Support.
1200 " invalid EXP executable format"

DOS/4G tried to load an EXP, but couldn’t. The executablefileis probably corrupted.
1201 " program must be built -AUTO for DPMI"

Under DPMI, DOS/4G can only load EXPs that have been linked with the GLU
-AUTO or -DPMI switch.

94 DOS/AG Errors

Error Messages

1202 " can’t allocate memory for GDT"

There is not enough memory available for DOS/4G to build a Global Descriptor Table.
Make more memory available.

1203 " premature EOF"
DOS/4G tried to load an EXP but couldn’t. Thefileis probably corrupted.
1204 " not enough memory to load program”

There is not enough memory available for DOS/AG to load your program. Make more
memory available.

1301 "invalid linear executable format"

DOS/AG cannot recognize the program file as a LINEXE format. Make sure that you
specified the correct file name.

1304 " file I/O seek error"
DOS/4G was unable to seek to afile location that should exist. Thisusually indicates
truncated program files or problems with the storage device from which your program
loads. Run CHKDSK or asimilar utility to begin determining possible causes.

1305 " filel/Oread error"
DOS/4G was unable to read afile location that should contain program data. This
usually indicates truncated program files or problems with the storage device from
which your program loads. Run CHKDSK or asimilar utility to begin determining
possible causes.

1307 " not enough memory"

Asit attempted to load your program, DOS/4G ran out of memory. Make more
memory available, or enable VMM.

1308 " can’t load requested program"
1309 " can’t load requested program"

1311 " can’t load requested program"

DOS/4G Errors 95

The DOS/4GW DOS Extender

1312 " can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical
Support.

1313 " can't resolve external references’
DOS/4G was unable to resolve al references to DLLs for the requested program, or the
program contained unsupported fixup types. Use EXEHDR or asimilar LINEXE
dump utility to see what references your program makes and what special fixup records
might be present.

1314 " not enough lockable memory"
Asit attempted to load your program, DOS/4G encountered arefusal to lock avirtual
memory region. Some memory must be locked in order to handle demand-load page
faults. Make more physical memory available.

1315 " can’t load requested program"

1316 " can’t load requested program"

DOS/4G cannot load your program for some reason. Contact Tenberry Technical
Support.

1317 " program has no stack"

DOS/4G reports this error when you try to run a program with no stack. Rebuild your
program, building in a stack.

2000 " deinitializing twice"
DOS/4G internal error. Please contact Tenberry Technical Support.
2001 " exception <exception_number> (<exception_description>) at <selector:offset>"

Y our program has generated an exception. For information about interpreting this
message, see the file COMMON.DOC.

2002 " transfer stack overflow at <selector: offset>"

Y our program has overflowed the DOS/AG transfer stack. For information about
interpreting this message, see the file COMMON.DOC.

96 DOS/4G Errors

Error Messages

2300 " can’t find <DLL>.<ordinal> - referenced from <module>"
DOS/4G could not find the ordinal listed in the specified DLL, or it could not find the
DLL at al. Correct or remove the reference, and make sure that DOS/4G can find the
DLL.
DOS/AG looks for DLLsin the following directories:

* The directory specified by the Libpath32 configuration option (which defaults
to the directory of the main application file).

* The directory or directories specified by the LIBPATH32 environment variable.
* Directories specified in the PATH.
2301 " can’t find <DLL>.<name> - referenced from <module>"

DOS/4G could not find the entry point named in the specified module. Correct or
remove the reference, and make sure that DOS/4G can find the DLL.

2302 " DLL modules not supported”

This DOS/4GW Professional error message arises when an application references or
triesto explicitly load aDLL. DOS/4GW Professional does not support DLLSs.

2303 "internal LINEXE object limit reached"
DOS/4G currently handles a maximum of 128 LINEXE objects, including al .DLL
and .EXE files. Most .EXE or .DLL files use only three or four objects. If possible,
reduce the number of objects, or contact Tenberry Technical Support.

2500 " can’t connect to extender kernel"
DOS/AG internal error. Please contact Tenberry Technical Support.

2503 " not enough disk space for swapping - <count> byes required"

VMM was unable to create a swap file of the required size. Increase the amount of
disk space available.

2504 " can’t create swap file \<filename>\

DOS/4G Errors 97

The DOS/4GW DOS Extender

VMM was unable to create the swap file. This could be because the swap fileis
specified for a nonexistent drive or on adrivethat is read-only. Set the SWAPNAME
parameter to change the location of the swap file.

2505 " not enough memory for <table>"

VMM was unable to get sufficient extended memory for internal tables. Make more
memory available. If <table> is page buffer, make more DOS memory available.

2506 " not enough physical memory (minmem)"

Thereisless physical memory available than the amount specified by the MINMEM
parameter. Make more memory available.

2511 " swap out error [<error code>]"
Unknown disk error. The error codeisfor Tenberry Software’ use.
2512 " swapin error [<error code>]"
Unknown disk error. The error code isfor Tenberry Software’ use.
2514 " can’t open tracefile"
VMM could not open the VMM.TRC filein the current directory for writing. If the
directory already hasaVMM.TRC file, deleteit. If not, there may not be enough
memory on the drive for the trace file, or DOS may not have any more file handles.
2520 " can’t hook int 31h"
DOS/4G internal error. Please contact Tenberry Technical Support.
2523 " page fault on non-present mapped page"
Y our program references memory that has been mapped to a nonexistent physical
device, using DPMI function 508h. Make sure the device is present, or remove the
reference.
2524 " page fault on uncommitted page"

Y our program references memory reserved with acall to DPMI function

504h, but never committed (using a DPMI 507h or 508h call). Commit the memory before
you referenceit.

98 DOS/4G Errors

Error Messages

3301 " unhandled EMPTYFWD, GATE16, or unknown relocation”

3302 " unhandled ALIAS16 reference to unaliased object"

3304 " unhandled or unknown relocation”
If your program was built for another platform that supports the LINEXE format, it
may contain a construct that DOS/4G does not currently support, such asacall gate.

This message may also occur if your program has a problem mixing 16- and 32-bit
code. A linker error is another likely cause.

DOS/4G Errors 99

The DOS/4GW DOS Extender

100 DOS/4G Errors

14 DOS/4GW Commonly Asked Questions

The following information has been provided by Tenberry Software, Inc. for their DOS/AGW
and DOS/AGW Professional product. The content of this chapter has been edited by Watcom.
In most cases, the information is applicable to both products.
This chapter covers the following topics:

» Access to technical support

« Differences within the DOS/4G product line

» Addressing

* Interrupt and exception handling

» Memory management

* DOS, BIOS, and mouse services

* Virtual memory

* Debugging

» Compatibility

14.1 Access to Technical Support
1la. How to reach technical support.

Here are the various ways you may contact Tenberry Software for technical support.

Access to Technical Support 101

The DOS/4GW DOS Extender

1b.

1c.

Voi ce: (508) 653- 6006

Fax: (508) 655- 2753

I nternet: dos4gw@ at sys. com
CompuSer ve: 73667, 1753

WATCOM BBS: DOS/ 4GW Pr of essi onal area
Mai | : Tenberry Software, Inc.

220 N. Main St.
Natick, MA 01760
USA

PLEASE GIVE YOUR SERIAL NUMBER WHEN YOU CONTACT TENBERRY.
When to contact Watcom, when to contact Tenberry.

Since DOS/AGW Professional isintended to be completely compatible with DOS4AGW,
you may wish to ascertain whether your program works properly under DOS/AGW before
contacting Tenberry Software for technical support. (Thisislikely to be the second
guestion we ask you, after your serial number.)

If your program fails under both DOS/4GW and DOS/AGW Professional, and you suspect
your own code or a problem compiling or linking, you may wish to contact Watcom first.
Tenberry Software support personnel are not able to help you with most programming
guestions, or questions about using the Watcom tools.

If your program only fails with DOS/AGW Professional, you have probably found abug in
DOS/4GW Professional, so please contact us right away.

Telephone support.

Tenberry Software’ s hours for telephone support are 9am-6pm EST. Please note that
telephone support is free for the first 30 daysonly. A one-year contract for continuing
telephone support on DOS/AGW Professional is US$500 per devel oper, including an
update subscription for one year, to customers in the United States and Canada; for
overseas customers, the price is $600. Site licenses may be negotiated.

Thereis no time limit on free support by fax, mail, or electronic means.

102 Access to Technical Support

DOS/4AGW Commonly Asked Questions

1d. References.

The DOS/4GW documentation from Watcom is the primary reference for DOS/AGW
Professional aswell. Another useful reference isthe DPMI specification. In the past, the
DPMI specification could be obtained free of charge by contacting Intel Literature JP26 at
800-548-4725 or by writing to the address below. We have been advised that the DPMI
specification is no longer available in printed form.

Intel Literature JP26

3065 Bowers Avenue

P.O. Box 58065

Santa Clara, California

U.S.A. 95051-8065

However, the DPMI 1.0 specification can be obtained from the Intel ftp site. Hereisthe
URL.

ftp://ftp.intel.com pub/|AL/software_specs/dpm vl.zip

This ZIP file contains a Postscript version of the DPMI 1.0 specification.

14.2 Differences Within the DOS/4G Product Line

2a. DOS/AGW Professional versus DOS/AGW

DOS/4GW Professional was designed to be a higher-performance version of DOS/AGW
suitable for commercial applications. Hereisasummary of the advantages of DOS/4GW
Professional with respect to DOS/AGW:

* Extender binds to the application program file

* Extender startup time has been reduced

» Support for Watcom floating-point emulator has been optimized

* Virtual memory manager performance has been greatly improved

e Under VMM, programs are demand |oaded

* Virtual address spaceis4 GB instead of 32 MB

* Extender memory requirements have been reduced by more than 50K

Differences Within the DOS/4G Product Line 103

The DOS/4GW DOS Extender

* Extender disk space requirements have been reduced by 40K

 Can omit virtual memory manager to save 50K more disk space

* Support for INT 31h functions 301h-304h and 702h-703h
DOS/4GW Professional is intended to be fully compatible with programs written for
DOS/4GW 1.9 and up. The only functional difference isthat the extender is bound to
your program instead of residing in a separate file. Not only does this help reduce startup
time, but it eliminates version-control problems when someone has both DOS/4AGW and
DOS/4GW Professiona applications present on one machine.

2b. DOS/AGW Professional versus DOS/AG.

DOS/4GW Professional is not intended to provide any other new DOS extender
functionality. Tenberry Software’ s top-of-the-line 32-bit extender, DOS/AG, is not sold on
aretail basisbut is of special interest to devel opers who require more flexibility (such as
OEMs). DOS/4G offers these additional features beyond DOS4GW and DOS/4GW
Professional:

» Compl ete documentation

* DLL support

* TSR support

» Support for INT 31h functions 301h-306h, 504h-50Ah, 702h-703h

* A C language API that offers more control over interrupt handling and program
loading, aswell as making it easier to use the extender

» An optional (more protected) nonzero-based flat memory model
» Remappable error messages

» More configuration options

» The D32 debugger, GLU linker, and other tools

* Support for other compilers besides Watcom

* A higher level of technical support

104 Differences Within the DOS/4G Product Line

DOS/4AGW Commonly Asked Questions

2c.

* Custom work is available (e.g., support for additional executable formats, operating
system APl emulations, mixed 16-bit and 32-bit code)

Please contact Tenberry Software if you have questions about other products (present or
future) in the DOS/4G line.

DPMI functions supported by DOS/AGW.

Note that when a DOS/4GW application runs under a DPMI host, such as Windows 3.1 in
enhanced mode, an OS/2 virtual DOS machine, 386Max (with DEBUG=DPMIXCOPY),
or QDPMI (with EXTCHKOFF), the DPMI host provides the DPMI services, not
DOS/4GW. The DPMI host also provides virtual memory, if any. Performance (speed
and memory use) under different DPMI hosts varies greatly due to the quality of the DPMI
implementation.

These are the services provided by DOS/4GW and DOS/AGW Professional in the absence
of aDPMI host.

0000 Allocate LDT Descriptors

0001 Free LDT Descriptor

0002 Map Real-Mode Segment to Descriptor
0003 Get Selector Increment Value

0006 Get Segment Base Address

0007 Set Segment Base Address

0008 Set Segment Limit

0009 Set Descriptor Access Rights

000A Create Alias Descriptor

000B Get Descriptor

000C Set Descriptor

000D Allocate Specific LDT Descriptor
0100 Allocate DOS Memory Block

0101 Free DOS Memory Block

0102 Resize DOS Memory Block

0200 Get Real-Mode Interrupt Vector
0201 Set Real-Mode Interrupt Vector
0202 Get Processor Exception Handler
0203 Set Processor Exception Handler
0204 Get Protected-Mode Interrupt Vector
0205 Set Protected-Mode Interrupt V ector
0300 Simulate Real-Mode I nterrupt

Differences Within the DOS/4G Product Line 105

The DOS/4GW DOS Extender

0301 Cadll Real-Mode Procedure with Far Return Frame (DOS/4GW Professional
only)
0302 Call Real-Mode Procedure with IRET Frame (DOS/AGW Professional only)
0303 Allocate Real-Mode Callback Address (DOS/AGW Professiona only)
0304 Free Real-Mode Callback Address (DOS/AGW Professional only)
0400 Get DPMI Version
0500 Get Free Memory Information
0501 Allocate Memory Block
0502 Free Memory Block
0503 Resize Memory Block
0600 Lock Linear Region
0601 Unlock Linear Region
0604 Get Page Size (VM only)
0702 Mark Page as Demand Paging Candidate (DOS/4GW Professional only)
0703 Discard Page Contents (DOS/4GW Professional only)
0800 Physical Address Mapping
0801 Free Physical Address Mapping
0900 Get and Disable Virtua Interrupt State
0901 Get and Enable Virtua Interrupt State
0902 Get Virtua Interrupt State
0A00 Get Tenberry Software API Entry Point
OEOO Get Coprocessor Status
OEO1 Set Coprocessor Emulation
14.3 Addressing

3a. Converting between pointers and linear addresses.

Because DOS/AGW uses a zero-based flat memory model, converting between pointers
and linear addressesistrivial. A pointer valueis always relative to the current segment
(the valuein CSfor acode pointer, or in DS or SSfor adata pointer). The segment bases
for the default DS, SS, and CS are all zero. Hence anear pointer is exactly the same thing
asalinear address. anull pointer pointsto linear address O, and a pointer with value
0x10000 points to linear address 0x10000.

106 Addressing

DOS/4AGW Commonly Asked Questions

3b.

3c.

3d.

3e.

Converting between code and data pointers.

Because DS and CS have the same base address, they are natural aliases for each other.
To create adata alias for a code pointer, merely create a data pointer and set it equal to the
code pointer. It’'s not necessary for you to create your own alias descriptor. Similarly, to
create a code dias for adata pointer, merely create a code pointer and set it equal to the
data pointer.

Converting between pointers and low memory addresses.

Linear addresses under 1 MB map directly to physical memory. Hence the real-mode
interrupt vector tableis at address O, the BIOS data segment is at address 0x400, the
monochrome video memory is at address 0xB00OO, and the color video memory is at
address 0xB8000. To read and write any of these, you can just use a pointer set to the
proper address. Y ou don't need to create afar pointer, using some magic segment value.

Converting between linear and physical addresses.

Linear addresses at or above 1 MB do not map directly to physical memory, so you can
not in general read or write extended memory directly, nor can you tell how a particular
block of extended memory has been used.

DOS/4GW supports the DPMI call INT 31h/800h, which maps physical addressesto
linear addresses. In other words, if you have a peripheral device in your machine that has
memory at a physical address of 256 MB, you can issue this call to create alinear address
that points to that physical memory. The linear addressis the same thing as a near pointer
to the memory and can be manipulated as such.

Thereisno way in a DPMI environment to determine the physical address corresponding
to agiven linear address. Thisis part of the design of DPMI. Y ou must design your
application accordingly.

Null pointer checking.

DOS/4AGW will trap references to the first sixteen bytes of physical memory if you set the
environment variable DOSAG=NULLP. Thisis currently the only null-pointer check
facility provided by DOS/AGW.

As of release 1.95, DOS/4GW traps both reads and writes. Prior to this, it only trapped
writes.

Y ou may experience problems if you set DOSAG=NULLP and use some versions of the

Watcom Debugger with a 1.95 or later extender. These problems have been corrected in
later versions of the Watcom Debugger.

Addressing 107

The DOS/4GW DOS Extender

14.4 Interrupt and Exception Handling

4a. Handling asynchronous interrupts.

Under DOS/AGW, thereis a convenient way to handle asynchronous interrupts and an
efficient way to handle them.

Because your CPU may be in either protected mode (when 32-bit code is executing) or
real mode (a DOS or BIOS call) when a hardware interrupt comes in, you have to be
prepared to handle interruptsin either mode. Otherwise, you may miss interrupts.

Y ou can handle both real-mode and protected-mode interrupts with asingle handler, if 1)
the interrupt isin the auto-passup range, 8 to 2Eh; and 2) you install a handler with INT
21h/25h or _dos_setvect(); 3) you do not install a handler for the same interrupt using any
other mechanism. DOS/AGW will route both protected-mode interrupts and real-mode
interrupts to your protected-mode handler. Thisisthe convenient way.

The efficient way isto install separate real-mode and protected-mode handlers for your
interrupt, so your CPU won't need to do unnecessary mode switches. Writing areal-mode
handler istricky; all you can reasonably expect to do is save datain a buffer and IRET.

Y our protected-mode code can periodically check the buffer and process any queued data.
(Remember, protected-mode code can access data and execute code in low memory, but
real-mode code can't access data or execute code in extended memory.)

For performance, it doesn’t matter how you install the real-mode handler, but we
recommend the DPMI function INT 31h/201h for portability.

It does matter how you install the protected-mode handler. You can’t install it directly
into the IDT, because a DPMI provider must distinguish between interrupts and exceptions
and maintain separate handler chains. Installing with INT 31h/205h is the recommended
way to install your protected-mode handler for both performance and portability.

If you install a protected-mode handler with INT 21h/25h, both interrupts and exceptions
will be funneled to your handler, to mimic DOS. Since DPMI exception handlers and
interrupt handlers are called with different stack frames, DOS/AGW executes a layer of
code to cover these differences up; the same layer is used to support the DOS/4G API (not
part of DOS/AGW). Thislayer isthe reason that hooking with INT 21h/25h is less
efficient than hooking with INT 31h/205h.

108 Interrupt and Exception Handling

DOS/4AGW Commonly Asked Questions

4b.

4c.

4d.

4e.

Handling asynchronousinterruptsin the second | RQ range.

Because the second IRQ range (normally INTs 70h-77h) is outside the DOS/4AGW
auto-passup range (8-2Eh, excluding 21h) you may not handle these interrupts with a
single handler, as described above (the "convenient" method). You must install separate
real-mode and protected-mode handlers (the "efficient” method).

DOS/4G does alow you to specify additional passup interrupts, however.
Asynchronousinterrupt handlers and DPMI.

The DPMI specification requires that all code and data referenced by a hardware interrupt
handler MUST be locked at interrupt time. A DPMI virtual memory manager can use the
DOS file system to swap pages of memory to and from the disk; because DOS is not
reentrant, aDPMI host is not required to be able to handle page faults during
asynchronous interrupts. Use INT 31h/600h (Lock Linear Region) to lock an address
range in memory.

If you fail to lock al of your code and data, your program may run under DOS/4GW, but
fail under the DOS/4GW Virtual Memory Manager or under another DPMI host such as
Windows or OS/2.

Y ou should also lock the code and data of a mouse callback function.

Watcom signal() function and Ctrl-Break.

In earlier versions of the Watcom C/C++ library, there was a bug that caused

signal (SIGBREAK) not to work. Calling signal(SIGBREAK) did not actually install an
interrupt handler for Ctrl-Break (INT 1Bh), so Ctrl-Break would terminate the application
rather than invoking the signal handler.

With these earlier versions of the library, you could work around this problem by hooking
INT 1Bh directly. With release 10.0, this problem has been fixed.

Moretips on writing hardware interrupt handlers.

* [t'smore like handling interrupts in real mode than not.
The same problems arise when writing hardware interrupt handlers for protected mode as
arise for real mode. We assume you know how to write real-mode handlers; if our
suggestions don’t seem clear, you might want to brush up on real-mode interrupt

programming.

» Minimize the amount of time spent in your interrupt handlers.

Interrupt and Exception Handling 109

The DOS/4GW DOS Extender

When your interrupt handlers are called, interrupts are disabled. This means that no other
system tasks can be performed until you enable interrupts (an STI instruction) or until
your handler returns. In general, it's agood idea to handle interrupts as quickly as
possible.

» Minimize the amount of time spent in the DOS extender by installing separate real-mode
and protected-mode handlers.

If you use a passup interrupt handler, so that interrupts received in real mode are
resignalled in protected mode by the extender, your application has to switch from real
mode to protected mode to real mode once per interrupt. Mode switchingisa
time-consuming process, and interrupts are disabled during a mode switch. Therefore, if
you' re concerned about performance, you should install separate handlers for real-mode
and protected-mode interrupts, eliminating the mode switch.

* If you can't just set aflag and return, enable interrupts (STI).

Handlers that do more than just set aflag or store datain a buffer should re-enable
interrupts as soon asit’s safe to do so. In other words, save your registers on the stack,
establish your addressing conventions, switch stacks if you' re going to — and then enable
interrupts (ST1), to give priority to other hardware interrupts.

* If you enable interrupts (ST1), you should disable interrupts (CL1).

Because some DPMI hosts virtualize the interrupt flag, if you do an STI in your handler,
you should be sure to do a CLI before you return. (CLI, then switch back to the original
stack if you switched away, then restore registers, then IRET.) If you don’t do this, the
IRET will not necessarily restore the previous interrupt flag state, and your program may
crash. Thisisadifference from real-mode programming, and it tends to show up asa
problem when you try running your program in a Windows or OS/2 DOS hox for the first
time (but not before).

» Add areentrancy check.

If your handler doesn’t complete its work by the time the next interrupt is signalled, then
interrupts can quickly nest to the point of overflowing the transfer stack. Thisisadesign
flaw in your program, not in the DOS extender; areal-mode DOS program can have
exactly the same behavior. If you can conceive of a situation where your interrupt
handler can be called again before the first instance returns, you need to code in a
reentrancy check of some sort (before you switch stacks and enable interrupts (ST1),
obvioudly).

Remember that interrupts can take different amounts of time to execute on different
machines; the CPU manufacturer, CPU speed, speed of memory accesses, and CMOS

110 Interrupt and Exception Handling

DOS/4AGW Commonly Asked Questions

settings (e.g. "system BIOS shadowing") can all affect performance in subtle ways. We
recommend you program defensively and always check for unexpected reentry, to avoid
transfer stack overflows.

* Switch to your own stack.
Interrupt handlers are called on a stack that typically has only a small amount of stack
available (512 bytes or less). If you need to use more stack than this, you have to switch
to your own stack on entry into the handler, and switch back before returning.
If you want to use C run-time library functions, which are compiled for flat memory
model (SS== DS, and the base of CS == the base of DS), you need to switch back to a
stack in the flat data segment first.

Note that switching stacks by itself won't prevent transfer stack overflows of the kind
described above.

14.5 Memory Management
5a. Using therealloc() function.
In versions of Watcom C/C++ prior to 9.5b, there was abug in the library implementation
of realloc() under DOS/AGW and DOS/AGW Professional. This bug was corrected by
Watcom in the 9.5b release.
5b. Using all of physical memory.
DOS/4GW Professional is currently limited to 64 MB of physical memory. We do not

expect to be able to fix this problem for at least six months. 1f you need more than 64 MB
of memory, you must use virtual memory.

14.6 DOS, BIOS, and Mouse Services

6a. Speeding up file I/O.

The best way to speed up DOS file I/O in DOS/AGW isto write large blocks (up to 65535
bytes, or the largest number that will fit in a 16-bit int) at atime from a buffer in low
memory. Inthiscase, DOS/AGW hasto copy the least amount of data and make the
fewest number of DOS callsin order to process the 1/0 request.

DOS, BIOS, and Mouse Services 111

The DOS/4GW DOS Extender

6b.

6c.

6d.

Low memory is allocated through INT 31h/0100h, Allocate DOS Memory Block. You
can convert the real-mode segment address returned by INT 31h/0100h to a pointer
(suitable for passing to setvbuf()) by shifting it left four bits.

Spawning.

It is possible to spawn one DOS/4GW application from another. However, two copies of
the DOS extender will be loaded into memory. DOS/4G supports loading of multiple
programs atop a single extender, aswell asDLLs.

Mouse callbacks.

DOS/4AGW Professional now supportsthe INT 31h interface for managing real-mode
callbacks. However, you don’t need to bother with them for their single most important
application: mouse callback functions. Just register your protected-mode mouse callback
function as you would in real mode, by issuing INT 33h/0Ch with the event mask in CX
and the function address in ES:EDX, and your function will work as expected.

Because a mouse callback function is called asynchronously, the same locking
requirement exists for a mouse callback function as for a hardware interrupt handler. See
(4c) above.

VESA support.
While DOS/AGW automatically handles most INT 10h functions so that you can you can

issue them from protected mode, it does not translate the INT 10h VESA extensions. The
workaround isto use INT 31h/300h (Simulate Real-Maode Interrupt).

14.7 Virtual Memory

7a. Testing for the presence of VMM.

INT 31h/400h returns avalue (BX, bit 2) that tellsif virtual memory is available. Under a
DPMI host such as Windows 3.1, thiswill be the host’ s virtual memory manager, not
DOS/4AGW's.

Y ou can test for the presence of a DOS/4G-family DOS extender with INT 31h/0A00h,
with a pointer to the null-terminated string "RATIONAL DOS/4G" in DS.ESI. If the
function returns with carry clear, a DOS/AG-family extender is running.

112 Virtual Memory

DOS/4AGW Commonly Asked Questions

7b.

7c.

7d.

Te.

f.

Reserving memory for a spawned application.

If you spawn one DOS/AGW application from another, you should set the DELETESWAP
configuration option (i.e., SET DOSAGV M=deleteswap) so that the two applications don’'t
try to use the same swap file. Y ou should also set the MAXMEM option low enough so
that the parent application doesn’t take all available physical memory; memory that’s been
reserved by the parent application is not available to the child application.

I nstability under VMM.

A program that hooks hardware interrupts, and works fine without VMM but crashes
sporadically with it, probably needs to lock the code and data for its hardware interrupt
handlers down in memory. DOS/AGW does not support page faults during hardware
interrupts, because DOS services may not be available at that time. See (4c) and (6¢)
above.

Memory can be locked down with INT 31h/600h (Lock Linear Region).
Running out of memory with a huge virtual address space.

Because DOS/4AGW hasto create page tables to describe your virtual address space, we
recommend that you set your VIRTUALSIZE parameter just large enough to
accommodate your program. If you set your VIRTUALSIZE to 4 GB, the physical
memory occupied by the page tables will be 4 MB, and that memory will not be available
to DOS/AGW.

Reducing the size of the swap file.

DOS/4GW will normally create a swap file equal to your VIRTUALSIZE setting, for
efficiency. However, if you set the SWAPMIN parameter to asize (in KB), DOS/4GW
will start with aswap file of that size, and will grow the swap file when it hasto. The
SWAPINC value (default 64 KB) controls the incremental size by which the swap file will
grow.

Deleting the swap file.
The DELETESWAP option has two effects. telling DOS/4GW to delete the swap file
when it exits, and causing DOS/AGW to provide a unique swap file name if an explicit

SWAPNAME setting was not given.

DELETESWAP isrequired if one DOS/AGW application isto spawn another; see (7b)
above.

Virtual Memory 113

The DOS/4GW DOS Extender

7g. Improving demand-load performance of large static arrays.

DOS/4GW demand-loading feature normally cuts the load time of a large program
drastically. However, if your program has large amounts of global, zero-initialized data
(storage class BSS), the Watcom startup code will explicitly zero it (version 9.5a or
earlier). Because the zeroing operation touches every page of the data, the benefits of
demand-loading are lost.

Demand loading can be made fast again by taking advantage of the fact that DOS/AGW
automatically zeroes pages of BSS data as they are loaded. Y ou can make this change
yourself by inserting afew lines into the startup routine, assembling it (MASM 6.0 will
work), and listing the modified object module first when you link your program.

Here are the changes for \ WATCOM SRC\ STARTUP\ 386\ CSTART3R. ASM(startup
module from the C/C++ 9.5 compiler, library using register calling conventions). Y ou can
modify the workaround easily for other Watcom compilers:

; cstart3r.asm circa line 332
end of _BSS segnment (start of STACK)

nov ecx, of f set DGROUP: _end
; start of _BSS segnent
nov edi, of f set DGROUP: _edat a
e T T ; RSl OPTI M ZATI ON
nmv eax, edi ; minimze _BSS initialization |oop
or eax, OFFFh ; conpute address of first page after
inc eax ; start of _BSS
cnp eax, ecx ; if _BSS extends onto that page
j ae all zero ; then we can rely on the | oader
nmov ecx, eax ; zeroi ng the remaini ng pages
all zero: ;
e T ; END RSI OPTI M ZATI ON
sub ecx, edi ; calc # of bytes in _BSS segnent
nmv dl,cl ; save bottom 2 bits of count in edx
shr ecx, 2 ; calc # of dwords
sub eax, eax ; zero the _BSS segnent
rep st osd N
nmv cl,dl ; get bottom 2 bits of count
and cl,3 ;
rep st osb

Note that the 9.5b and later versions of the Watcom C library already contain this
enhancement.

114 Virtual Memory

DOS/4AGW Commonly Asked Questions

7h. How should | configure VM for best performance?
Here are some recommendations for setting up the DOS/AGW virtual memory manager.

VIRTUALSIZE Set to no more than twice the total amount of memory (virtual and
otherwise) your program requires. If your program has 16 MB of code and
data, set to 32 MB. (Thereisonly asmall penalty for setting this value
larger than you will need, but your program won't run if you set it too low.)
See (7d) above.

MINMEM Set to the minimum hardware requirement for running your application. (If
you require a2 MB machine, set to 2048).

MAXMEM Set to the maximum amount of memory you want your application to use. If
you don’t spawn any other applications, set thislarge (e.g., 32000) to make
sure you can use al available physical memory. If you do spawn, see (7b)
above.

SWAPMIN Don't usethisif you want the best possible VM performance. The trade-off
isthat DOS/AGW will create a swap file as big as your VIRTUALSIZE.

SWAPINC Don't usethisif you want the best possible VM performance.
DELETESWAP DOS/AGW’s VM will start up slightly slower if it has to create the swap
file afresh each time. However, unless your swap fileisvery large,

DELETESWAP is areasonable choice; it may be required if you spawn
another DOS/AGW program at the sametime. See (7b) above.

14.8 Debugging

8a. Attempting to debug a bound application.

Y ou can't debug a bound application. The 4GWBIND utility (included with DOS/AGW
Professional) will allow you to take apart a bound application so that you can debug it:

4GBl ND - U <boundapp. exe> <your app. exe>

Debugging 115

The DOS/4GW DOS Extender

8b.

8c.

Debugging with an old version of the Watcom debugger.

DOS/4GW supports versions 8.5 and up of the Watcom C, C++ and FORTRAN
compilers. However, in order to debug your unbound application with a Watcom
debugger, you must have version 9.5a or later of the debugger.

If you have an older version of the debugger, we strongly recommend that you contact
Watcom to upgrade your compiler and tools. The only way to debug a DOS/4AGW
Professional application with an old version of the debugger isto rename 4GWPRO.EXE
to DOSAGW.EXE and make sure that it's either in the current directory or the first
DOSAGW.EXE on the DOS PATH.

Tenberry will not provide technical support for this configuration; it's up to you to keep
track of which DOS extender iswhich.

Meaning of " unexpected interrupt” message/error 2001.

Inversion 1.95 of DOS/4GW, we revised the "unexpected interrupt" message to make it
easier to understand.

For example, the message:

Unexpected interrupt OE (code 0) at 168:10421034

ishow printed:

error (2001): exception OEh (page fault) at 168:10421034
followed by aregister dump, as before.
This message indicates that the processor detected some form of programming error and

signaled an exception, which DOS/AGW trapped and reported. Exceptions which can be
trapped include:

116 Debugging

DOS/4AGW Commonly Asked Questions

00h
01h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
OEh

di vide by zero

debug exception OR null pointer used
br eakpoi nt

overfl ow

bounds

i nval i d opcode

device not avail abl e
doubl e fault

overrun

invalid TSS

segment not present
stack fault

general protection fault
page fault

When you receive this message, this is the recommended course of action:

1.

2.

Record all of the information from the register dump.

Determine the circumstances under which your program fails.

Consult your debugger manual, or an Intel 386, 486 or Pentium Programmer’s
Reference Manual, to determine the circumstances under which the processor

will generate the reported exception.

Get the program to fail under your debugger, which should stop the program as
soon as the exception occurs.

Determine from the exception context why the processor generated an
exception in this particular instance.

8d. Meaning of " transfer stack overflow" message/error 2002.

In version 1.95 of DOS/AGW, we added more information to the "transfer stack overflow"
message. The message (which is now followed by aregister dump) is printed:

error (2002): transfer stack overflow
on interrupt <nunber> at <address>

This message means DOS/AGW detected an overflow onitsinterrupt handling stack. It
usually indicates either arecursive fault, or a hardware interrupt handler that can’t keep up
with the rate at which interrupts are occurring. The best way to understand the problem is
to use the VERBOSE option in DOS/4GW to dump the interrupt history on the transfer
stack; see (8¢e) below.

Debugging 117

The DOS/4GW DOS Extender

8e. Making the most of a DOS/4AGW register dump.

If you can’t understand your problem by running it under a debugger, the DOS/AGW
register dump isyour best debugging tool. To maximize the information available for

postmortem debugging, set the environment variable DOSAG to VERBOSE, then

reproduce the crash and record the output.

Here' satypical register dump with VERBOSE turned on, with annotations.

1 DOS/4GWerror (2001): exception OEh (page fault)

at 170: 0042C1B2

2 TSF32: prev_tsf32 6708

3 SS 178 DS 178 ES 178 FS 0 GS 20
EAX 1F000000 EBX 0 ECX 43201C EDX E
ESI E ED 0 EBP 431410 ESP 4313FC
CS: 1P 170:0042C1B2 | D OE COD 0 FLG 10246

4 CS= 170, USE32, page granular, limt FFFFFFFF, base 0, acc CF9B
SS= 178, USE32, page granular, |limt FFFFFFFF, base 0, acc CF93
DS= 178, USE32, page granular, |imt FFFFFFFF, base 0, acc CF93
ES= 178, USE32, page granular, |imt FFFFFFFF, base 0, acc CF93
FS= 0, USE16, byte granular, limt 0, base 15, acc O
GS= 20, USE16, byte granular, limt FFFF, base 6AA0, acc 93

5 CR0: PG1 ET:1 TS0 EMO M0 PE 1 CR2: 1F000000 CR3: 9067

6 Crash address (unrel ocated) = 1:000001B2

7 Opcode stream 8A 18 31 D2 88 DA EB OE 50 68 39 00 43 00 E8 1D
St ack:

8 0178: 004313FC O00OE 0000 0000 0000 C2D5 0042 CO57 0042 0170 0000 0000 0000
0178: 00431414 0450 0043 0452 0043 0000 0000 1430 0043 CBEF 0042 011C 0000
0178:0043142C C568 0042 0000 0000 0000 0000 0000 0000 F248 0042 F5F8 0042
0178: 00431444 0000 0000 0000 0000 0000 0000 0000 0000 O0OO OOOO OOOO 0000
0178: 0043145C 0000 0000 0000 0000 0000 0000 O0OOO 0000 0000 0000 0000 0000
0178: 00431474 0000 0000 0000 0000 0000 0000 0000 0000 OOOO OOOO OOOO 0000

9 Last 4 ints: 21 @170: 42CF48/ 21 @ 170: 42CF48/ 21 @ 170: 42CF48/ E @

170: 42C1B2/

1. Theerror message includes a synopsis of the problem. In this case, the

processor signaled a page fault exception while executing at address

170:0042C1B2.

2. Theprev_tsf32fieldis not usualy of interest.

3. Thesearetheregister values at the time of the exception. The interrupt number
and error code (pushed on the stack by the processor for certain exceptions) are

also printed.

4. The descriptors referenced by each segment register are described for your
convenience. USE32 segmentsin general belong to your program; USE16
segments generally belong to the DOS extender. Here, CS points to your

program’s code segment, and SS, DS, and ES point to your data segment. FSis

NULL and GS pointsto a DOS extender segment.

118 Debugging

DOS/4AGW Commonly Asked Questions

The control register information is not of any general interest, except on a page
fault, when CR2 contains the address value that caused the fault. Since EAX in
this case contains the same value, an attempt to dereference EAX could have
caused this particular fault.

If the crash address (unrelocated) appears, it tells you where the crash occurred
relative to your program’slink map. Y ou can therefore tell where a crash
occurred even if you can't reproduce the crash in a debugger.

The opcode stream, if it appears, shows the next 16 bytes from the code
segment at the point of the exception. If you disassemble these instructions,
you can tell what instructions caused the crash, even without using a debugger.
Inthis case, 8A 18 istheinstruction mov bl , [eax] .

72 words from the top of the stack, at the point of the exception, may be listed
next. You may be able to recognize function calls or data from your program
on the stack.

The four interrupts least to most recently handled by DOS/4GW in protected
mode are listed next. In this example, the last interrupt issued before the page
fault occurred was an INT 21h (DOS call) at address 170:42CF48. Sometimes,
thisinformation provides helpful context.

Here' s an abridged register dump from a stack overflow.

DOs/ 4GW error (2002):

TSF32: prev_tsf32 48C8

transfer stack overflow
on interrupt 70h at 170: 0042C002

SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1Dl1 EBP B1B1B1Bl1 ESP 4884
1 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
2 Previous TSF:
TSF32: prev_tsf32 498C
SS C8 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1D1 EBP B1B1B1Bl1 ESP 4960
3 CS:IP 170:0042C002 ID 70 COD 0 FLG 2
Pr evi ous TSF:
TSF32: prev_tsf32 67E4
SS 178 DS 170 ES 28 FS 0 GS 20
EAX AAAAAAAA EBX BBBBBBBB ECX CCCCCCCC EDX DDDDDDDD
ESI 51515151 EDI D1D1D1Dl1 EBP B1B1B1Bl1 ESP 42FFEOQ
4 CS:|P 170:0042C039 ID 70 COD 0 FLG 202

5 Opcode stream CF 66 B8 62 25 66 8C CB
70 @170:42C002/ 70 @ 170: 420002/ 70 @ 170: 42C002/ 70 @

Last 4 ints:
170: 420002/

66 8E DB BA 00 C0 42 00

Debugging 119

The DOS/4GW DOS Extender

1. Weoverflowed the transfer stack while trying to process an interrupt 70h at
170:0042C002.

2. Theentireinterrupt history from the transfer stack is printed next. The
prev_tsf32 numbers increase as we progress from most recent to least recent
interrupt. All of these interrupts are still pending, which iswhy we ran out of
stack space.

3. Beforewe overflowed the stack, we got the same interrupt at the same address.
For arecursive interrupt situation, thisistypical.

4. Theoldest frame on the transfer stack shows the recursion was touched off at a
dightly different address. Looking at this address may help you understand the
recursion.

5. The opcode stream and last four interrupt information comes from the newest
transfer stack frame, not the oldest.

14.9 Compatibility

9a. Running DOS/4GW applications from inside Lotus 1-2-3.

9.

In order to run DOS/AGW applications while "shelled out" from Lotus 1-2-3, you must use
the PRIVATXM program included with your Watcom compiler. Otherwise, 1-2-3 will
take all of the memory on your machine and prevent DOS/4GW from using it.

Before starting 1-2-3, you must set the DOS16M environment variable to limit Lotus
memory use (see your Watcom manual). After shelling out, you must run PRIVATXM,
then clear the DOS16M environment variable before running your application.

EMM386.EXE provided with DOS 6.0.

We know of at least three serious bugs in the EMM386.EXE distributed with MS-DOS
6.0, one involving mis-counting the amount of available memory, one involving mapping
too little of the High Memory Area (HMA) into its page tables, and one involving
allocation of EMS memory. Version 1.95 of DOS/AGW contains workarounds for some
of these prablems.

If you are having problems with DOS/4GW and you are using an EMM386.EXE dated
3-10-93 at 6:00:00, or later, you may wish to try the following workarounds, in sequence,
until the problem goes away.

120 Compatibility

DOS/4AGW Commonly Asked Questions

9c.

od.

%e.

* Configure EMM 386 with both the NOEM S and NOV CPI options.

* Convert the DEVICEHIGH statements in your CONFIG.SY Sto DEVICE
statements, and remove the LH (Load High) commands from your
AUTOEXEC.BAT.

* Run in aWindows DOS box.

* Replace EMM 386 with another memory manager, such as QEMM-386, 386Max, or
an older version of EMM386.

* Run with HIMEM.SY S done.

Y ou may also wish to contact Microsoft Corporation to inquire about the availability of a
fix.

Spawning under 0S/2 2.1.

We know of abug in OS/2 2.1 that prevents one DOS/4GW application from spawning
another over and over again. The actual number of repeated spawns that are possible
under OS/2 varies from machine to machine, but is generally about 30.

This bug also affects programs running under other DOS extenders, and we have not yet
found aworkaround, other than linking your two programs together as a single program.

"DPMI host error: cannot lock stack" .

This error message almost always indicates insufficient memory, rather than areal
incompatibility. If you seeit under an OS/2 DOS box, you probably need to edit your
DOS Session settings and make DPMI_MEMORY _LIMIT larger.

Bugin Novell TCPIP driver.

Some versions of a program from Novell called TCPIP.EXE, areal-mode program, will
cause the high words of EAX and EDX to be altered during a hardware interrupt. This
bug breaks protected-mode software (and other real-mode software that uses the 80386
registers). Novell has released a newer version of TCPIP that fixes the problem; contact
Novell to obtain the fix.

Compatibility 121

The DOS/4GW DOS Extender

of. Bugsin Windows NT.

Theinitia release of Windows NT includes a DPMI host, DOSX.EXE, with several
serious bugs, some of which apparently cannot be worked around. We cannot warranty
operation of DOS/4GW under Windows NT at this time, but we are continuing to exercise
our best efforts to work around these problems.

Y ou may wish to contact Microsoft Corporation to inquire about the availability of a new
version of DOSX.EXE.

122 Compatibility

Windows 3.x Programming Guide

Windows 3.x Programming Guide

124

15 Creating 16-bit Windows 3.x Applications

This chapter describes how to compile and link 16-bit Windows 3.x applications smply and
quickly. Inthis chapter, we look at applications written to exploit the Windows 3.x
Application Programming Interface (API).

We will illustrate the steps to creating 16-bit Windows 3.x applications by taking a small
sample application and showing you how to compile, link, run and debug it.

15.1 The Sample Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

*$i ncl ude wi napi . fi
*$nor ef erence

| NTEGER*2 FUNCTI ON FW NVAI N(hl nst ance, hPrevl nstance,

& | pszCndLi ne, nCrmdShow)

*$ref erence

I MPLI CI' T NONE

I NTEGER*2 hl nstance, hPrevlnstance, nCndShow

| NTEGER*4 | pszCndLi ne

i ncl ude 'w ndows. fi’

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRIMES
LOG CAL*1 NUVBERS(2: UPBOUND)
CHARACTER* 11 FORM
CHARACTER*60 BUFFER
PARANETER (FORME' (A, 15, A 15)")
DO | = 2, UPBOUND

NUVBERS(1) = . TRUE.
ENDDO

The Sample Application 125

Windows 3.x Programming Guide

=0
2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DO K =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
WRI TE(BUFFER, FORM) ' The Nunmber of Prines between 1 and ',
& UPBOUND, ' are: ', PRIMES
CALL MessageBox(0, BUFFER,
& ' Si eve of Eratosthenes’c,
& MB_OK . OR MB_TASKMODAL)
END

PRI MES
DO 1 =

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe
famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

15.2 Building and Running the Sample Windows 3.x
Application

To compile and link our example program which is stored in the file SI EVE. FOR, enter the
following command:

Cwil /1 =wi ndows/ wi n si eve

The typical messages that appear on the screen are shown in the following illustration.

Cwil /1 =wi ndows/w n sieve
WATCOM F77/16 Conpile and Link Utility
Copyright by WATCOM | nternati onal Corp. 1990, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

wfc sieve.for /wn
WATCOM FORTRAN 77/ 16 Optim zing Conpil er
Copyright by WATCOM | nternati onal Corp. 1984, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 4305 statenents, 356 bytes, 1524 extensions, 0 warnings, O
errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

126 Building and Running the Sample Windows 3.x Application

Creating 16-bit Windows 3.x Applications

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and SI EVE. EXE (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.X.

15.3 Debugging the Sample Windows 3.x Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL
command, thisisfairly straightforward. WFL recognizes the Watcom F77 compiler "debug"
options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwl /1 =wi ndows/win /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Cwil /1 =wi ndows/wi n /d2 sieve
WATCOM F77/ 16 Conpile and Link Utility
Copyright by WATCOM | nternati onal Corp. 1990, 2000. Al rights reserved.
WATCOM i s a tradenark of Sybase, Inc. and its subsidiaries.

wfc sieve.for /win /d2
WATCOM FORTRAN 77/ 16 Optim zing Conpil er
Copyright by WATCOM | nternati onal Corp. 1984, 2000. Al rights reserved.
WATCOM i s a tradenark of Sybase, Inc. and its subsidiaries.
sieve.for: 4305 statenents, 467 bytes, 1524 extensions, 0 warnings, O
errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a tradenark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided

by the Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

Debugging the Sample Windows 3.x Application 127

Windows 3.x Programming Guide

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in thisintroductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the

\ WATCOM SAMPLES\ FORTRAN\ W N directory. The example programs are
ELLI PSE. FOR and FWCOPY. FOR.

128 Debugging the Sample Windows 3.x Application

16 Porting Non-GUI Applications to 16-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. Thereisa steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of
WATCOM'’ s default windowing support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like
DOS and you now wish to run them under Windows 3.x. To achieve this, you can smply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows 3.x Graphical User Interface (GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. Thisis achieved by our
default windowing system. The following sections describe the default windowing system.

16.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the
standard input and standard output devices respectively. It isnot arecommended practiceto
read directly from the standard input device or write to the standard output device when
running in awindowed environment. For this reason, a default windowing environment is
created for FORTRAN 77 applications that read from unit 5 or write to unit 6. When your
application is started, awindow is created in which output to unit 6 is displayed and input
from unit 5 is requested.

In addition to the standard 1/O device, it is a so possible to perform I/O to the console by
explicitly opening afile whose nameis"CON". When this occurs, another window is created

Console Device in a Windowed Environment 129

Windows 3.x Programming Guide

and displayed. Thiswindow is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of datato and from the
console device.

16.2 The Sample Non-GUI Application

To demonstrate the creation of 16-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this programis to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

16.3 Building and Running the Non-GUI Windows 3.x
Application
Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.

Y ou must compile and link the file SI EVE specifying the "bw" option.

130 Building and Running the Non-GUI Windows 3.x Application

Porting Non-GUI Applications to 16-bit Windows 3.x

Cwil /1 =wi ndows/ bw/ wi n si eve

The typical messages that appear on the screen are shown in the following illustration.

Cwil /1 =wi ndows/ bw/ wi n si eve
WATCOM F77/16 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wfc sieve.for /bwwn
WATCOM FORTRAN 77/ 16 Optim zing Conpil er
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 311 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. EXE (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries).

The resultant 16-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.x asaWindows GUI application.

16.4 Debugging the Non-GUI Windows 3.x Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL
command, thisisfairly straightforward. WFL recognizes the Watcom F77 compiler "debug"
options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwil /1 =wi ndows/ bw/ win /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Non-GUI Windows 3.x Application 131

Windows 3.x Programming Guide

Cwil /1 =wi ndows/ bw/ wi n /d2 sieve
WATCOM F77/16 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wfc sieve.for /bwwn /d2
WATCOM FORTRAN 77/ 16 Optim zing Conpil er
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 392 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM I nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom

Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

16.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when thefileis
closed. You must passto it the unit number associated with the opened console.

dwfSetAboutDlg

132 Default Windowing Library Functions

Porting Non-GUI Applications to 16-bit Windows 3.x

i nteger function dwfSetAboutDi g(title, text)
character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If titleis CHAR(O) then the title
will not be replaced. The "text" pointsto a string which will be placed in the about
box. To get multiple lines, embed a new line after each logical linein the string. If
"text" is CHAR(O), then the current text in the about box will not be replaced.

dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.
dwfSetConTitle
i nteger function dwfSetConTitle(unit, title)
i nteger unit

character*(*) title

This function sets the console window’ s title which corresponds to the unit number
passed to it.

dwfShutDown
i nteger function dwf Shut Down()

This function shuts down the default windowing 1/0 system. The application will
continue to execute but no windows will be available for output.

dwfYield
i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the Watcom FORTRAN 77 User’s Guide.

Default Windowing Library Functions 133

Windows 3.x Programming Guide

134 Default Windowing Library Functions

17 Creating 32-bit Windows 3.x Applications

This chapter describes how to compile and link 32-bit Windows 3.x applications smply and
quickly. Inthis chapter, we look at applications written to exploit the Windows 3.x
Application Programming Interface (API).

We will illustrate the steps to creating 32-bit Windows 3.x applications by taking a small
sample application and showing you how to compile, link, run and debug it.

17.1 The Sample Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

*$i ncl ude wi napi . fi
*$nor ef erence

| NTEGER*2 FUNCTI ON FW NVAI N(hl nst ance, hPrevl nstance,

& | pszCndLi ne, nCrmdShow)

*$ref erence

I MPLI CI' T NONE

I NTEGER*2 hl nstance, hPrevlnstance, nCndShow

| NTEGER*4 | pszCndLi ne

i ncl ude 'w ndows. fi’

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRIMES
LOG CAL*1 NUVBERS(2: UPBOUND)
CHARACTER* 11 FORM
CHARACTER*60 BUFFER
PARANETER (FORME' (A, 15, A 15)")
DO | = 2, UPBOUND

NUVBERS(1) = . TRUE.
ENDDO

The Sample Application 135

Windows 3.x Programming Guide

=0
2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DO K =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
WRI TE(BUFFER, FORM) ' The Number of Prinmes between 1 and ’
& UPBOUND, ' are: ', PRIMES
CALL MessageBox(0, BUFFER,
& ' Si eve of Eratosthenes’c,
& MB_OK . OR MB_TASKMODAL)
END

PRI MES
DO 1 =

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe
famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

17.2 Building and Running the Sample Windows 3.x
Application

To compile and link our example program which is stored in the file SI EVE. FOR, enter the
following command:

Cw | 386 /1 =wi n386 sieve

The typical messages that appear on the screen are shown in the following illustration.

Cwfl 386 /1 =wi n386 sieve
WATCOM F77/32 Conpile and Link Utility
Copyright by WATCOM | nternati onal Corp. 1990, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

wf c386 sieve. for
WATCOM FORTRAN 77/ 32 Optim zing Conpil er
Copyright by WATCOM | nternati onal Corp. 1984, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 4390 statenents, 207 bytes, 1585 extensions, 0 warnings, O
errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. REX (the result of linking

136 Building and Running the Sample Windows 3.x Application

Creating 32-bit Windows 3.x Applications

SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries). The".rex" file must
now be combined with WATCOM'’ s 32-bit Windows supervisor W N386. EXT using the
WATCOM Bind utility. VBl ND. EXE combines your 32-bit application code and data (*.rex"
file) with the 32-bit Windows supervisor. The process involves the following steps:

1. VBl NDcopies W N386. EXT into the current directory.

2. VBl ND. EXE optionally runs the resource compiler on the 32-bit Windows
supervisor so that the 32-bit executable can have access to the applications

resources.

3. \VBI ND. EXE concatenates W N386. EXT and the".rex" file, and creates a".exe"
file with the same name asthe ".rex" file.

The following describes the syntax of the VABI ND command.

WBIND file_spec[-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

WBIND

file_spec

-S supervisor

-Rrc_options

is the name of the WATCOM Bind utility.

is the name of the 32-bit Windows EXE to bind.

requests that a 32-bit DLL be built.

indicates that the resource compiler is NOT to be invoked.

requests that WBIND run in quiet mode (no informational
messages are displayed).

specifies the path and name of the Windows supervisor to be bound
with the application. If not specified, a search of the pathslisted in
the PATH environment variableis performed. If thissearchis not

successful and the WATCOM environment variable is defined, the
QMATCOMA Bl NWdirectory is searched.

all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbi nd sieve -n

Building and Running the Sample Windows 3.x Application 137

Windows 3.x Programming Guide

If the"s" option is specified, it must identify the location of the W N386. EXT file or the
WB86DLL. EXT file (if you are buildingaDLL).

Example:
Cwhi nd sieve -n -s c:\wat com bi nwA wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined
or the"BINW" directory must be listed in your PATH environment variable.

Example:
C>set wat comec: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c:\ wi ndows

The resultant 32-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.X.

17.3 Debugging the Sample Windows 3.x Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL 386 recognizes the Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwil 386 /1 =wi n386 /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

138 Debugging the Sample Windows 3.x Application

Creating 32-bit Windows 3.x Applications

Cwil 386 /1 =wi n386 /d2 sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

wf c386 sieve.for /d2
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 4390 statenments, 293 bytes, 1585 extensions, 0 warnings, O
errors

WATCOM Li nker

Copyri ght by WATCOM I nternational Corp. 1985, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
resultsin fewer code optimizations by default. 'Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the relationship between the object code and the original source
language code.

Once again, the ".rex" file must be combined with WATCOM’ s 32-bit Windows supervisor
W N386. EXT using the WATCOM Bind utility. Thisstep is described in the previous
section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

There are more extensive examples of Windows applications written in FORTRAN 77 in the

\ WATCOM SAMPLES\ FORTRAN\ W Ndirectory. The example programs are
ELLI PSE. FORand FWCOPY. FOR.

Debugging the Sample Windows 3.x Application 139

Windows 3.x Programming Guide

140 Debugging the Sample Windows 3.x Application

18 Porting Non-GUI Applications to 32-bit
Windows 3.x

Generally, an application that isto run in awindowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. Thereisa steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of
WATCOM'’ s default windowing support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like
DOS and you now wish to run them under Windows 3.x. To achieve this, you can smply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows 3.x Graphical User Interface (GUI) application.

Normally, a Windows 3.x GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. Thisis achieved by our
default windowing system. The following sections describe the default windowing system.

18.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the
standard input and standard output devices respectively. It isnot arecommended practiceto
read directly from the standard input device or write to the standard output device when
running in awindowed environment. For this reason, a default windowing environment is
created for FORTRAN 77 applications that read from unit 5 or write to unit 6. When your
application is started, awindow is created in which output to unit 6 is displayed and input
from unit 5 is requested.

In addition to the standard 1/O device, it is a so possible to perform I/O to the console by
explicitly opening afile whose nameis"CON". When this occurs, another window is created

Console Device in a Windowed Environment 141

Windows 3.x Programming Guide

and displayed. Thiswindow is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of datato and from the
console device.

18.2 The Sample Non-GUI Application

To demonstrate the creation of 32-bit Windows 3.x applications, we introduce asimple
sample program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this programis to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

18.3 Building and Running the Non-GUI Windows 3.x
Application
Very little effort is required to port an existing FORTRAN 77 application to Windows 3.x.

Y ou must compile and link the file SI EVE specifying the "bw" option.

142 Building and Running the Non-GUI Windows 3.x Application

Porting Non-GUI Applications to 32-bit Windows 3.x

Cwfl 386 /1 =wi n386/ bw si eve

The typical messages that appear on the screen are shown in the following illustration.

Cwil 386 /1 =wi n386 sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve.for [/bw
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and SI EVE. REX (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries). The".rex" file must
now be combined with WATCOM'’ s 32-bit Windows supervisor W N386. EXT using the
WATCOM Bind utility. VMBI ND. EXE combines your 32-bit application code and data (*.rex"
file) with the 32-bit Windows supervisor. The processinvolves the following steps:

1. VBl NDcopies W N386. EXT into the current directory.
2. \\BI ND. EXE optionally runs the resource compiler on the 32-bit Windows
supervisor so that the 32-bit executable can have access to the applications

resources.

3. VBI ND. EXE concatenates W N386. EXT and the ".rex" file, and creates a".exe"
file with the same name asthe ".rex" file.

The following describes the syntax of the V\BI ND command.

WBIND file_spec[-d] [-n] [-q] [-s supervisor] [-R rc_options]

The square brackets [] denote items which are optional.

Building and Running the Non-GUI Windows 3.x Application 143

Windows 3.x Programming Guide

WBIND isthe name of the WATCOM Bind utility.

file_spec is the name of the 32-bit Windows EXE to bind.

-d requests that a 32-bit DLL be built.

-n indicates that the resource compiler is NOT to be invoked.

-q requests that WBIND run in quiet mode (no informational
messages are displayed).

-S supervisor specifies the path and name of the Windows supervisor to be bound

with the application. If not specified, a search of the pathslisted in
the PATH environment variableis performed. If thissearchis not
successful and the WATCOM environment variable is defined, the
MATCOMA BI NWdirectory is searched.

-Rrc_options all options after -R are passed to the resource compiler.

To bind our example program, the following command may be issued:

C>wbi nd sieve -n

If the"s" option is specified, it must identify the location of the W N386. EXT file or the
WB86DLL. EXT file (if you are building aDLL).

Example:
Cwhi nd sieve -n -s c:\wat com bi nwA wi n386. ext

If the"s" option is not specified, then the WATCOM environment variable must be defined
or the"BINW" directory must be listed in your PATH environment variable.

Example:
C>set wat con¥c: \ wat com
or
C>pat h c:\wat com bi nw; c:\dos; c:\wi ndows

The resultant 32-bit Windows 3.x application SI EVE. EXE can now be run under Windows
3.x asaWindows GUI application.

144 Building and Running the Non-GUI Windows 3.x Application

Porting Non-GUI Applications to 32-bit Windows 3.x

18.4 Debugging the Non-GUI Windows 3.x Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL 386 recognizes the Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cwil 386 /1 =wi n386/ bw /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Cwfl 386 /1 =wi n386 /d2 sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM | nternati onal Corp. 1990, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wfc386 sieve.for /[bw/d2
WATCOM FORTRAN 77/32 Optim zing Conpiler
Copyri ght by WATCOM | nternati onal Corp. 1984, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

Debugging the Non-GUI Windows 3.x Application 145

Windows 3.x Programming Guide

Once again, the ".rex" file must be combined with WATCOM’ s 32-bit Windows supervisor
W N386. EXT using the WATCOM Bind utility. Thisstep is described in the previous
section.

To request the Watcom Debugger to assist in debugging the application, select the Watcom
Debugger icon. It would be too ambitious to describe the debugger in thisintroductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

18.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when thefileis
closed. You must passto it the unit number associated with the opened console.

dwfSetAboutDlg
i nteger function dwfSetAboutDi g(title, text)

character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "title"

points to the string that will replace the current title. If titleis CHAR(O) then the title

will not be replaced. The "text" pointsto a string which will be placed in the about

box. To get multiple lines, embed a new line after each logical linein the string. If

"text" is CHAR(O), then the current text in the about box will not be replaced.
dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.

dwfSetConTitle

146 Default Windowing Library Functions

Porting Non-GUI Applications to 32-bit Windows 3.x

i nteger function dwfSetConTitle(unit, title)
i nteger unit
character*(*) title

This function sets the console window’ s title which corresponds to the unit number
passed to it.

dwfShutDown

i nteger function dwf Shut Down()

This function shuts down the default windowing 1/O system. The application will
continue to execute but no windows will be available for output.

dwfYield

i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the Watcom FORTRAN 77 User’s Guide.

Default Windowing Library Functions 147

Windows 3.x Programming Guide

148 Default Windowing Library Functions

19 The Watcom 32-bit Windows 3.x Extender

Watcom FORTRAN 77 contains the necessary tools and libraries to create 32-bit applications
for Windows 3.x. Using Watcom FORTRAN 77 gives the programmer the benefits of a
32-bit flat memory model and access to the full Windows API (along with the usual
FORTRAN 77 and C library functions).

The general model of the environment is asfollows: The 32-bit flat memory model program
islinked against a special 32-bit Windows library. This library contains the necessary
information to invoke special 16-bit functions, which liein the supervisor (W N386. EXT) .
The 32-bit program is then bound (using VBBl ND. EXE) with the supervisor to create a
Windows executable. At the same time as the 32-bit program is being bound, the resource
compiler isrun on the supervisor, and all the resources for the application are placed there.
When the application is started, the supervisor obtains the 32-bit memory, rel ocates the 32-bit
application into the memory, and invokes the 32-bit application.

All Windows functions are invoked from the supervisor, and all callback routines lie within
the supervisor. Thelocal heap resides within the supervisor as well.

If you are starting from a 16-bit Windows application, most of the code will not change when
you port it to the 32-bit Windows environment. However, because of the nature of the
Windows API and itsimplicit dependencies on a 16-bit environment, some source changes are
necessary. These source changes are minimal, and are backwards compatible with the 16-bit
environment.

19.1 Pointers

Throughout this document, there will be references to both near and far, and 16-bit and 32-bit
pointers. Since this can rapidly become confusing, some initial explanations will be given
here.

A far pointer is apointer that is composed of both a selector and an offset. A selector
determines a specific region of memory, and the offset is relative to the start of thisregion. A
near pointer isapointer that has an offset only, the selector is automatically assumed by the
CPU.

Pointers 149

Windows 3.x Programming Guide

The problem with far pointersis the selector overhead. Using afar pointer is much more
expensive than using a near pointer. Thisisthe advantage of the 32-bit flat memory model -
all pointers within the program are near, and yet you can address up to 4 gigabytes of
memory.

A 16-bit near pointer occupies 2 bytes of memory (i.e., the offset is 16 bitslong). This
pointer can reference up to 64K of data.

A 16-hit far pointer occupies 4 bytes of memory. Thereisa 16-bit selector and a 16-bit
offset. Thispointer can reference up to 64K of data.

A 32-bit near pointer occupies 4 bytes of memory (i.e., the offset is 32 bitslong). This
pointer can reference up to 4 gigabytes of data.

A 32-bit far pointer occupies 6 bytes of memory. Thereisa 16-bit selector and a 32-bit
offset. This pointer can reference up to 4 gigabytes of data.

Windows, in general, uses 16-bit far pointersto pass information around. These 16-bit far
pointers can also be used by a 32-bit Windows application. The conversion from a 16-bit
pointer to a 32-hit pointer will occur automatically when you map a dynamically allocatable
array to the memory pointed to by the 16-bit pointer using the LOCATION= specifier of the
ALLOCATE statement. Y ou must also declare the allocatable array asfar using the array
pragma. The syntax for the array pragmais:

$*pragma array ARRAY_NAME far

where ARRAY _NAME isthe array name.

19.2 Implementation Overview

This section provides an overview of the issues that require consideration when creating a
32-bit Windows application for a 16-bit Windows environment.

First, al modules have to be recompiled for the 32-bit flat memory model with a compiler
capable of generating 32-hit instructions.

Pointers to data passed to Windows are all far pointers. We will be passing pointersto datain
our 32-hit flat address space, and these pointers are near pointers. Aswell, notice that these
32-hit near pointers are the same size as as their 16-bit far pointer counterparts (4 bytes). This
isgood, since al data structures containing pointers will remain the same size.

150 Implementation Overview

The Watcom 32-bit Windows 3.x Extender

Windows cannot be called from 32-bit code on a 32-bit stack. This means that in order to call
the API functions, it is necessary to write a set of cover functions that will accept the
parameters, switch into a 16-bit environment, and then call Windows. There is another issue,
though. Windows only understands 16-hit pointers, so before calling Windows, all pointers
being passed to Windows must be converted to 16-bit far pointers.

It turns out that Windows can also call back to your application. Windows can only call
16-hit code, though, so there is a need for a bridge from the 16-bit side to the 32-hit side. It is
necessary to allocate 16-bit call back routines that can be passed to Windows. These call back
routines will then switch into the 32-bit environment and call whatever 32-bit function is
required. The 32-bit call back has to be declared as afar function, sinceit is necessary to
issue afar call to enter it from the 16-bit side. If it isafar function, then the compiler will
generate the appropriate code for it to return from the far call.

Once Windows calls you back, it can hand you 16-bit far pointersin along (4 byte)
parameter. This pointer can only be used in the 32-bit environment if it is a 32-bit far pointer,
not a 16-bit far pointer. The conversionissimple: the 16-bit offset is extended to a 32-bit
offset (the high word is zeroed out). Any far pointer that Windows hands to you must be
converted in thisway. This conversion is performed automatically when adynamically
allocatable array is mapped to a 16-hit far pointer using the LOCATION specifier of the
Watcom FORTRAN 77 ALLOCATE statement and the array pragma. The syntax for the
array pragmais:

$*pragma array ARRAY_NAME far
where ARRAY _NAME is the array name.

Example:
subroutine DLLSUB(arg_list)

structure /argtypes/

i nteger wil
i nt eger w2
i nteger w3
i nt eger sum

end structure

record /argtypes/ args(:)
*$pragma array args far

integer*4 arg_li st

allocate(args(1), location=arg_list)
In the preceding example, ar g | i st isa16-bit far pointer to a structure with the elements

described by the ar gt ypes structure. The allocatable array ar gs isdescribed asfar using
the array pragma.

Implementation Overview 151

Windows 3.x Programming Guide

Sometimes, a Windows application wantsto call aprocedurein aDLL. The procedure
addressis a 16-bit far pointer. It isnot possible to issue anindirect call to this address from
the 32-bit environment, so some sort of interfaceis needed. Thisinterface would switch into
the 16-bit environment, and then call the 16-bit function.

These issues, along with other minor items, are handled by Watcom FORTRAN 77, and are
discussed in more technical detail in later sections.

19.3 System Structure

32-bit
Application

Callback

32-bit 3216 Windows 3216 32-bit

FORTRAN 77 | _Transiation Supervisor Translation Windows
Library (DOS Calls Only) API

Callback
API/DOS Call

Windows
3.X

Figure 5. WIN386 Sructure

152 System Structure

The Watcom 32-bit Windows 3.x Extender

o
v

Global

Stack Code Data

Heap

Figure 6. 32-bit Application Sructure

19.4 System Overview

* W N386. EXT isthe key component of a 32-bit Windows application. It isa 16-bit
Windows application which contains:

* All application resources.
* A 16-bit local heap.
* A 16-hit stack.
* WB86DLL. EXT issimilar to W N386. EXT, only it providesaDLL interface.

W N386. EXT isbound to your 32-bit application to create a 32-bit application that
will run under Windows 3.x. W N386. EXT provides the following functionality:

* supervisor to bring the 32-bit application into memory and start it running.

« "glue" functions to connect to Windows for both APl and DOS functionality.
Thisinterface is designed to transparently set up the calling functions' pointers
and parametersto their 16-bit counterparts.

* "glue-back" functions to allow Windowsto call back 32-bit routines.

» specia code to allow debugging of 32-bit applications.

» A number of fileswith file extension . FI arelocated in the
\ WATCOM SRC\ FORTRAN\ W Ndirectory. Thefile W NAPI . FI describesthe

calling convention of each Windows API function. Other files define Windows
constants and data structures.

System Overview 153

Windows 3.x Programming Guide

W N386. LI B contains all the necessary library functions to connect to the 32-hit
supervisor W N386. EXT. All Windows API calls and Watcom FORTRAN 77 library

DOS cdlls are found here.

* The standard FORTRAN 77 and C library functions, specially modified to run in the
32-bit environment, are located in the \ WATCOM LI B386\ W N directory.

« \\BI ND. EXE merges your 32-hit executable and the appropriate Supervisor into a
single executable.

19.5 Steps to Obtaining a 32-bit Application

The following is an overview of the procedure for creating a 32-bit Windows Application:

1. If you are starting with a 16-bit Windows application, you must adapt your source
code to the 32-bit environment.

Y ou must compile the application using a 32-bit compiler.

Y ou must link the application with the 32-bit libraries.

Y ou must bind the 32-bit application with the 32-bit supervisor.

Y ou can then run and/or debug the application.

gk wh

154 Steps to Obtaining a 32-bit Application

20 Windows 3.x 32-bit Programming
Overview

This chapter includes the following topics:
* WINAPI.FI and WINDOWS.FI
* Environment Notes
* Floating-point Emulation
 Multiple Instances
* Pointer Handling
» When To Convert Incoming Pointers
» When To Convert Outgoing Pointers
*» SendMessage and SendDlgltemMessage
* GlobalAlloc and LocalAlloc
* Callback Function Pointers
» Window Sub-classing
« Calling 16-bit DLLs

» 16 Functions

Windows 3.x 32-bit Programming Overview 155

Windows 3.x Programming Guide

20.1 WINAPI.FI

When devel oping programs, make sure W NAPI . FI isincluded at the start of all sourcefiles
and the necessary include files (particularly W NDOWS. FI) are included in each function or
subroutine.

It is especially important to get the correct function and argument typing information for
Windows API functions. Due to the default typing rules of FORTRAN, many Windows AP
functions have a default result type of REAL when they may in fact return an INTEGER or
INTEGER* 2 result. By including the appropriate include files, you ensure that this never
happens. For example, the function Cr eat eDi al og isdescribedin WNDLG. FI . asa
function returning an INTEGER* 2 resullt.

Example:
external CreateD al og
i nteger*2 CreateD al og

Failure to specify the correct type of afunction will result in code that looks correct but does
not execute correctly. Similarly, you should make sure that all symbolic constants are
properly defined by including the appropriate include files. For example, the constant
DEFAULT_QUALI TY isdescribed in W NFONT. FI asan INTEGER constant whose value is
0.

Example:
i nteger DEFAULT_QUALITY
paraneter (DEFAULT_QUALITY = 0)

Without this information, DEFAULT_QUALI TY would be assumed to be a REAL variable
and would not have any assigned value.

The"EXPLICIT" compiler option is useful in thisregard. It requiresthat al symbols be
explicitly typed.

20.2 Environment Notes

* The 32-bit Windows Supervisor uses the first 256 bytes of the 32-bit application’s
stack to save state information. If thisis corrupted, your application will abnormally
terminate.

* The 32-bit Windows Supervisor provides resources for up to 512 callback routines.
Note that thisrestriction is only on the maximum number of active callbacks.

156 Environment Notes

Windows 3.x 32-bit Programming Overview

20.3 Floating-point Emulation

The file WEMU387. 386 isincluded to support floating-point emulation for 32-bit
applications running under Windows. Thisfileisinstalled inthe [386Enh] section of your
SYSTEM I NI file. By using the floating-point emulator, your application can be compiled
with the "fpi87" option to use inline floating-point instructions, and it will run on a machine
without a numeric coprocessor.

Only one of WEMU387. 386 and WDEBUG. 386 may beinstalled in your [386Enh] section.
VEMU387. 386 may be distributed with your application.

20.4 Multiple Instances

Since the 32-bit application resides in aflat memory space, it isNOT possible to share code
with other instances. This means that you must register new window classes with callbacks
into the new instance’s code space. A simple way of accomplishing thisis as follows:

integer*2 function FWNMAIN(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

Ro Ro Ro

i nteger*2 hlnstance

i nteger*2 hPrevl nstance
i nteger*2 nCnmdShow

i nteger*4 | pszCndLi ne

include "w n386.fi’

include "wincreat.fi’
include "w ncurs.fi’
include 'wi ndefn.fi’
i nclude ' windisp.fi’
include 'w nnsg. fi’

i ncl ude ' wi nnsgs. fi’
include 'wi ndtool.fi’
include "winutil.fi’

external WhdProc
i nteger*2 hwhd
record / MSE nmsg

record / WNDCLASS/ wndcl ass
character*14 cl ass

Multiple Instances 157

Windows 3.x Programming Guide

wndcl ass. styl e = CS_HREDRAW . or. CS_VREDRAW

wndcl ass. | pf nwhdProc = | oc(WhdProc)

wndcl ass. cbC sExtra = 0

wndcl ass. cbwhdExtra = 0

wndcl ass. hl nstance = hl nstance

wndcl ass. hl con = NULL_HANDLE

wndcl ass. hCursor = LoadCursor(NULL_HANDLE, | DC_ARROW)
wndcl ass. hbr Backgr ound = Get St ockObj ect (WH TE_BRUSH)
wndcl ass. | pszMenuNane = NULL

wite(class, '(''Ellipses’’,i5.5,a)’) hlnstance, char(0)
wndcl ass. | pszCl assNane = Loc(class)

call RegisterC ass(wndclass)

hwd = Creat eW ndow(cl ass,
"Application'c,
W5_OVERLAPPEDW NDOW
CW_USEDEFAULT,
0,
CW_USEDEFAULT,
0,
NULL _HANDLE,
NULL _HANDLE,
hl nst ance,
NULL)

R0 Ro Ro Ro Ro Ro Ro Ro Ro Ro

The variable class contains a unique name based on the instance of the application.

20.5 Pointer Handling

Windows 3.x is a 16-bit operating system. Function pointers that Windows deals with are
16-bit far pointers, and any data you communicate to Windows with are 16-bit far pointers.
16-bit far pointers occupy 4 bytes of data, and are capable of addressing up to 64K. For data
objects larger than 64K, huge pointers are used (a sequence of far pointers that map out
consecutive 64K segments for the data object). 16-bit far pointers are expensive to use due to
the overhead of selector loads (each time you use the pointer, a segment register must have a
valueputinit). 16-bit huge pointers are even more expensive: not only is there the overhead
of selector loads, but arun-time cal is necessary to perform any pointer arithmetic.

In a 32-bit flat memory model, such as that of the Watcom F77 for Windows environment, all
pointers are 32-bit near pointers (occupying 4 bytes of dataaswell). However, these pointers
may access objects of up to 4 gigabytesin size, and there is no selector load overhead.

For a 32-bit environment to communicate with Windows 3.x, there are some considerations.

All pointers sent to Windows must be converted from 32-bit near pointers to 16-bit far
pointers. These conversions are handled by the Supervisor.

158 Pointer Handling

Windows 3.x 32-bit Programming Overview

It isimportant to remember that all API functions which accept pointers (with the exception of
functions that accept function pointers) accept 32-bit near pointersin this 32-bit model. If you
attempt to pass a 32-hit far pointer, the conversion will not take place correctly.

16-bit far pointers to data may be passed into the API functions, and the Supervisor will not
do any conversion.

Incoming pointers must be converted from 16-hit far pointersto 32-bit far pointers. This
conversionisatrivial one: the offset portion of the 16-bit far pointer is extended to 32-bits.
The pointer conversion will occur automatically when you map a dynamically allocatable
array to the memory pointed to by the 16-bit pointer using the LOCATION= specifier of the
ALLOCATE statement. Y ou must also declare the array as far using the array pragma. The
syntax for the array pragmais:

$*pragma array ARRAY_NAME far

where ARRAY _NAME isthe array name. Pointers from Windows are by their nature far (that
is, the datais pointed to by its own selector), and must be used as far in the 32-hit
environment. Of course, conversions are only required if you actually need to reference the
pointer.

Function pointers (i.e., pointers to callback routines) used by Windows are not converted from
32-hit to 16-bit. Rather, a 16-bit thunking layer that transfers control from the 16-hit
environment to the 32-bit environment must be used. This thunking layer is provided by the
Supervisor.

20.5.1 When To Convert Incoming Pointers

Whenever you wish to use a pointer passed to you by Windows, you must map a dynamically
allocatable array to the memory pointed to by the pointer using the LOCATION specifier of
the ALLOCATE statement. Y ou must also declare the array as far using the array pragma.
The pointer conversion will occur automatically.

Some places where pointer conversion may be required are:
* LocalLock

* Global Lock
* the IParam in awindow callback routine (if it is a pointer)

Pointer Handling 159

Windows 3.x Programming Guide

20.5.2 When To Convert Outgoing Pointers

Typically, thereis no need to do any kind of conversions on your pointers when passing them
to Windows. The Supervisor handles all 32-bit to 16-bit trandlations for you, in the case of
the regular Windows API functions. However, if you are passing a 32-bit pointer to some
other 16-bit application in the Windows environment, then pointer conversions must by done.
There are two types of "outgoing" pointers. data pointers and function pointers.

Function pointers (to callback routines) must have athunking layer provided, using the
GetProc16 function (thisis explained in detail in alater section).

Data pointers can be translated from 32-bit to 16-bit using the AllocAlias16 and
AllocHugeAlias16 functions. These functions create 16-bit far pointers that have the same
linear address as the 32-bit near pointer that was converted.

It isimportant to remember that when passing a pointer to a data structure in this fashion, any
pointersin the data structure must also be converted.

The Supervisor will convert any pointers that it knows about; but there are some
complications created by the fact that Windows allows you to pass pointersin functions that
are prototyped to take along integer.

The Windows API functions SendMessage and SendDIgl temMessage rely on other fields
determining the nature of the long data item that they accept; thisis discussed in detail in the
next section.

20.5.2.1 SendMessage and SendDlgltemMessage

SendM essage and SendDI gl temM essage have special cover functions that determine when
the 32-bit integer is really a pointer and needs to be converted. These cover functions are
used automatically, unless the macro NOCOVERSENDS is defined before including

W NAPI . FI asinthefollowing example.

*$def i ne NOCOVERSENDS
*$i ncl ude winapi.fi

SendM essage and SendDI gl temM essage will do pointer conversions automatically using

AllocAliasl6 and FreeAliasl6 (unlessNOCOVERSENDS is defined) for the following
message types:

160 Pointer Handling

Windows 3.x 32-bit Programming Overview

» combo boxes (CB_ messages)

* edit controls (EM__ messages)

* list boxes (LB_ messages)

» certain windows messages (WM __ messages);

The messages that are intercepted by the cover functions for SendM essage and
SendDlIgltemMessage are:

CB_ADDSTRI NG CB DR CB_FI NDSTRI NG
CB_GETLBTEXT CB_I NSERTSTRI NG CB_SELECTSTRI NG
EM_GETLI NE EM_GETRECT EM_REPLACESEL
EM_SETRECT EM_SETRECTNP EM_SETTABSTOPS
LB_ADDSTRI NG LB_DI R LB_FI NDSTRI NG

LB_CETI TEMRECT LB _GETSELI TEM5 LB _GETTEXT
LB_I NSERTSTRI NG LB _SELECTSTRI NG LB_SETTABSTOPS

WV_MDI CREATE WWV_NCCALCSI ZE

Note that for SendMessage and SendDIgltemMessage, some of the messages may NOT
require pointer conversion:

* CB_ADDSTRING, CB_FINDSTRING, CB_INSERTSTRING will not need a
conversion if the combo box was created as owner-draw style without
CBS_HASSTRINGS style.

* LB_ADDSTRING, LB_FINDSTRING, LB_INSERTSTRING will not need a
conversion if the list box was created as owner-draw style without LBS HASSTRINGS
style.

The macro NOCOVERSENDS should be defined in modules where messages like these are
being sent. With these messages, the |Param data item does not contain a pointer, and the
automatic pointer conversion would be incorrect. By doing

*$def i ne NOCOVERSENDS
*$i ncl ude winapi.fi

modules that send messages like the above will not have the pointer conversion performed.

Pointer Handling 161

Windows 3.x Programming Guide

20.5.3 GlobalAlloc and LocalAlloc

The functions Global Alloc and Local Alloc are the typical way of allocating memory in the
16-bit Windows environment. 1n the 32-bit environment, there is no need to use these
functions. The only time GlobalAlloc is needed is when alocating shared memory, i.e.,
GMEM_DDESHARE.

The ALLOCATE and DEALLOCATE statements can be used to allocate memory from your
32-hit near heap. By alocating memory in this way, you may create data objects as large as
the enhanced mode Windows memory manager will permit.

20.5.4 Callback Function Pointers

To access a callback function, an instance of it must be created using MakeProcl nstance.
This creates a "thunk" (a special piece of code) that automatically puts the application’ s data
segment into the AX register, and then calls the specified callback function.

In Windows 3.x, it is not possible to do a MakeProcl nstance directly on a 32-bit callback
routine, since Windows 3.x does not understand 32-bit applications. Therefore, it is necessary
to use a 16-bit callback routine that passes control to the 32-bit callback routine. This 16-bit
callback routine is automatically created by the Supervisor when using any of the standard
Windows API functions that accept a callback routine.

The 16-bit callback routine for a 32-bit application isa special layer that transfers the
parameters from a 16-bit stack to the 32-bit stack, and then passes control to 32-bit code.
These 16-bit callback routines are found in the Supervisor. The function GetProc16 provides
pointers to these 16-hit callback routines.

However, it is not often necessary to use the GetProc16 function to obtain a 16-bit/32-bit
callback interface function.

In the general case, one would have to write code as follows:

162 Pointer Handling

Windows 3.x 32-bit Programming Overview

i nteger*4 pCh, fpProc

pCb = GetProcl6(A_Function, GETPROC_cal |l backtype)
f pProc = MakeProcl nstance(pCh, hlnstance)

* do stuff
call Do.it(..., fpProc, ...)
* do nore stuff

call FreeProclnstance(fpProc)
call Rel easeProcl16(pCb)

It is not necessary to use this general code in the case of the regular Windows API functions.
The following functions will automatically allocate the correct 16-bit/32-bit callback interface
functions:

* ChooseColor
 ChooseFont

* CreateDialog

* CreateDialogl ndirect

» CreateDial ogl ndirectParam
* CreateDialogParam

* DialogBox

* DialogBoxIndirect

« DialogBoxIndirectParam
* DialogBoxParam

* EnumChildwWindows

e EnumFonts

* EnumMetaFile

» EnumObjects

* EnumProps

* EnumTaskWindows

* EnumWindows

* Escape (SETABORTPROC option)
* FindText

* GetOpenFileName

* GetSaveFileName

* GlobalNotify

* GrayString

e LineDDA

* PrintDlg

* RegisterClass

Pointer Handling 163

Windows 3.x Programming Guide

* ReplaceText

* SetClassLong (GCL_WNDPROC option)

* SetResourceHandler

* SetTimer

* SetWindowLong (GWL_WNDPROC option)
* SetWindowsHook

Aswell, the following functions are covered to provide support for automatic creation of
16-bit callback routines:

» FreeProclnstance
» MakeProcl nstance
» UnhookWindowsHook

If you need to get a callback that is not used by one of the above functions, then you must
code the general case. Typicaly, thisisrequired when aDLL needs a callback routine. In
modules where this is necessary, you define the macro NOAUTOPROCS before you include
W NAPI . FI asin thefollowing example.

*$def i ne NOAUTOPROCS
*$i ncl ude winapi.fi

Be careful of the following when using NOAUTOPROCS.

1. Thecall to MakeProcl nstance and FreeProcl nstance for the callback function
occurs in amodule with NOAUTOPROCS defined.

2. No Windows API functions (listed above) are used in the module with
NOAUTOPROCS defined. If they are, you must code the general case to use them.

Note that NOAUTOPROCS isin effect on a module-to-module basis only.

RegisterClass automatically does a GetProc16 for the callback function, unless the macro
NOCOVERRC is specified before including W NAPI . FI asin the following example.

*$def i ne NOCOVERRC
*$i ncl ude winapi.fi

20.5.4.1 Window Sub-classing

Sub-classing a Windows control in the 32-bit environment is straightforward. In fact, the
codeisidentical to the code used in the 16-bit environment. A simple exampleis:

164 Pointer Handling

Windows 3.x 32-bit Programming Overview

*$i ncl ude w napi . fi
*$pragnma aux (call back) SubC assProc parn(val ue, value, value, value)

i nteger*4 function Subd assProc(hwWhd, nsg, wp, Ip)
i nteger*2 hwd

integer*2 nsg

i nteger*2 wp

integer*4 Ip

i ncl ude ' wi ndows. fi’

comon f pd dProc
i nteger*4 fpd dProc

! code for sub-classing here
SubC assProc = Cal | WndowProc(fpd dProc, hwd, msg, wp, Ip)
end

program SubC assDenp
i nteger*2 hControl
comon f pA dProc

i nteger*4 fpd dProc

i nteger*4 fp;

i ncl ude ' wi ndows. fi’

i nt eger*4 Subd assProc
external Subd assProc

i nt eger*4 Progran nstance
external Progranl nstance

I assune hControl gets created in here

f pd dProc = Get W ndowLong(hControl, GA_WNDPRCC)
fp = MakeProcl nstance(Subd assProc, Prograni nstance)
call Set WndowLong(hControl, GAL_VWNDPRCC, fp)

I set it back
call Set WndowLong(hControl, GAL_VWWDPROC, fpd dProc)
call FreeProclnstance(fp)

end
Note that SetWindowLong is covered to recognize GWL_WNDPROC and automatically
creates a 16-bit callback for the 32-bit callback. When replacing the callback routine with the

original 16-hit routine, the covered version of SetWindowl ong recognizes that the functionis
not a 32-bit callback, and so passes the pointer right through to Windows unchanged.

Pointer Handling 165

Windows 3.x Programming Guide

20.6 Calling 16-bit DLLs

A 16-hit functionin aDLL can be called using the _Call16 function. The first argument to
_Call16 isthe address of the 16-bit function. This addressis usually obtained by calling
GetProcAddress with the name of the desired function. The second argument to _Call16isa
string identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

(¢]

call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be
listed first)

unsigned BY TE

16-bit WORD

32-bit DWORD

doubl e precision floating-point

32-hit flat pointer (converted to 16:16 far pointer)

T *taso

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL
calling convention isthe default. If the function uses the CDECL calling convention, then
you must specify the letter "c" asthe first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointersto 16-bit far pointers
before the function isinvoked. Note that this pointer is only valid over the period of the call;
after control returns to the 32-bit application, the 16-bit pointer created by the Supervisor is no
longer valid.

Thereturn value from _Call16 isa DWORD.

166 Calling 16-bit DLLs

Windows 3.x 32-bit Programming Overview

*$i ncl ude w napi . fi

i nteger*2 function FW nMi n(hl nstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

Ro Qo Ro

nt eger *2 hl nst ance

nt eger*2 hPrevl nstance
nt eger *4 | pszCndLi ne
nt eger *2 nCndShow

nclude 'wi ndows. fi’

nteger*2 hDrv, hWd
nteger*4 | pfn, cb

hDrv = LoadLi brary('your.dll’'c)
if(hDrv .1t. 32)then
return
end if
| pfn = Get ProcAddress(hDrv, 'ExtDeviceMde' c)
if(Ipfn.eq. 0)then
return
end if
! I nvoke the function.
cb = _Call 16(| pfn, "wwdppddw c,
hwhd, hDrv, NULL,
" POSTSCRI PT PRI NTER c,
'LPT1' c,
NULL, NULL, 0)

Ro R0 Ro Ro

20.7 16 Functions

Every Windows API function that accepts a pointer has a corresponding _16 function. The
_16 version of the function will not convert any of the pointers that it accepts; it will assume
that all pointers are 16-bit far pointers already. This applies to both data and function
pointers.

_16 Functions 167

Windows 3.x Programming Guide

168 16 Functions

21 Windows 32-Bit Dynamic Link Libraries

21.1 Introduction to 32-Bit DLLs

Watcom FORTRAN 77 alows the creation of 32-bit Dynamic Link Libraries (DLL). Infact,
32-bit DLLs are simpler to write than 16-bit DLLs. A 16-bit DLL runs on the caler’s stack,
and thus DS!=SS. This creates difficulties in the small and medium memory models because
near pointersto local variables are different from near pointersto global variables. The 32-bit
DLL runsonitsown stack, in the usua flat memory space, which eliminates these concerns.

Thereisaspecia version of the supervisor, WB86DLL. EXT that performsasimilar job to

W N386. EXT. However, the 32-bit DLL supervisor is a 16-bit Windows DLL, rather than a
16-bit Windows application. On the first use of the 32-bit DLL, the DLL supervisor |oads the
32-bit DLL and invokes the 32-hit initialization routine (the DLL's FW nMai n routine). The
initialization routine declares all entry points (via Def i neDLLEnNt r y) and performs any
other necessary initialization. Anindex number in the range 1 to 128 is used to identify all
external 32-bit DLL routines. Def i neDLLENt ry isused to assign an index number to each
routine, aswell as to identify the arguments.

The DLL supervisor contains a general entry point for Windows applicationsto call into
called W n386Li bEnt ry. It also contains 128 specific entry pointscalled DLL1 to
DLL128 which correspond to the entry points established via Def i neDLLENt ry (thefirst
argument to Def i neDLLENt r y isan index number in the range 1 to 128). All applications
call into the 32-hit DLL viathese entry points. They build the necessary stack frame and
switch to the 32-bit DLL’ s data space.

If you call viaW n386Li bEnt ry then you passthe DLL entry point number or index (1 to
128) asthe last argument. W n386Li bEnt ry usesthisindex number to call the appropriate
32-bit DLL routine. From a pseudo-code point of view, the 16-bit supervisor might look like
the following:

Introduction to 32-Bit DLLS 169

Windows 3.x Programming Guide

DLL1:: set index=1
i nvoke 32bi t DLLi ndi rect

DLL2:: set index=2
i nvoke 32bit DLLi ndirect

DLL128: : set index=128
i nvoke 32bi t DLLi ndi rect

W n386Li bEntry::
set index fromindex_argunent
i nvoke 32bit DLLi ndi rect

32bi t DLLi ndi rect:
set up stack frame
switch to 32-bit data space
call indirect registration_list[index]

When you are creating a 32-bit DLL, keep in mind that the entry points you define may be
invoked by a 16-bit application as well as a 32-hit application. Itisfor thisreason that all far
pointers passed to a 32-bit DLL are 16-bit far pointers. Hence, whenever a pointer is passed
as an argument to a 32-bit DLL entry point and you wish to access the data it points to, you
must convert the pointer appropriately. To do this, you must map adynamically allocatable
array to the memory pointed to by the 16-bit far pointer.

21.2 A Sample 32-bit DLL

Let us begin our discussion of DLLs by showing the code for asimple DLL. The source code
for these examplesis provided in the \ WATCOM SAMPLES\ FORTRAN\ W N\ DLL directory.
We describe how to compile and link the examples in the section entitled " Creating and
Debugging Dynamic Link Libraries" on page 180.

*$i ncl ude W napi . fi

* W NDLLV. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: w1386 windllv -explicit -d2 -bd -1=w n386
* Bind: wbind windllv -d -n

170 A Sample 32-bit DLL

Windows 32-Bit Dynamic Link Libraries

*$pragma aux (dll _function) Add3

integer function Add3(wl, w2, w3)
integer*4 wil, w2, w3

i ncl ude ' wi ndows. fi’

character*128 str

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) wl, w2, w3,
& char (0)
call MessageBox(NULL, str, 'DLL Function 1'c, MB_.OK)
Add3 = wl + w2 + w3

end

*$pragma aux (dll _function) Add2

integer function Add2(wl, w2)
integer*4 wl, w2

i ncl ude ' wi ndows. fi’

character*128 str

wite(str, '(16hDLL 2 arguments:, 2i10, a)’) wl, w2, char(0)
call MessageBox(NULL, str, 'DLL Function 2'c, MB_OK)

Add2 = wl + w2

end

i nteger*2 function FW nMi n(hl nstance

hPrevl nst ance

| pszCndLi ne
nCndShow)

o o @

i nt eger*2 hl nstance

i nteger*2 hPrevl nstance
i nteger*4 | pszCnidLi ne

i nt eger*2 nCndShow

include 'w ndows. fi’

external Add3, Add2
integer rc

cal | BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,
& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if

A Sample 32-bit DLL 171

Windows 3.x Programming Guide

rc = DefineDLLEntry(2, Add2, DLL_DWORD, DLL_DWORD,
& DLL_ENDLI ST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
call MessageBox(NULL, '32-bit DLL started’ c,
& "WNDLLV ¢, MB_CK)
FWnMain = 1

end

There are two entry points defined, Add3 (index number 1) and Add2 (index number 2).
Add3 hasthree INTEGER*4 arguments and Add2 has two INTEGER*4 arguments. The
argument lists are described by calling Def i neDLLEnt ry. All arguments are passed by
value. As previously mentioned, all pointers passed to 32-bit DLLs are 16-bit far pointers.
Since, by default, FORTRAN 77 passes arguments by reference (a pointer to the datais
passed instead of the actual data), alevel of complexity isintroduced since some pointer
conversions must take place when accessing the data pointed to by a 16-bit far pointer in a
32-bit environment. We will deal with this problem in afollowing example. First, let us deal
with passing arguments by value to 32-bit DLLs from 16 and 32-bit Windows applications.

Note that each entry name must be giventhe dI | _f unct i on attribute using an auxiliary
pragma. Thisalias nameisdefined inthefile W NAPI . FI .

FW nMai n returns zero to notify Windows that the DLL initialization failed, and returns a
one if initialization succeeds.

FW nMai n accepts the same arguments as the FW nMai n procedure of aregular Windows

program, however, only two arguments areused. hl nst ance isthe DLL handle and
| pszCndLi ne isthe command line passed to the DLL.

21.3 Calling Functions in a 32-bit DLL from a 16-bit
Application

Thefollowing is a 16-bit Windows program that demonstrates how to call the two routines
defined in our DLL example.

172 Calling Functions in a 32-bit DLL from a 16-bit Application

Windows 32-Bit Dynamic Link Libraries

*$i ncl ude w napi . fi
* GEN16V. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: Wl genl6v -explicit -d2 -w ndows -|=w ndows
* -"op desc '16-bit DLL Test'"

*$pragma aux (dl132_call) indirect_1 \
* parm(val ue*4, value*4, value*4)
*$pragma aux (dl132_call) indirect_2 \
* parm(val ue*4, value*4)

integer*2 function FWnMin(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCndShow)

Qo Ro Ro

nt eger*2 hl nstance

nt eger *2 hPrevl nst ance
nt eger*4 | pszCndLi ne
nt eger *2 nCndShow

ncl ude ' w ndows. fi’

nteger*2 hlib

nteger*4 indirect 1, indirect _2
nteger*4 dl |l _1, dll _2, cb
character*128 str

hl'ib = LoadLibrary("windllv.dll’'c)
if(hlib .It. 32) then
call MessageBox(NULL, 'Can’’'t |oad WNDLLV c,
)

& " Genl6V c, MB_OK
st op
endi f
1 = GetProcAddress(hlib, "DLL1' c)

dil _2 Get ProcAddress(hlib, 'DLL2'c)

cb = indirect _1(111, 22222, 3333, dil_1)

wite(str, '(15hDLL 1 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'Genl6V Test 1'c, MB_OKX)
cb = indirect _2(4444, 55, dll_2)

wite(str, '(15hDLL 2 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'Genl6V Test 2'c, MB_OKX)
FWnMain = 0

end

The addresses of the routines DLL1 and DLL2 in the 32-bit DLL are obtained and stored in
thevariablesdl | _1 anddl | _2. Sincethe FORTRAN 77 language does not support
indirect function calls, we need a mechanism to call these functionsindirectly. We do this
using the two indirect functions called i ndi rect _1 and i ndi rect _2. Thesetwo
functionsare giventhe dl | 32 _cal | attribute using an auxiliary pragmawhich is defined in

Calling Functions in a 32-bit DLL from a 16-bit Application 173

Windows 3.x Programming Guide

thefile W NAPI . FI . Note that the last argument of the callsto i ndi rect _1 or
i ndi r ect _2 isthe actual address of the DLL routine.

What you should reglizeisthat the i ndi rect _1 andi ndi r ect _2 functions do not really
exist. The codethat is generated for statements like the following is really an indirect call to
the function whose address is represented in the last argument.

cb
cbh

indirect 1(111, 22222, 3333, dlI _1)
i ndirect _2(4444, 55, dll_2)

Thisisaresult of usingthe dl | 32_cal | auxiliary pragma attribute to describe both
i ndirect _1andindirect _2. You can verify this by disassembling the object file that
is generated when this code is compiled.

21.4 Calling Functions in a 32-bit DLL from a 32-bit
Application

Thefollowing is a 32-bit Windows program that demonstrates how to call the two routines
defined in our 32-bit DLL example. Sincethisisa 32-bit Windows program, we will use the
_Cal I 16 function to call functionsin our 32-bit DLL. Note that we get to the 32-bit DLL
functions by going indirectly through the 16-bit supervisor that forms the "front end" for our
32-bit DLL.

*$i ncl ude wi napi . fi

* GEN32V. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: wfl386 gen32v -explicit -d2 -|1=w n386
* Bind: wbi nd gen32v -n -D "32-bit DLL Test"

integer*2 functi on FWnMi n(hlnstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

Ro Qo Ro

i nteger*2 hlnstance

i nteger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude 'w ndows. fi’
integer*2 hlib

integer*4 dil _1, dIl _2, cb
character*128 str

174 Calling Functions in a 32-bit DLL from a 32-bit Application

Windows 32-Bit Dynamic Link Libraries

hl'ib = LoadLibrary("windllv.dll’'c)
if(hlib .1t. 32) then
call MessageBox(NULL, 'Can’’'t |oad WNDLLV c,
)

& " Gen32V c, MB_OK
st op
endi f
dll .1 = GetProcAddress(hlib, 'DLL1' c)
dll _2 = GetProcAddress(hlib, 'DLL2' c)

cb = _Call16(dIl_1, 'ddd c, 111, 22222, 3333)
wite(str, '(15hDLL 1 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, 'Gen32V Test 1'c, MB_.OX)

cb = _Call16(dll _2, 'dd'c, 4444, 55)
wite(str, '(15hDLL 2 returned , i10, a)’) cb, char(0)
call MessageBox(NULL, str, ’'Gen32V Test 2'c, MB_.OX)

FWnMain = 0

end

Note that the first argument of acall to _Cal | 16 isthe DLL function address returned by
Get Pr ocAddr ess and must be a 32-bit argument. The second argument of acall to
_Cal | 16 isastring describing the types of arguments that will be passed to the DLL
function.

21.5 A Sample 32-bit DLL Using a Structure

As previously mentioned, passing pointers from a 16 or 32-hit Windows application to a
32-hit DLL poses aproblem since al pointers are passed as 16-bit far pointers. The pointer
must be converted from a 16-bit far pointer to a 32-bit far pointer. Thisisachieved by
mapping adynamically allocatable array to each argument that is passed by reference using
the LOCATI ON specifier of the ALLOCATE statement. Furthermore, you must specify the

f ar attribute for each such array using the ar r ay pragma. Sincethisis cumbersomeif you
wish to pass many arguments, it is recommended that a single argument be passed that is
actually a pointer to a structure that contains the actual arguments. Furthermore, since each
call to aDLL routineis made indirectly through one of W n386Li bEnt ry or DLL1 through
DLL128, you should aso return any valuesin the same structure since the return value from
any of these functionsis only 32-bits wide.

The following example is a 32-bit DLL that receives its arguments and returns values using a
structure. The source code for these examplesis provided in the

\ WVATCOM SAMPLES\ FORTRAN\ W N\ DLL directory. We describe how to compile and
link the examplesin the section entitled "Creating and Debugging Dynamic Link Libraries"
on page 180.

A Sample 32-bit DLL Using a Structure 175

Windows 3.x Programming Guide

*$i ncl ude w napi . f

* W NDLL. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: w1386 windll -explicit -d2 -bd -1=w n386
* Bind: wbind windll -d -n

*$pragma aux (dll _function) Add3

subroutine Add3(arg_list)
integer*4 arg_list
structure /argtypes/

i nt eger wil
i nt eger w2
i nt eger w3
i nt eger sum

end structure
record /argtypes/ args(:)
*$pragma array args far

include 'w ndows. fi’
character*128 str

al l ocate(args(1l), location=arg_list)

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) args(1l).wl,
args(1).w2,
args(1).ws,
char (0)
call MessageBox(NULL, str, 'DLL Function 1'c, MB_.OK)
args(1).sum= args(1).wl + args(1).w2 + args(1).w3
deal | ocate(args)

Ro Qo Ro

end
*$pragma aux (dll _function) Add2
subroutine Add2(arg_list)

integer*4 arg_list
structure /argtypes/

real
real w2
real sum

end structure

record /argtypes/ args(:)
*$pragma array args far

i ncl ude ' wi ndows. fi’

character*128 str

176 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

al l ocate(args(1l), location=arg_list)

wite(str, '(16hDLL 2 argunents:, 2f10.2, a)’) args(l).wl,
& args(1).w2,
& char (0)
call MessageBox(NULL, str, 'DLL Function 2'c, MB_OK)
args(1).sum= args(1).wl + args(1).w2

deal | ocate(args)

end

integer*2 function FWnMin(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCndShow)

Ro Ro Ro

i nteger*2 hlnstance

i nt eger*2 hPrevl nstance
i nteger*4 | pszCndLi ne

i nt eger *2 nCndShow

i ncl ude ' wi ndows. fi’

external Add3, Add2
integer rc

cal | BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_PTR, DLL_ENDLI ST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
rc = DefineDLLEntry(2, Add2, DLL_PTR, DLL_ENDLI ST)
if(rc .ne. 0)then

FWnMain = 0

return
end if
call MessageBox(NULL, '32-bit DLL started’ c,
& "WNDLL' ¢, MB_CK)

FWnMain =1

end

The following example is a 16-bit Windows application that passes arguments to a 32-bit DLL
using a structure.

*$i ncl ude Wi napi . fi

* GEN16. FOR

* Setup: set finclude=\WATCOM src\fortran\w n

* Conpile and Link: wfl genl6 -explicit -d2 -w ndows -I|=w ndows
* -"op desc '16-bit DLL Test'"

*$pragma aux (dl132_call) indirect_1 parm reference, value*4)
*$pragma aux (dl132_call) indirect_2 parn(reference, value*4)

A Sample 32-bit DLL Using a Structure 177

Windows 3.x Programming Guide

nteger*2 functi on FW nMi n(hl nstance
hPrevl nst ance
| pszCndLi ne
nCndShow)

R0 Ro Ro

nt eger*2 hl nstance

nt eger *2 hPrevl nst ance
nt eger*4 | pszCndLi ne
nt eger *2 nCndShow

ncl ude ' w ndows. fi’

nteger*2 hlib
nteger*4 dil _1, dll_2
character*128 str

structure /args_1/

i nt eger wil
i nt eger w2
i nt eger w3
i nt eger sum

end structure

structure /args_2/

real wl
real w2
real sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hlib = LoadLibrary("windll.dll’'c)
if(hlib .lIt. 32) then
call MessageBox(NULL, 'Can’’t |oad WNDLL' c
& "Genl6’'c, MB.K)
stop
endi f

Get ProcAddress(hlib, '"DLL1' c)
Get ProcAddress(hlib, 'DLL2'c)

dil_2

call indirect _1(args_1, dll _1)

wite(str, '(15hDLL 1 returned , i10, a)’') args_1.sum
& char (0)
call MessageBox(NULL, str, 'Genl6 Test 1'c, MB_CK)

call indirect 2(args_2, dll_2)

wite(str, '(15hDLL 2 returned , f10.2, a)’) args_2.sum
& char (0)
call MessageBox(NULL, str, 'Genl6 Test 2'c, MB_.OK)
FWnMain = 0

end

The following example is a 32-bit Windows application that passes arguments to a 32-bit DLL
using a structure.

178 A Sample 32-bit DLL Using a Structure

Windows 32-Bit Dynamic Link Libraries

*$i ncl ude w napi . f

* GEN32. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: w386 gen32 -explicit -d2 -1=w n386
* Bind: wbind gen32 -n -D "32-bit DLL Test"

i nteger*2 function FW nMi n(hl nstance
hPrevl nst ance
| pszCndLi ne
nCrrdShow)

Ro Qo Ro

i nt eger*2 hl nstance

i nteger*2 hPrevlnstance
i nteger*4 | pszCnidLi ne

i nt eger*2 nCndShow

i ncl ude 'w ndows. fi’
integer*2 hlib

integer*4 dll _1, dll _2, cb
character*128 str

structure /args_1/

i nt eger wl
i nt eger w2
i nt eger w3
i nteger sum

end structure

structure /args_2/

real wil
real w2
real sum

end structure

record /args_1/ args_1/111, 22222, 3333, 0/
record /args_2/ args_2/714.3, 35.7, 0.0/

hl'ib = LoadLi brary("windll.dll’'c)
if(hlib .It. 32) then
call MessageBox(NULL, "Can’’'t |load WNDLL' c

& "Gen32'c, MB.XX)
stop

endi f
1 = GetProcAddress(hlib, "DLL1l' c)

dil _2 Get ProcAddress(hlib, 'DLL2'c)

cb = _Call16(dIl_1, 'p'c, loc(args_1l))

wite(str, '(15hDLL 1 returned , i10, a)’') args_1.sum
& char (0)
call MessageBox(NULL, str, 'Gen32 Test 1'c, MB_.OK)

A Sample 32-bit DLL Using a Structure 179

Windows 3.x Programming Guide

cb = _Call16(dIl _2, "p'c, loc(args_2))

wite(str,

&

"(15hDLL 2 returned , f10.2, a)’) args_2.sum
char (0)

call MessageBox(NULL, str, 'Gen32 Test 2'c, MB.OK)

FWnMain = 0

end

21.6 Creating and Debugging Dynamic Link Libraries

In the following sections, we will take you through the steps of compiling, linking, and
debugging 32-bit Dynamic Link Libraries (DLLS).

We will use example programs that are provided in source-code form in the Watcom F77
package. The files described in this chapter are located in the directory
\ WATCOM SAMPLES\ FORTRAN\ W N\ DLL. Thefollowing files are provided:

WINDLLV.FOR

GEN16V.FOR

GEN32V.FOR

WINDLL.FOR

GEN16.FOR

GEN32.FOR

MAKEFILE

is the source code for asimple 32-bit DLL containing two library
routines that use integer arguments to pass information.

is the source code for a generic 16-bit Windows application that
calsfunctionsin the"WINDLLV" 32-bit Windows DLL.

is the source code for a generic 32-bit Windows application that
callsfunctionsin the"WINDLLV" 32-bit Windows DLL.

is the source code for asimple 32-bit DLL containing two library
routines that use structures to pass information.

is the source code for a generic 16-bit Windows application that
calsfunctionsin the "WINDLL" 32-bit Windows DLL.

is the source code for a generic 32-bit Windows application that
callsfunctionsin the "WINDLL" 32-bit Windows DLL.

isamakefile for compiling and linking the programs described
above.

180 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

21.6.1 Building the Applications

To create the DLLs and test applications, we will use the WATCOM Watcom Make utility
and the supplied makefile.

Example:
Cwnake -f nmakefile

21.6.2 Installing the Examples under Windows

Start up Microsoft Windows 3.x if you have not already done so. Add the GEN16V. EXE and
GEN32V. EXE filesto one of your Window groups using the Microsoft Program Manager.

1. Select the"New..." entry from the "File" menu of the Microsoft Windows Program
Manager.

2. Select "Program Item" from the "New Program Object" window and press the
"OK" button.

3. Enter "16-bit DLL Test" as adescription for the GEN16V program. Enter the full
path to the GEN16V program as a command line.

Example:
Descri pti on: 16-bit DLL Test
Conmmand Li ne: c:\work\dll\genl6v. exe

4. Enter "32-bit DLL Test" asadescription for the GEN32V program. Enter the full
path to the GEN32V program as a command line.

Example:
Descri pti on: 32-bit DLL Test
Command Li ne: c:\work\dlI\gen32v. exe

Use asimilar procedureto install the GEN16. EXE and GEN32. EXE programs.

21.6.3 Running the Examples

Start the 16-bit application by double clicking onitsicon. A number of message boxes are
presented. 'Y ou may wish to compare the output in each message box with the source code of
the program to determine if the correct results are being obtained. Click on the "OK" button
as each of them are displayed.

Creating and Debugging Dynamic Link Libraries 181

Windows 3.x Programming Guide

Similarly, start the 32-bit application by double-clicking on itsicon and observe the results.

21.6.4 Debugging a 32-bit DLL

The Watcom Debugger can be used to debug aDLL. To debug a 32-bit DLL, a"breakpoint"
instruction must be inserted into the source code for the DLL at the "FWinMain" entry point.
Thisisdone using the "pragma’ compiler directive. We have aready added the breakpoint to
the source code for the 32-bit DLL.

Ro Qo Ro

integer*2 function FWnMi n(hlnstance,
hPrevl nst ance
| pszCndLi ne,
nCndShow)

i nteger*2 hlnstance

i nteger*2 hPrevlnstance

i nteger*4 | pszCrdLi ne

i nt eger*2 nCndShow

include 'w ndows. fi’

external Add3, Add2
integer rc

cal | BreakPoi nt
rc = DefineDLLEntry(1, Add3, DLL_DWORD, DLL_DWORD, DLL_DWORD,
DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if

The pragmafor "BreakPoint" is defined in the "WINAPI.FI" file.

Start up Microsoft Windows 3.x if you have not already done so. Start the debugger by
double-clicking on the Watcom Debugger icon. At the prompt, enter the path specification
for the application. When the debugger has successfully loaded GEN32v, start execution of
the program. When the breakpoint is encountered in the 32-bit DLL, the debugger is
re-entered. The debugger will automatically skip past the breakpoint.

From this point on, you can symbolically debug the 32-bit DLL. Y ou might, for example, set
breakpoints at the start of each DLL routine to debug each of them as they are called.

182 Creating and Debugging Dynamic Link Libraries

Windows 32-Bit Dynamic Link Libraries

21.6.5 Summary

Note that the "FWinMain" entry point is only called once, at the start of any application
requesting it. After this, the "FWinMain" entry point isno longer called. Y ou may have to
restart Windows to debug this section of code a second or third time.

Creating and Debugging Dynamic Link Libraries 183

Windows 3.x Programming Guide

184 Creating and Debugging Dynamic Link Libraries

22 Interfacing Visual Basic and Watcom
FORTRAN 77 DLLs

22.1 Introduction to Visual Basic and DLLsS

This chapter describes how to interface Microsoft Visual Basic 3.0 applications and 32-hit
Dynamic Link Libraries (DLLs) created by Watcom FORTRAN 77. It describes how to write
functions for a 32-bit DLL, how to compile and link them, and how to call these functions
from Visual Basic. One of the proposed techniques involves the use of a set of cover
functionsin a 16-bit DLL so, indirectly, this chapter also describes interfacing to 16-bit DLLSs.

It is possible to invoke the W n386Li bEnt ry function (Watcom'’s 32-bit function entry
point, described below) directly from Visual Basic. However, this technique limits the
arguments that can be passed to a 32-bit DLL. The procedure and problems are explained
below.

To work around the problem, a 16-bit DLL can be created, that covers the 32-bit DLL.
Within the 16-bit DLL, we will place cover functions that will call the corresponding 32-bit
function in the 32-bit DLL. We illustrate the creation of the 16-bit DLL using the 16-bit C
compiler in Watcom C/C++.

Before we begin our example, there are some important technical issuesto consider.

The discussion in this chapter assumes that you, the developer, have aworking knowledge of
Visual Basic, including how to bring up the general declarations screen, how to create
command buttons, and how to associate code with command buttons. Y ou must use Visual
Basic 3.0 or later. Visua Basic Version 2.x will not work because of adeficiency in this
product regarding the calling of functionsin DLLs.

For the purposes of the following discussion, you should have installed the 32-bit version of
Watcom FORTRAN 77, aswell asversion 3.0 or later of Visua Basic. If you aso havethe
16-bit Watcom C compiler, you can use this to create a 16-bit DLL containing the 16-hit
cover functions. Ensure that the PATH amd FINCL UDE environment variables are defined
to include at least the directories indicated. We have assumed that Watcom FORTRAN 77 is
installed in the C: \ WATCOMdirectory, and Visual Basicisinthe C: \ VB directory:

Introduction to Visual Basic and DLLs 185

Windows 3.x Programming Guide

186

set path=c:\wat com bi nw;, c:\vb; c:\dos; c:\w ndows
set finclude=c:\watcomsrc\fortran\w n

Watcom’s 32-bit DLL supervisor contains ageneral entry point for Windows applications to
cal into called W n386Li bEnt ry. It also contains 128 specific entry pointscalled DLL1
to DLL128 which correspond to the entry points established via Def i neDLLENnt ry (the
first argument to Def i neDLLENt ry isan index number in the range 1 to 128). All
applications call into the 32-bit DLL viathese entry points. They build the necessary stack
frame and switch to the 32-bit DLL’s data space.

If you call viaW n386Li bEnt ry then you passthe DLL entry point number or index (1 to
128) asthe last argument. W n386Li bEnt ry usesthisindex number to call the appropriate
32-bit DLL routine.

In many languages and programs (such as C and Microsoft Excel), function calls are very
flexible. In other words, a function can be called with different argument types each time.
Thisis generally necessary for calling W n386Li bEnt r y in a32-bit extended DLL
function. The reason isthat this function takes the same arguments as the function being
called, as well astheindex number of the called function. After the 32-bit flat model has been
set up, W n386Li bEnt ry then calsthisfunction. In Visual Basic, once afunctionis
declared as having certain arguments, it cannot be redeclared. For example, suppose we have
adeclaration asfollows:

Example:
Decl are Function Wn386Li bEntry Lib "c:\path\vbdl132.dlI"
=> (ByVal vl As Long, ByVal v2 As Long, ByVal
=> v3 As Long, ByVal | As Integer) As Long

(Note: the => meansto continue the statement on the same line.) In this example, we could
only cal afunction in any 32-bit extended DLL with three 32-bit integers as arguments.
There are three ways to work around this deficiency in Visual Basic:

1. UsetheVisua Basic "Alias' attribute to declare W n386Li bEnt r y differently
for each DLL routine. Reference the different DLL routines using these aliases.

2. Usethe specific entry point, one of DLL1 through DLL128, corresponding to the
DLL routine that you want to call. Each entry point can be described to take
different arguments. We can till use the "Alias" attribute to make the link between
the name we use in the Visua Basic function and the name in the 32-bit extended
DLL. Thisisthe method that we will usein the "Direct Call" technique discussed
below. Itissimpler to use sinceit requires one less argument (you don’t require
the index number).

Introduction to Visual Basic and DLLs

Interfacing Visual Basic and Watcom FORTRAN 77 DLLs

3. Useamethod which involves calling functions in a 16-bit "cover" DLL writtenina
flexible-argument language, which then calls the functionsin the 32-bit DLL. This
isthe "Indirect Call" method discussed below.

22.2 A Working Example

The best way to demonstrate these techniques is through an example. This example consists
of aVisual Basic application with 3 push buttons. The first push button invokes a direct call
to a32-bit DLL which will display a message window with its arguments, the second push
button invokes an indirect call to the same function through a 16-bit DLL, and the third button
exitsthe Visual Basic application.

To create a Visual Basic application:

D
)
©)

(4)

©)

Start up a new project folder from the "File" menu.
Select " View Form" from the "Project” window.

Draw three command buttons on the form by selecting command buttons from the
"Toolbox" window.

Change the caption on each button. To do this, highlight the first button. Then, open
the "Properties” window. Double click on the "Caption window", and change the
caption to "Direct cal". Highlight the second button, and change its caption to "Indirect
cal". Highlight the third, changing the caption to "Exit".

Now, your Visual Basic application should have three push buttons, "Direct call”,
"Indirect call", and "Exit".

Doubleclick on the" Direct Call" button.

An edit window will pop up. Enter the following code:

A Working Example 187

Windows 3.x Programming Guide

Sub Comandl_dick ()
Dimvarl, var2, var3, worked As Long

varl = 230
var2 = 215
var3 = 32

wor ked = Add3(varl, var2, var3)
Print worked
wor ked = Add2(var2, var3)
Print worked
End Sub

(6) Doubleclick onthe" Indirect Call" button.

Another edit window will pop up. Enter the following code:

Sub Comand2_dick ()
Dimvarl, var2, var3, worked As Long

varl = 230
var2 = 215
var3 = 32

wor ked = Functionl(varl, var2, var3)
Print worked
wor ked = Function2(var2, var3)
Print worked
End Sub

(7) Doubleclick onthe" Exit" command button and enter the following code in the
pop-up window:

Sub Command3_dick ()

End
End Sub

(8 Select"View Code" from the "Project” window. To interface these Visual Basic
functionsto the DLLs, the following code is needed in the

oj ect: [general] Proc: [declarations]
section of the code. This code assumesthat VBDLL32. DLL and COVER16. DLL arein

the C: \ PATH directory. Modify the pathnames appropriately if thisis not the case.
(Note: the => means to continue the statement on the same line.)

188 A Working Example

Interfacing Visual Basic and Watcom FORTRAN 77 DLLs

Decl are Function Functionl Lib "c:\path\coverl16.dlIl"
=> (ByVval vl As Long, ByVal v2 As Long, ByVal v3 As
Long)

=> As Long

Decl are Function Function2 Lib "c:\path\coverl16.dlIl"
=> (ByVval v1 As Long, ByVal v2 As Long) As Long

Decl are Function Add3 Lib "c:\path\vbdlI32.dl1"

=> Alias "DLL1"

=> (ByVval v1 As Long, ByVal v2 As Long, ByVal v3 As
Long)

=> As Long

Decl are Function Add2 Lib "c:\path\vbdl|32.dlI"
=> Alias "DLL2"
=> (ByVval v1 As Long, ByVal v2 As Long) As Long

Now, when all of the code below is compiled correctly, and the Visual Basic program isrun,
the "Direct call" button will call the DLL1 and DLL2 functions directly, aliased asthe
functions Add3 and Add2 respectively. The"Indirect call" button will call the 16-bit DLL,
which will then call the 32-bit DLL, for both Functi onl and Functi on2. Torunthe
Visual Basic program, select "Start" from the "Run" menu.

22.3 Sample Visual Basic DLL Programs

The sample programs provided below are for a 32-bit DLL, and a 16-bit cover DLL, which
will call the two functions contained in the 32-bit DLL.

22.3.1 Source Code for VBDLL32.DLL

*$i ncl ude wi napi . fi

* VBDLL32. FOR

* Setup: set finclude=\WATCOM src\fortran\w n
* Conpile and Link: wfl386 vbdl 132 -explicit -d2 -bd -1 =w n386
* Bind: wbi nd vbdl 132 -d -n

Sample Visual Basic DLL Programs 189

Windows 3.x Programming Guide

*$pragma aux (dll _function) Add3

integer function Add3(wl, w2, w3)
integer wi, w2, w3

i ncl ude 'wi ndows. fi’

character*128 str

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) wl, w2, w3,
& char (0)

call MessageBox(NULL, str, 'F77 VBDLL32'c, MB_OK)

Add3 = wl + w2 + w3

end

*$pragma aux (dll _function) Add2

integer function Add2(wi, w2)
integer wl, w2

i ncl ude 'wi ndows. fi’
character*128 str
wite(str, '(16hDLL 2 argurents:, 2i10, a)’') wl, w2, char(0)
call MessageBox(NULL, str, 'F77 VBDLL32'c, MB_OK)
Add2 = wl + w2
end
integer*2 functi on FW nMi n(hl nstance,
hPrevl nst ance,

| pszCndLi ne,
nCndShow)

Ro Qo Ro

i nteger*2 hlnstance
integer*2 hPrevlnstance
i nteger*4 | pszCmiLi ne

i nteger*2 nCndShow

include 'w ndows. fi’

external Add3, Add2
integer rc

rc = DefineDLLEntry(1, Add3, DLL DWORD, DLL DWORD, DLL_DWORD,
& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
rc = DefineDLLEntry(2, Add2, DLL _DWORD, DLL_DWORD,
& DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if

190 Sample Visual Basic DLL Programs

Interfacing Visual Basic and Watcom FORTRAN 77 DLLs

call MessageBox(NULL, '32-bit DLL started’ c,
& "F77 VBDLL32' ¢, MB_OK)
FWnMain =1

end

22.3.2 Source code for COVER16.DLL

The functionsin this 16-bit DLL will cal the functionsin the 32-bit DLL, VBDLL32. DLL,
shown above, with the appropriate W n386Li bEnt r y call for each function.
/*
* COVERL6. C
x|

#i ncl ude <stdio. h>
#i ncl ude <w ndows. h> /* required for all Wndows applications */

typedef |ong (FAR PASCAL *FPRCOC) ();

FPROC DLL_1;

FPROC DLL_2;

| ong FAR PASCAL __export Functionl(long varl,
I ong var 2,
long var3)

return((long) DLL_1(varl, var2, var3));
}

Il ong FAR PASCAL __export Function2(long varl, long var2)
{

return((long) DLL_2(varl, var2));

#pragma of f (unreferenced);

BOOL FAR PASCAL Li bMai n(HANDLE hl nstance, WORD wDat aSegment ,
WORD wHeapSi ze, LPSTR | pszCndlLi ne)

#pragma on (unreferenced);

HANDLE hl i b;

/* Do our DLL initialization */
hlib = LoadLibrary("vbdlI32.dlI");
if(hlib <32) {
MessageBox(NULL,
"Make sure your PATH contains VBDLL32.DLL",
"COVER16", MB_OK | MB_| CONEXCLAMATI ON);
return(FALSE);

}

DLL 1 = (FPROC) GetProcAddress(hlib, "DLL1");
DLL_2 = (FPROC) GCetProcAddress(hlib, "DLL2");
return(TRUE);

Sample Visual Basic DLL Programs 191

Windows 3.x Programming Guide

22.4 Compiling and Linking the Examples

To createthe 32-bit DLL VBDLL32. DLL, typethefollowing at the command line (make
surethat VBDLL32. FORisin your current directory):

set finclude=c:\watcom src\fortran\w n
wfl 386 vbdl 32 -explicit -bd -d2 -1 =wi n386
wbi nd vbdl 132 -d -n

To create the 16-bit DLL COVER16. DLL, type the following at the command line (make
sure that COVER16. Careinyour current directory):

wel cover1l6 -nt -bt=wi ndows -bd -zu -d2 -|=wi ndows_dl |
Notes:

1. Anobjectfileisprovided for COVER16. Cif you do not have access to the 16-bit
Watcom C compiler. In this case, the DLL can be generated from the object file
using the following command:

wfl cover16.0bj -d2 -I=wi ndows dl|I

2. The"mc" option selects the compact memory model (small code, big data). The
code for 16-bit DLLs must be compiled with one of the big data models.

3. The"bd" option indicatesthat aDLL will be created from the object files.

4. The"bt" option selects the "windows' target. This option causesthe C or C++
compiler to generate Windows prologue/epil ogue code sequences which are
required for Microsoft Windows applications. It also causes the compiler to use the
WINDOWS INCLUDE environment variable for header file searches. It also
causes the compiler to definethe macro W NDOWS__ and, for the 32-bit C or
C++ compiler only, the macro __W NDOW5_386__.

5. The"zu" optionis used when compiling 16-bit code that isto be placed in a
Dynamic Link Library (DLL) since the SS register points to the stack segment of
the calling application upon entry to the function.

6. The"d2" option is used to disable optimizations and include debugging information
in the object fileand DLL. The techniques for debugging DLLs are described in
the chapter entitled "Windows 32-Bit Dynamic Link Libraries" on page 169.

Y ou are now ready to run the Visual Basic application.

192 Compiling and Linking the Examples

23 WIN386 Library Subprograms

Each special Windows subprogram in the Watcom F77 library is described in this chapter.
Each description consists of a number of subsections:

Synopsis. This subsection gives the include files that should be included within a source file that
references the subprogram. It also shows an appropriate declaration for the function or for a
function that could be substituted for amacro. This declaration is not included in your
program; only the include file(s) should be included.

Description: This subsection is a description of the subprogram.

Returns: This subsection describes the return value (if any) for the subprogram.

See Also: Thisoptional subsection provides alist of related subprograms.

Example: This optional subsection consists of one or more examples of the use of the subprogram. The
examples are often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the subprogram is commonly found. The

subprograms in this section are all classified as "WIN386" (i.e., they pertain to 32-bit
Windows programming).

WIN386 Library Subprograms 193

AllocAlias16

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function AllocAliasl6(ptr)
i nteger*4 ptr

Description: The Al | ocAl i as16 function obtains a 16-bit far pointer equivalent of a 32-bit near
pointer. These pointers are used when passing data pointers to Windows through functions
that have INTEGER* 4 arguments, and for any pointers within data structures passed this

way.

Returns: The Al | ocAl i as16 function returns a 16-bit far pointer (as an INTEGER* 4) usable by

Windows, or returns O if the alias cannot be allocated.
See Also: FreeAl i as16

Example: integer*4 nts 16
record / MDI CREATESTRUCT/ nts
ncs.szTitle = AllocAliasl6(loc("Title' c))

nts.szCass = AllocAliasl6(loc('ndichild c))

ncs. hOmer = hl nst

NCS. X = NTS. CX CW_USEDEFAULT
NCS.y = NTCS.cCcy CW_USEDEFAULT
ncs.style = 0

Send a nessage to an MDl client to create a w ndow.
Since the pointer to the structure is passed in an
argunent that may not be a pointer (depending on the

conversion done so the conversion nust be done by the

!
!
I
I type of message), there is no inplicit 32 to 16-bit
I
!

pr ogr amrer .
ncs_16 = All ocAliasl6e(loc(nts))

hwnd = SendMessage(hwndVDI, WM NMDI CREATE, 0O, nts_16)

FreeAl i asl16(nts_16)
FreeAli as16(nts.szd ass)
FreeAl i asl16(nts.szTitle)

Classification: WIN386

194 WIN386 Library Subprograms

AllocHugeAlias16

Synopsis:

Description:

Returns:

See Also:

Example:

c$i ncl ude ' wi napi.fi’
i nteger*4 function Al ocHugeAliasl6(ptr, size)
i nteger*4 ptr, size

The Al | ocHugeAl i as16 function obtains a 16-bit far pointer to a 32-bit memory object
that issize bytesin size. Thisissimilar to thefunction Al | ocAl i as16, except that

Al'l ocAl i as16 will only give 16-bit far pointers to 32-bit memory objects of up to 64K in
size. To get 16-bit far pointers to 32-bit memory objects larger than 64K,

Al'l ocHugeAl i as16 should be used.

The Al | ocHugeAl i as16 function returns a 16-bit far pointer (as an INTEGER*4) usable
by Windows, or returns O if the alias cannot be allocated.

Al l ocAl i asl6, FreeAliasl6, FreeHugeAl i asl6

integer ierr, SIZE

i nteger*4 alias

par anmet er (Sl ZE=300000)
i nteger*1 t np(Sl ZE)

all ocate(tmp(SIZE), stat=ierr)
if(ierr .ne. 0)then
alias = All ocHugeAl i as16(loc(tmp), SIZE)

I Wndows calls using the alias ...

call FreeHugeAliasl6(alias, SIZE)
endi f

Classification: WIN386

WIN386 Library Subprograms 195

_Call1s

Synopsis:

Description:

Returns:

See Also:

c$i ncl ude ' wi napi.fi’
i nteger*4 function _Call16(| pFunc, fnt, ...)
i nteger*4 | pFunc
character*(*) fnt

The _Cal | 16 function performs the same function as

Get | ndi r ect Funct i onHandl e, | nvokel ndi r ect Functi onHandl e, and

Fr eel ndi r ect Funct i onHandl e but is much easier to use. Thefirst argument IpFunc
is the address of the 16-bit function to be called. Thisaddressis usually obtained by calling
Get Pr ocAddr ess with the name of the desired function. The second argument f nt isa
string identifying the types of the parameters to be passed to the 16-bit function.

Character Parameter Type

(9]

call a’cdecl’ function as opposed to a’pascal’ function (if specified, it must be
listed first)

unsigned BYTE

16-bit WORD (INTEGER*2)

32-bit DWORD (INTEGER* 4, REAL*4)

double precision floating-point (DOUBLE PRECISION, REAL*8)

32-bit flat pointer (converted to 16:16 far pointer) (LOC(x))

T *rtas o

The 16-bit function must use either the PASCAL or CDECL calling convention. PASCAL
calling convention is the default. If the function uses the CDECL calling convention, then
you must specify the letter "c" asthe first character of the argument type string.

Pointer types will automatically be converted from 32-bit near pointersto 16-bit far pointers
before the function isinvoked. Note that this pointer is only valid over the period of the call;
after control returns to the 32-bit application, the 16-bit pointer created by the Supervisor is
no longer valid.

The _Cal | 16 function returns a 32-bit DWORD (as an INTEGER* 4) which represents the
return value from the 16-bit function that was called.

Cet | ndi r ect Functi onHandl e, | nvokel ndi r ect Functi onHandl e,
Fr eel ndi rect Functi onHandl e

196 WIN386 Library Subprograms

_Call16

Example:

c$i ncl ude wi napi . fi

i ncl ude " w ndows. fi’
integer*2 hlib
integer*4 dll _1, cb
character*128 str

hiib = LoadLibrary("windllv.dll’c)
dll 1 = GetProcAddress(hlib, 'DLL1'c)

cb = _Call16(dIl 1, 'ddd c, 111, 22222, 3333)

Classification: WIN386

WIN386 Library Subprograms 197

DefineDLLEnNtry

Synopsis: ¢$i ncl ude ' wi napi . fi
i nteger*4 function DefineDLLEntry(index, routine, ...)
i nteger*4 index
external routine

Description: The Def i neDLLENt ry function defines an index number for the 32-bit DLL procedure
routine. The parameter index defines the index number that must be used in order to invoke
the 32-bit FAR procedure routine. The variable argument list defines the types of parameters
that will be received by the 32-bit DLL routine. Valid parameter types are:

DLL_PTR 16-bit far pointer

DLL_DWORD 32-bits

DLL_WORD 16-hits

DLL_CHAR 8-hits

DLL_ENDLIST Marks the end of the variable argument list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

Note that all pointers are received as 16-bit far pointers. To access the data from the 32-bit
DLL, adynamically allocatable array must be mapped to the memory pointed to by the
16-bit far pointer using the LOCATI ON specifier of the ALLOCATE statement and assigning
the FAR attribute to the array using the array pragma

Returns:. TheDef i neDLLENt r y function returns zero if successful, and a non-zero value otherwise.
Example: c$i ncl ude wi napi . fi
c$pragma aux (dll _function) DLL_1

integer function DLL_1(wl, w2, w3)

integer*4 wl, w2, w3

i ncl ude "win386.fi’

include 'wi ndefn.fi’

include "winerror.fi’

character*128 str

wite(str, '(16hDLL 1 argunents:, 3i10, a)’) wi,

& w2, w3, char(0)
call MessageBox(NULL, str,

& "DLL Function 1'c, MB_CK)
DLL.1 = wl + W2 + w3
end

198 WIN386 Library Subprograms

DefineDLLEntry

Ro Ro Ro

Classification: WIN386

i nteger*2 function FWNMAI N(hlnstance,
hPrevl nst ance,
| pszCndLi ne,
nCrrdShow)

i nteger*2 hlnstance, hPrevlnstance, nCrdShow

i nteger*4 | pszCndLi ne

i nclude "wi n386.fi’

i nclude ' wi ndefn.fi’

include "winerror.fi’

external DLL_1

i nteger rc

rc = DefineDLLEntry(1, DLL_1, DLL_DWORD,

DLL_DWORD, DLL_DWORD,
DLL_ENDLI ST)
if(rc .ne. 0)then
FWnMain = 0
return
end if
call MessageBox(NULL,
"32-bit DLL started’ c,
"32-bit DLL'c, MB_.OK)
FWnMain = 1
end

WIN386 Library Subprograms 199

DefineUserProc16

Synopsis:

Description:

Returns:

See Also:

*$i ncl ude ' wi napi.fi’
i nteger*4 function DefineUserProcl6(typ, routine, ...)
i nteger*4 typ
external routine

The Def i neUser Pr oc16 function defines the arguments accepted by the user defined
callback procedure routine. There may be up to 32 user defined callbacks. The parameter
typ indicates which one of GETPROC_USERDEFI NED_1 through

GETPROC_USERDEFI NED_32 isbeing defined (see Get Pr oc16). The callback routine
must be declared as FAR PASCAL, or as FAR cdecl. The variable argument list defines the
types of parameters that will be received by the user defined callback procedure routine.
Valid parameter types are;

UDP16 PTR 16-bit far pointer

UDP16_DWORD 32-bits

UDP16_WORD 16-bits

UDP16_CHAR 8-bits

UDP16 CDECL callback routine will be declared astype cdecl rather than as

type PASCAL. This keyword may be placed anywhere before the
UDP16 _ENDLI ST keyword.

UDP16 ENDLIST Marks the end of the variable argument list.
Oncethe Def i neUser Pr oc16 function has been used to declare the user callback routine,
then Get Pr oc16 may be used to get a 16-bit function pointer that may be used by

Windows.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

The Def i neUser Pr oc16 function returns zero if it succeeds and non-zero if it fails.

Get Procl6

200 WIN386 Library Subprograms

DefineUserProcl16

Example: c¢$i ncl ude wi napi . fi
cPpragma aux TestProc parm(val ue)

subroutine TestProc(i)

i nteger i

character*128 str

wite(str, '(2hi=, i10, a)’) i, char(0)
call MessageBox(NULL, str, 'TEST' c, MB.(K)
end

i nteger function DefineTest ()

i nteger*4 cb

external TestProc

call DefineUserProcl6(GETPROC_USERDEFI NED_1,

& Test Proc,

& UDP16_DWORD,
& UDP16_ENDLI ST)

cb = GetProcl6(TestProc, GETPROC_USERDEFI NED_ 1)
I cb may then be used whenever a pointer to the
I callback is required by 16-bit W ndows

end

Classification: WIN386

WIN386 Library Subprograms 201

FreeAlias16

Synopsis: ¢$i ncl ude ' wi napi . fi’
subroutine FreeAliasl6(fpl6)
i nteger*4 fpl6

Description: Fr eeAl i as16 frees a 16-bit far pointer alias for a 32-bit near pointer that was allocated
with Al | ocAl i as16. Thisisimportant to do when thereis no further use for the pointer
since there are alimited number of 16-bit aliases available (due to limited space in the local
descriptor table).

Returns:; Fr eeAl i as16 isasubroutine.
SeeAlso: Al locAliasl6

Example: integer*4 nts_16
record / MDI CREATESTRUCT/ nts
ncs.szTitle = AllocAliasl6(loc('"Title' c))
nts.szC ass = AllocAliasl6e(loc('ndichild c))
nts. hOmer = hl nst
NCS. X = NTS. CX CW_USEDEFAULT
NCS.y = NCS.cCcy CW_USEDEFAULT
ncs.style = 0
I Send a nmessage to an MDI client to create a w ndow.
I Since the pointer to the structure is passed in an
I argunment that nay not be a pointer (depending on the
|
|
|

type of nmessage), there is no inplicit 32 to 16-bit
conversion done so the conversion nust be done by the
pr ogr amrer .

ncs_16 = All ocAliasl6(loc(nts)

hwnd = SendMessage(hwndVDI, WM NMDI CREATE, 0O, nts_16)

FreeAl i as16(nts_16)

FreeAli as16(nts.szd ass)

FreeAl i asl16(nts.szTitle)

Classification: WIN386

202 WIN386 Library Subprograms

FreeHugeAlias16

Synopsis: ¢$i ncl ude ' wi napi . fi’
subroutine FreeHugeAl i asl6(fpl6, size)
i nteger*4 fpl6, size

Description: Fr eeHugeAl i as16 freesa 16-bit far pointer alias that was allocated with
Al l ocHugeAl i as16. Thesizeof the original 32-bit memory object must be specified.
It isimportant to use Fr eeHugeAl i as16 when thereis no further use for the pointer,
since there are alimited number of 16-bit aliases available (due to limited space in the local
descriptor table).

Returns: Fr eeHugeAl i as16 isasubroutine.
SeeAlso: Al ocHugeAl i as16, Al l ocAli asl6, FreeAliasl16
Example: integer ierr, SIZE

i nteger*4 alias

par anet er (Sl ZE=300000)
i nteger*1l tnp(Sl ZE)

all ocate(tmp(SIZE), stat=ierr)

if(ierr .ne. 0)then
alias = All ocHugeAlias16(loc(tnmp), SIZE)
I Wndows calls using the alias ...

call FreeHugeAliasl6(alias, SIZE)
endi f

Classification: WIN386

WIN386 Library Subprograms 203

FreelndirectFunctionHandle

Synopsis: ¢$i ncl ude ' wi napi . fi’

subroutine FreelndirectFuncti onHandl e(handl e)

i nteger*4 handl e

Description: Fr eel ndi r ect Funct i onHandl e frees ahandle that was obtained using
CGet | ndi r ect Funct i onHandl e. Thisisimportant to do when thereis no further use
for the pointer since there are alimited number of 16-bit aliases available (due to limited

space in the local descriptor table).

Returns: Fr eel ndi r ect Funct i onHandl| e isasubroutine.

See Also; _Cal |l 16, Get I ndi rect Functi onHandl e, |1 nvokel ndi rect Functi on

Example: c$i ncl ude wi napi . fi

i nteger*2 hDrv
integer*4 | pfn

hDrv = LoadLi brary(’"your.lib' c)

if(hDrv .1t. 32) return

| pfn = Get ProcAddress(hDrv,

& " Ext Devi ceMbde’ ¢)
if(Ipfn .eq O) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
| NDI R_WORD,
| NDI R_WORD,
| NDI R_DWORD,
| NDI R_PTR,
I NDI R_PTR,
| NDI R_DWORD,
| NDI R_DWORD,
| NDI R_WORD,
| NDI R_ENDLI ST)

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

204 WIN386 Library Subprograms

FreelndirectFunctionHandle

cb = I nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER' c,
"LPT1 c,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

WIN386 Library Subprograms 205

GetIndirectFunctionHandle

Synopsis:

c$i ncl ude ' wi napi.fi’
i nteger*4 function GetlndirectFunctionHandl e(prc, ...)
i nteger*4 prc

Description: The Get | ndi r ect Funct i onHandl e function gets a handle for a 16-bit procedure that

Returns:

See Also;

isto be invoked indirectly. The procedure is assumed to have PASCAL calling convention,
unlessthe | NDI R_CDECL parameter is used, to indicate that Microsoft C calling convention
isto beused. The 16-bit far pointer prcissuppliedto CGet | ndi r ect Funct i onHandl e,
and alist of the type of each parameter (in the order that they will be passed to the 16-bit
function). The parameter types are:

INDIR_DWORD A INTEGER*4 will be passed.

INDIR_WORD A INTEGER* 2 will be passed.

INDIR_CHAR A INTEGER* 1 will be passed.

INDIR_PTR A pointer will be passed. Thisisonly used if pointer conversion
from 32-bit to 16-bit is required, otherwise; INDIR_DWORD is
specified.

INDIR_CDECL This option may be included anywhere in the list before the

| NDI R_ENDLI ST keyword. When thisis used, the calling
convention used to invoke the 16-bit function will be the
Microsoft C calling convention.

INDIR_ENDLIST Marks the end of the parameter list.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

This handle is adata structure that was created using the mal | oc function. To freethe
handle, just use one of the Fr eel ndi r ect Funct i onHandl e or f r ee functions.

You may find it easier touse _Cal | 16 rather than Get | ndi r ect Funct i onHandl e
followed by acall to | nvokel ndi r ect Functi on.

The Get | ndi r ect Funct i onHandl e function returns a handle to the indirect function,
or NULL if ahandle could not be allocated. Thishandleisused in conjunction with
I nvokel ndi rect Funct i on to call the 16-bit procedure.

_Cal | 16, Freel ndirect Functi onHandl e, | nvokel ndi rect Functi on

206 WIN386 Library Subprograms

GetIndirectFunctionHandle

Example: c¢$i ncl ude wi napi . fi

i nteger*2 hDrv
i nteger*4 | pfn

hDrv = LoadLi brary('your.lib' c)

if(hDrv .It. 32) return

| pfn = Get ProcAddress(hDrv,

& ' Ext Devi ceMbde’ ¢)
if(Ipfn .eq O) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
| NDI R_WORD,
| NDI R_WORD,
| NDI R_DWORD,
| NDI R_PTR,
| NDI R_PTR,
| NDI R_DWORD,
| NDI R_DWORD,
| NDI R_WORD,
| NDI R_ENDLI ST)

Ro Ro Ro Ro Ro Ro Ro Ro Ro Ro

cb = I nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER c,
"LPTY1 ¢,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

WIN386 Library Subprograms 207

GetProcl6

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function GetProcl6(fcn, type)
i nteger*4 fcn, type

Description: The Get Pr oc16 function returns a 16-bit far function pointer suitable for use as a
Windows callback function. This callback function will invoke the 32-bit far procedure
specified by fcn. Thetypes of callback functions that may be allocated are:

GETPROC_CALLBACK Thisisthe most common form of callback; suitable as the callback
routine for awindow.

GETPROC_ABORTPROC Thisisthe callback type used for trapping abort requests when
printing.

GETPROC_ENUMCHILDWINDOWS This callback is used with the
EnuntChi | dW ndows Windows function.

GETPROC_ENUMFONTS This callback type is used with the Enunfont s Windows
function.

GETPROC_ENUMMETAFILE This callback is used with the Enum\vet aFi | e Windows
function.

GETPROC_ENUMOBJECTS This callback is used with the Enuntbj ect s Windows
function.

GETPROC_ENUMPROPS FIXED_DS This callback is used with the EnunPr ops
Windows function, when the fixed data segments callback is needed.

GETPROC_ENUMPROPS MOVEABLE_DS This callback is used with the EnunPr ops
Windows function, when the moveable data segments callback is needed.

GETPROC_ENUMTASKWINDOWS This callback is used with the Enunirask W ndows
Windows function.

GETPROC_ENUMWINDOWS This callback is used with the EnumW ndows Windows
function.

GETPROC_GLOBALNOTIFY This calback isused with the A obal Not i f y Windows
function.

GETPROC_GRAYSTRING This callback is used with the G- ay St r i ng Windows
function.

208 WIN386 Library Subprograms

GetProcl6

Returns:

See Also:

Example:

GETPROC_LINEDDA This callback is used with the Li ne DDA Windows function.

GETPROC_SETRESOURCEHANDLER This callback is used with the
Set Resour ceHandl er Windows function.

GETPROC_SETTIMER This callback is used with the Set Ti nmer Windows function.

GETPROC_SETWINDOWSHOOK This callback is used with the Set W ndows Hook
Windows function.

GETPROC_USERDEFINED_x Thiscallback is used in conjunction with
Def i neUser Pr oc16 function to create a callback routine with an arbitrary
set of parameters. Up to 32 user defined callbacks are allowed, they are
identified by using GETPROC_USERDEFINED _1 through
GETPROC_USERDEFINED_32. The user defined callback must be declared
asaFAR PASCAL function, or as a FAR cdecl function.

The Get Pr oc 16 function returns a 16-bit far pointer to a callback procedure. This pointer
may then be fed to any Windows function that requires a pointer to a function within the
32-hit program. Note that the callback function within the 32-bit program must be declared
asFAR

Rel easeProc16

c$i ncl ude wi napi . fi

i nteger*4 cbp
i nteger*4 | pProcAbout

| get a 16-bit callback routine to point at
! our About dial ogue procedure, then create
I the dial ogue.
cbp = GetProcl6(About, GETPROC_CALLBACK)
| pProcAbout = MakeProcl nstance(cbp, hlnst)
call D al ogBox(hlnst,
& " About Box’ ¢,
hwhd,
| pProcAbout)
call FreeProcl nstance(| pProcAbout)
call Rel easeProcl6(chp)

Classification: WIN386

WIN386 Library Subprograms 209

InvokelndirectFunction

Synopsis:

c$i ncl ude ' wi napi.fi’
i nteger*4 function | nvokelndirectFunction(handle, ...)
i nteger*4 handl e

Description: The | nvokel ndi r ect Funct i on function invokes the 16-bit function pointed to by the

Returns:

See Also:

Example:

specified handle. The handle must have been previously allocated using the
Get | ndi r ect Funct i onHandl e function. The handle isfollowed by the list of
parameters to be passed to the 16-bit function.

If you specified | NDI R_PTR as a parameter when allocating the handle, then a 16-bit
pointer is allocated for a 32-hit pointer that you pass. However, this pointer is freed when
the 16-hit function being invoked returns.

In the above synopsis, "..." in the argument list is not valid FORTRAN 77 syntax; it is used
only to indicate a variable number of arguments.

Thel nvokel ndi r ect Funct i on function returns the value which the 16-bit function
returned.

_Cal |1 16, Freel ndi rect Functi onHandl e, Getl ndi rect Functi onHandl e

c$i ncl ude wi napi . fi

i nteger*2 hDrv
integer*4 | pfn

hDrv = LoadLi brary(’"your.lib' c)

if(hDrv .It. 32) return

| pfn = Get ProcAddress(hDrv,

& " Ext Devi ceMbde’ ¢)
if(Ipfn .eq 0) return

hi ndir = GetlndirectFuncti onHandl e(
| pfn,
| NDI R_W\ORD,
| NDI R_WORD,
| NDI R_DWORD,
| NDI R_PTR,
I NDI R_PTR,
| NDI R_DWORD,
| NDI R_DWORD,
I NDI R_WORD,
| NDI R_ENDLI ST)

Ro Ro Ro Ro Ro R0 Ro Ro Ro Ro

210 WIN386 Library Subprograms

InvokelndirectFunction

cb = I nvokel ndirect Functi on(
hl ndi r,
hwnd,
hDr v,
NULL,
" POSTSCRI PT PRI NTER' c,
"LPT1 c,
NULL,
NULL,
0)
call FreelndirectFunctionHandl e(hindir)

Ro Ro Ro Ro Ro Ro Ro Ro Ro

Classification: WIN386

WIN386 Library Subprograms 211

MapAliasToFlat

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function MapAliasToFlat(alias)
i nteger*4 alias

Description: The MapAl i asToFl at function returns a 32-bit near pointer equivalent of a pointer
allocated previously with Al | ocAl i as16 or Al | ocHugeAl i as16. Thisisuseful if
you are communicating with a 16-bit application that is returning pointers that you
previously gaveit.

Returns: The MapAl i asToFl at function returns a 32-bit near pointer (as an INTEGER* 4) usable
by the 32-bit application.

SeeAlso: Al locAliasl6, All ocHugeAl i asl1l6

Example: c$i ncl ude wi napi . fi

i nteger alias
i nteger ptr

alias = AllocAlias16(loc(alias))
alias += 5
ptr = MapAliasToFl at(alias)
if(ptr .eq. loc(alias) + 5)then

call MessageBox(NULL, "It Wirked c, "'c, MB.K)
el se

call MessageBox(NULL, 'It Failed c, "'c, MB_CK)
end if

Classification: WIN386

212 WIN386 Library Subprograms

PASS_WORD_AS_POINTER

Synopsis: ¢$i ncl ude ' wi napi . fi’
i nteger*4 function PASS_WORD_AS_PQO NTER(dw)
i nteger*4 dw
Description: Some Windows API functions have pointer parameters that do not always take pointers.
Sometimes these parameters are pure data. In order to stop the supervisor from trying to
convert the datainto a 16-bit far pointer, the PASS_WORD_AS PO NTER function is used.

Returns:. The PASS_WORD_AS_PO NTER returns a 32-hit "near" pointer, that is really the parameter
dw.

Example: c¢$i ncl ude wi napi . fi

cal |l Func(PASS_WORD_AS_PO NTER(1))

Classification: WIN386

WIN386 Library Subprograms 213

ReleaseProcl6

Synopsis: ¢$i ncl ude ' wi napi . fi’
subrouti ne Rel easeProcl6(cbp)
i nteger*4 cbhp

Description: Rel easePr oc16 releases the callback function allocated by Get Proc16. Sincethe
callback routines are alimited resource, it isimportant to release the routines when they are
no longer required.

Returns:; Rel easePr oc16 isasubroutine.
See Also: Cet Proc16

Example c$i ncl ude wi napi.fi

i nteger*4 cbp
i nteger*4 | pProcAbout
| get a 16-bit callback routine to point at
I our About dial ogue procedure, then create
I the dial ogue.
cbp = GetProcl16(About, GETPROC _CALLBACK)
| pProcAbout = MakeProcl nstance(cbp, hlnst)
call Dial ogBox(hlnst, 'AboutBox’c,
& hwid, | pProcAbout)
call FreeProclnstance(| pProcAbout)
call Rel easeProcl16(chp)

Classification: WIN386

214 WIN386 Library Subprograms

24 32-hit Extended Windows Application
Development

The purpose of this chapter is to anticipate some common questions about 32-bit Windows
application development.

The following topics are discussed in this chapter:

* Can you call 16-bit code from a 32-bit Windows application?

* How do | add my Windows resources?

* All function pointers passed to Windows must be 16-bit far pointers, correct?
» Why are 32-bit callback routines FAR?

* Why usethe _16 API functions?

24.1 Can you call 16-bit code from a 32-bit Windows
application?

A 32-bit Windows application can make a call to 16-bit code through the use of the Watcom
_Call 16 or I nvokel ndi r ect Funct i on procedures. These functions ensure that the
Watcom Windows Supervisor prepares the stack for the 16-bit call and return to the 32-bit
code. The 32-hit application uses LoadLi br ar y function to bring the 16-bit DLL into
memory and then calls the 16-bit procedures. To invoke 16-bit procedures, use

Get Pr ocAddr ess to get the 16-bit far pointer to the function. Usethe _Cal | 16
procedure to call the 16-bit function sinceit is ssmpler to use than the

Get | ndi rect Funct i onHandl e, | nvokel ndi rect Functi on, and

Freel ndi r ect Funct i onHandl e sequence. Anexample of this processis provided
under the _Cal | 16 Windows library function description.

This method can be used to call any 16-bit Dynamic Link Library (DLL) procedure or any

32-bit extended DLL procedure from within a 32-bit application, including DLLsthat are
available as products through Independent Software Vendors (ISVs).

Can you call 16-bit code from a 32-bit Windows application? 215

Windows 3.x Programming Guide

24.2 How do | add my Windows resources?

The WBI ND utility automatically runs the resource compiler to add the resources to the 32-hit
Windows supervisor (since the supervisor is a 16-bit Windows application). Note that
resource compiler options may be specified by using the "R" option of WBI ND.

24.3 All function pointers passed to Windows must be
16-bit far pointers, correct?

All function pointers passed to Windows must be 16-bit far pointers since no translation is
applied to any function pointers passed to Windows. Trandation is often not possible, since
any functions that Windows isto call back must be exported, and only 16-bit functions can be
exported.

A 16-hit far pointer to afunction is obtained in one of two ways:. either Windows givesit to

you (via Get Pr ocAddr, for example), or you obtain a pointer from the supervisor, via
Cet Proclé.

Function pointers obtained from Windows may either be fed into other Windows functions
requiring function pointers, or called indirectly by using _Cal | 16 or by using the

Get I ndi rect Funct i onHandl e, | nvokel ndi rect Functi on, and

Fr eel ndi r ect Functi onHandl e sequence.

The function Get Pr oc 16 returns a 16-bit far pointer to a callback function that Windows
can use. This callback function will direct control into the desired 32-bit routine.

24.4 Why are 32-bit callback routines FAR?

The callback routines are declared as FAR so that the compiler will generate afar return from
the procedure. Thisis necessary since the 32-hit callback routineis"far" called from the
Supervisor.

The callback routineis till "near” in the sense that it lies within the 32-bit flat address space
of the application. Thismeansthat Get Pr oc16 only needsthe offset of the 32-bit callback
function in order to set up the 16-bit procedure to call back correctly. Thus, Get Proc16
accepts type PROCPTR whichisin fact only 4 byteslong. The compiler will provide the
offset only, which is, as already stated, al that is needed.

216 Why are 32-bit callback routines FAR?

32-bit Extended Windows Application Development

24.5 Why use the 16 API functions?

The regular Windows API functions used in Watcom F77 automatically convert any pointers
to 16-bit far pointers for use by Windows. Sometimes, you may have a set of pointers that are
16-bit far pointers already (e.g., obtained from G obal Lock), and do not need any
conversion. The"_16..." API functions do not convert pointers, they simply pass them on
directly to Windows. See the appendix entitled "Special Windows APl Functions' on page
219for alist of the"_16..." API functions.

Why use the _16 API functions? 217

Windows 3.x Programming Guide

218 Why use the 16 API functions?

25 Special Windows API Functions

On rare occasions, you want to use 16-hit far pointers directly in aWindows function. Since
all Windows functions in the 32-bit environment are expecting 32-bit near pointers, you
cannot simply use the 16-bit far pointer directly in the function.

The following functions are specia versions of Windows API functions that do NOT convert
any of the pointers from 32-bit to 16-bit. Thereare 16 versions of al Windows API
functions that accept data pointers.

_16AddAtom
_16AddFontResource
_16AdjustWindowRect
_16AdjustWindowRectEx
_16AnimatePalette
_16AnsiLower
_16AnsiLowerBuff
_16AnsiToOem

_16Ansi ToOemBuUff
_16AnsiUpper
_16AnsiUpperBuff
_16BuildCommDCB
_16CallMsgFilter
_16ChangeMenu
_16ClientToScreen
_16ClipCursor
_16CopyMetaFile
_16CopyRect
_16CreateBitmap
_16CreateBitmaplndirect
_16CreateBrushindirect
_16CreateCursor
_16CreateDC
_16CreateDialog
_16CreateDialoglndirect
_16CreateDial oglndirectParam
_16CreateDialogParam
_16CreateDIBitmap
_16CreateEllipticRgnindirect

Special Windows API Functions 219

Windows 3.x Programming Guide

_16CreateFont
_16CreateFontIndirect
_16CreatelC
_16Createlcon
_16CreateMetaFile
_16CreatePalette
_16CreatePenindirect
_16CreatePolygonRgn
_16CreatePolyPolygonRgn
_16CreateRectRgnindirect
_16CreateWindow
_16CreateWindowEx
_16DialogBox
_16DiaogBoxIndirect
_16DialogBoxIndirectParam
_16Dia ogBoxParam
_16DispatchMessage
_16DIgDirList
_16DIgDirListComboBox
_16DIgDirSelect
_16DIgDirSelectComboBox
_16DPtoLP
_16DrawFocusRect
_16DrawText
_16EndPaint
_16EnumChildwWindows
_16EnumFonts
_16EnumMetaFile
_16EnumObjects
_16EnumProps
_16EnumTaskWindows
_16EnumwWindows
_16EqualRect

_16Escape
_16ExtTextOut
_16FillRect
_16FindAtom
_16FindResource
_16FindWindow
_16FrameRect
_16FreeProclnstance
_16GetAtomName
_16GetBitmapBits
_16GetCaretPos

220 Special Windows API Functions

Special Windows API Functions

_16GetCharWidth
_16GetClasslnfo
_16GetClassName
_16GetClientRect
_16GetClipboardFormatName
_16GetClipBox
_16GetCodelnfo
_16GetCommeError
_16GetCommState
_16GetCursorPos
_16GetDIBits
_16GetDIgltemint
_16GetDIgltemText
_16GetEnvironment
_16GetK eyboardState
_16GetK eyNameT ext
_16GetMenuString
_16GetMetaFile
_16GetModuleFileName
_16GetModuleHandle
_16GetObject
_16GetPaletteEntries
_16GetPriorityClipboardFormat
_16GetPrivateProfilelnt
_16GetPrivateProfileString
_16GetProcAddress
_16GetProfilelnt
_16GetProfileString
_16GetProp
_16GetRgnBox
_16GetScrollRange
_16GetSystemDirectory
_16GetSystemPaletteEntries
_16GetTabbedTextExtent
_16GetTempFileName
_16GetTextExtent
_16GetTextFace
_16GetTextMetrics
_16GetUpdateRect
_16GetWindowRect
_16GetWindowsDirectory
_16GetWindowText
_16Global AddAtom
_16Global FindAtom

Special Windows API Functions 221

Windows 3.x Programming Guide

_16Global GetAtomName
_16GlobalNotify
_16GrayString
_16InflateRect
_16IntersectRect
_l16InvalidateRect
_16InvertRect
_16lsDialogMessage
_16lsRectEmpty
_16LineDDA

_16L oadAccelerators
_16L oadBitmap

_16L oadCursor

_16L oadicon
_16LoadLibrary
_l16LoadMenu

_16L oadMenulndirect
_16L oadModule

_16L oadString
_16LPtoDP
_16MakeProclnstance
_16MapDialogRect
_16MessageBox
_160emToAnsi
_160emToAnsi Buff
_160ffsetRect
_160penComm
_160penFile
_160utputDebugString
_16PlayMetaFileRecord
_16Polygon
_16Polyline
_16PolyPolygon
_16PtInRect
_16ReadComm
_16RectInRegion
_16RectVisible
_16RegisterClipboardFormat
_16RegisterWindowM essage
_16RemoveFontResource
_16RemoveProp
_16ScreenToClient
_16ScrolIDC
_16ScrollWindow

222 Special Windows API Functions

Special Windows API Functions

_16SetBitmapBits
_16SetCommState
_16SetDIBits
_16SetDIBitsToDevice
_16SetDlIgltemText
_16SetEnvironment
_16SetKeyboardState
_16SetPaletteEntries
_16SetProp

_16SetRect
_16SetRectEmpty
_16SetResourceHandler
_16SetSysColors
_16SetTimer
_16SetWindowsHook
_16SetWindowText
_16StretchDIBits
_16TabbedTextOut
_16TextOut

_16ToAscii
_16TrackPopupMenu
_16Trand ateAccelerator
_16TrandateM DI SysAccel
_16Trand ateMessage
_16UnhookWindowsHook
_16UnionRect
_l16UnregisterClass
_l6ValidateRect
_16WinExec
_16WinHelp
_16WriteComm
_16WritePrivateProfileString
_16WriteProfileString
_16 Iread

_16_lwrite

Special Windows API Functions 223

Windows 3.x Programming Guide

224 Special Windows API Functions

Windows NT Programming Guide

Windows NT Programming Guide

226

26 Windows NT Programming Overview

Windows NT supports both non-windowed character-mode applications and windowed
Graphical User Interface (GUI) applications. In addition, Windows NT supports Dynamic
Link Libraries and applications with multiple threads of execution.

We have supplied al the necessary tools for native development on Windows NT. You can
also cross develop for Windows NT using either the DOS-hosted compilers and tools, the
Windows 95-hosted compilers and tools, or the OS/2-hosted compilers and tools. Testing and
debugging of your Windows NT application must be done on Windows NT or Windows 95.

If you are creating a character-mode application, you may also be interested in aspecial DOS
extender from Phar Lap (TNT) that can run your Windows NT character-mode application
under DOS.

26.1 Windows NT Character-mode Versus GUI

Basically, there are two classes of FORTRAN 77 applications that can run in awindowed
environment like Windows NT.

Thefirst are those FORTRAN 77 applications that do not use any of the Win32 AP
functions; they are strictly FORTRAN 77 applications that do not rely on the features of a
particular operating system. Watcom gives you two choices when porting these kinds of
applications to Windows NT. Y ou may choose to create a character-mode application that
makes no use of the windowing capabilities of the system (the remainder of this chapter will
deal with these kinds of applications). Or, you may choose to make use of Watcom'’s default
windowing system in which application output will be directed to one or more windows. The
latter can give somewhat of a GUI |ook-and-feel to an application what wasn’t designed for
the GUI environment. A subsequent chapter deals with the creation of applications that make
use of the default windowing system.

The second class of FORTRAN 77 applications are those that actually call Win32 AP
functions directly. These are applications that have been tailored for the Win32 operating
environment. Watcom FORTRAN 77 does not provide direct support for these types of
applications. While we do provide include files that map out 16-bit Windows structures and
the interface to 16-bit Windows API calls, we do not provide this for Win32 API. The Win32
application developer must create these as required.

Windows NT Character-mode Versus GUl 227

Windows NT Programming Guide

An alternate solution, for those so-inclined, isto develop the GUI part of theinterfacein C
and call these functions from FORTRAN code.

26.2 Windows NT Character-mode Applications

Suppose you have a set of FORTRAN 77 applications that previously ran under DOS and you
now wish to run them under Windows NT. To achieve this, simply recompile your
application and link with the appropriate libraries. Depending on the method with which you
linked your application, it can runin aWindows NT character-mode environment, or as a
Windows NT GUI application. A Windows NT GUI application has full accessto the
complete set of user-interface tools such as menus, icons, scroll bars, etc. An application that
was not desighed as awindowed application (such as a DOS application) can run asa GUI
application. Thisisachieved by adefault windowing system that is optionally linked with
your application. The creation of default windowing applicationsis described in alater
chapter.

Very little effort is required to port an existing FORTRAN 77 application to Windows NT.
Let ustry to run the following sample program (contained in the file HELLO. FOR).

program hel |l o

print *, "Hello world’
end

First we must compile the file HELLO. FOR by issuing the following command.

C.\>wfc386 hello

Once we have successfully compiled the file, we can link it by issuing the following
command.

C\>wink systemnt file hello

Thiswill create a character-mode application.

228 Windows NT Character-mode Applications

2'[Porting Non-GUI Applications to Windows
NT GUI

Generally, an application that isto run in awindowed environment must be written in such a
way as to exploit the Windows Application Programming Interface (API). To take an existing
character-based (i.e., non-graphical) application that ran under a system such as DOS and
adapt it to run under Windows can require some considerable effort. Thereisa steep learning
curve associated with the API function libraries.

This chapter describes how to create a Windows application quickly and simply from an
application that does not use the Windows API. The application will make use of
WATCOM'’ s default windowing support.

Suppose you have a set of FORTRAN 77 applications that previously ran under a system like
DOS and you now wish to run them under Windows NT. To achieve this, you can simply
recompile your application with the appropriate options and link with the appropriate libraries.
We provide a default windowing system that turns your character-mode application into a
simple Windows NT Graphical User Interface (GUI) application.

Normally, aWindows NT GUI application makes use of user-interface tools such as menus,
icons, scroll bars, etc. However, an application that was not designed as a windowed
application (such as a DOS application) can run as a GUI application. Thisis achieved by our
default windowing system. The following sections describe the default windowing system.

27.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the
standard input and standard output devices respectively. It isnot arecommended practiceto
read directly from the standard input device or write to the standard output device when
running in awindowed environment. For this reason, a default windowing environment is
created for FORTRAN 77 applications that read from unit 5 or write to unit 6. When your
application is started, awindow is created in which output to unit 6 is displayed and input
from unit 5 is requested.

In addition to the standard 1/O device, it is a so possible to perform I/O to the console by
explicitly opening afile whose nameis"CON". When this occurs, another window is created

Console Device in a Windowed Environment 229

Windows NT Programming Guide

and displayed. Thiswindow is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of datato and from the
console device.

27.2 The Sample Non-GUI Application

To demonstrate the creation of Windows NT GUI applications, we introduce a simple sample
program. For our example, we are going to use the "sieve" program.

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
INTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRIMES + 1
DOK =1 + 1, UPBOUND, |
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRI NT FORM ' The Nunber of Prinmes between 1 and ', UPBOUND,
1 ' are: ', PRIMES
END

The goal of this programis to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

27.3 Building and Running the Non-GUI Windows NT
Application
Very little effort is required to port an existing FORTRAN 77 application to Windows NT.

Y ou must compile and link the file SI EVE specifying the "bw" option.

230 Building and Running the Non-GUI Windows NT Application

Porting Non-GUI Applications to Windows NT GUI

Cwfl 386 /1 =nt _wi n/ bw si eve

The typical messages that appear on the screen are shown in the following illustration.

Cwil 386 /1=nt_win sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve.for [/bw
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM I nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows NT wi ndowed executabl e

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. EXE (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries).

The resultant Windows NT GUI application SI EVE. EXE can now be run under Windows NT
as aWindows GUI application.

27.4 Debugging the Non-GUI Windows NT Application

Let us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

Cw 386 /1 =nt_win/bw/d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Non-GUI Windows NT Application 231

Windows NT Programming Guide

Cwil 386 /1=nt_win /d2 sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve.for [/bw/d2
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM | nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating a Wndows NT wi ndowed executabl e

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, select the Watcom

Debugger icon. It would be too ambitious to describe the debugger in this introductory
chapter so we refer you to the book entitled Watcom Debugger User’s Guide.

27.5 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when thefileis
closed. You must passto it the unit number associated with the opened console.

dwfSetAboutDlg

232 Default Windowing Library Functions

Porting Non-GUI Applications to Windows NT GUI

i nteger function dwfSetAboutDi g(title, text)
character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If titleis CHAR(O) then the title
will not be replaced. The "text" pointsto a string which will be placed in the about
box. To get multiple lines, embed a new line after each logical linein the string. If
"text" is CHAR(O), then the current text in the about box will not be replaced.

dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.
dwfSetConTitle
i nteger function dwfSetConTitle(unit, title)
i nteger unit

character*(*) title

This function sets the console window’ s title which corresponds to the unit number
passed to it.

dwfShutDown
i nteger function dwf Shut Down()

This function shuts down the default windowing 1/0 system. The application will
continue to execute but no windows will be available for output.

dwfYield
i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the Watcom FORTRAN 77 User’s Guide.

Default Windowing Library Functions 233

Windows NT Programming Guide

234 Default Windowing Library Functions

28 Windows NT Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded
application is one whose tasks are divided among several threads of execution. A processis
an executing application and the resources it uses. A thread isthe smallest unit of execution
within aprocess. Each thread hasits own stack and a set of machine registers and shares all
resources with its parent process. The path of execution of one thread does not affect that of
another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, all
tasks, once initiated, are completed before the next task begins. In contrast, tasksin a
multi-threaded application can be performed concurrently since more than one thread is
executing at once. For example, each thread may be designed to perform a separate task.

28.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number
of issues that you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these
resources. For example, if your application contains more than one thread of execution and
each thread uses the PRI NT statement to display output to the console, it would be necessary
for the 1/0O support routines to allow only one thread to use the PRI NT facility at any time.
That is, once athread issues a PRI NT request, the 1/0O support routines should ensure that no
other thread displays information until all information for the initial thread has been

displayed.

28.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two
functions that create and terminate threads of execution. The function begi nt hr ead
creates athread of execution and the function endt hr ead ends athread of execution. The
function t hr eadi d can be used to determine the current thread identifier.

Creating Threads 235

Windows NT Programming Guide

WARNING! If any thread uses an /O statement or calls an intrinsic function, you must
usethe begi nt hr ead function to create the thread. Do not usethe Cr eat eThr ead
API function.

28.2.1 Creating a New Thread

The begi nt hr ead function creates a new thread. It isdefined asfollows.
i nteger function begi nthread(start _address,
stack_si ze)

i nteger stack_size
end

where description:

start_addressis the address of the subroutine that will be called when the newly created
thread is executed. When the thread returns from that subroutine, the thread will
be terminated. Note that acall to the endt hr ead subroutine will also
terminate the thread.

stack_size specifiesthe size of the stack to be allocated by the operating system for the new
thread. The stack size should be amultiple of 4K.

If anew thread is successfully created, the thread identifier of the new thread is returned.
Otherwise, avalue of -1 is returned.

Theinclude file THREAD. FI contains the definition of the begi nt hr ead function.

Another thread related function for Windows NT is _begi nt hr eadex. Seethe Watcom C
Library Reference for more information.

28.2.2 Terminating the Current Thread

The endt hr ead subroutine terminates the current thread. 1t is defined as follows.

subrouti ne endt hread()
end

Theinclude file THREAD. FlI contains the definition of the endt hr ead function.

236 Creating Threads

Windows NT Multi-threaded Applications

28.2.3 Getting the Current Thread Identifier

Thet hr eadi d function can be used to determine the current thread identifier. It isdefined

as follows.

i nteger function threadid()

end

Theinclude file THREAD. Fl containsthe definition of the t hr eadi d function.

28.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be
found in \ WATCOM SAMPLES\ FORTRAN\ W N32.

* MIHREAD. FOR

*$pragma
*$pragma
*$pragma
*$pragma
*$pragma

aux (__stdca
aux (__stdca
aux (__stdca
aux (__stdca
aux (__stdca

structure /RTL_CRI TI CAL_SECTI O\

integer*4
integer*4
integer*4
integer*4
integer*4
integer*4
end structure

1) Sleep parm value)

1) InitializeCritical Section parnm(reference)
I) DeleteCritical Section parm(reference)
1) EnterCritical Section parm(reference)
I) LeaveCritical Section parm reference)
Debugl nfo

LockCount

Recur si onCount

Omni ngThr ead

LockSenmaphore

Reserved

i nt eger NuniThr eads

| ogi cal Hol dThr eads

vol atil e Hol dThreads, NumThreads

record /RTL_CRITI CAL_SECTI ON' Critical Section
common NunThreads, Hol dThreads, Critical Section

i nteger STACK_

S| ZE

par aneter (STACK_SI ZE=8192)
i nt eger NUM_THREADS
par anet er (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

A Multi-threaded Example 237

Windows NT Programming Guide

Note:

print "(''main thread id ="'',i4)’, threadid()
Nunmirhreads = 0

Hol dThreads = .true.

! main thread counts as 1

call InitializeCritical Section(Critical Section)
do i = 2, NUM_THREADS
if(beginthread(a_thread, STACK SIZE) .eq. -1)then
print '(’’'creation of thread ',i4, ' failed '), i
el se
NunThr eads = NunThreads + 1
end if
end do

Hol dThreads = .fal se.
whi | e(NuniThreads .ne. 0) do
call Sleep(1)
end while
call DeleteCritical Section(Critical Section)
end

subroutine a_thread()

structure /RTL_CRI Tl CAL_SECTI OV
i nteger*4 Debugl nfo
i nteger*4 LockCount
i nt eger*4 Recursi onCount
i nteger*4 Omni ngThr ead
i nteger*4 LockSenmaphore
i nteger*4 Reserved
end structure

i nt eger NuniThr eads

| ogi cal Hol dThr eads

vol ati|l e Hol dThr eads

record /RTL_CRITI CAL_SECTI OV Critical Section
comon NunThreads, Hol dThreads, Critical Section

integer threadid

whi | e(Hol dThreads) do

call Sleep(1)
end while
print "("'H fromthread "', i4)’, threadid()
call EnterCritical Section(Critical Section)
NuniThr eads = NuniThreads - 1
call LeaveCritical Section(Critical Section)
call endthread()
end

Inthe subroutinea_t hread, EnterCritical Secti onand
LeaveCritical Secti on arecalled when we modify the variable

Numrhr eads. Thisensuresthat the action of extracting the value of

NumThr eads from memory, incrementing the value, and storing the new result
into memory, occurs without interruption. If these functions were not called, it

238 A Multi-threaded Example

Windows NT Multi-threaded Applications

would be possible for two threads to extract the value of NunmiThr eads from
memory before an update occurred.

Let us assume that the file MTHREAD. FOR contains the above example. Before compiling the
file, make sure that the WATCOM environment variable is set to the directory in which you
installed Watcom FORTRAN 77. Also, the FINCL UDE environment variable must contain
the\ WATCOM SRC\ FORTRAN directory where "\WATCOM" is the name of the directory in
which you installed Watcom FORTRAN 77.

We can now compile and link the application by issuing the following command.
C\>wf1386 /bm/Il=nt mnthread

The "bm" option must be specified since we are creating a multi-threaded application. If your

multi-threaded application contains more than one module, each module must be compiled

using the "bm" switch.

The"I" option specifies the target system for which the application isto be linked. The

system name nt isdefined in the file W.SYSTEM LNK which islocated in the "BINW"

directory of the directory in which you installed Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

A Multi-threaded Example 239

Windows NT Programming Guide

240 A Multi-threaded Example

29 Windows NT Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application
uses functions from a standard library, the library functions referenced by the application
become part of the executable module. Thisform of linking is called static linking. When an
application uses functions from adynamic link library, the library functions referenced by the
application are not included in the executable module. Instead, the executable module
contains references to these functions which are resolved when the application isloaded. This
form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only
references to the functions in dynamic link libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
dynamic link library, the saving in disk space can be significant.

2. Since program modules only reference dynamic link libraries and do not contain
the actual executable code, adynamic link library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications
that use them. If many applications that use the same dynamic link library are
executing concurrently, the sharing of code and data segments improves memory
utilization.

29.1 Creating Dynamic Link Libraries

Once you have developed the source for alibrary of functions, a number of steps are required
to create adynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the

compiler that the module you are compiling is part of adynamic link library. Once you have
successfully compiled your source, you must create alinker directive file that describes the

Creating Dynamic Link Libraries 241

Windows NT Programming Guide

attributes of your dynamic link library. The following lists the most common linker directives
required to create a dynamic link library.

1. The"SYSTEM" directiveisused to specify that adynamic link library isto be
created.

2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link
library are to be exported.

3. The"OPTION" directiveis used to specify attributes such as the name of the
dynamic link library and how to allocate the automatic data segment when the
dynamic link library is referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example,
a segment may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to
applications that wish to useit. This can be done by creating an import library for the
dynamic link library or creating alinker directive file that contains "IMPORT" directives for
each of the entry pointsin the dynamic link library.

29.2 Creating a Sample Dynamic Link Library

Let us now create adynamic link library using the following example. The source code for
this example can be found in \ WATCOM SAMPLES\ FORTRAN W N\ DLL. Unlike
applications developed in the C or C++ language, the FORTRAN 77 devel oper must not
provideaLi bMai n entry point. Thisentry point isaready defined in the Watcom
FORTRAN 77 run-time libraries. Therun-time system’s Li bMai n provides for the proper
initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are
optional but we show skeleton versions in the following example so that you can develop your

own if required.
* DLLSAMP. FOR
integer function __fdll _initialize ()
* Call ed from Li bMain during "DLL PROCESS ATTACH'
* do process initialization

print *, "H fromprocess attach’

* returning O indicates failure
__fdll_initialize_ =1
return
end

242 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

integer function __fthrd_initialize_()
* Cal l ed from Li bMain during "DLL THREAD ATTACH"

* do thread initialization
print *, "H fromthread attach’

* returning O indicates failure
__fthrd_.initialize. = 1
return
end

integer function __fthrd termnate ()
* Cal l ed from Li bMain during "DLL THREAD DETACH'

* do thread cl eanup
print *, "H fromthread detach’

* returning O indicates failure
__fthrd_ termnate_ =1
return
end

integer function __fdll _termnate_()
* Cal l ed from Li bMain during "DLL PROCESS DETACH

* do process cl eanup
print *, '"H from process detach’

* returning O indicates failure
__fdll _termnate. = 1
return
end

subroutine dl | _entry _1()
print *, "H fromdll entry #1
end

subroutine dl | _entry_2()
print *, "H fromdll entry #2'
end

Here are some explanatory notes on this example.
Function Description

__ FDLL_INITIALIZE_ Thisfunctionis called when the DLL is attaching to the address
space of the current process as a result of the process starting up or as aresult of
acal toLoadLi brary. A DLL can usethis opportunity to initialize any
instance data.

During initial process startup or after acall to LoadLi br ary, theoperating
system scans the list of loaded DLL s for the process. For each DLL that has not
already been called with the DLL _PROCESS_ATTACH value, the system calls
theDLL’sLi bMai n entry-point (in the Watcom FORTRAN 77 run-time

Creating a Sample Dynamic Link Library 243

Windows NT Programming Guide

system). Thiscall is madein the context of the thread that caused the process
address space to change, such as the primary thread of the process or the thread
that called LoadLi brary.

_ FTHRD_INITIALIZE_ Thisfunction is called when the current processis creating a new

thread. When this occurs, the system callsthe Li bMai n entry-point (in the
Watcom FORTRAN 77 run-time system) of all DLLs currently attached to the
process. Thecall ismade in the context of the new thread. DLLs can usethis
opportunity to initialize thread specific data. A thread callingthe DLL's

Li bMai n withthe DLL _PROCESS_ATTACH value doesnot call Li bMai n
withthe DLL_THREAD_ATTACHvaue. Notethat Li bMai n iscalled with this
value only by threads created after the DLL is attached to the process. When a
DLL isattached by LoadLi br ary, existingthreadsdo not call the Li bMai n
entry-point of the newly loaded DLL.

_ FTHRD_TERMINATE_ Thisfunction is called when athread is exiting normally. The

DLL usesthis opportunity to do thread specific termination such as closing files
that were opened by the thread. The operating system callsthe Li bMai n
entry-point (in the Watcom FORTRAN 77 run-time system) of all currently
loaded DL Lswith thisvalue. The call is madein the context of the exiting
thread. There are casesinwhich Li bMai n iscalled for aterminating thread
even if the DLL never attached to the thread. For example, Li bMai n isnever
called with the DLL _THREAD_ATTACH value in the context of the thread in
either of these two situations:

» The thread was the initial thread in the process, so the system called
Li bivai n with the DLL_PROCESS_ATTACH value.

» The thread was already running when acall to the LoadLi br ary
function was made, so the system never called Li bMai n for it.

__FDLL_TERMINATE_ Thisfunction is called when the DLL is detaching from the address

Note:

space of the calling process as aresult of either anormal termination or of acall
toFreeLi brary. WhenaDLL detachesfrom aprocess as aresult of process
termination or asaresult of acall to Fr eelLi br ary, theoperating system
doesnot call theDLL’s Li bMai n with the DLL _THREAD_DETACH va ue for
theindividual threads of the process. The DLL isonly given

DLL _PROCESS_DETACH notification. DLLs can take this opportunity to clean
up all resources for al threads attached and known to the DLL.

These functions return 1 if initialization succeeds or O if initialization fails.
Subsequently, this value will be returned by the run-time system’s Li bMai n
function.

244 Creating a Sample Dynamic Link Library

Windows NT Dynamic Link Libraries

If thereturn value is O when Li bMai n is called because the process uses the
LoadLi brary function, LoadLi brary returns NULL.

If thereturn value is O when Li bMai n is called during process initialization, the
process terminates with an error.

DLL_ENTRY_1, DLL_ENTRY_2 These are sample DLL entry points that we will call from
our simple test program.

Some further explanation and an example are provided in alater section.

Assume the above example is contained in the file DLLSAMP. FOR. We can compile the file
using the following command. Note that we must specify the "bd" compiler option.

C:\>wfc386 /bd dllsanp

Before we can link our example, we must create alinker directive file that describes the
attributes and entry points of our dynamic link library. The following isalinker directivefile,
called DLLSAMP. LNK, that can be used to create the dynamic link library.

systemnt _dll initinstance terninstance
export dil _entry 1

export dll _entry 2

file dllsanp

Notes:

1. The"SYSTEM" directive specifies that we are creating a Windows NT dynamic
link library.

2. When adynamic link library uses the Watcom FORTRAN 77 run-time libraries, an
automatic data segment is created each time a new process accesses the dynamic
link library. For thisreason, initialization code must be executed when a process
accesses the dynamic link library for the first time. To achievethis,
"INITINSTANCE" must be specified in the "SY STEM" directive. Similarly,
"TERMINSTANCE" must be specified so that the termination code is executed
when a process has completed its access to the dynamic link library. 1f the Watcom
FORTRAN 77 run-time libraries are not used, these options are not required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library.

We can now create our dynamic link library by issuing the following command.

C\>wink @lllsanp

Creating a Sample Dynamic Link Library 245

Windows NT Programming Guide

A file called DLLSANMP. DLL will be created.

29.3 Using Dynamic Link Libraries

Once we have created adynamic link library, we must allow other applications to access the
functions available in the dynamic link library. There are two waysto achieve this.

The first method isto create alinker directive file which contains an "IMPORT" directive for
all entry pointsin the dynamic link library. The"IMPORT" directive provides the name of
the entry point and the name of the dynamic link library. When creating an application that
references a function in the dynamic link library, thislinker directive file would be included
as part of the linking process that created the application.

The second method is to use import libraries. Animport library is astandard library that is
created from adynamic link library by using the Watcom Library Manager. It contains object
modules that describe the entry pointsin a dynamic link library. The resulting import library
can then be specified in a"LIBRARY" directive in the same way one would specify a
standard library.

Using an import library is the preferred method of providing references to functionsin
dynamic link libraries. When adynamic link library is modified, typically the import library
corresponding to the modified dynamic link library is updated to reflect the changes. Hence,
any directive file that specifies the import library in a"LIBRARY" directive need not be
modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directivesto reflect the changes in the dynamic link library.

Let us create an import library for our sample dynamic link library we created in the previous
section. We do this by issuing the following command.

C\>wWib dllsanp +dlIlsanp.dll
A standard library called DLLSAMP. LI B will be created.

Suppose the following sample program, contained in thefile DLLTEST. FOR, callsthe
functions from our sample dynamic link library.
* DLLTEST. FOR
call dll _entry_1()

call dll _entry_2()
end

We can compile and link our sample application by issuing the following command.

246 Using Dynamic Link Libraries

Windows NT Dynamic Link Libraries

C\>wf1 386 /I=nt dlltest dllsanp.lib

If we had created alinker directive file of "IMPORT" directivesinstead of an import library
for the dynamic link library, the linker directivefile, say DLLI MPS. LNK, would be as
follows.

import dll _entry_1 dllsanp
import dll _entry_2 dllsanp

To compile and link our sample application, we would issue the foll owing command.

C\>wil386 /I=nt dlltest /"@l!linps"

29.4 The Dynamic Link Library Data Area

The Watcom FORTRAN 77 32-hit run-time library does not support the general case
operation of DLLsin an execution environment where there is only one instance of the DATA
segment (DGROUP) for that DLL.

There are two cases that can lead to a DL L executing with only one instance of the DGROUP.
1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.
2. DLLslinked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the
DGROUP when a second process attemptsto attach to the DLL. At that point, it issuesa
diagnostic for the user and then notifies the operating system that the second process cannot
attachtothe DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can
suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. This good
behaviour consists primarily of ensuring that the first process to attach to the DLL isaso the
last process to detach from the DLL thereby ensuring that the DATA segment is not rel eased
back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the

second process cannot attach to the DLL, the devel oper must provide a replacement entry
point with the following prototype:

The Dynamic Link Library Data Area 247

Windows NT Programming Guide

int __disallow_single_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA
segment is allowed.

29.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with
it. Theinitialization routine can either be called the first time any process accesses the DLL
("INITGLOBAL" is specified at link time) or each time a process accesses the DLL
("INITINSTANCE" is specified at link time). Similarly, the termination routine can either be
called when all processes have completed their access of the DLL ("TERMGLOBAL" is
specified at link time) or each time a process completes its access of the DLL
("TERMINSTANCE" is specified at link time).

For aDLL that usesthe FORTRAN 77 run-time libraries, initialization and termination of the
FORTRAN 77 run-time environment is performed automatically. Itisalso possiblefor a
DLL to doitsown special initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL
initialization and termination code. The _ _fdl | _initialize_routineiscalled for DLL
processinitialization. The ~ fthrd_initialize_routineiscaledfor DLL thread
initialization. The __fthrd_t er m nat e_ routineiscalled for DLL thread termination.
The __fdl | _term nat e_routineiscalled for DLL processtermination. Default stub
versions of these routines are included in the run-time library. If you wish to perform
additional initialization/termination processing that is specific to your dynamic link library,
you may write your own versions of these routines.

When a process first attaches to the DLL, the FORTRAN 77 run-time environment is
initialized and then theroutine __fdl | _initialize_iscaled. Whenathread is started,
theroutine __fthrd_initialize_iscaled. When athread isterminated, the routine

_ fthrd_term nate_iscaled. When the main processrelinquishesthe DLL, the
routine __f dl | _t er mi nat e_ iscaled and then the FORTRAN 77 run-time environment
is terminated,

Theinitialization and termination routines return an integer. A value of O indicates failure; a

value of 1 indicates success. The following example illustrates sample
initialization/termination routines.

248 Dynamic Link Library Initialization/Termination

Windows NT Dynamic Link Libraries

* DLLINIT. FOR

integer function __fdll _initialize_()
integer _ fthrd_initialize, _ fthrd_ termnate_
integer __fdll termnate_, dll _entry

i nt eger WORKI NG_SI ZE

paraneter (WORKING_SI ZE = 16*1024)
integer ierr, WirkingStorage

di mensi on Wor ki ngSt orage(:)

al | ocat e(Wor ki ngSt or age(WORKI NG_SI ZE), stat=ierr)
if(ierr .eq. 0)then

__fdll _initialize_ = 1
el se

__fdll _initialize_ = 0
endi f
return

entry __fthrd_initialize_()
__fthrd_initialize_ =1
return

entry __fthrd_term nate_()
__fthrd_terminate_ = 1
return

entry __fdll _termnate_()
* Note: no run-time calls all owed under OS/2 Warp
deal | ocat e(Wor ki ngSt orage)
__fdll _termnate. = 1
return

entry dll _entry()
I use Worki ngStorage
return
end
In the above example, the process initialization routine allocates storage that the dynamic link

library needs, theroutine dl | _ent r y usesthe storage, and the process termination routine
frees the storage alocated in the initialization routine.

Dynamic Link Library Initialization/Termination 249

Windows NT Programming Guide

250 Dynamic Link Library Initialization/Termination

0S/2 Programming Guide

0OS/2 Programming Guide

252

30 Creating 16-bit 0S/2 1.x Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible
application, or a Presentation Manager application. A fullscreen application runsin its own
screen group. A PM-compatible application will run in an OS/2 fullscreen environment or in
awindow in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on
creating Presentation Manager applications, refer to the section entitled "Programming for
0S/2 Presentation Manager" on page 275.

We will illustrate the stepsto creating 16-bit OS/2 1.x applications by taking a small sample
application and showing you how to compile, link, run and debug it.

30.1 The Sample Application

To demonstrate the creation of 16-bit OS/2 1.x applications using command-line oriented
tools, we introduce a simple sample program. For our example, we are going to use the
"sieve" program.

The Sample Application 253

0OS/2 Programming Guide

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRI MES + 1
DOK =1 + 1|, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRINT FORM ' The Nunber of Prines between 1 and ', UPBOUND,
1 ' are: ', PRI MES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

30.2 Building and Running the Sample OS/2 1.x
Application

To compile and link our example program which is stored in the file SI EVE. FOR, enter the
following command:

[C\]wfl /l=0s2 sieve

The typical messages that appear on the screen are shown in the following illustration.

254 Building and Running the Sample 0S/2 1.x Application

Creating 16-bit 0S/2 1.x Applications

[C\]wf]l /]=0s2 sieve
WATCOM F77/16 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wfc sieve.for
WATCOM FORTRAN 77/ 16 Optim zing Conpil er
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 311 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM I nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

[C\]sieve
The Nunmber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. EXE (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries). Itis Sl EVE. EXE that
isrun by OS/2 when you enter the "sieve" command.

30.3 Debugging the Sample OS/2 1.x Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the WFL
command, thisisfairly straightforward. WFL recognizes the Watcom F77 compiler "debug"
options and will create the appropriate debug directives for the Watcom Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

[C\IWI] /l=0s2 /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Sample OS/2 1.x Application 255

0OS/2 Programming Guide

[C\]wfl /]l=0s2 /d2 sieve
WATCOM F77/16 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wfc sieve.for /d2
WATCOM FORTRAN 77/ 16 Optim zing Conpil er
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 392 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM I nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating an OS/2 16-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

For OS/2, you should also include the BI NP\ DLL directory inthe "LIBPATH" directive of
the system configuration file CONFI G. SYS. It contains the Watcom Debugger Dynamic
Link Libraries (DLLS).

Example:
| i bpat h=c: \wat com bi np\ dl |

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

[C\]wd sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

256 Debugging the Sample 0S/2 1.x Application

31 Creating 32-bit 0S/2 Applications

An OS2 application can be one of the following; a fullscreen application, a PM-compatible
application, or a Presentation Manager application. A fullscreen application runsin its own
screen group. A PM-compatible application will run in an OS/2 fullscreen environment or in
awindow in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc.

This chapter deals with the creation of OS/2 fullscreen applications. For information on
creating Presentation Manager applications, refer to the section entitled "Programming for
0S/2 Presentation Manager" on page 275.

We will illustrate the steps to creating 32-bit OS/2 applications by taking a small sample
application and showing you how to compile, link, run and debug it.

31.1 The Sample Application

To demonstrate the creation of 32-bit OS/2 applications using command-line oriented tools,
we introduce a simple sample program. For our example, we are going to use the "sieve"
program.

The Sample Application 257

0OS/2 Programming Guide

* This program conputes the prime nunbers between 1 and 10, 000
* using the Sieve of Eratosthenes algorithm

I MPLI CI' T NONE
| NTEGER UPBOUND
PARAMETER (UPBOUND=10000)
I NTEGER |, K, PRI MES
LOG CAL*1 NUMBERS(2: UPBOUND)
CHARACTER*11 FORM
PARAMETER (FORME' (A, 15, A/ 15)")
DO | = 2, UPBOUND
NUMBERS(1) = . TRUE.
ENDDO
PRIMES = 0
DO | = 2, UPBOUND
I F(NUMBERS(1)) THEN
PRIMES = PRI MES + 1
DOK =1 + 1|, UPBOUND, I
NUMBERS(K) = . FALSE.
ENDDO
ENDI F
ENDDO
PRINT FORM ' The Nunber of Prines between 1 and ', UPBOUND,
1 ' are: ', PRI MES
END

The goal of this program is to count the prime numbers between 1 and 10,000. It usesthe

famous Seve of Eratosthenes algorithm to accomplish thistask. We will take you through the
steps necessary to produce this result.

31.2 Building and Running the Sample OS/2
Application

To compile and link our example program which is stored in the file SI EVE. FOR, enter the
following command:

[C\]wfl 386 /] =0s2v2 sieve

The typical messages that appear on the screen are shown in the following illustration.

258 Building and Running the Sample OS/2 Application

Creating 32-bit 0S/2 Applications

[C\]wl386 /]=0s2v2 sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve.for
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 172 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM I nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

Provided that no errors were encountered during the compile or link phases, the "sieve"
program may now be run.

[C\]sieve
The Nunmber of Prines between 1 and 10000 are: 1229

If you examine the current directory, you will find that two files have been created. These are
SI EVE. OBJ (theresult of compiling SI EVE. FOR) and S| EVE. EXE (the result of linking
SI EVE. OBJ with the appropriate Watcom FORTRAN 77 libraries). Itis Sl EVE. EXE that
isrun by OS/2 when you enter the "sieve" command.

31.3 Debugging the Sample OS/2 Application

L et us assume that you wish to debug your application in order to locate an error in
programming. In the previous section, the "sieve" program was compiled with default
compile and link options. When debugging an application, it is useful to refer to the symbolic
names of routines and variables. It isalso convenient to debug at the source line level rather
than the machine language level. To do this, we must direct both the compiler and linker to
include additional debugging information in the object and executable files. Using the
WFL386 command, thisisfairly straightforward. WFL386 recognizes the Watcom F77
compiler "debug" options and will create the appropriate debug directives for the Watcom
Linker.

For example, to compile and link the "sieve" program with debugging information, the
following command may be issued.

[C\]w]386 /] =0s2v2 /d2 sieve

The typical messages that appear on the screen are shown in the following illustration.

Debugging the Sample OS/2 Application 259

0OS/2 Programming Guide

[C\]wl386 /]=0s2v2 /d2 sieve
WATCOM F77/32 Conpile and Link Utility
Copyri ght by WATCOM I nternational Corp. 1990, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
wf c386 sieve.for /d2
WATCOM FORTRAN 77/ 32 Optim zing Conpiler
Copyri ght by WATCOM I nternational Corp. 1984, 2000. All rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.
sieve.for: 21 statenments, 237 bytes, 6 extensions, 0 warnings, O errors

WATCOM Li nker

Copyright by WATCOM I nternati onal Corp. 1985, 2000. Al rights reserved.
WATCOM i s a trademark of Sybase, Inc. and its subsidiaries.

| oadi ng object files

searching libraries

creating an OS/2 32-bit executable

The"d2" option requests the maximum amount of debugging information that can be provided
by the Watcom F77 compiler. WFL386 will make sure that this debugging information is
included in the executable file that is produced by the linker.

The "bytes' value islarger than in the previous example since selection of the "d2" option
results in fewer code optimizations by default. Y ou can request more optimization by
specifying the appropriate options. However, you do so at the risk of making it more difficult
for yourself to determine the rel ationship between the object code and the original source
language code.

To request the Watcom Debugger to assist in debugging the application, the following
command may be issued.

[C\]wd sieve

It would be too ambitious to describe the debugger in thisintroductory chapter so we refer
you to the book entitled Watcom Debugger User’s Guide.

260 Debugging the Sample OS/2 Application

32 0S/2 2.x Multi-threaded Applications

This chapter describes how to create multi-threaded applications. A multi-threaded
application is one whose tasks are divided among several threads of execution. A processis
an executing application and the resources it uses. A thread isthe smallest unit of execution
within aprocess. Each thread hasits own stack and a set of machine registers and shares all
resources with its parent process. The path of execution of one thread does not affect that of
another; each thread is an independent entity.

Typically, an application has a single thread of execution. In thistype of application, all
tasks, once initiated, are completed before the next task begins. In contrast, tasksin a
multi-threaded application can be performed concurrently since more than one thread is
executing at once. For example, each thread may be designed to perform a separate task.

32.1 Programming Considerations

Since a multi-threaded application consists of many threads of execution, there are a number
of issues that you must consider.

Since threads share the resources of its parent, it may be necessary to serialize access to these
resources. For example, if your application contains more than one thread of execution and
each thread uses the PRI NT statement to display output to the console, it would be necessary
for the 1/0O support routines to allow only one thread to use the PRI NT facility at any time.
That is, once athread issues a PRI NT request, the 1/0O support routines should ensure that no
other thread displays information until all information for the initial thread has been

displayed.

32.2 Creating Threads

Each application initially contains asingle thread. The run-time libraries contain two
functions that create and terminate threads of execution. The function begi nt hr ead
creates athread of execution and the function endt hr ead ends athread of execution. The
function t hr eadi d can be used to determine the current thread identifier.

Creating Threads 261

0OS/2 Programming Guide

WARNING! If any thread uses an /O statement or calls an intrinsic function, you must
usethe begi nt hr ead function to create the thread. Do not use the
DosCr eat eThr ead API function.

32.2.1 Creating a New Thread

The begi nt hr ead function creates a new thread. It isdefined asfollows.
i nteger function begi nthread(start _address,
stack_si ze)

i nteger stack_size
end

where description:

start_addressis the address of the subroutine that will be called when the newly created
thread is executed. When the thread returns from that subroutine, the thread will
be terminated. Note that acall to the endt hr ead subroutine will also
terminate the thread.

stack_size specifiesthe size of the stack to be allocated by the operating system for the new
thread. The stack size should be amultiple of 4K.

If anew thread is successfully created, the thread identifier of the new thread is returned.
Otherwise, avalue of -1 is returned.

Theinclude file THREAD. FI contains the definition of the begi nt hr ead function.

32.2.2 Terminating the Current Thread

The endt hr ead subroutine terminates the current thread. It is defined as follows.

subrouti ne endt hread()
end

Theinclude file THREAD. Fl contains the definition of the endt hr ead function.

262 Creating Threads

0S/2 2.x Multi-threaded Applications

32.2.3 Getting the Current Thread Identifier

Thet hr eadi d function can be used to determine the current thread identifier. It isdefined
as follows.

i nteger function threadid()
end

Theinclude file THREAD. Fl containsthe definition of the t hr eadi d function.

32.3 A Multi-threaded Example

Let us create a simple multi-threaded application. The source code for this example can be
found in \ WATCOM SAMPLES\ FORTRAN\ OS2.

* MTHREAD. FOR
*$pragma aux DosSleep parn(value) [] caller

i nteger NuniThr eads
| ogi cal Hol dThr eads
common NuniThr eads, Hol dThr eads

i nteger STACK_SI ZE

par anet er (STACK_SI ZE=8192)
i nt eger NUM_THREADS

par anet er (NUM_THREADS=5)

integer i, threadid, beginthread
external a_thread

print *("’main thread id =", i4)’, threadid()
Nunirhreads = 0

Hol dThreads = .true

! main thread counts as 1

do i = 2, NUM_THREADS
if(beginthread(a_thread, STACK_SIZE) .eq. -1)then
print '(’’creation of thread ', i4, ''failed '), i
el se
NunmThr eads = NunThreads + 1
end if
end do

Hol dThreads = .fal se

whi | e(Nunirhreads .ne. 0)do
call DosSleep(1)

end while

end

A Multi-threaded Example 263

0OS/2 Programming Guide

subroutine a_thread()
i nt eger NunThr eads
| ogi cal Hol dThr eads
common NuniThr eads, Hol dThr eads
integer threadid
whi | e(Hol dThreads)do
call DosSleep(1)
end while
print "("'H fromthread "', i4)', threadid()
call DosEnterCritSec()
NuniThr eads = NuniThreads - 1
call DosExitCritSec()
call endthread()
end

Note:

1. Inthesubroutinea_t hr ead, DosEnterCrit Sec and DosExi tCrit Sec are
called when we modify the variable NuniThr eads. Thisensuresthat the action
of extracting the value of Numrhr eads from memory, incrementing the value,
and storing the new result into memory, occurs without interruption. |f these
functions were not called, it would be possible for two threads to extract the value
of NunThr eads from memory before an update occurred.

Let us assume that the file MTHREAD. FOR contains the above example. Before compiling the
file, make sure that the WATCOM environment variable is set to the directory in which you
installed Watcom FORTRAN 77. Also, the FINCL UDE environment variable must contain
the\ WATCOM SRC\ FORTRAN\ OS2 directory where "\WATCOM" is the name of the
directory in which you installed Watcom FORTRAN 77.

We can now compile and link the application by issuing the following command.
[C\]w]386 /bm /| =0s2v2 nthread

The "bm" option must be specified since we are creating a multi-threaded application. If your

multi-threaded application contains more than one module, each module must be compiled

using the "bm" switch.

The"I" option specifies the target system for which the application isto be linked. The

system name 0s 2v2 isdefined in the file W.SYSTEM LNK which islocated in the "BINW"

directory of the directory in which you installed Watcom FORTRAN 77.

The multi-threaded application is now ready to be run.

264 A Multi-threaded Example

0S/2 2.x Multi-threaded Applications

32.4 Thread Limits

Thereisalimit to the number of threads an application can create under 16-bit 0OS/2. The
default limit is 32. Thislimit can be adjusted by defining the integer function
__get maxt hr eads which returns the new thread limit.

Under 32-bit OS/2, there is no limit to the number of threads an application can create.
However, due to the way in which multiple threads are supported in the WATCOM libraries,
thereisasmall performance penalty once the number of threads exceeds the default limit of
32 (this number includes the initial thread). If you are creating more than 32 threads and wish
to avoid this performance penalty, you can redefine the threshold value of 32. You can
statically initialize the global variable __MaxThr eads.

Thislimit can be adjusted by defining the integer function __get maxt hr eads which
returns the new thread limit. By defining __get maxt hr eads asfollows, the new threshold
value will be set to 48.

i nteger function __get maxthreads()
__get naxt hreads = 48
end

Thisversion of __get maxt hr eads will replace the default function that isincluded in the
run-time library. The default function simply returns the current value of the internal variable

__MaxThr eads. Your version of thisfunction will return anew value for this variable.
Internally, the run-time system executes code similar to the following:

.,,I\/axThreads = __get naxt hreads()

Thus, the default __get maxt hr eads function does not alter the value of __MaxThr eads
but your version will.

Thread Limits 265

0OS/2 Programming Guide

266 Thread Limits

33 0S/2 2.x Dynamic Link Libraries

A dynamic link library, like a standard library, is alibrary of functions. When an application
uses functions from a standard library, the library functions referenced by the application
become part of the executable module. Thisform of linking is called static linking. When an
application uses functions from adynamic link library, the library functions referenced by the
application are not included in the executable module. Instead, the executable module
contains references to these functions which are resolved when the application isloaded. This
form of linking is called dynamic linking.

Let us consider some of the advantages of using dynamic link libraries over standard libraries.

1. Functionsin dynamic link libraries are not linked into your program. Only
references to the functions in dynamic link libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
dynamic link library, the saving in disk space can be significant.

2. Since program modules only reference dynamic link libraries and do not contain
the actual executable code, adynamic link library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the dynamic link library.

3. Dynamic link libraries also allow sharing of code and data between the applications
that use them. If many applications that use the same dynamic link library are
executing concurrently, the sharing of code and data segments improves memory
utilization.

33.1 Creating Dynamic Link Libraries

Once you have developed the source for alibrary of functions, a number of steps are required
to create adynamic link library containing those functions.

First, you must compile your source using the "bd" compiler option. This option tells the

compiler that the module you are compiling is part of adynamic link library. Once you have
successfully compiled your source, you must create alinker directive file that describes the

Creating Dynamic Link Libraries 267

0OS/2 Programming Guide

attributes of your dynamic link library. The following lists the most common linker directives
required to create a dynamic link library.

1. The"SYSTEM" directiveisused to specify that adynamic link library isto be
created.

2. The"EXPORT" directiveis used to to specify which functionsin the dynamic link
library are to be exported.

3. The"OPTION" directiveis used to specify attributes such as the name of the
dynamic link library and how to allocate the automatic data segment when the
dynamic link library is referenced.

4. The"SEGMENT" directiveisused to specify attributes of segments. For example,
a segment may be read-only or read-write.

Once the dynamic link library is created, you must allow access to the dynamic link library to
applications that wish to useit. This can be done by creating an import library for the
dynamic link library or creating alinker directive file that contains "IMPORT" directives for
each of the entry pointsin the dynamic link library.

33.2 Creating a Sample Dynamic Link Library

Let us now create adynamic link library using the following example. The source code for
this example can be found in \ WATCOM SAMPLES\ FORTRAN\ OS2\ DLL. Unlike
applications developed in the C or C++ language, the FORTRAN 77 devel oper must not
provideaLi bMai n entry point. Thisentry point isaready defined in the Watcom
FORTRAN 77 run-time libraries. Therun-time system’s Li bMai n provides for the proper
initialization of the FORTRAN 77 run-time system and includes hooks to call
developer-written process attach/detach and thread attach/detach routines. These routines are
optional but we show skeleton versions in the following example so that you can develop your

own if required.
* DLLSAMP. FOR
integer function __fdll _initialize ()
* Call ed from Li bMain during "DLL PROCESS ATTACH'
* do process initialization

print *, "H fromprocess attach’

* returning O indicates failure
__fdll_initialize_ =1
return
end

268 Creating a Sample Dynamic Link Library

0S/2 2.x Dynamic Link Libraries

integer function __fdll _termnate_()
* Cal l ed from Li bMain during "DLL PROCESS DETACH

* do process cl eanup
print *, "H from process detach’

* returning O indicates failure
__fdll _termnate. = 1
return
end

subroutine dl |l _entry_1()
print *, "H fromdll entry #1’
end

subroutine dl | _entry_2()
print *, "H fromdll entry #2'
end

Assume the above example is contained in the file DLLSAMP. FOR. We can compile thefile
using the following command. Note that we must specify the "bd" compiler option.

[C\]wfc386 /bd dllsanp

Before we can link our example, we must create alinker directive file that describes the
attributes and entry points of our dynamic link library. The following isalinker directivefile,
called DLLSAMP. LNK, that can be used to create the dynamic link library.

system os2v2 dl |l initinstance term nstance
opti on manyaut odat a

export dil _entry 1

export dll _entry_2

file dllsanp

Notes:

1. The"SYSTEM" directive specifies that we are creating a 32-bit OS/2 dynamic link
library.

2. The"MANYAUTODATA" option specifies that the automatic data segment is
allocated for every instance of the dynamic link library. This option must be
specified only for adynamic link library that uses the Watcom FORTRAN 77
run-time libraries. If the Watcom FORTRAN 77 run-time libraries are not used,
this option is not required. Our example does use the Watcom FORTRAN 77
run-time libraries so we must specify the "MANY AUTODATA" option.

Aswas just mentioned, when a dynamic link library uses the Watcom FORTRAN

77 run-time libraries, an automatic data segment is created each time a process
accesses the dynamic link library. For this reason, initialization code must be

Creating a Sample Dynamic Link Library 269

0OS/2 Programming Guide

executed when a process accesses the dynamic link library for the first time. To
achieve this, "INITINSTANCE" must be specified in the"SYSTEM" directive.
Similarly, "TERMINSTANCE" must be specified so that the termination codeis
executed when a process has compl eted its access to the dynamic link library. If
the Watcom FORTRAN 77 run-time libraries are not used, these options are not
required.

3. The"EXPORT" directive specifies the entry pointsinto the dynamic link library.

We can now create our dynamic link library by issuing the following command.
[C\]Wink @llsanp

A file called DLLSAMP. DLL will be created.

33.3 Using Dynamic Link Libraries

Once we have created adynamic link library, we must allow other applications to access the
functions available in the dynamic link library. There are two waysto achieve this.

The first method isto create alinker directive file which contains an "IMPORT" directive for
all entry pointsin the dynamic link library. The"IMPORT" directive provides the name of
the entry point and the name of the dynamic link library. When creating an application that
references afunction in the dynamic link library, this linker directive file would be included
as part of the linking process that created the application.

The second method is to use import libraries. Animport library isastandard library that is
created from adynamic link library by using the Watcom Library Manager. It contains object
modules that describe the entry pointsin a dynamic link library. The resulting import library
can then be specified in a"LIBRARY" directive in the same way one would specify a
standard library.

Using an import library is the preferred method of providing references to functionsin
dynamic link libraries. When adynamic link library is modified, typically the import library
corresponding to the modified dynamic link library is updated to reflect the changes. Hence,
any directive file that specifies theimport library in a"LIBRARY" directive need not be
modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directivesto reflect the changes in the dynamic link library.

Let us create an import library for our sample dynamic link library we created in the previous
section. We do this by issuing the following command.

270 Using Dynamic Link Libraries

0S/2 2.x Dynamic Link Libraries

[C\]Wib dllsanp +dl|sanp.dll
A standard library called DLLSAMP. LI B will be created.

Suppose the following sample program, contained in thefile DLLTEST. FOR, callsthe
functions from our sample dynamic link library.

* DLLTEST. FOR

call dll _entry _1()
call dll _entry_2()
end

We can compile and link our sample application by issuing the following command.
[C\]wf] 386 /I=0s2v2 dlltest dllsamp.lib

If we had created alinker directive file of "IMPORT" directivesinstead of an import library

for the dynamic link library, the linker directive file, say DLLI MPS. LNK, would be as

follows.

import dll _entry_1 dllsanp
import dll _entry_2 dll sanp

To compile and link our sample application, we would issue the following command.

[C\]wfl 386 /I=0s2v2 dlltest /"@llIlinps"

33.4 The Dynamic Link Library Data Area

The Watcom FORTRAN 77 32-bit run-time library does not support the general case
operation of DLLsin an execution environment where there is only one instance of the DATA
segment (DGROUP) for that DLL.
There are two cases that can lead to a DLL executing with only one instance of the DGROUP.
1. DLLslinked for 32-bit OS/2 without the MANYAUTODATA option.
2. DLLslinked for the Win32 API and executing under Win32s.

In these cases the run-time library startup code detects that there is only one instance of the
DGROUP when a second process attemptsto attach tothe DLL. At that point, it issuesa

The Dynamic Link Library Data Area 271

0OS/2 Programming Guide

diagnostic for the user and then notifies the operating system that the second process cannot
attachtothe DLL.

Developers who require DLLs to operate when there is only one instance of the DGROUP can
suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL.

Doing so requires good behaviour on the part of processes attaching to the DLL. Thisgood
behaviour consists primarily of ensuring that the first process to attach to the DLL isalso the
last process to detach from the DLL thereby ensuring that the DATA segment is not released
back to the free memory pool.

To suppress the function which issues the diagnostic and notifies the operating system that the
second process cannot attach to the DLL, the developer must provide a replacement entry
point with the following prototype:

int __disallowsingle_dgroup(int);

This function should return zero to indicate that the detected single copy of the DATA
segment is allowed.

33.5 Dynamic Link Library Initialization/Termination

Each dynamic link library (DLL) has an initialization and termination routine associated with
it. Theinitialization routine can either be called the first time any process accesses the DLL
("INITGLOBAL" is specified at link time) or each time a process accesses the DLL
("INITINSTANCE" is specified at link time). Similarly, the termination routine can either be
called when all processes have completed their access of the DLL ("TERMGLOBAL" is
specified at link time) or each time a process completes its access of the DLL
("TERMINSTANCE" is specified at link time).

For aDLL that usesthe FORTRAN 77 run-time libraries, initialization and termination of the
FORTRAN 77 run-time environment is performed automatically. Itisalso possible for a
DLL to doitsown specid initialization and termination process.

The FORTRAN 77 run-time environment provides a method for calling user-written DLL
initialization and termination code. The __fdl | _ini ti al i ze_ routineiscalled for DLL
processinitialization. The __fdl | _t er m nat e_ routineiscalled for DLL process
termination. Default stub versions of these routines are included in the run-time library. If
you wish to perform additional initialization/termination processing that is specific to your
dynamic link library, you may write your own versions of these routines.

272 Dynamic Link Library Initialization/Termination

0S/2 2.x Dynamic Link Libraries

Once the FORTRAN 77 run-time environment is initialized, the routine

_fdll _initialize_iscaled. After the FORTRAN 77 run-time environment is
terminated, theroutine __f dl | _t er m nat e_iscalled. Thislast point isimportant sinceit
means that you cannot do any run-time callsin the termination routine.

Theinitiaization and termination routines return an integer. A value of O indicates failure; a
value of 1 indicates success. The following example illustrates sample
initialization/termination routines.

* DLLINIT. FOR

integer function __fdll_initialize_()
integer __fdll _ternminate_, dll_entry

i nt eger WORKI NG_SI ZE

paraneter (WORKING_SI ZE = 16*1024)
integer ierr, WorkingStorage

di mensi on Wor ki ngSt or age(:)

al | ocat e(Wor ki ngSt or age(WORKI NG_SI ZE), stat=ierr)
if(ierr .eq. 0)then

__fdll_Zinitialize_ = 1
el se

__fdll_initialize_ = 0
endi f
return

entry __fdll _termnate_()
* Note: no run-time calls allowed under OS/2 Warp
deal | ocat e(Wor ki ngSt or age)
_ fdll termnate_ =1
return

entry dll _entry()
I use WorkingStorage
return
end
In the above example, the process initialization routine all ocates storage that the dynamic link

library needs, theroutine dl | _ent r y usesthe storage, and the process termination routine
frees the storage alocated in the initialization routine.

Dynamic Link Library Initialization/Termination 273

0OS/2 Programming Guide

274 Dynamic Link Library Initialization/Termination

34 Programming for OS/2 Presentation
Manager

Basically, there are two classes of FORTRAN 77 applications that can run in awindowed
environment.

Thefirst are those FORTRAN 77 applications that do not use any of the Presentation Manager
API functions; they are strictly FORTRAN 77 applications that do not rely on the features of a
particular operating system.

The second class of FORTRAN 77 applications are those that actually call Presentation
Manager API functions directly. These are applications that have been tailored for the
Presentation Manager operating environment.

It is assumed that the reader is familiar with the concepts of Presentation Manager
programming.

34.1 Porting Existing FORTRAN 77 Applications

Suppose you have a set of FORTRAN 77 applications that previously ran under DOS and you
now wish to run them under OS/2. To achieve this, simply recompile your application and
link with the appropriate libraries. Depending on the method with which you linked your
application, it can runin an OS/2 fullscreen environment, a PM-compatible window, or as a
Presentation Manager application. An OS/2 fullscreen application runsin its own screen
group. A PM-compatible application will run in an OS/2 fullscreen environment or in a
window in the Presentation Manager screen group but does not take direct advantage of
menus, mouse or other features available in the Presentation Manager. A Presentation
Manager application has full access to the complete set of user-interface tools such as menus,
icons, scroll bars, etc. An application that was not designed as a windowed application (such
asaDOS application) can run as a Presentation Manager application. Thisisachieved by a
default windowing system that is optionally linked with your application. The following
sections describe the default windowing system.

Porting Existing FORTRAN 77 Applications 275

0OS/2 Programming Guide

34.1.1 Console Device in a Windowed Environment

InaFORTRAN 77 application that runs under DOS, unit 5 and unit 6 are connected to the
standard input and standard output devices respectively. It isnot arecommended practiceto
read directly from the standard input device or write to the standard output device when
running in awindowed environment. For thisreason, a default windowing environment is
created for FORTRAN 77 applications that read from unit 5 or write to unit 6. When your
application is started, awindow is created in which output to unit 6 is displayed and input
from unit 5 is requested.

In addition to the standard 1/0O device, it is a so possible to perform /O to the console by
explicitly opening afile whose nameis"CON". When this occurs, another window is created
and displayed. Thiswindow is different from the one created for standard input and standard
output. In fact, every time you open the console device a different window is created. This
provides a simple multi-windowing system for multiple streams of datato and from the
console device.

34.1.2 An Example

Very little effort is required to port an existing FORTRAN 77 application to OS/2. Let ustry
to run the following sample program (contained in the file HELLO. FOR).

print *, "Hello world!”’
end

First we must compile the file HELLO. FOR by issuing the following command.
[C\]wfc386 hello

Once we have successfully compiled the file, we can link it by issuing the following
command.

[C\]Wink sys os2v2 file hello

Thiswill create a PM-compatible application. If you wish to create afullscreen application,
link with the following command.

[C\IWink sys os2v2 fullscreen file hello

If you wish to use the default windowing system, you must recompile your application and
specify aspecial option, namely "bw".

[C\]wfc386 /bw hello

276 Porting Existing FORTRAN 77 Applications

Programming for OS/2 Presentation Manager

We now link our application with the following command.

[C\]Wink sys os2v2_pmfile hello

34.2 Default Windowing Library Functions

A few library functions have been written to enable some simple customization of the default
windowing system’s behaviour. The following functions are supplied:

dwfDeleteOnClose

i nteger function dwfDel eteOnd ose(unit)
i nteger unit

This function tells the console window that it should close itself when thefileis
closed. You must passto it the unit number associated with the opened console.

dwfSetAboutDlg

i nteger function dwfSetAboutDi g(title, text)
character*(*) title
character*(*) text

This function sets the about dialog box of the default windowing system. The "title"
points to the string that will replace the current title. If titleis CHAR(O) then the title
will not be replaced. The "text" pointsto a string which will be placed in the about
box. To get multiple lines, embed a new line after each logical linein the string. If
"text" is CHAR(0), then the current text in the about box will not be replaced.

dwfSetAppTitle

i nteger function dwfSetAppTitle(title)
character*(*) title

This function sets the main window’ stitle.
dwfSetConTitle

i nteger function dwfSetConTitle(unit, title)
i nteger unit
character*(*) title

Default Windowing Library Functions 277

0OS/2 Programming Guide

This function sets the console window’ s title which corresponds to the unit number
passed to it.

dwfShutDown

i nteger function dwf Shut Down()

This function shuts down the default windowing 1/0 system. The application will
continue to execute but no windows will be available for output.

dwfYield

i nteger function dwfYield()

This function yields control back to the operating system, thereby giving other
processes a chance to run.

These functions are described more fully in the Watcom FORTRAN 77 User’'s Guide.

34.3 Calling Presentation Manager API Functions

Itisalso possible for aFORTRAN 77 application to create its own windowing environment.
Thisisachieved by calling PM API functions directly from your FORTRAN 77 program.
The techniques for devel oping these applications can be found in the OS/2 Technical Library.
To order the Technical Library, call one of the following numbers.

I n Canada: 1- 800- 465- 1234
In the United States: 1-800-426-7282 (0s/2 2.0, 2.1)
1- 800-879- 2755 (CS/ 2 \Warp)

Y ou can aso order copies of these books from an IBM authorized dealer or IBM
representative.

A number of FORTRAN 77 include files (fileswith extension . FI or . FAP) are provided
which define Presentation Manager data structures and constants. They are located in the
\ WATCOM SRC\ FORTRAN\ OS2 directory. These include files are equivalent to the C
header files that are available with the devel oper’ s toolkit.

A sample FORTRAN 77 Presentation Manager application is also located in the

\ WATCOM SAMPLES\ FORTRAN\ OS2 directory. It iscontained inthefiles FSHAPES. FOR
and FSHAPES. FI . Thefile FSHAPES. FOR contains the following.

278 Calling Presentation Manager API Functions

Programming for OS/2 Presentation Manager

c$define
c$define
c$define
c$define
c$define
c¢$i ncl ud

I NCL_W NFRAMEMGR

I NCL _W NMESSAGEMER

I NCL_W NW NDOMVGR

I NCL_W NTI MER

I NCL_GPI PRI M TI VES
e os2.fap

program f shapes

i nt eger style
record / QvSGE qnsg

character*7 wat com
par anet er (wat com=" WATCOM c)

i nclude ' fshapes.fi’

AnchorBlock = Wnlnitialize(0)

if(AnchorBlock .eq. 0) stop

hMessageQueue = W nCreat eMsgQueue(AnchorBl ock, 0)

if(hMessageQueue .eq. 0) stop

i f(WnRegi sterd ass(Anchor Bl ock, watcom MainDriver,
CS_SI ZEREDRAW 0) .eq. 0) stop

style = FCF_TI TLEBAR .or. FCF_SYSMENU .or. FCF_S| ZEBORDER . or.

FCF_M NVAX . or. FCF_SHELLPCSI TION .or. FCF_TASKLI ST
FranmeHandl e = W nCr eat eSt dW ndow(HWND_DESKTOP, WS_VI Sl BLE,
style, watcom
char(0), 0, NULL,
0, WnHandle)
if(FrameHandle .eq. 0) stop

whi l e(WnGet Msg(AnchorBl ock, gnsg, NULL, O, 0)) do
call WnDi spat chMsg(Anchor Bl ock, gnsg)
end while

call WnDestroyWndow FrameHandl e)

call W nDestroyMsgQueue(hMessageQueue)
call WnTerm nate(AnchorBl ock)

end

function MainDriver(hwnd, nsg, npl, mp2)
i nteger hwnd

i nteger nsg

integer npl
i nteger nmp2

Calling Presentation Manager APl Functions

279

0OS/2 Programming Guide

i nclude ' fshapes.fi’

i nt eger ps
record /RECTL/ rcl

sel ect case (nsg)
case (WM_CREATE)
W nHandl e = hwnd
call WnStartTimer(AnchorBl ock, WnHandl e, 1, 150)
case (WMLTI MER)
call DrawEl lipse()
Mai nDriver = 0
return
case (WM.SI ZE)
Si zeX = SHORT1FROMVP(np2)
Si zeY = SHORT2FROWP(np2)
Mai nDriver = 0
return
case (WWLPAINT)
ps = WnBegi nPai nt (WnHandl e, NULL, NULL_PO NTER)
call WnQueryW ndowRect (WnHandl e, rcl)
call WnFillRect(ps, rcl, CLRWH TE)
call WnEndPaint(ps)
Mai nDriver = 0
return
end sel ect

Mai nDri ver = W nDef W ndowPr oc(W nHandl e, msg, npl, np2)
return

end

subroutine Drawkl | i pse

record /PO NTL/ ptl

i nt eger ps

i nt eger Gdd / 0/
i nt eger par mlL

i nt eger par n@

i nclude ' fshapes.fi’

ps = WnGet PS(W nHandl e)
ptl.x = Randon(SizeX)
ptl.y = Randon(SizeY)
call Gpi Mve(ps, ptl)
ptl.x = Randon(SizeX)

ptl.y = Randon(SizeY)
parml = Random(32767)
parn2 = Randon(32767)

280 Calling Presentation Manager APl Functions

Programming for OS/2 Presentation Manager

if(Randon(10) .ge. 5) then
execut e NewCol or
call GpiBox(ps, DRO_FILL, ptl, 0, 0)
execut e NewCol or
call GpiBox(ps, DRO_QUTLINE, ptl, 0, 0)
el se
execut e NewCol or
call GpiBox(ps, DROFILL, ptl, parml, parn?)
execut e NewCol or
call GpiBox(ps, DRO_QUTLINE, ptl, parml, parn?)
end if

Qdd Qdd + 1
Qdd Qdd .and. 1
call WnRel easePS(ps)

remot e bl ock NewCol or

call Gpi SetColor(ps, Randonm(15) + 1)
end bl ock

end

i nteger function Randon(high)

i nt eger hi gh

ext er nal ur and

real ur and

i nt eger seed / 75347/

Random = urand(seed) * high

end

The include file FSHAPES. FI contains the following.

include 'o0s2.fi’

i nt eger Si zeX
i nt eger Si zeY
i nt eger Fr ameHandl e
i nt eger W nHandl e
i nt eger hMessageQueue
i nt eger Anchor Bl ock
common / gl obal s/
+ SizeX,
+ Sizey,
+ FraneHandl e,
+ W nHandl e,
+ hMessageQueue,
+ Anchor Bl ock
ext ernal Random
i nt eger Random
ext ernal Mai nDri ver
i nt eger Mai nDri ver
cSpragma aux (FNWP) Mai nDri ver

Calling Presentation Manager APl Functions

281

0OS/2 Programming Guide

Notes:

Include files with extension . FAP define the calling conventions for each of the
0S/2 AP functions. These files must be included at the top of each FORTRAN 77
source module.

Include files with extension . FI define the data structures and constants used by
the OS/2 API functions. These files must be included in each subprogram that
requires them.

Each call-back function (i.e. window procedure) must be defined using the
following pragma.

c$pragma aux (FNWP) W ndowPr oc

Theincludefile OS2. FAP isincluded at the beginning of the source file and

0OS2. FI isincluded in each subprogram. Also note that a number of macros were
defined at the top of the file. By defining these macros, only those components of
the OS/2 API required by the module will be compiled.

Y ou can compile, link and run this demonstration by issuing the following commands.

set finclude=\watcom src\fortran\os2

[C\]
[C\]wf] 386 /1 =0s2v2_pm fshapes
[C\]

f shapes

282 Calling Presentation Manager API Functions

35 Using the IBM 0S/2 WorkFrame/2

Watcom FORTRAN 77 has been integrated into the IBM Developer’s WorkFrame/2 version
1.1. ThelBM Developer’'s WorkFrame/2 provides a compl ete devel opment environment for
editing, compiling, linking, and debugging your application. Y ou must install the IBM
Developer’s WorkFrame/2 on your system before you can useit. Also, you must have
selected support for IBM Developer’s WorkFrame/2 when you installed Watcom FORTRAN
77.

Note that Watcom FORTRAN 77 was tested with version 1.1 of WorkFrame/2. We do not
guarantee that Watcom FORTRAN 77 will work with later versions of WorkFrame/2.

WorkFrame/2 provides a convenient, user-friendly and consistent method of accessing the
compiler and tools. For example, setting compiler optionsis achieved through the use of
pulldown menus and dialogs that list al the options and provide help information for each
option. You can also invoke the compiler from a pulldown menu.

It is assumed that you are familiar with the operating procedures required to use the IBM
Developer’s WorkFrame/2.

Using the IBM OS/2 WorkFrame/2 283

0OS/2 Programming Guide

284 Using the IBM OS/2 WorkFrame/2

AutoCAD ADS Programming
Guide

AutoCAD ADS Programming Guide

286

36 Creating AutoCAD Applications

Watcom FORTRAN 77 supports the DOS version of the AutoCAD Development System
(ADS) from Autodesk (release 12 and earlier versions). ADSisaset of include filesand a
library. Theincludefiles (files with extension " fi") are located in the

\ WATCOM SRC\ FORTRAN\ ADS and \ WATCOM SRC\ FORTRAN\ ADS\ REL 12 directories
(assuming you installed Watcom FORTRAN 77 in the \WATCOM" directory). Filesin this
directory with extension ".FOR" are sample ADS applications. The ADSlibrary iscalled
WCADS. LI B andislocated in the \ ACAD\ ADS directory (assuming you installed AutoCAD
inthe \ACAD" directory).

The ADS library WCADS. LI Bisin aformat that is specific to the Phar Lap devel opment
tools and must be converted to a standard form so that the Watcom Linker can read the library
dictionary. Thisisachieved by issuing the following two commands.

1. Protect the old ADS library by renaming it.

Example:
Cren wcads.lib owcads.lib

2. Convert the library by issuing the following command.

Example:
Cwib wads +owcads.lib

36.1 Compiling an ADS Application

As an example, we will create the ADS application contained in the file FACT. FOR. In
order to compile thisfile, we must set the FINCL UDE environment variable to the path that
contains the necessary include files.

Compiling an ADS Application 287

AutoCAD ADS Programming Guide

Example:
C>set finclude=\watcom src\fortran\ads

We can now compile FACT. FOR by issuing the following command.

Example:
Cwfc386 /fpi87 /3 /sc fact

The "fpi87" option tells the compiler to generate in-line 80x87 floating-point instructions.

The"3" option selects 80387 instruction timings. The "sc" option selects the stack-based
calling convention required for AutoCAD applications.

36.2 Linking an ADS Application

Each ADS application requires a special version of the startup module that is contained in the
Watcom FORTRAN 77 run-time library FLI B7S. LI B. This specia version,

ADSSTART. OBJ, islocated inthe \ WATCOM LI B386\ DOS directory. It isautomatically
included when you use the syst em ads directive shown below.

For ease of use, create the following linker directive file and nameit FACT. LNK.

system ads
file fact
library \acad\ads\wcads

We can now link our ADS application by issuing the following command.

Example:
Cw ink @act

36.3 One-Step Compiling and Linking

For simple applications, the above steps can be combined into a single command as follows:

288 One-Step Compiling and Linking

Creating AutoCAD Applications

Example:
Cwl 386 /1 =ads /fpi87 /3 /sc \acad\ads\wcads.|lib fact

The WFL386 utility will automatically generate the appropriate linker directivefile.

36.4 Debugging an ADS Application

If you wish to debug your ADS application with the Watcom Debugger, you must specify the
"d1" or "d2" option when compiling the source code. The "d1" compiler option generates
only line numbering information; the "d2" compiler option generates full debugging
information that includes symbolic information for all variables.

Example:
Cwfc386 /fpi87 /3 /sc /d2 fact

When we link our application we must inform the Watcom Linker to create an executable file
that contains the debugging information generated by the compiler. Thisis done by adding
the "DEBUG ALL" directive to our directivefile.

debug all
system ads

file fact
library \acad\ads\wcads

We must link our application again.

Example:
Cw i nk @ act

Before running the Watcom Debugger, add the following line to your ACAD. ADS file.

\ wat com bi nw\ adshel p. exp
The ACAD. ADS file contains alist of ADS applications that are loaded by AutoCAD when
AutoCAD isloaded. The ADSHELP. EXP fileisan ADS application that is required by the
Watcom Debugger for debugging ADS applications.
An earlier version of the Watcom Debugger required that you set the DOSX environment
variableto PRIVILEGED (DOSX=- pri v) for AutoCAD Release 12 since AutoCAD was
linked as UNPRIVILEGED. Starting with version 10 of the debugger, thisis no longer
required and, in fact, will cause unpredictable results for release 13 if it is set.

To invoke the Watcom Debugger, enter the following command.

Debugging an ADS Application 289

AutoCAD ADS Programming Guide

Example:
Cwd /tr=ads /swap

If you have atwo-monitor setup, you may omit the "swap" option.

Note that we did not specify the AutoCAD executable file; the debugger trap file, ADS. TRP,
will load AutoCAD automatically. Y ou should now be in the Watcom Debugger. At this
point, enter the following debugger command.

Example:
ads fact.exp

Y ou should now bein AutoCAD. When you load your ADS application from AutoL ISP, the
debugger will be entered and source for your program should be displayed in the source
window. The ADS. DBGfile contains a sequence of debugger commands that starts
AutoCAD, loads the debugging information from the executable file you specify, and
relocates address information based on the code and data selector values for your application.
Y ou are now ready to debug your ADS application.

For large ADS applications, you may get an error when the "ADS" debugger command fileis
invoked indicating that the debugger was unable to load the debugging information from the
executable file because of memory constraints. |If the error message "no memory for
debugging information” or "no memory for debugging information - increase dynamic
memory" isissued, use the debugger "dynamic" option to increase the amount of dynamic
memory (the default is 40k). The following example increases the amount of dynamic
memory to 60K.

Example:
Cwd /tr=ads /swap /dynam c=60k

290 Debugging an ADS Application

Novell NLM Programming Guide

Novell NLM Programming Guide

292

37 Creating NetWare 386 NLM Applications

Watcom FORTRAN 77 supports version 4.0 of the Netware 386 API. Weinclude the
following components:

header files Header files for the Netware 4.0 API are located in the \ WATCOM NOVH
directory.

import libraries
Import libraries for the Netware 4.0 API are located in the \ WATCOM NOVI
directory.

libraries The FORTRAN 77 libraries for Netware 4.0 is located in the
\ WATCOM LI B386 and \ WATCOM LI B386\ NETWARE directories.

debug servers
Servers for remote debugging of Netware 4.0 NLMs are located in the
\ WATCOM NLMdirectory. The same directory aso contains the Watcom
Execution Sampler for NLMs.

Applications built for version 4.0 will run on 4.1. We do not include support for any API
specific to version 4.1. Netware devel opers must use the support included with Watcom
FORTRAN 77 version 10.0 or greater since the version supplied by Novell only works with
Watcom FORTRAN 77 version 9.5. Netware 4.1 support requires modification to the header
files supplied by Novell. Contact Novell for more information.

The following special notes apply to developing applications for NetWare.

1. You must compile your source files with the small memory model option ("ms").

2. You must compile your source files with the stack-based calling convention option
("sc").

3. You must specify
syst em NETWARE

when linking an NLM. Thisisautomatic if you are using WFL 386 and the
"/I=NETWARE" option.

Creating NetWare 386 NLM Applications 293

Novell NLM Programming Guide

294 Creating NetWare 386 NLM Applications

Mixed Language Programming

Mixed Language Programming

296

38 Inter-Language calls: C and FORTRAN

The purpose of this chapter is to anticipate common questions about mixed-language
development using Watcom C/C++ and Watcom FORTRAN 77.

The following topics are discussed in this chapter:
» Symbol Naming Convention
» Argument Passing Convention
* Memory Model Compatibility
* Integer Type Compatibility
* How do | passintegers from C to a FORTRAN function?
» How do | passintegers from FORTRAN to a C function?
» How do | pass astring from a C function to FORTRAN?
* How do | pass astring from FORTRAN to a C function?
* How do | access a FORTRAN common block from within C?

* How do | call aC function that accepts a variable number of arguments?

38.1 Symbol Naming Convention

The symbol naming convention describes how a symbol in source form is mapped to its object
form. Because of this mapping, the name generated in the object file may differ fromits
original source form.

Default symbol naming conventions vary between compilers. Watcom C/C++ prefixes an
underscore character to the beginning of variable names and appends an underscore to the end
of function names during the compilation process. Watcom FORTRAN 77 converts symbols
to upper case. Auxiliary pragmas can be used to resolve this inconsistency.

Symbol Naming Convention 297

Mixed Language Programming

Pragmas are compiler directives which can provide several capabilities, one of which isto
provide information used for code generation. When calling a FORTRAN subprogram from
C, wewant to instruct the compiler NOT to append the underscore at the end of the function
name and to convert the name to upper case. Thisis achieved by using the following C
auxiliary pragma:

#pragma aux ftnname """;

The """ character tells the compiler to convert the symbol name "ftnname" to upper case; no
underscore character will be appended. This solves potential linker problems with "ftnname”
since (by C convention) the linker would attempt to resolve a reference to "ftnname_".

When calling C functions from FORTRAN, we need to instruct the compiler to add the
underscore at the end of the function name, and to convert the name to lower case. Since the
FORTRAN compiler automatically converts identifiers to uppercase, it is necessary to force
the compiler to emit an equivalent lowercase name. Both of these things can be done with the
following FORTRAN auxiliary pragma:

*$pragma aux CNAME "! "

There is another less convenient way to do this as shown in the following:
*$pragma aux CNAME "cnane "

In the latter example, the case of the name in quotation marksis preserved.

Use of these pragmas resolves the naming differences, however, the issue of argument passing
must still be resolved.

38.2 Argument Passing Convention

In general, C uses call-by-value (passes argument values) while FORTRAN uses
call-by-reference (passes pointers to argument values). Thisimpliesthat to pass arguments to
aFORTRAN subprogram we must pass the addresses of arguments rather than their values. C
usesthe"&" character to signify "address of".

298 Argument Passing Convention

Inter-Language calls: C and FORTRAN

Example:
result = ftnname(&arg);

When calling a C function from FORTRAN, the pragma used to correct the naming
conventions must also instruct the compiler that the C function is expecting values, not
addresses.

*$pragma aux CNAME "! " parm (val ue)

The "parm (value)" addition instructs the FORTRAN compiler to pass values, instead of
addresses.

Character data (strings) are an exception to the general case when used asarguments. InC,
strings are not thought of as awhole entity, but rather as an "array of characters'. Since
strings are not considered scalar arguments, they are referenced differently in both C and
FORTRAN. Thisisdescribed in more detail in afollowing section.

38.3 Memory Model Compatibility

Whileitisreally not an issue with the 32-bit compilers (both use the default "flat" memory
model), it isimportant to know that the default memory model used in Watcom FORTRAN
77 applicationsisthe "large” memory model ("ml") with "medium" and "huge" memory
models as options. Since the 16-bit Watcom C/C++ default is the "small" memory model, you
must specify the correct memory model when compiling your C/C++ code with the 16-bit C
or C++ compiler.

38.4 Linking Considerations

When both C/C++ and FORTRAN object files are combined into an executable program or
dynamic link library, it isimportant that you list aleast one of the FORTRAN object filesfirst
in the Watcom Linker (WLINK) "FILES" directive to guarantee the proper search order of the
FORTRAN and C run-time libraries. If you place a C/C++ object file first, you may
inadvertently cause the wrong version of run-time initialization routines to be loaded by the
linker.

Linking Considerations 299

Mixed Language Programming

38.5 Integer Type Compatibility

In general, the number of bytes used to store an integer type is implementation dependent. In
FORTRAN, the default size of an integer type is always 4 bytes, whilein C/C++, the sizeis
architecture dependent. The size of an "int" is 2 bytes for the 16-bit Watcom C/C++
compilers and 4 bytes for the 32-bit compilers while the size of a"long" is 4 bytes regardless
of architecture. It issafest to prototype the function in C, specifying exactly what size
integers are being used. The byte sizes are asfollows:

1. LONG -4 bytes
2. SHORT - 2 bytes

Since FORTRAN uses adefault of 4 bytes, we should specify the "long" keyword in C for
integer types.

Example:
long int ftnname(long int *, long int *, long int *);

In this case, "ftnname" takes three "pointersto long ints" as arguments, and returnsa"long
int". By specifying that the arguments are pointers, and not values, and by specifying "long
int" for the return type, this prototype has solved the problems of argument passing and
integer type compatibility.

38.6 How do I pass integers from C to a FORTRAN
function?

300

The following Watcom C/C++ routine passes three integers to a FORTRAN function that
returns an integer value.

/* MXLC.C - This C programcalls a FORTRAN function to
* comput e the max of three nunbers.

* Conpile/Link: wel /m mxlc nmix1f.obj /fe=m x1
* wel 386 mi x1lc mix1f.obj /fe=nmix1
*/

#i ncl ude <stdio. h>

#pragma aux tmax3 """,
long int tmax3(long int *, long int *, long int *);

How do | pass integers from C to a FORTRAN function?

Inter-Language calls: C and FORTRAN

void main()

long int result;
long int i, j, Kk;
i -1;

i 12;

k 5;

result = tmax3(&, &, &);
printf("Maximumis %d\n", result);

}
The FORTRAN function:

* M X1F. FOR - This FORTRAN function accepts three integer
* argunents and returns their naxi mum

* Conpile: wic[386] mx1f.for

i nteger function tmax3(arga, argb, argc)
i nteger arga, argb, argc

tmax3 = arga

if (argb .gt. tmax3) tmax3
if (argc .gt. tmax3) tmax3
end

argb
argc

38.7 How do | pass integers from FORTRANtoa C
function?

The following Watcom FORTRAN 77 routine passes three integers to a Watcom C/C++
function that returns an integer value.

How do | pass integers from FORTRAN to a C function? 301

Mixed Language Programming

M X2F. FOR - This FORTRAN programcalls a C function to
conpute the nmax of three nunbers.

* Conpil e/Link: wfl[386] m x2f m x2c.obj /fe=m x2
*$pragma aux tmax3 "! _" parm (val ue)

pr ogram m x2f

i nteger*4 tnmax3
integer*4 result

integer*4 i, j, k

i =-1

j =12

k =5

result = tmax3(i, j, k)
print *, *Maximumis ', result
end

The C function "tmax3" is shown below.

/* MX2C.C - This C function accepts 3 integer argunents
* and returns their maxi mum

*

* Conpile: wee /ml m x2c

* wce386 mi x2c

*/

long int tmax3(long int arga,
| ong int argb,
long int argc)

{
| ong int result;
result = arga;
if(argb > result) result = argb;
if(argc > result) result = argc;
return(result);

}

302 How do | pass integers from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

38.8 How do | pass a string from a C function to
FORTRAN?

Character strings are referenced differently in C and FORTRAN. The C language terminates
its strings with anull character as an End-Of-String (EOS) marker. In this case, C need not
store the length of the string in memory. FORTRAN, however, does not use any EOS marker;
hence it must store each string’ s length in memory.

The structure FORTRAN uses to keep track of character datais called a " string descriptor"
which consists of a pointer to the character data (2, 4, or 6 bytes, depending on the data
model) followed by an unsigned integer length (2 bytes or 4 bytes, depending on the data

model).
system option size of pointer size of length
16-bit /MW 16 bits 16 bits
16-bit /M 32 bits 16 bits
32-bit /M 32 bits 32 bits
32-bit /M 48 bits 32 bits

In order to access character data, FORTRAN needs to have access to the data’ s string
descriptor. Hence, FORTRAN expects a pointer to a string descriptor to be passed as an
argument for character data.

Passing string arguments between C and FORTRAN isasimple task of describing a struct
typein C containing the two fields described above. Thefirst field must contain the pointer to
the character data, and the second field must contain the length of the string being passed. A
pointer to this structure can then be passed to FORTRAN.

* M X3F. FOR - This FORTRAN programcalls a function witten
* in Cthat passes back a string.
*
* Conpil e/ Link: wfl[386] m x3f m x3c.obj /fe=m x3
pr ogram m x3f

character*80 sendstr
character*80 cstring

cstring = sendstr()
print *, cstring(1:lentrim(cstring))
end

The C function "sendstr” is shown below.

How do | pass a string from a C function to FORTRAN? 303

Mixed Language Programming

/* MX3C.C - This C function passes a string back to its

* calling FORTRAN program
* Conpile: weec /m m x3c

* wcc386 mi x3c

*/

#i ncl ude <string. h>
#pragm aux sendstr "/";

typedef struct descriptor {
char *addr;
unsi gned | en;

} descriptor;

voi d sendstr(descriptor *ftn_str _desc)

{

ftn_str _desc->addr
ftn_str _desc->l en

"This is a Cstring";
strlen(ftn_str_desc->addr);

38.9 How do | pass a string from FORTRANtoa C
function?

By default, FORTRAN passes the address of the string descriptor when passing strings. |If the
C function knowsit is being passed a string descriptor address, then it is very similar to the
above example. If the C function is expecting normal C-type strings, then a FORTRAN
pragma can be used to pass the string correctly. When the Watcom FORTRAN 77 compiler
pragmato pass by value is used for strings, then just a pointer to the string is passed.

Example:
*$pragna aux cnanme "!_" parm (val ue)

The following example FORTRAN mainline defines a string, and passesit to a C function that
printsit out.

304 How do | pass a string from FORTRAN to a C function?

Inter-Language calls: C and FORTRAN

M X4F. FOR - This FORTRAN programcalls a function witten
in C and passes it a string.

* Conpil e/Link: wfl[386] mix4f mix4c.obj /fe=nm x4
*$pragma aux cstr "!_" parm (val ue)
pr ogr am m x4f

character*80 forstring

forstring = "This is a FORTRAN string’//char(0)
call cstr(forstring)

end
The C function:
[* MX4C.C - This C function prints a string passed from

* FORTRAN.

*

* Conmpile: wee /ml m x4c

* wcc386 mi x4c

*

/

#i ncl ude <stdio. h>
void cstr(char *instring)

printf("%\n", instring);

38.10 How do | access a FORTRAN common block
from within C?

The following code demonstrates a technique for accessing a FORTRAN common block in a
Croutine. The C routine defines an extern struct to correspond to the FORTRAN common
block.

How do | access a FORTRAN common block from within C? 305

Mixed Language Programming

M X5F. FOR - This program shows how a FORTRAN conmon

bl ock can be accessed from C

pr ogram mi x5f
external put
comon/ cbl k/ i, j

i =12

j =10

call put
print * i
print *, 7] c
end

The C function:

/*

* common bl ock from C
*
* Conmpile: wee /m m x5¢
* wcc386 m x5c
* [

#i ncl ude <stdio. h>

#pragma aux put "/~";
#pragma aux chlk "~";

#ifdef __386__
#defi ne FAR

#el se

#defi ne FAR far
#endi f

extern struct cb {
long int i,j;
} FAR cbl k;

void put(void)

printf("i = %d\n", cblk.i);
printf("j = %d\n", chlk.j);
chl k. i ++;
cbl k. j ++;

Conpi | e/ Li nk: wfl[386] nix5f mix5c. obj

M X5C. C - This code shows how to access a FORTRAN

306 How do | access a FORTRAN common block from within C?

Inter-Language calls: C and FORTRAN

For the 16-bit C compiler, the common block "cblk" is described as f ar to force aload of the
segment portion of the address. Otherwise, since the object is smaller than 32K (the default
datathreshold), it is assumed to be located in the DGROUP group which is accessed through
the SS segment register.

38.11 How do | call a C function that accepts a variable
number of arguments?

One capability that C possessesis the ability to define functions that accept variable number
of arguments. Thisfeatureis not present, however, in the definition of the FORTRAN 77
language. Asaresult, aspecia pragmaisrequired to call these kinds of functions.

*$pragnma aux printf "!_" parm (value) caller []

The "caller" specifies that the caller will pop the arguments from the stack. The"[]" indicates
that there are no arguments passed in registers because the pri nt f function takes avariable
number of arguments passed on the stack. The following exampleisa FORTRAN function
that uses this pragma. It callsthe pri nt f function to print the value 47 on the screen.

* M X6.FOR - This FORTRAN programcalls the C
* printf function.

* Conpile/Link: wil[386] mnix6

*$pragnma aux printf "!_" parm (value) caller []
program mi x6
character cr/z0d/, nullchar/z00/

call printf("Value is %d.’//cr//nullchar, 47)
end

For more information on the pragmas that are used extensively during inter-language

programming, please refer to the chapter entitled "Pragmas’ in both the Watcom C/C++
User’s Guide and the Watcom FORTRAN 77 User’s Guide.

How do | call a C function that accepts a variable number of arguments? 307

Mixed Language Programming

308 How do I call a C function that accepts a variable number of arguments?

Common Problems

Common Problems

310

39 Commonly Asked Questions and Answers

Aswith any sophisticated piece of software, there are topics that are not directly addressed by
the descriptive portions of the manuals. The purpose of this chapter is to anticipate common
questions concerning Watcom F77. It is difficult to predict what topics will prove to be useful
but with that in mind, we hope that this chapter will help our customers make full use of
Watcom F77.

A number of example programs are presented throughout. The source text for these files can
be found in the \ WATCOM SAMPLES\ GOCDI ES directory.

The purpose of this chapter is to present some of the more commonly asked questions from
our users and the answers to these questions. The following topics are discussed:

* How do | determine my current patch level?

* How do | convert to Watcom F77?

» What should | know about optimization?

* How do | read a stream of binary data from afile?

» How do | redefine math error handling with Watcom F77?

» Why can’t the compiler find my include files?

» Why does the linker report a"stack segment not found" error?

* How do | resolve an "Undefined Reference” linker error?

» Why aren’t local variable values maintained between subprogram calls?
» What does " Stack Overflow!" mean?

» What are the probable causes of a General Protection Fault in 32-bit applications?
» Which floating-point compiler option should | use for my application?

» How can | open more than 20 files at atime?

* How can | see my source filesin the debugger?

» What is the difference between the "d1" and "d2" compiler options?

» What is the difference between the "debug" and "d2" compiler options?

Commonly Asked Questions and Answers 311

Common Problems

39.1 Determining my current patch level

In an effort to immediately correct any problems discovered in the originally shipped product,
Watcom provides patches as a continued service to its customers. To determine the current
patch level of your Watcom software, a TECHINFO utility program has been provided. This
program will display your current environment variables, the patch level of various Watcom
software programs, and other pertinent information, such asyour AUTCEXEC. BAT and
CONFI G SYSfiles. Thisinformation provesto be very useful when reporting a problem to
the Technical Support team.

To run TECHINFO, you must ensure the Watcom environment variable has been set to the
directory where your Watcom software has been installed. TECHINFO will pause after each
screenful of information. The output is also placed in the file TECHI NFO. QUT.

Below is an example of some partial output produced by running the TECHINFO utility:

Example:
WATCOM s Techinfo Uility, Version 1.4
Current Time: Thu COct 27 15:58:34 1994

WATCOM Phone: (519) 884-0702
415 Phillip St. Fax: (519) 747-4971
Waterl oo, Ontario

CANADA N2L 3X2

------------- WATCOM C Environnent Variables -------------
WATCOME<c: \ wat con®

EDPATH=<c: \ wat com eddat >

| NCLUDE=<c: \ wat com h; c: \ wat com h\ 0s2>

FI NCLUDE=<c: \wat com src\fortran;c:\watcom src\fortran\w n>

LI BOS2=<c: \wat com | i b286\ 0s2; c: \wat com | i b286>

PATH=<c: \ dos; c: \ wi ndows; c: \ wat com\ bi nw>

TMP=<h:\t enp>

File ’'c:\watcom bi nwA wcc386. exe’ has been patched to level '.d’
...etc...

In this example, the software has been patched to level "d". In most cases, al toolswill share
acommon patch level. However, there are instances where certain tools have been patched to
one level while others are patched to adifferent level. For example, the compiler may be
patched to level "d" while the debugger is only patched to level "c". Basically, this means that
there were no debugger changes in the D-level patches.

If you run the TECHINFO utility, and determine that you are not at the current patch level, it
is recommended that you update your software. Patches are available on Watcom’s bulletin
board, Watcom’s FTP site and CompuServe. They are available 24 hours aday. Patches are
also available on the current release CD-ROM. Each patch will include a batch file that

312 Determining my current patch level

Commonly Asked Questions and Answers

allows you to apply the patches to your existing software. Note that patches must be applied
in sequential order, as each patch depends on the previous one.

39.2 Converting to Watcom F77

Applications written in ANSI standard FORTRAN 77 code usually only need to be
recompiled with the Watcom F77 compiler. In addition to the ANS| standard, many
compilers support specific extensions. If you are porting code from a UNIX platform or other
DOS compilers, check Appendix A - Extensions to Sandard FORTRAN 77 of the Watcom
FORTRAN 77 Language Reference, to determine which FORTRAN 77 extensions are
supported.

By default, most FORTRAN 77 compilers preserve the values of local variablesin a
subprogram between calls. With Watcom F77, local variables are kept on the stack and their
values are popped from the stack when exiting a subprogram. To preserve local variables, use
the FORTRAN 77 SAVE statement for variables that you wish to preserve, or the "save'
compiler option to preserve all local variables. Note that the use of the "save" compiler option
causes an overall performance degradation.

Watcom F77 uses register-based parameter passing as a default, however, the compiler is
flexible enough to use different calling conventions on a per function basis. Auxiliary
pragmas can be used to specify the calling convention that isto be used to interface with
assembler code. This enablesyou to explicitly state how parameters are to be passed to the
assembler code. Thistopic isdescribed in the "Pragmas’ chapter of the Watcom F77 User’s
Guide under "Describing Argument Information”. See also the chapter entitled
"Inter-Language calls: C and FORTRAN" on page 297.

39.3 What you should know about optimization

The Watcom F77 User’s Guide contains a detailed description for each of the optimization
options supported by the compiler. These options allow you to customize the type of code
optimizations that are performed. For instance, the "OS" option can be used to reduce the size
of your code, but this may affect the execution speed. To ensure that the speed of the code is
optimized, possibly at the cost of code size, use the "OT" option. The "OX" option, intended
for the maximum number of optimizations, generates code that is a combination of "OM"
(inline math functions), "OL" (loop), "OT" (time) and the "OR" (instruction scheduling)
optimization options. Note that when you are using the "OM" option to generate inline math
functions no argument validation will be done for the intrinsic math functions such as"sin" or
"cos'. Consider the needs of your application and select the optimization options that best
meet your requirements.

What you should know about optimization 313

Common Problems

Hint: The definitive reference on compiler design is the "dragon” book "Compilers -
Principles, Techniques, and Tools', Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman,
published by Addison-Wesley, Reading, Massachusetts, 1986. The authors of the
"dragon" book advocate a conservative approach to code generation where optimizations
must preserve the semantics of the original program. The conservative approach is used
throughout the Watcom F77 compiler to ensure that programmers can use the compiler
without worrying about the semantics of their program being changed.

There are certain pieces of information which the compiler cannot derive from the source
code. The"*$pragma’ compiler directive is used to provide extrainformation to the
compiler. It isnecessary to have a complete understanding of both FORTRAN 77 and the
machine architecture (i.e., 80x86) before using the powerful pragma compiler directives. See
the "Pragmas" chapter in the Watcom F77 User’s Guide for more details.

Debugging optimized programs is difficult because variables can be assigned to different
locations (i.e., memory or registers) in different parts of the function. The "d2" compiler
option will restrict the amount of optimization so that variables occupy one location and can
be easily displayed. It followsthat the "d2" option is useful for initial development but
production programs should be compiled with only the "d1" option for the best code quality.
Before you distribute your application to others, you may wish to use the Watcom Strip
Utility (WSTRIP) to remove debugging information from the executable image on disk
thereby reducing disk space requirements.

Hint: The"d2" compiler option will generate symbolic information (for every local
variable) and line number information for the source file. The"d1" compiler option will
only generate line number information for the source file. The use of these options
determines what kind of information will be available for the particular module during the
debugging session.

39.4 Reading a stream of binary data from a file

314

The Watcom F77 allows for three types of binary data file formats:
* Variable length, unformatted sequential access binary records,
* Fixed length, unformatted direct access binary records, and

» Unformatted, sequential, binary datawith afixed record type.

Reading a stream of binary data from a file

Commonly Asked Questions and Answers

Variable length binary records are preceded by afour byte descriptor that indicates the length
of the record in bytes. The end of the binary record is also marked by another descriptor tag
specifying the length. Binary records that are of afixed length are kept in adirect access,
unformatted file. Refer to the Watcom F77 User’s Guide section on File Handling for more
information on file formats.

Binary data files that have no structure or record length information may be read if you open
the file as a sequential, unformatted file with afixed record type. Thisallowsyou to read files
that contain a stream of binary data without any inherent record format. 1f you know the type
of datathat is contained in the binary file, you may then read the binary data directly into
variables. The following program provides an example of reading binary stream data.

* BI NDATA. FOR - This program denponstrates how to read a
* binary data file that does not have any defined records.

program bi ndat a

i nteger Bi nArray(20)
i nteger i

open(unit=1, file="bindata.fil’,

+ access='sequential ',
+ forme" unformatted’,
+ recordtype='fixed)
* Read 20 integers fromthe binary data file
doi =1, 20
read(1) BinArray(i)
end do

* Wite the extracted values to standard out put

doi =1, 20

wite(*, *) BinArray(i)
end do
end

39.5 Redefining math error handling with Watcom F77

If you wish to customize math error handling for your application, you can create your own
math error handling procedure. The following illustrates the procedures for trapping errors by
way of an example. See the Watcom F77 User’s Guide for adescription of the f si gnal
subroutine and math library error handling.

Redefining math error handling with Watcom F77 315

Common Problems

The main program example "MATHDEMO" isa FORTRAN program that contains a
floating-point divide by zero error, afloating-point overflow error, a floating-point underflow
error, and an invalid argument to a math library function.

E N

pr ogr am mat hdeno

MATHDEMO. FOR - This programforns part of a collection of FORTRAN
code that denonstrates how to take over control of
math error handling fromthe run-time system

Conpi l e: wfl[386] mathdenp cw87 _matherr

Not es

(1) We call "cw87" to enabl e underfl ow exceptions which are
masked (ignored) by default.

(2) The signal handler nust be re-installed after each signa
(it can also be re-installed even when there is no signal)

(3) To prevent conpile-tine constant folding in expressions
we add lo0g(1.0) which is 0. W do this for the sake of
denonstrating exception handling.

implicit none

doubl e precision x, vy, z

call cw87 ! init 80x87 control word
call reset FPE ! install signal handler
print *, '~

print *, 'Divide by zero will be attenpted
X = 1.0d0 + DLOG 1.0d0)

y = 0.0d0
z=x11vy
call chkFPE ! check for exception

print *, z

call reset FPE I install signal handler
print *,

print *, "Overflow will be attenpted

X = 1.2d300 + DLOG 1.0d0)

y = 1.2d300

z =x*y

call chkFPE I check for exception

print *, z

call reset FPE ! install signal handler
print *, '~

print *, *Underflow will be attenpted

X = 1.14d-300 + DLO 1.0d0)

y = 2.24d-308
zZ =X *y
call chkFPE ! check for exception

print *, z

316 Redefining math error handling with Watcom F77

Commonly Asked Questions and Answers

call reset FPE ! install signal handler

print *,

print *, "Math error will be attenpted

X = -12.0

I an exception will not be generated since the intrinsic function

' will validate the argunent - if you conpile with /f/om the "fsqrt"

I 80x87 instruction will be generated in-line and an exception
' will occur

y = SQRT(x)

call chkFPE ! check for exception
print *, x, vy

end

subroutine reset FPE

include 'fsignal.fi

external fpe_handler

| ogi cal fpe_flag

integer fpe_sig, fpe_fpe

comon fpe_flag, fpe_sig, fpe_fpe

fpe_flag = .fal se
call fsignal (SI GFPE, fpe_handler)
end

*$pragma aux fpe_handl er parn(val ue)

subroutine fpe_handler(sig, fpe)
i nteger sig, fpe

| ogi cal fpe_flag

integer fpe_sig, fpe_fpe

common fpe_flag, fpe_sig, fpe_fpe
fpe_flag = .true

fpe_sig = sig
fpe_fpe = fpe
end
*$pragma aux fwait = "fwait"

k& ok Ok Ok

subroutine chkFPE

include 'fsignal.fi

| ogi cal fpe_flag

integer fpe_sig, fpe_fpe

common fpe_flag, fpe_sig, fpe_fpe

Not es
(1) An fwait is required to make sure that the |ast

fl oating-point instruction has conpl eted

(2) "volatile" is not needed here but would be

needed in main programif it references "fpe_flag"
call fwait()

Redefining math error handling with Watcom F77

317

Common Problems

if(volatile(fpe flag)) then
print *, '*ERROR* exception occurred’,

& fpe_sig, fpe_fpe
if(fpe_fpe .eq. FPE_INVALID)then
print *, 'lInvalid

else if(fpe_fpe .eq. FPE_DENORMAL)then
print *, 'Denormalized operand error’

else if(fpe_fpe .eq. FPE_ZERODI VIDE)then
print *, 'Divide by zero error’

else if(fpe_fpe .eq. FPE_OVERFLOW)then
print *, 'Overflow error’

else if(fpe_fpe .eq. FPE_UNDERFLOW)t hen
print *, ’'Underflow error’

else if(fpe_fpe .eq. FPE_I NEXACT)then
print *, 'lInexact result (precision)then error’

else if(fpe_fpe .eq. FPE_UNEMULATED)then
print *, ’'Unenulated instruction error’

else if(fpe_fpe .eq. FPE_SQRTNEG)then
print *, ’'Square root of a negative nunber error’

else if(fpe_fpe .eq. FPE_STACKOVERFLOW)t hen
print *, 'NDP stack overflow error’

else if(fpe_fpe .eq. FPE_STACKUNDERFLOW)t hen
print *, 'NDP stack underflow error’

else if(fpe_fpe .eq. FPE_EXPLICI TGEN)then
print *, ' SIGFPE signal raised (software)’

else if(fpe_fpe .eq. FPE_| OVERFLOWN)t hen

print *, ’'Integer overflow error’
endi f
el se
print *, '*OK* no exception occurred’
endi f

end
The following subroutine illustrates how to enable or disable particular types of floating-point
exceptions.
subroutine cwg7
* CWB7. FOR
* This subroutine uses the C Library routine "_control 87"
* to nodify the math coprocessor exception mask.
* Conpile: w c[386] cwd7
include "fsignal.fi’

character*9 status(0:1)/’ disabled ,’ enabled /
integer fp_cw, fp_mask, bits, i

318 Redefining math error handling with Watcom F77

Commonly Asked Questions and Answers

Enabl e floating-point underflow since default is disabled.

The mask defines which bits we want to change (1 nmeans change,

0 nmeans do not change). The corresponding bit in the control
word (fp_cw) is set to O to enable the exception or 1 to disable
the exception. In this exanple, we change only the underflow
bit and | eave the others unchanged.

* % ok 3k 3k ok

fp_mask = EM_UNDERFLOW ! mask for the bits to set/reset
fp_cw = ' 0000’ x ! new bit settings (O=enabl e/ 1=di sabl e)
fp_.cw = _control 87(fp_cw, fp_mask)

* Now get up-to-date setting
fp_cw = _control 87(0, 0)

bits = |AND(fp_cw, MCWEM)

print '(a,1x,z4)’, 'Interrupt Exception Mask’', bits
i =0

if(IAND(fp_cw, EMLINVALID) .eq. 0) i =1

print *, ' Invalid Operation exception, status(i)
i =0

if(IAND(fp_cw, EM DENORMAL) .eq. 0) i =1

print *, ' Denornalized exception’, status(i)

i =0

if(IAND(fp_cw, EM.ZERODIVIDE) .eq. 0) i =1
print *, ' Divide-By-Zero exception', status(i)

i =0

if(IAND(fp_cw, EMOVERFLON .eq. 0) i =1

print *, ' Overflow exception’, status(i)

i =0

if(IAND(fp_cw, EMLUNDERFLON .eq. 0) i =1

print *, ' Underflow exception', status(i)

i =0

if(1AND(fp_cw, EMPRECISION) .eq. 0) i =1

print *, ' Precision exception', status(i)

end

The following subroutine illustrates how to replace the run-time system’ s math error handler.
Source code similar to this example is provided with the software (look for the file
_MATHERR. FOR).

*

* _MATHERR FOR : math error handl er

*

* Conpile: wfc[386] _matherr

*$pragma aux __imath2err "*_" parm(value, reference, reference)

*$pragma aux __amathlerr "*_" parm value, reference)
*$pragma aux __amath2err "*_" parm(value, reference, reference)
*$pragma aux __mathlerr "*_" parm value, reference)
*$pragma aux __math2err "*_" parm(value, reference, reference)
*$pragma aux __zmath2err "*_" parm value, reference, reference)
*$pragma aux __qmath2err "*_" parm(value, reference, reference)

Redefining math error handling with Watcom F77 319

Common Problems

integer function __imath2err(err_info, argl, arg2)
integer err_info
integer argl, arg2
i ncl ude ' mat hcode. fi
argl = argl | to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage
if((err_info .and. MDOVAIN) .ne. 0)then
select(err_info .and. FUNC_MASK)
case(FUNC_POW)
print *, "arg2 cannot be <= 0
case(FUNC_MOD)
print *, "arg2 cannot be 0O
end sel ect
end if
__imath2err =0
end

real function __amathlerr(err_info, argl)
integer err_info

real argl
i ncl ude ' mat hcode. fi
argl = argl I to avoid unreferenced warning nessage

if((err_info .and. MDOMAIN) .ne. 0)then
select(err_info .and. FUNC_MASK)
case(FUNC_COTAN)
print *, ’overflow
end sel ect
end if
__amathlerr = 0.0
end

real function __amath2err(err_info, argl, arg2)
integer err_info
real argl, arg2
i ncl ude ' mat hcode. fi
argl = argl ! to avoid unreferenced warning nessage
arg2 = arg2 | to avoid unreferenced warning nessage
if((err_info .and. MDOMAIN) .ne. 0)then

select(err_info .and. FUNC_MASK)

case(FUNC_MOD)

print *, 'arg2 cannot be 0

end sel ect
end if
__amath2err = 0.0
end

doubl e precision function __mathlerr(err_info, argl)
integer err_info

doubl e precision argl, __math2err
__mathlerr = __math2err(err_info, argl, argl)
end

320 Redefining math error handling with Watcom F77

Commonly Asked Questions and Answers

doubl e precision function __math2err(err_info, argl, arg2)
integer err_info
doubl e precision argl, arg2
i ncl ude ' mat hcode. fi’
argl = argl | to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage
if((err_info .and. MDOVAIN) .ne. 0)then
select(err_info .and. FUNC_MASK)
case(FUNC_SQRT)
print *, ’argunent cannot be negative’
case(FUNC_ASIN, FUNC_ACCS)
print *, "argunent nust be | ess than or equal to one’
case(FUNC_ATAN2)
print *, ’'both argunents nust not be zero’
case(FUNC_POW)
if(argl .eq. 0.0)then
print *, 'a zero base cannot be raised to a ',
& 'negative power’
else ! base < 0 and non-integer power
print *, 'a negative base cannot be raised to a ',
& "non-integral power’
endi f
case(FUNC_LOG FUNC_LOGL0)
print *, ’argunent nust not be negative’
end sel ect
else if((err_info .and. MSING) .ne. 0)then
if(((err_info.and. FUNC_.MASK) .eq. FUNC_LOG) .or.

& ((err_info .and. FUNC_MASK) .eq. FUNC_LOGILO))then
print *, ’"argunent nust not be zero’
endi f

else if((err_info .and. M.OVERFLOWN) .ne. 0)then

print *, ’'value of argument wll cause overflow condition’
else if((err_info .and. M.UNDERFLOW) .ne. 0)then

print *, 'value of argument wll cause underflow ',

& ‘condition - return zero’
end if

__math2err =0

end

conplex function __zmath2err(err_info, argl, arg2)
integer err_info

conpl ex argl, arg2

i ncl ude ' mat hcode. fi’

argl = argl | to avoid unreferenced warning nessage
arg2 = arg2 ! to avoid unreferenced warning nessage

Redefining math error handling with Watcom F77

321

Common Problems

if((err_info .and. MDOVAIN) .ne. 0)then
select(err_info .and. FUNC_MASK)
case(FUNC_POW)
! argl is (0,0)
if(img(arg2) .ne. 0)then
print *, 'a zero base cannot be raised to a’
& ' conpl ex power with non-zero imaginary part
el se
print *, 'a zero base cannot be raised to a’
& ' conpl ex power with non-positive real part
endi f
end sel ect
end if
__zmat h2err = (0,0)
end

doubl e conplex function __gmath2err(err_info, argl, arg2)
integer err_info
doubl e conpl ex argl, arg2
i ncl ude ' mat hcode. fi
argl = argl ! to avoid unreferenced warning nessage
arg2 = arg2 I to avoid unreferenced warning nessage
if((err_info .and. MDOMAIN) .ne. 0)then
select(err_info .and. FUNC_MASK)
case(FUNC_POW)
I argl is (0,0)
if(imag(arg2) .ne. 0)then
print *, 'a zero base cannot be raised to a’
& ' conpl ex power with non-zero i magi nary part
el se
print *, 'a zero base cannot be raised to a’
& ' conpl ex power with non-positive real part
endi f
end sel ect
end if
__qgmat h2err = (0,0)
end

39.6 The compiler cannot find my include files

In order to locate your INCLUDE files, the compiler first searches your current directory, then
each directory listed in the FINCL UDE environment variable (in the order that they are
specified). If the compiler reportsthat it is unable to find one of your include files, change the
FINCL UDE environment variable by adding the directory path to your include files. For
more information on setting the environment variable, refer to the "Compiling an Application”
chapter of the Watcom F77 User’s Guide.

322 The compiler cannot find my include files

Commonly Asked Questions and Answers

39.7 The linker reports a "stack segment not found"

error

Thelinker usually reports the error "1014: stack segment not found" when it is unable to find
the run-time libraries required to link your application. To ensure you are linking with the
correct run-time libraries, check to see that your link command contains the correct
"SYSTEM" directive. Aswell, the WATCOM environment variable should be pointing to
the directory containing the Watcom F77 software. For aWatcom F77 application, if this
error isfollowed by the error "1023: no starting address found", it may indicate that you are
attempting to link code that does not have a main program procedure. Ensure that you include
your main program object module with your linker directives.

With FORTRAN 77, "STACK" isareserved word. If you use"STACK" asthe name of a
common block, this may also result in the " Stack Segment Not Found" error. Check the
names of your common blocks and rename them if necessary.

39.8 Resolving an "Undefined Reference" linker error

The Watcom Linker builds an executable file by a process of resolving references to functions
or dataitemsthat are declared in other sourcefiles. Certain conditions arise that cause the
linker to generate an "Undefined Reference" error message. An "Undefined Reference" error
message will be displayed by the linker when it cannot find a function or data item that was
referenced in the program. Verify that you have included al the required object modulesin
the linker command and that you are linking with the correct libraries.

The"SYSTEM" linker directive should be used to indicate the target environment for the
executable. This directive specifies the format of the executable and the libraries for the
target environment. Verify that the WATCOM environment variable is set to the directory
that Watcom F77 was installed in sinceit is used to complete the library path in the
"SYSTEM" directive. Y ou may also explicitly include alibrary using the "LIBRARY" linker
directive.

If the linker reports an unresolved reference for *_cstart_", thisindicates that the linker could
not find the FORTRAN 77 run-time libraries. 1n 16-bit applications, the FORTRAN 77
run-time libraries for the medium memory model (/mm) and the floating-point calls
floating-point model (/fpc) would be FLI BM LI B. In 32-bit applications, the FORTRAN 77
run-time libraries for the flat memory model would be FLI B. LI B. Verify that the"LIB"
environment variable has been set to point to the correct WATCOM library directories and
that the library corresponds to the memory and floating-point model that you selected.

Resolving an "Undefined Reference" linker error 323

Common Problems

39.9 Why local variable values are not maintained
between subprogram calls

By default, the local variables for a subprogram are stored on the stack and are not initialized.
When the subprogram returns, the variables are popped off the stack and their values are lost.
If you want to preserve the value of alocal variable, after the execution of a RETURN or
END statement in a subprogram, the FORTRAN 77 SAVE statement or the "save" compiler
option can be used.

Using the FORTRAN 77 SAVE statement in your program allows you to explicitly select
which values you wish to preserve. The SAVE statement ensures that space is allocated for a
local variable from static memory and not the stack. Include a SAVE statement in your
FORTRAN 77 code for each local variable that you wish to preserve.

To automatically preserve all local variables, you can use the "save"' compiler option. This
option adds code to initialize and allocate space for each local variable in the program. Thisis
equivalent to specifying a SAVE statement. The "save" option makesit easier to ensure that
all the variables are preserved during program execution, but it increases the size of the code
that is generated. Y ou may wish to use this option during debugging to help diagnose bugs
caused by corrupted local values. Usually, it is more efficient to use SAVE statements rather
than the general "save"' compiler option. Y ou should selectively use the SAVE statement for
each subprogram variable that you want to preserve until the next call. Thisleadsto smaller
code than the "save" option and avoids the overhead of all ocating space and initializing values
unnecessarily.

39.10 What "Stack Overflow!" means

The memory used for local variablesis alocated from the function call stack athough the
Watcom compilers will often use registersfor local variables. The size of the function call
stack islimited at link-time and it is possible to exceed the amount of stack space during
execution.

There are various ways of protecting against stack overflow errors. First, one should
minimize the number of recursive functions used in an application program. This can be done
by recoding recursive functions to use loops.

The user may also optionally force the compiler to use static storage for all local variables
(Watcom F77 "save" option). Thiswould eliminate most stack problems for FORTRAN
programs. These techniques will reduce the amount of stack space required but there still may
be times where the default amount of stack space (2048 bytes for 16-bit applications and 4096

324 What "Stack Overflow!" means

Commonly Asked Questions and Answers

bytes for 32-bit applications) isinsufficient. The Watcom Linker (WLINK) allows the user to
set the amount of stack space at link-time through the directive "OPTION STACK=size"
where size may be specified in bytes with an optional "k" suffix for kilobytes (1024 bytes).

Example:
option stack=9k

Note that with the Watcom F77 run-time system, the 1/0 routines require 4k of stack space. If
your application requires 5K of stack space, set aside 9K to allow for 4K of 1/O stack spacein
addition to the stack space required by the application.

Debugging a program that reports a stack overflow error can be accomplished with the
following sequence.

1. Load your application into the debugger
2. Setabreakpoint at = STKOVERFLOW
3. Runthe application until the breakpoint at __STKOVERFL OWis triggered

4. Issuethe debugger "show calls' command. Thiswill display astack traceback
giving you the path of callsthat led up to the stack overflow situation.

The solution to the stack overflow problem at this point depends on the programmer.

39.11 What are the probable causes of a General
Protection Fault in 32-bit applications?

If you are running a 32-bit application using DOS/AGW, a program crash may report an
"Unexpected Interrupt OD" general protection fault error. The Phar Lap DOS extender would
report an "Abnormal Program Termination” general protection fault error. This often
indicates that something in your program has tried to access an invalid memory location. Ina
Watcom F77 application, the most likely causes of a general protection fault are:

* Attempting to access an array out of bounds.

* Running out of stack space.

» Passing incorrect parameter typesto afunction.

What are the probable causes of a General Protection Fault in 32-bit appli 325

Common Problems

To help locate the cause of the protection fault, compile your program with the "debug” and
"stack" options. With these options, code will be added to your application to help identify
these problems and generate run-time error messages when they are encountered. In addition,
the "stack" option checks for stack overflow conditions by including code at the beginning of
each subprogram.

If you still encounter general protection faults after compiling with "debug" and "stack", then
debug the program using the debugger. Thiswill help to identify the location of the crash and
the state of your parameters and variables at the time of the crash.

39.12 Which floating-point compiler option should |
use for my application?

The answer to this question depends on the expected target machines for your application. |If
you know that a co-processor will be available, use the "fpi87" compiler option to optimize
the run-time performance of the application.

When you are running a FORTRAN 77 application on a machine with or without a
co-processor and you want to favour the use of emulation libraries over code size, use the
"fpc" option. The "fpc" option will also take advantage of an 80x87 co-processor if itis
available. If your application needs to be flexible enough to run either with or without a
co-processor, the "fpc" option is recommended.

The"fpi" option is the default floating-point option and can be used with or without a
co-processor. On machines that do not have a co-processor, you may notice that programs
compiled using "fpc" run faster than those compiled with "fpi". This occurs because the "fpc"
option uses the floating-point libraries directly whereas the "fpi" option interfaces with an
emulator interrupt handler. Although the "fpi" option is slower than "fpc" without a
co-processor, the code that it generatesis smaller.

When you are running an application that has been compiled with "fpi", the startup code
checks to determine whether a math co-processor is present. If it isnot present, the emulator
hook isinstalled at the INT 7h interrupt to manage the co-processor requests and convert them
to the emulation library calls. Each time a floating-point operation is requested, the processor
issuesan INT 7h.

For 16-bit applications, the interrupt handler overhead accounts for the performance
discrepancy between the "fpc" and "fpi" options.

For 32-hit applications, the manner in which thisinterrupt is handled depends on the DOS
extender. Depending on the DOS extender, there are two methods of managing floating-point

326 Which floating-point compiler option should | use for my application?

Commonly Asked Questions and Answers

instructions through the interrupt handler. The DOS extender will either pass the interrupt
directly to the INT 7h handler or it will perform some intermediary steps. Similarly, thereisa
delay after the interrupt as control is passed back through the DOS extender. Passing
floating-point handling from the DOS extender to the interrupt handler resultsin the
performance degradation. This performance degradation may vary across DOS extenders. It
isthe overhead of transferring the call through an interrupt that leads to the speed difference
between "fpi" and "fpc". If you need to run an application on machines without math
co-processors, and you want to ensure that your performance is optimal, build your
application using the "fpc" option rather than "fpi".

In a Windows environment, both the "fpi87" and the "fpi" options will use floating-point
emulation if a co-processor isnot available. Windows floating-point emulation is provided
through Watcom’'s "WEMU387.386". "WEMU?387.386" isroyalty free and may be
redistributed with your application. For machines that do not have a math co-processor,
install "WEMU387.386" as a device in the [386Enh] section of the Windows SY STEM.INI
file to handle the floating-point operations. Note that the speed of code using
"WEMU387.386" on machines without a co-processor will be much slower than code
compiled with the "fpc" option that always uses floating-point libraries.

39.13 How more than 20 files at a time can be opened

The number of file handles allowed by Watcom F77 isinitializedto 20in STDI O. H, but this
can be changed by the application developer. To change the number of file handles allowed
with Watcom F77, follow the steps outlined below.

1. Letn represent the number of filesthe application devel oper wishes to have open.
Ensure that the stdin, stdout, stderr, stdaux, and stdprn files are included in the
count.

2. Change the CONFI G. SYS fileto include "files=n" where "n" is the number of file
handles required by the application plus an additional 5 handles for the standard
files (this appliesto DOS 5.0). The number "n" may vary depending on your
operating system and version. If you are running a network such as Novell’'s
NetWare, thiswill also affect the number of available file handles. In this case,
you may have to increase the number specified in the "files=n" statement.

3. Add acall to GROAHANDLES in your application.

The following example illustrates the use of GROAHANDLES.

How more than 20 files at a time can be opened 327

Common Problems

Example:
* FHANDLES. FOR

Thi s FORTRAN program grows t he nunber of file handles so
nore than 16 files can be opened. This program
illustrates the interacti on between GROANHANDLES and

the DOS 5.0 file system If you are running a network
such as Novell’'s NetWare, this will also affect the
nunber of available file handles. In the actual trial

FI LES=40 was specified in CONFlI G SYS.

* % kX X X F F

Conpi |l e/ Li nk: set finclude=\watcom src\fortran
* wfl[386] fhandles

* Get proper typing information frominclude file
i nclude ’fsublib.fi

integer i, j, maxh, maxo
i nteger tmpfile
i nteger units(7:57)

do i = 25, 40
Count 5 for stdin, stdout, stderr, stdaux,
and stdprn
print 100, 5 + i
maxh = growhandles(5 + i)
print *, ' G owhandl es=", maxh
maxo = 0

doj =7, 7 + maxh
print *, 'Attenpting file', |j
units(j) = tnpfile(j)
if(units(j) .eq. 0)goto 10
maxo = maxo + 1

enddo

10 print 101, maxo, maxh
doj =7, 7 + maxo
close(units(j))
enddo
enddo

100 format('Trying for ',12,’ handles... ', %)

101 format (12, /',12," temp files opened’)
end

328 How more than 20 files at a time can be opened

Commonly Asked Questions and Answers

i nteger function tnpfile(un)

i nteger un, ios

open(unit=un, status=" SCRATCH , iostat=ios)

if(ios .eq. 0)then
wite(unit=un, fnt="(12)", err=20) un
tmpfile = un
return

endi f

20 tnpfile = 0
end

39.14 How source files can be seen in the debugger

The selection and use of debugging information isimportant for getting the most out of the
Watcom Debugger. If you are not able to see your source code in the Watcom Debugger
source window, there are three areas where things may have gone wrong, namely:

1. usingthe correct option for the Watcom F77.
2. using the correct directives for the Watcom Linker.
3. using theright commands in the Watcom Debugger.

The Watcom F77 compiler takes FORTRAN 77 source and creates an object file containing
the generated code. By default, no debugging information isincluded in the object file. The
compiler will output debugging information into the object file if you specify a debugging
option during the compile. There are two levels of debugging information that the compiler
can generate;

1. Linenumbersand local variables ("d2" option)
2. Line numbers ("d1" option)

The options are used to determine how much debugging information will be visible when you
are debugging a particular module. If you use the "d2" option, you will be able to see your
source file and display your local variables. The"d1" option will display the source but will
not give you access to local variable information.

The Watcom Linker (WLINK) isthetool that puts together a complete program and sets up
the debugging information for all the modules in the executable file. Thereisalinker
directive that indicates to the linker when it should include debugging information from the
modules. There are five levels of debugging information that can be collected during the link.
These are:

1. global names (DEBUG)

How source files can be seen in the debugger 329

Common Problems

2. global names, line numbers (DEBUG LINE)

3. global names, types (DEBUG TY PES)

4. globa names, local variables (DEBUG LOCALYS)
5. all of the above (DEBUG ALL)

Notice that global names will always be included in any request for debugging information.
The debugging options can be combined

DEBUG LI NE, TYPES

with the above directive resulting in full line number and typing information being available
during debugging. The directives are position dependent so you must precede any object files
and libraries with the debugging directive. For instance, if thefile MYLI NK. LNK contained:

#

invoke with: wink @rylink
#

file main

debug line

file input, output

debug al

file process

then the modules | NPUT and OUTPUT will have global names and source line information
available during debugging. All debugging information in the module PROCESS will be
available during debugging.

Hint: A subtle point to debugging information isthat al the modules will have global
names available if any debugging directiveis used. In the above example, the module

MAI Nwill have global name information even though it does not have a DEBUG directive
preceding it.

It is preferable to have one DEBUG directive before any FILE and LIBRARY directives.

Y ou might wonder if thisincreases the size of the executable file so that it will occupy too
much memory during debugging. The debugging information isloaded "on demand" by the
debugger during the debugging session. A small amount of memory (40k default, selectable
with the Watcom Debugger "dynamic" command line option) is used to hold the most recently
used module debugging information. In practice, this approach saves alot of memory because
most debugging information is never used. The overhead of accessing the disk for debugging
information is negligible compared to accessing the source file information. In other words,
you can have as much debugging information as you want included in the executable file
without sacrificing memory required by the program. See the section entitled "The DEBUG
Directive" in the Watcom Linker User’s Guide for more details.

330 How source files can be seen in the debugger

Commonly Asked Questions and Answers

If the previous steps have been followed, you should be well on your way to debugging your
programs with source line information. There are instances where the Watcom Debugger
cannot find the appropriate source file even though it knows all the line numbers. The
problem that has surfaced involves how the source file is associated with the debugging
information of the module. The original location of the source file isincluded in the
debugging information for amodule. The name that isincluded in the debugging information
isthe original name that was on the Watcom F77 command line. If the original filenameisno
longer valid (i.e., you have moved the executable to another directory), the Watcom Debugger
must be told where to find the source files. The Watcom Debugger " Source Path" menu item
(under "File") can be used to supply new directoriesto search for sourcefiles. If your source
files arelocated in two directories, the following paths can be added in the Watcom

Debugger:

c:\programfortran*.for
c:\programinew fortran*.for

The"*" character indicates where the module name will be inserted while the Watcom
Debugger is searching for the source file. See the description of the " Source Path" menu item
in the Watcom Debugger User’s Guide for more details.

39.15 The difference between the "d1" and "d2"
compiler options

The reason that there are two levels of debugging information availableis that the code
optimizer can perform many more optimizations and still maintain "d1" (line) information.
The"d2" option forces the code optimizer to ensure that any local variable can be displayed at
any time in the function.

The "d2" option will always generate code and debugging information so that you can print
the value of any variable during the execution of the function. In order to get the best code
possible and still see your source file while debugging, the "d1" option only generatesline
number information into the object file. With line number information, much better code can
be generated. The debugging of programs that have undergone extensive optimization can be
difficult, but with the source line information it is much easier. To summarize, use the "d2"
compiler option if you are developing a module and you would like to be able to display each
local variable. The"d1" compiler option will give you line number information and the best
generated code possible. There is absolutely no reason not to specify the "d1" option because
the code quality will be identical to code generated without the "d1" option.

The difference between the "d1" and "d2" compiler options 331

Common Problems

39.16 The difference between the "debug" and "d2"
compiler options

The"d2" (and "d1") compiler options are used to add debugging information to your
executable. The"d2" option makes line numbering, local symbol and typing information
available to the debugger whereas "d1" only provides line number debugging information to
the debugger. Thisinformation is used during a debugging session to examine the state of
variables and to provide the source code display.

The "debug" option provides run-time error messages that are independent of the Watcom
Debugger. The "debug" option causes the generation of run-time error checking code. This
includes subscript and substring bounds checking as well as code that allows a run-time
traceback to be issued when an error occurs. During the execution of the application, if an
error occurs, the code added with the "debug" option will halt the program and provide an
informative error message.

332 The difference between the "debug" and "d2" compiler options

Index

16-bit 149

16-bit DLL 185

16-bit DOS applications 7

16-bit far pointer 150

16-bit near pointer 150

16-bit OS/2 1.x applications 253

16-bit Windows 3.x applications 125

16-bit Windows 3.x non-GUI applications 129
_16xxx functions 219

32-bit 149

32-bit DLL 169, 185

32-bit DOS/AGW applications 15

32-bit far pointer 150

32-bit gates 47

32-bit near pointer 150

32-bit OS/2 applications 257

32-hit Phar Lap 386|DOS-Extender applications
11

32-bit Windows 3.x applications 135

32-bit Windows 3.x non-GUI applications 141

386enh 157

4GWPRO.EXE 116

8042 auxiliary processor 39

A20line 38, 40
ACAD.ADS 289
addressline 20 40
ADS application
compileand link 288
compiling 287
debugging 289
linking 288
ADS support
DOS version 287
release 13 287
ADSDBG 290
ADS.TRP 290
ADSHELP.EXP 289
AllocAliasl6 194, 160, 195, 202-203, 212
ALLOCATE 150-151, 159, 162, 175, 198
AllocHugeAliasl6 195, 160, 195, 203, 212
answers to general problems 311
API special functions 219
application development 1
array 150-151, 159
AutoCAD support 287
autopassup range 47

BBS 312

333

Index

beginthread function 236, 262

binary data 314

binding 32-bit applications 137, 143
binding a32-bit DLL 138, 144

BINP directory 256

BINW directory 138, 144

building 386|DOS-Extender applications 12
building DOS applications 8

building DOS/4GW applications 16
building OS/2 1.x applications 254
building OS/2 applications 258

building Windows 3.x applications 126, 136
bulletin board 312

_Call16 196, 166, 204, 206, 210, 215-216
cdecl 166, 196, 200
character-mode applications 228
class 158
common questions 311
DOS/4GW 101
Compaq 386 memory 38
CompuServe 312
CONFIG.SYS 256
converting to Watcom F77 313
common problems 313
what you need to know 313
cstart 323

dil 314

dl versusd2 331

d2 314

d2 versus debug 332

334

DEALLOCATE 162
DEBUG option 325
debug versusd2 332
debugger option
dl 332
d2 332
debugging 314
optimized programs 314
stack overflow 324
techniques 324
debugging 386|DOS-Extender applications 13
debugging DOS applications 8
debugging DOS4AGW applications 16
debugging information
global variables 329
line numbering 329
local variables 329
source file 329
types 329
Watcom Debugger 331
Watcom F77 329
WLINK 329
debugging OS/2 1.x applications 255
debugging OS/2 applications 259
debugging Windows 3.x applications 127, 131,
138, 145
debugging Windows NT applications 231
default type 156
default windowing library functions 132, 146,
232,277
DefineDLLEnNtry 198
DefineUserProc16 200, 209
DELETESWAP virtual memory option 42, 113,
115
distribution rights 157
DLL
16-bit 185
16-bit callsinto 32-bit DLLs 172
32-bit 169, 185
32-bit callsinto 32-bit DLLs 174
32-bit Windows example 170
creating 180-181
debugging 180
debugging example 182

Index

installing example 181
0S/22x 267
passing information in astructure 175
running example 181
summary 183
Windows NT 241
DLL access
0S/22x 270
Windows NT 246
DLL creation
0S/22x 267
Windows NT 241
DLL directory 256
DLL initidlization
0S/22x 272
Windows NT 248
DLL sample
0S/22x 268
Windows NT 242
DLL termination
0S/22x 272
Windows NT 248
DLL_CHAR 198
DLL_DWORD 198
DLL_ENDLIST 198
DLL_PTR 198
DLL_WORD 198
DOS extenders
common problems 19
DOsfilel/O 111
DOS memory management 57
DOS Protected-Maode Interface 49
DOS/AGW
AGWPRO.EXE 116
addressline 20 40
asynchronous interrupts 108
cannot lock stack 121
chaining handlers 48
code and data addresses 107
common questions 101
contacting Tenberry 102
Ctrl-Break handling 109
debugger version 116
debugging bound applications 115

demand-loading 114
differences with DOS4G 104
differences with Professional version 103
documentation 103
DOsSfilel/O 111
DOSX.EXE 122

DPMI support 105
EMM386.EXE 120

error messages 93

extender messages 89
extramemory 38

int 70h-77h 109

interrupt handler address 48
interrupt handlers 48, 109
kernel error messages 89
linear vs physical addresses 107
locking memory 109

Lotus 1-2-3 120

low memory access 107
memory addressability 111
memory control 36

memory range 36

memory use 31

mouse support 112

NULL pointer references 107
0S/2bug 121

out of memory 113
pointersvs linear addresses 106
realloc 111

register dump 118

runtime options 38

spawning 112

switch mode setting 34
TCPIP.EXE 121

telephone support 102
transfer stack overflow 117
TSR not supported 27
unexpected interrupt 116
utilities 81

VESA support 112

VM configuration 115
VMM 112

VMM instability 113

VMM restriction 27

335

Index

Windows NT bug 122
DOS/AGW DOS extender 27
DOS16M

+ option 38

A20 option 40

loops option 40

runtime options 38

DOS16M environment variable 33-36, 38, 40, 85

DOsAG
NULLP option 34, 107
QUIET option 33
VERBOSE option 33, 118
DOSAG environment variable 33
DOSAGPATH environment variable 30
DOAGVM
DELETESWAP 113,115
MAXMEM 115
MINMEM 115
SWAPINC 113, 115
SWAPMIN 113, 115
SWAPNAME 113
VIRTUALSIZE 113,115
DOSAGVM environment variable 41-42
DOSAGVM.SWP 41
DOAGW 82
DOSAGW.EXE 29
DOSX environment variable 289
DOSX.EXE 122
DPMI 37, 47,49
allocate DOS memory block 57
alocate memory block 71
allocate real-mode callback address 65
demand paging 74
discard page 74
free DOS memory block 57
free memory block 72
free physical address mapping 76
free real-mode callback address 69
function calls 50
get and disable virtua interrupt state 77
get and enable virtual interrupt state 77
get API entry point 78
get coprocessor status 79
get DPMI version 70

336

get exception handler vector 59
get free memory information 70
get page size 73
get protected-mode interrupt vector 61
get real-mode interrupt vector 58
get virtual interrupt state 78
lock linear region 73
mark page 74
physical address mapping 75
resize DOS memory block 58
resize memory block 72
set coprocessor emulation 80
set exception handler vector 59
set protected-mode interrupt vector 61
set real-mode interrupt vector 59
simulate real-mode far call 63
simulate real-mode interrupt 63
simulate real-modeiret call 64
unlock linear region 73
vendor extensions 78
virtual interrupt state 76
DPMI host
386Max 49
0S2VDM 49
QEMM QDPMI 49
Windows 3.1 49
DPMI specification 19, 103
DPMI_MEMORY_LIMIT
DOS setting 121
dragon book 313
dwfDeleteOnClose 132, 146, 232, 277
dwfSetAboutDlg 132, 146, 232, 277
dwfSetAppTitle 133, 146, 233, 277
dwfSetConTitle 133, 146, 233, 277
dwfShutDown 133, 147, 233, 278
dwfYield 133, 147, 233, 278
DWORD 166
dynamic link libraries 256
0S/22x 267
Windows NT 241
dynamic link library 169, 185
dynamic link library access
0S/22.x 270
Windows NT 246

Index

dynamic link library creation
0S/22x 267
Windows NT 241

dynamic link library initialization
0S/22.x 272
Windows NT 248

dynamic link library sample
0S/22x 268
Windows NT 242

dynamic link library termination
0S/22x 272
Windows NT 248

dynamic linking 241, 267

EMM386.EXE 120
endthread subroutine 236, 262
EnumChildwWindows 208
EnumFonts 208
EnumMetaFile 208
EnumObjects 208
EnumProps 208
EnumTaskWindows 208
EnumWindows 208
environment variables
DOS16M 33-36, 38, 40, 85
DOS4G 33
DOSAGPATH 30
DOSAGVM 41-42
DOSX 289
FINCLUDE 185, 239, 264, 287, 322
PATH 137-138, 144, 185
WATCOM 137-138, 144, 239, 264, 323
WINDOWS _INCLUDE 192
error messages
DOS/AGW 93
kernel 89
executable
linear 29

segmented 29
executablefile 8, 12, 16, 127, 131, 136, 143, 231,
255, 259
EXPLICIT option 156
extended memory 33
extender messages
DOS/4AGW 89

far 149-151, 159, 175, 198, 209, 307
far pointer 149
__fdll_initialize 248, 272
_ fdll_terminate_ 248, 272
files
more than 20 327
unableto find 322
FINCLUDE environment variable 185, 239, 264,
287,322
fixed record type 314
floating-point options 326
formatted 314
FORTRAN 77
Extensions 313
fpc option 326
fpi option 326
fpi87 option 326
free 206
free memory 22
FreeAliasl6 202, 160, 194-195, 203
FreeHugeAliasl6 203, 195, 203
FreelndirectFunctionHandle 204, 196, 206, 210,
215-216
Freelibrary 244
FreeProclnstance 164
fsigna 315
_ fthrd_initialize_ 248
__fthrd _terminate_ 248
FTPsite 312
Fujitsu FMR-70 switch mode setting 34

337

Index

FWinMain 169

GetlndirectFunctionHandle 206, 196, 204, 210,
215-216

GetProcl16 208, 160, 162, 200, 214, 216

GETPROC_ABORTPROC 208

GETPROC _CALLBACK 208

GETPROC_ENUMCHILDWINDOWS 208

GETPROC _ENUMFONTS 208

GETPROC_ENUMMETAFILE 208

GETPROC_ENUMOBJECTS 208

GETPROC_ENUMPROPS _FIXED_DS 208

GETPROC_ENUMPROPS MOVEABLE_DS
208

GETPROC_ENUMTASKWINDOWS 208

GETPROC_ENUMWINDOWS 208

GETPROC_GLOBALNOTIFY 208

GETPROC_GRAYSTRING 208

GETPROC _LINEDDA 209

GETPROC_SETRESOURCEHANDLER 209

GETPROC _SETTIMER 209

GETPROC_SETWINDOWSHOOK 209

GETPROC_USERDEFINED_1 200

GETPROC _USERDEFINED_32 200

GETPROC _USERDEFINED_x 209

GetProcAddr 216

GetProcAddress 166, 196, 215

GlobaAlloc 162

GloballLock 217

Globa Notify 208

GMEM_DDESHARE 162

GrayString 208

GROWHANDLES 327

GWL_WNDPROC 165

338

HIMEM.SYS 38
Hitachi B32 switch mode setting 34

!

IBM PS/55 switch mode setting 34
IDT 47
import definitions 241, 267
import library 246, 270
INDIR_CDECL 206
INDIR_CHAR 206
INDIR_DWORD 206
INDIR_ENDLIST 206
INDIR_PTR 206, 210
INDIR_WORD 206
initialization
0S/2 2.x dynamic link library 272
Windows NT dynamic link library 248
initializing
variables 324
Instant-D 29
INT 21H 43
INT 31H 49
int 31H function calls 50
inter-language calls 297
interrupt handling 47
interrupt services 58
interrupts
using DOS/4GW 20
InvokelndirectFunction 210, 204, 206, 215-216
Invokel ndirectFunctionHandle 196

Index

memory management services 70
memory transfer rate 84
K memory wait states 84
message
include files 322
kernel error messages 89 no starting address found 323
keyboard status 39 stack segment not found 323
unableto find files 322
undefined references 323
messages
L DOS/AGW 89
MINMEM virtual memory option 41, 115
mixed-language programming 297
argument passing 298

LDT 51 common blocks 305
LE format 29 integer type 300
LibMain 242-245, 268 linking issues 299
library 323 memory models 299
library functions parameter passing 298
default windowing 132, 146, 232, 277 passing integers 300-301
line number information 314 passing strings 303-304
linear executable 29 symbol names 297
LineDDA 209 variable number of arguments 307
linker mode switching
undefined references 323 basis 86
LoadLibrary 215, 243-245 performance 83
LoadLibrary returns NULL 245 multi-threaded applications 235, 261
local descriptor table 51 0S/22x 261
LocalAlloc 162 Windows NT 235
LOCATION 151, 159, 175, 198 multi-threading issues
LOCATION= 150, 159 0S/22x 261
Lotus 1-2-3 120 Windows NT 235
M N
MakeProclnstance 162, 164 NE format 29
malloc 206 near 149
MapAliasToFlat 212 near pointer 149
math errors 315 NEC 98-series switch mode setting 34
MAXMEM virtual memory option 41, 115 NLM

339

Index

debugging 293

header files 293

import libraries 293

libraries 293

sampler 293
NLM support

version 4.0 293

version 4.1 293
no starting address found 323
NOAUTOPROCS 164
NOCOVERSENDS 160-161
Novell

TCPIP.EXE 121
NT character-mode applications 228
NT default windowing system 228
NT development 227
NULLP 34

object file 8, 12, 16, 127, 131, 136, 143, 231, 255,
259
OKI if800 switch mode setting 34
opening more than 20 files 327
optimization
suggested reading 313
what you should know 313
0s/2
fullscreen application 253, 257
PM-compatible application 253, 257
Presentation Manager application 253, 257
OS2 PM
API cals 278
non-GUI applications 275
non-GUI example 276
0S/2 Presentation Manager 275
0S/2 Workframe/2 283

340

page locking services 72
page tuning services 74
PASCAL 166, 196, 200
PASS WORD_AS POINTER 213
patch level 312
patches 312
PATH environment variable 137-138, 144, 185
performance 84
Phar Lap TNT 227
PMINFO 35, 83
pointers

16-bit 150

32-bit 150

far 149

near 149
pragma 314
PRINT 235, 261
private memory pool 85
PRIVATXM 37, 85, 120
PROCPTR 216
protected mode 38
PS/2 switch mode setting 34

questions 311
QUIET 33

real mode 38

Index

ReleaseProcl6 214, 209
resource compiler 137, 144
RMINFO 86

SAVE 313,324
segmented executable 29
SendDlIgltemMessage 160-161
SendMessage 160-161
sequential 314
SetResourceHandler 209
SetTimer 209
setvbuf 112
SetWindowlLong 165
SetWindowsHook 209
sieve 126, 130, 136, 142, 230
sieve program 7, 11, 15, 253, 257
STACK option 325
stack overflow 324
stack segment not found 323
static linking 241, 267
stub program 29, 82
supervisor 137, 143
SWAPINC virtual memory option 41, 113, 115
SWAPMIN virtual memory option 41, 113, 115
SWAPNAME virtual memory option 41, 113
switch mode setting

Fujitsu FMR-70 34

Hitachi B32 34

IBM PS/55 34

NEC 98-series 34

OK1 if800 34

PS/2 34
switching modes

performance 83
symbolic information 314
system 323
system configuration file 256
SYSTEM.INI 157

TCPIP.EXE 121
TECHINFO 312
technical support

Tenberry Software 101
termination

0S/2 2.x dynamic link library 272

Windows NT dynamic link library 248
thread creation

0S/2 2.x 261-262

Windows NT 235-236
thread example

0S/22.x 263

Windows NT 237
thread identifier

0S/22.x 263

Windows NT 237
thread limits

0S/22.x 265
thread termination

0S/22.x 262

Windows NT 236
threadid function 237, 263
threads of execution 235, 261
TNT 227
transfer rate

memory 84
trandation services 61

UDP16_CDECL 200
UDP16_CHAR 200
UDP16_DWORD 200
UDP16_ENDLIST 200
UDP16_PTR 200

341

Index

UDP16_WORD 200

unable to find files 322

undefined references 323
cstart 323

Un_expected Interrupt 325

variables
set to zero 324
VCPI 37
VERBOSE 33
video memory 20
virtual memory manager 41, 112
VIRTUALSIZE virtual memory option 42, 113,
115
Visua Basic 185
16-bit DLL 189, 191
32-bit DLL 189
building examples 192
example 187
Version 3.0 185
VMC extension 42
VMM 41, 112

W

W386DLL.EXT 138, 144
WATCOM environment variable 137-138, 144,
239, 264, 323
Watcom F77
converting to 313
Watcom F77 debugging
d2 332
debug 332
Watcom F77 options

342

dl 314, 329

d2 314, 329
Watcom Strip Utility 314
WBIND 137, 143-144, 216
WBIND.EXE 137, 143
WDEBUG.386 157
WEMU387.386 157
WFL 8-9, 127, 131-132, 255-256
WFL386 13, 17, 138-139, 145, 231-232, 259-260
WINS386 library routines 193
WIN386.EXT 137-138, 143-144
Win386LibEntry 185
WINAPI.FI 156, 160
WINDLG.FI 156
windowed applications

default windowing environment 129, 141, 229,

276

Windows

binding 32-bit applications 137, 143
Windows 3.x extender 149

_16xxx functions 217, 219

32-hit callback routines 216

calling 16-bit code 215

components 153

creating applications 154

floating-point 157

function pointers 216

multiple instances 157

overview 150

pointer conversion 159-160

pointer handling 158

pointers 149

programming notes 155

questions 215

resources 216

special functions 219

structure 152
Windows APl 156
Windows NT 227

character-mode applications 227-228

GUI applications 227

programming overview 227
Windows NT GUI non-GUI applications 229
Windows supervisor 137, 143

Index

WINDOWS.FI 156

__WINDOWS 386__ 192

__WINDOWS _ 192

WINDOWS _INCLUDE environment variable
192

WINFONT.FI 156

Workframe/2 283

WSTUB.C 30

XMS 38

343

