
i

SOMobjects Developer’s Toolkit
Programmer’s Reference, Volume II: Object Services
SOMobjects Version 3.0

Note: Before using this information and the product it supports, be sure to read the general
information under Notices on page iii.

Second Edition (December 1996)

This edition of Programmer’s Reference for Object Services applies to SOMobjects Developer’s Toolkit for
SOM Version 3.0 and to all subsequent releases of the product until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: IBM CORPORATION PROVIDES THIS MANUAL “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions;
therefore, this statement may not apply to you.

IBM Corporation does not warrant that the contents of this publication or the accompanying source code
examples, whether individually or as one or more groups, will meet your requirements nor that the
publication or the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes are incorporated in new editions of the publication. IBM
Corporation might make improvements and/or changes in the product(s) and/or the program(s) described in
this publication at any time.

This publication might contain references to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM Corporation intends to announce such IBM products, programming, or
services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only the IBM licensed program. You can use any functionally equivalent
program instead.

To initiate changes to this publication, submit a problem report from the technical support web page at URL:
http://www.austin.ibm.com/somservice/supform.html. Otherwise, address comments to IBM Corporation,
Internal Zip 1002, 11400 Burnet Road, Austin, Texas 78758-3493. IBM Corporation may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing representative.

© Copyright IBM Corporation 1995, 1996. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

 Notices iii

Notices

IBM Corporation may have patents or pending patent applications covering subject matter in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language,
which illustrate AIX, OS/2, or Windows programming techniques. You may copy and distribute these
sample programs in any form without payment to IBM Corporation, for the purposes of developing, using,
marketing, or distributing application programs conforming to the AIX, OS/2, or Windows application
programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: “© (your company name) (current year), All Rights Reserved.”
However, the following copyright notice protects this documentation under the Copyright Laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

References in this publication to IBM products, program, or services do not imply that IBM Corporation
intends to make these available in all countries in which it operates.

Any reference to IBM licensed programs, products, or services is not intended to state or imply that only
IBM licensed programs, products, or services can be used. Any functionally-equivalent product, program or
service that does not infringe upon any of the IBM Corporation intellectual property rights may be used
instead of the IBM Corporation product, program, or service. Evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM Corporation, are the user’s
responsibility.

IBM Corporation may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries in writing to the:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, New York 10594, USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Department 931S
11400 Burnet Road
Austin, Texas 78758 USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

Asia-Pacific users can inquire, in writing, to the:

IBM Director of Intellectual Property and Licensing
IBM World Trade Asia Corporation,
2-31 Roppongi 3-chome,
Minato-ku, Tokyo 106, Japan

This publication contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

iv Trademarks and Acknowledgements

Trademarks and Acknowledgements

AIX is a trademark of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.
OS/2 is a trademark of International Business Machines Corporation.
SOM is a trademark of International Business Machines Corporation.
SOMobjects is a trademark of International Business Machines Corporation.
Windows and Windows NT are trademarks of Microsoft Corporation.

v

Contents

About Programmer’s Reference for Object Services . ix
Who Should Use this Documentation . ix
Topics Covered . ix

Typographic Conventions . ix
Related Publications . x

Relationship to Standards . x
Approaches to Implementing Standards . x
SOMobjects Object Services’ Approach . xii
Structure Used to Document Interfaces . xv

Chapter 1. Externalization Service . 1
somStream::StreamIO Class . 2

already_streamed Method. 4
clear_buffer Method . 5
get_buffer Method . 6
read_boolean Method . 7
read_char Method . 8
read_double Method . 9
read_float Method . 10
read_long Method . 11
read_octet Method . 12
read_short Method . 13
read_string Method . 14
read_unsigned_long Method. 15
read_unsigned_short Method . 16
reset Method . 17
set_buffer Method . 18
write_boolean Method. 19
write_char Method. 20
write_double Method. 21
write_float Method. 22
write_long Method. 23
write_octet Method . 24
write_short Method . 25
write_string Method. 26
write_unsigned_long Method . 27
write_unsigned_short Method . 28

somStream::MemoryStreamIO Class . 29
somStream::Streamable Class . 31

externalize_to_stream Method . 33
internalize_from_stream Method. 34

Chapter 2. Naming Service . 35
LNameComponent Class . 36

destroy Method . 38
get_id Method . 39
get_kind Method . 40
set_id Method . 41
set_kind Method . 42

LName Class . 43
delete_component Method . 45

vi Programmer’s Reference for Object Services

destroy Method . 46
equal Method. 47
from_idl_form Method . 48
get_component Method. 49
insert_component Method . 50
less_than Method . 51
num_components Method . 52
to_idl_form Method . 53

FileXNaming::FileBindingIterator Class . 54
destroy Method . 56
next_n Method. 57
next_one Method. 58

FileXNaming::FPropertyBindingIterator Class . 59
destroy Method . 61
next_n Method. 62
next_one Method. 63

FileXNaming::FPropertyIterator Class . 64
destroy Method . 66
next_n Method. 67
next_one Method. 68

FileXNaming::FileIndexIterator Class . 69
destroy Method . 71
next_n Method. 72
next_one Method. 73

FileXNaming::FileENC Class . 74
add_index Method . 77
add_properties Method . 78
add_property Method . 79
bind Method. 80
bind_context Method . 81
bind_context_with_properties Method. 82
bind_new_context Method. 84
bind_with_properties Method . 85
destroy Method . 87
find_all Method . 88
find_any Method . 90
find_any_name_binding Method . 91
get_all_properties Method . 92
get_features_supported Method . 94
get_properties Method. 96
get_property Method . 98
list Method . 99
list_indexes Method. 100
list_properties Method . 101
new_context Method . 102
rebind Method . 103
rebind_context Method . 104
rebind_context_with_properties Method . 105
rebind_with_properties Method . 106
remove_all_properties Method . 107
remove_index Method . 108
remove_properties Method . 109
remove_property Method . 110
resolve Method . 111

vii

resolve_with_all_properties Method . 112
resolve_with_properties Method . 114
resolve_with_property Method . 116
unbind Method . 118
_get_allowed_object_types Method . 119
_get_allowed_property_names Method . 120
_get_allowed_property_types Method . 121

Chapter 3. Object Services Server . 123
somOS Module . 124
somOS::Server Class . 125

delete_ref Method . 127
has_persistent_ref Method . 128
make_persistent_ref Method. 130
passivate_all_objects Method . 132
passivate_object Method . 134
restore_metastate Method . 136
somdRefFromSOMObj Method. 138
somdSOMObjFromRef Method. 139
store_metastate Method . 140
store_service_metastate Method . 142

somOS::ServiceBase Class . 144
capture Method . 146
GetInstanceManager Method . 148
init_for_object_copy Method . 149
init_for_object_creation Method . 150
init_for_object_reactivation Method. 152
is_identical Method . 153
reinit Method . 154
somDestruct Method . 155
uninit_for_object_destruction Method . 157
uninit_for_object_move Method . 159
uninit_for_object_passivation Method. 160
_get_constant_random_id Method . 161

somOS::ServiceBasePRef Class . 162
init_for_object_creation Method . 164
uninit_for_object_destruction Method . 166

somOS::ServiceBaseCORBA Class . 168
init_for_object_reactivation Method. 170

somOS::ServiceBasePRefCORBA Class . 171
init_for_object_reactivation Method. 173

Appendix A. BNF for Naming Constraint Language . 175

Index . 177

viii Programmer’s Reference for Object Services

 About Programmer’s Reference for Object Services ix

About Programmer’s Reference for Object Services
The Programmer’s Reference for Object Services provides an implementation of standard
interfaces defined by the Object Management Group (OMG). The SOMobjects Object
Services are object-oriented class libraries for managing objects in distributed applications.

Who Should Use this Documentation

This documentation is for software developers using Object Services, as well as for
developers who are providing specializations of object services interfaces.

You will find having the following background helpful:

• Familiarity with the OMG CORBA 1.1 and CORBA IDL specifications

• Familiarity with the OMG Common Object Services, in particular the:

- Externalization Service

- Naming Service

- CosObject Identity Module (introduced in the Relationship Service)

• Knowledge of object-oriented principles

• C or C++ programming experience

• IBM SOM and DSOM knowledge, preferably with programming experience

• Familiarity with distributed systems management and object management concepts

• A careful examination of the information provided in Programmer’s Guide for Object
Services

Topics Covered

This documentation provides information about the SOMobjects Developer’s Toolkit for
SOM Version 3.0. Topics covered include:

• Externalization Service

• Naming Service

• Object Services Server

Typographic Conventions
This book uses the following typographic conventions:

Bold
Identifies commands, subroutines, keywords, files, structures, directories, and other
items whose names are predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that you select.

Italics
Identifies parameters and variables whose actual names or values you supply. Also
identifies new terminology.

Monospace
Identifies examples of specific data values, examples of text similar to what you might
see displayed, examples of portions of program code similar to what you might write as
a programmer, messages from the system, or information you should actually type.

x Programmer’s Reference for Object Services

Related Publications
The following books contain information about, or related to, SOMobjects Object Services:

• Common Object Services Specification Volume 1 (OMG Document Number 94-1-1)

• CORBA 1.1

• Programmer’s Guide for SOM and DSOM

• Programmer’s Reference for SOM and DSOM

• Programmer’s Guide for Object Services

• Programmer’s Reference for Abstract Interface Definitions

Relationship to Standards

SOMobjects Developer’s Toolkit Object Services provide an implementation of standard
interfaces that are defined by the OMG. Although it would be helpful, it is not necessary to
be familiar with the OMG specifications themselves to understand SOMobjects Object
Services. However, it is necessary to understand how those standards affected the
structuring of the code and documentation for SOMobjects Object Services. This section
looks at:

• Approaches to implementing standards

• SOMobjects Object Services’ approach

• Structure used to document interfaces

For specific information about how the standard interfaces are implemented, refer to Who
Should Use This Documentation on page vii in Programmer’s Guide for Object Services.

Note: The following terms might be used interchangeably in this documentation:

interface and class — Typically interface is used to refer to an interface
defined in CORBA IDL which are realized as classes in SOM.

object and instance — The term object is relatively common in object-
oriented vernacular, whereas instance is used prodominately in C++ and
SOMobjects to refer to an instance of an object.

operation and method — In CORBA IDL an interface introduces zero or
more operations. Operations are commonly known as methods in
SOMobjects and as member functions in C++.

Approaches to Implementing Standards
This section examines possible implementation approaches that can be used for the
implementation of a standard interface. It is presented in generic terms without reference to
the specific standards being implemented.

What Standards Provide
A standard for an object service provides interface definitions for one or more interfaces
that comprise that service. In most cases, a service is composed of multiple interfaces that
have a defined relationship to one another.

The interfaces are syntactically described using OMG CORBA IDL and the semantics of the
interface are described using text descriptions. The use of IDL allows for a precise

 About Programmer’s Reference for Object Services xi

definition of the syntax; however, the semantic descriptions often require implementation-
specific interpretation, which can vary from one implementation to another. In some cases,
this is done on purpose and in others it is the result of insufficient description provided by
the standard.

A standard may or may not be complete. That is, a standard may not provide sufficient
definition of interfaces and operations for the service for use in a production environment.
Consequently, extensions must be added to make it useful to a client. A standard almost
always needs implementation-specific extensions.

Approaches to Implementing Standards
This section looks at various philosophies regarding the implementation of standard
interfaces.

Pure Implementation: Provides an implementation of the specification without extensions.
With this approach, the interfaces defined by the standard’s IDL are implemented without
adding operations to any of the interfaces and without extending the implementations
through subtyping. This approach either requires the standard to provide sufficient
interfaces and operations for the implementation, or the implementation must use
mechanisms other than IDL- defined interfaces and operations to provide for inter-object
interaction.

Because standards are seldom sufficiently defined for implementation and because IDL-
defined operations are the normal way for distributed objects to communicate, there are few
scenarios where this approach is practical.

Add Operations to Standard Interfaces: Provides an implementation of the specification
by adding operations to the interfaces defined by the standard. With this approach, no new
interfaces are introduced through subtyping. The additional operations can be used in the
following ways:

• A way for two objects in the service to communicate in order to provide behavior
defined by the standard, but the operations are not intended to be called by clients.

• A way to provide clients with access to behavior needed to make even a minimum
implementation of the standard usable.

• An implementation-specific extension intended to give the client capabilities above and
beyond what is defined by the standard.

The most likely scenario for the use of this approach would be the first case, where the
additional operations are used within the service only and are not directly used by clients.

Subtype Standard Interfaces: Provides an implementation of the specification by
subtyping the standard interfaces and defining additional operations in the new interface. In
this approach, the interface defined by the standard is abstract and would never actually be
instantiated as an object. Instead, the subtype interface or one of its descendents would be
instantiated as an object. The additional operations can be used in the same manner as
defined in Add Operations to Standard Interfaces on page xi.

When this approach is taken, an additional factor comes into play: where to provide the
actual implementation for each of the operations. Here are a few of the approaches that
can be taken:

• For the implementation of the class defined by the standard interface, do not implement
any of the operations within that class. In the class that implements the subtype
interface, override all of the operations in the standard interface. Provide the actual
method implementations for operations defined in both the standard interface and
subtype interface in the class for the subtype.

xii Programmer’s Reference for Object Services

• For the implementation of the class defined by the standard interface, implement those
methods that can be implemented without knowledge of the subtype. For operations
whose methods need knowledge of the subtype, override the operations and provide
the implementation in the class for the subtype.

• For the implementation of the class defined by the standard interface, implement all of
the operations defined. Some of these methods will need to know specifics about the
implementation of the subtype.

Of these choices, the last violates object-oriented principles, while either of the first two is
an acceptable approach.

SOMobjects Object Services’ Approach
Given the possible implementation approaches described in the previous section, this
section describes the approach used by SOMobjects Object Services. How this affects the
IDL is then described through a series of examples.

The approach SOMobjects Object Services takes is to subtype the standard interface and
to provide all implementation of operations within the subclass. The IDL for the standard
interface appears exactly as defined within the standard (with the exception being that
some SOMobjects-specific information must be added), with no new interfaces or
operations added. The IDL for the subtype inherits the interface defined for the standard,
adds any additional operations needed, and overrides all of the operations defined for the
standard interface. The name of the subtype interface will be a variation of the name of the
standard interface, such as appending SOM to the beginning of it.

SOMobjects Developer’s Toolkit sometimes introduces an abstract interface that it treats in
the same way as the standard interfaces. These abstract interfaces are described in
Programmer’s Reference for Abstract Interface Definitions. Throughout these abstract
interface descriptions, assume the same characteristics for the SOM-introduced abstract
interfaces as you do for the OMG standard interfaces.

The following examples show the IDL for various cases encountered in SOMobjects Object
Services.

Subtyping a Simple Interface
In this case, an interface is defined by the standard that is subtyped to define a class within
which all implementation is done.

interface StandardInterface {

void StandardOperation();

};

interface somExtendedInterface : StandardInterface {

void AdditionalOperation();

override:StandardOperation;

};

 About Programmer’s Reference for Object Services xiii

Subtyping an Interface that Inherits a Mixin
In this case, a standard introduces an interface that is intended to be a mixin interface. A
mixin interface is not ever intended to be the principal interface for an object, but it is to be
inherited into another interface. A standard may introduce a mixin interface that is only
actually mixed in with one other interface in the standard. When this is the case,
SOMobjects Object Services flatten this hierarchy and provide implementation for the
operations defined in the mixin class in the subclass of the interface that inherits the mixin.
The result looks something like this:

interface StandardMixin {

void StandardMixinOperation();

};

interface StandardMixedInterface : StandardMixin {

void StandardOperation();

};

interface somExtendedInterface : StandardInterface {

void AdditionalOperation();

override:StandardMixinOperation, StandardOperation;

};

Subtyping an Interface that Inherits a Non-Mixin Interface
Standards also introduce interfaces that inherit from each other that do not involve mixins.
In this case, each standard interface is subtyped for implementation. The resulting structure
appears as follows:

interface StandardBase {

void StandardBaseOperation();

};

interface somExtendedBase : StandardBase {

void AdditionalBaseOperation();

override:StandardBaseOperation;

};

interface StandardInterface : StandardBase {

void StandardOperation();

};

xiv Programmer’s Reference for Object Services

interface somExtendedInterface :
StandardInterface, somStandardBase {

void AdditionalOperation();

override: StandardOperation;

};

In this case, somExtendedInterface inherits the implementation provided by
somExtendedBase. This is the first case introduced where an implemented operation is
inherited.

Overriding an Inherited Implementation
This example extends the previous example, overriding the implementation of an operation
that has been inherited. The IDL would appear as follows:

interface StandardBase {

void StandardBaseOperation1();
void StandardBaseOperation2();

};

interface somExtendedBase : StandardBase {

void AdditionalBaseOperation1();
void AdditionalBaseOperation2();

override: StandardBaseOperation1, StandardBaseOperation2;

};

interface StandardInterface : StandardBase {

void StandardOperation();

};

interface somExtendedInterface :
StandardInterface, somStandardBase {

void AdditionalOperation();

override: StandardOperation, AdditionalBaseOperation2,
StandardBaseOperation2;

};

somExtendedInterface, the operations AdditionalBaseOperation2 and
StandardBaseOperation2 are overridden. These overrides do not provide the initial
implementation of the methods as they do in all other overrides presented here. They are
used to extend, enhance, modify, and alter the behavior provided by the implementation of
these operations in somExtendedBase.

 About Programmer’s Reference for Object Services xv

Structure Used to Document Interfaces
Given the examples in the previous section, the structure used by this manual for
documenting interfaces can be described. The following principles are followed:

• Specific knowledge of the syntax and semantics introduced by the standards is not
required in order to understand this documentation.

• The standard interfaces are not specifically documented on their own as unique
interfaces.

• Only interfaces that provide implementation are documented.

• Operations are treated as if they were initially introduced in the interface that provides
the initial implementation rather than in the actual IDL interface where they are
introduced.

The result of following these principles is documentation that is aligned with the hierarchy
as implemented rather than aligned with the hierarchy as defined in IDL. This more closely
aligns with the actual objects that users will create and use, providing a clearer
understanding of how to use the services provided.

The examples in the previous section illustrate how interfaces and operations are
introduced into the document. The IDL is repeated for ease in comparing the IDL to the
documentation approach. For each IDL example, the classes that will be documented are
listed along with the operations that will be documented within that class. Methods are
treated as new methods if this is the initial implementation of the method; methods are
treated as overrides if they are overriding a previous implementation.

Subtyping a Simple Interface
interface StandardInterface {

void StandardOperation();

};

interface somExtendedInterface : StandardInterface {

void AdditionalOperation();

override:StandardOperation;

};

Table 1. Subtyping a Simple Interface

Documented Class Treated as New Method Treated as Overridden Method

somExtendedInterface 0 AdditionalOperation 0
StandardOperation 0

xvi Programmer’s Reference for Object Services

Subtyping an Interface that Inherits a Mixin
interface StandardMixin {

void StandardMixinOperation();

};

interface StandardInterface : StandardMixin {

void StandardOperation();

};

interface somExtendedInterface : StandardInterface {

void AdditionalOperation();

override: StandardMixinOperation, StandardOperation;

};

Table 2. Subtyping a Mixin Interface

Subtyping an Interface that Inherits a Non-Mixin Interface
interface StandardBase {

void StandardBaseOperation();

};

interface somExtendedBase : StandardBase {

void AdditionalBaseOperation();

override:StandardBaseOperation;

};

interface StandardInterface : StandardBase {

void StandardOperation();

};

Documented Class Treated as New Method Treated as Overridden Method

somExtendedInterface 0 AdditionalOperation 0
StandardMixinOperation 0
StandardOperation 0

 About Programmer’s Reference for Object Services xvii

interface somExtendedInterface :
StandardInterface, somExtendedBase {

void AdditionalOperation();

override:StandardOperation;

};

Table 3. Subtying an Interface that Inherits a Non-Mixin Interface

Overriding an Inherited Implementation
interface StandardBase {

void StandardBaseOperation1();
void StandardBaseOperation2();

};

interface somExtendedBase : StandardBase {

void AdditionalBaseOperation1();
void AdditionalBaseOperation2();

override:StandardBaseOperation1, StandardBaseOperation2;

};

interface StandardInterface : StandardBase {

void StandardOperation();

};

interface somExtendedInterface :
StandardInterface, somExtendedBase {

void AdditionalOperation();

override:StandardOperation, AdditionalBaseOperation2,
StandardBaseOperation2;

};

Documented Class Treated as New Method Treated as Overridden Method

somExtendedBase 0 AdditionalBaseOperation 0
StandardBaseOperation 0

somExtendedInterface 0 AdditionalOperation 0
StandardOperation 0

xviii Programmer’s Reference for Object Services

Table 4. Overriding an Inherited Implementation

Documentation of Attributes
Attributes are documented in terms of the get and set operations defined for them, and
follow the same guidelines as described in the preceding sections regarding their treatment
as either new or overridden methods. The following is an IDL example and its
corresponding documentation:

interface StandardInterface {

attribute long StandardLong;

};

interface somExtendedInterface : StandardInterface {

attribute long AdditionalLong;

override: _get_StandardLong, _set_StandardLong;

};

interface somExtension : somExtendedInterface {

override: _get_StandardLong, _set_StandardLong,
_get_AdditionalLong, _set_AdditionalLong;

};

Table 5. Documenting Attributes

Documented Class Treated as New Method Treated as Overridden Method

somExtendedBase 0 AdditionalBaseOperation1 0
AdditionalBaseOperation2 0
StandardBaseOperation1 0
StandardBaseOperation2 0

somExtendedInterface 0 AdditionalOperation 0
StandardOperation 0

AdditionalBaseOperation2 0
StandardBaseOperation2 0

Documented Class Treated as New Method Treated as Overridden Method

somExtendedInterface 0 _get_StandardLong 0
_set_StandardLong 0
_get_AdditionalLong 0
_set_AdditionalLong 0

somExtension 0 0 _get_StandardLong 0
_set_StandardLong 0
_get_AdditionalLong 0
_set_AdditionalLong 0

 About Programmer’s Reference for Object Services xix

xx Programmer’s Reference for Object Services

Chapter 1. Externalization Service 1

Chapter 1. Externalization Service

2 Programmer’s Reference for Object Services

somStream::StreamIO Class

somStream::StreamIO Class

The somStream::StreamIO class is a subclass of the CosStream::StreamIO class. This
class is base class for IBM supplied implementations of the OMG CosStream::StreamIO
interface.

Intended Usage
This class is abstract and should not be instantiated by client applications. This class
serves as the base for concrete implementations of the StreamIO interface.

File Stem
somestio

Base
CosStream::StreamIO

Metaclass
SOMClass

Ancestor Class
CosStream::StreamIO

SOMObject

New Methods
already_streamed Method

clear_buffer Method

get_buffer Method

read_boolean Method

read_char Method

read_double Method

Chapter 1. Externalization Service 3

somStream::StreamIO Class

read_float Method

read_long Method

read_short Method

read_string Method

read_unsigned_long Method

read_unsigned_short Method

read_octet Method

set_buffer Method

write_boolean Method

write_char Method

write_double Method

write_float Method

write_long Method

write_octet Method

write_string Method

write_unsigned_long Method

write_unsigned_short Method

Overridden Methods
somDefaultInit Method

somDestruct Method

Related Information
somStream::MemoryStreamIO Class

4 Programmer’s Reference for Object Services

already_streamed Method

already_streamed Method
The already_streamed method determines if data for a specific parent class for a specific
object has been written to, or read from, the stream.

IDL Syntax
boolean already_streamed(

in SOMObject obj,
in SOMObject class_obj);

Description
This method is useful for diamond top (multiple inheritance) situations.

Intended Usage
This method is intended to be used by specialized StreamIO implementations. It is not
typically overridden.

This method is not defined in the OMG standard.

Parameters
obj

The specific object to check for inclusion in the stream.

class_obj
The specific class whose object is to be checked.

Return Value
True or false indicating whether the specified object is already in stream.

Example
The following example shows how the already_streamed method is used in the
externalize_to_stream method of a Car class.

SOM_Scope void SOMLINK externalize_to_stream(Car somSelf,
Environment *ev, CosStream_StreamIO stream) {

CarData *somThis=CarGetData(somSelf);

CarMethodDebug(“Car”, ”externalize_to_stream”);

if (!_already_streamed(stream, ev, somSelf, _Car)) {

Car_parent_Vehicle_externalize_to_stream(somSelf, ev,

stream);

_write_string(stream, ev, _name);

_write_long(stream, ev, _size);

}

}

Original Class
somStream::StreamIO Class

Chapter 1. Externalization Service 5

clear_buffer Method

clear_buffer Method
The clear_buffer method erases the contents of the StreamIO buffer and resets the
current position to the beginning.

IDL Syntax
void clear_buffer();

Description
The clear_buffer method erases the contents of the StreamIO buffer and resets the
current position to the beginning. It makes the StreamIO essentially the same as a new one.

This must be overridden by subclasses. The implementation of clear_buffer should call the
read_octet Method.

Intended Usage
This method is intended to be used by special client programs that need to reset the
internal stream buffer. It must be overridden by specialized StreamIO classes with a
specific implementation.

This method is not defined in the OMG standard.

Example
/* myStreamIO needs to be declared as either

somStream_MemoryStreamIO, somStream_StandardStreamIO, or

somStream_StringStreamIO. */

...

_clear_buffer(myStreamIO, ev);

...

Original Class
somStream::StreamIO Class

6 Programmer’s Reference for Object Services

get_buffer Method

get_buffer Method
The get_buffer method returns a copy of the StreamIO buffer.

IDL Syntax
somStream::seq_octet get_buffer();

Description
Returns copy of StreamIO buffer. The client is responsible for deallocating the memory
returned in the sequence using the somFree Method.

This must be overridden by subclasses.

Intended Usage
This method is intended to be used by special client programs that need access to the
internal stream buffer. It must be overridden by specialized StreamIO classes with a
specific implementation.

This method is not defined in the OMG standard.

Return Value
A sequence of octets containing a copy of the StreamIO buffer.

Example
seq_octet inputBuffer;

/* myStreamIO needs to be declared as either

somStream_MemoryStreamIO, somStream_StandardStreamIO,

or somStream_StringStreamIO. */

...

inputBuffer=_get_buffer(myStreamIO, ev);

...

Original Class
somStream::StreamIO Class

Chapter 1. Externalization Service 7

read_boolean Method

read_boolean Method
The read_boolean method reads a boolean from a stream.

IDL Syntax
boolean read_boolean();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a boolean value.

Example
CosStream_StreamIO myStream;

...

myBoolean=_read_boolean(myStream, ev);

Original Class
CosStream::StreamIO

8 Programmer’s Reference for Object Services

read_char Method

read_char Method
The read_char method reads a char from a stream.

IDL Syntax
char read_char();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a char value.

Example
CosStream_StreamIO myStream;

...

myChar=_read_char(myStream, ev);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 9

read_double Method

read_double Method
The read_double method reads a double from a stream.

IDL Syntax
double read_double();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a double value.

Example
CosStream_StreamIO myStream;

...

myDouble=_read_double(myStream, ev);

Original Class
CosStream::StreamIO

10 Programmer’s Reference for Object Services

read_float Method

read_float Method
The read_float method reads a float from a stream.

IDL Syntax
float read_float();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a float value.

Example
CosStream_StreamIO myStream;

...

myFloat=_read_float(myStream, ev);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 11

read_long Method

read_long Method
The read_long method reads a long integer from a stream.

IDL Syntax
long read_long();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a long value.

Example
CosStream_StreamIO myStream;

...

myLong=_read_long(myStream, ev);

Original Class
CosStream::StreamIO

12 Programmer’s Reference for Object Services

read_octet Method

read_octet Method
The read_octet method reads an octet from a stream.

IDL Syntax
octet read_octet();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as an octet value.

Example
CosStream_StreamIO myStream;

...

myOctet=_read_octet(myStream, ev);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 13

read_short Method

read_short Method
The read_short method reads a short integer from a stream.

IDL Syntax
short read_short();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a short value.

Example
CosStream_StreamIO myStream;

...

myShort=_read_short(myStream, ev);

Original Class
CosStream::StreamIO

14 Programmer’s Reference for Object Services

read_string Method

read_string Method
The read_string method reads a string from a stream.

IDL Syntax
string read_string();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a string value.

The memory for the return value is owned by the caller and should be freed using
SOMFree when it is no longer needed.

Example
CosStream_StreamIO myStream;

...

if (myString)

SOMFree(myString,ev);

myString=_read_string(myStream, ev);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 15

read_unsigned_long Method

read_unsigned_long Method
The read_unsigned_long method reads an unsigned long integer from a stream.

IDL Syntax
unsigned long read_unsigned_long();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a unsigned long value.

Example
CosStream_StreamIO myStream;

...

myUnsignedLong=_read_unsigned_long(myStream, ev);

Original Class
CosStream::StreamIO

16 Programmer’s Reference for Object Services

read_unsigned_short Method

read_unsigned_short Method
The read_unsigned_short method reads an unsigned short integer from a stream.

IDL Syntax
unsigned short read_unsigned_short();

Description
Streamable objects use this method to internalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their internalize_from_-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Return Value
Returns the next value stored in the stream as a unsigned short value.

Example
CosStream_StreamIO myStream;

...

myUnsignedShort=_read_unsigned_short(myStream, ev);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 17

reset Method

reset Method
The reset method resets the current position in the StreamIO buffer to the beginning of the
buffer (first byte).

IDL Syntax
void reset();

Description
The reset method resets the current position in StreamIO buffer to the first byte.
Subsequent reads or writes to the StreamIO begin with the first byte in the stream buffer. If
the buffer has unused memory, the reset method shrinks the buffer using SOMRealloc.
When the stream is reset, the end_context method is implicitly called.

This must be overridden by subclasses, and the subclass should call its parent reset
method.

Intended Usage
This method is intended to be used by special client programs that need to reset the
internal stream buffer. Normally it is invoked by the clear_buffer method. It must be
overridden by specialized StreamIO classes with a specific implementation.

This method is not defined in the OMG standard.

Example
/* myStreamIO needs to be declared as either

somStream_MemoryStreamIO, somStream_StandardStreamIO,

or somStream_StringStreamIO. */

...

_reset(myStreamIO,ev);

...

Original Class
somStream::StreamIO Class

18 Programmer’s Reference for Object Services

set_buffer Method

set_buffer Method
The set_buffer method sets the StreamIO buffer to a copy of the buffer passed in.

IDL Syntax
void set_buffer(in somStream::seq_octet buffer);

Description
Sets the StreamIO buffer to a copy of the buffer parameter. The client retains ownership of
the buffer parameter. The StreamIO current position is reset to the first byte in the buffer.

This must be overridden by subclasses.

Intended Usage
This method is intended to be used by special client programs that need to set the internal
stream buffer. It must be overridden by specialized StreamIO classes with a specific
implementation.

This method is not defined in the OMG standard.

Parameters
buffer

A sequence of octets to be copied into the StreamIO buffer.

Example
seq_octet inputBuffer;

/* myStreamIO needs to be declared as either

somStream_MemoryStreamIO, somStream_StandardStreamIO, or

somStream_StringStreamIO. */

...

/* Allocate a fill the inputBuffer with valid stream data */

inputBuffer._buffer=SOMMalloc(datalen);

..

_set_buffer(myStreamIO, ev, &inputBuffer);

Original Class
somStream::StreamIO Class

Chapter 1. Externalization Service 19

write_boolean Method

write_boolean Method
The write_boolean method writes a boolean into a stream.

IDL Syntax
void write_boolean(in boolean item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type boolean.

Example
CosStream_StreamIO myStream;

...

_write_boolean(myStream, ev, myBoolean);

Original Class
CosStream::StreamIO

20 Programmer’s Reference for Object Services

write_char Method

write_char Method
The write_char method writes a char into a stream.

IDL Syntax
void write_char(in char item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type char.

Example
CosStream_StreamIO myStream;

...

_write_char(myStream, ev, myChar);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 21

write_double Method

write_double Method
The write_double method writes a double into a stream.

IDL Syntax
void write_double(in double item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type double.

Example
CosStream_StreamIO myStream;

...

_write_double(myStream, ev, myDouble);

Original Class
CosStream::StreamIO

22 Programmer’s Reference for Object Services

write_float Method

write_float Method
The write_float method writes a float into a stream.

IDL Syntax
void write_float(in float item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type float.

Example
CosStream_StreamIO myStream;

...

_write_float(myStream, ev, myFloat);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 23

write_long Method

write_long Method
The write_long method writes a long integer into a stream.

IDL Syntax
void write_long(in long item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type long.

Example
CosStream_StreamIO myStream;

...

_write_long(myStream, ev, myLong);

Original Class
CosStream::StreamIO

24 Programmer’s Reference for Object Services

write_octet Method

write_octet Method
The write_octet method writes an octet into a stream.

IDL Syntax
void write_octet(in octet item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type octet.

Example
CosStream_StreamIO myStream;

...

_write_octet(myStream, ev, myOctet);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 25

write_short Method

write_short Method
The write_short method is writes a short integer into a stream.

IDL Syntax
void write_short(in short item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type short.

Example
CosStream_StreamIO myStream;

...

_write_short(myStream, ev, myShort);

Original Class
CosStream::StreamIO

26 Programmer’s Reference for Object Services

write_string Method

write_string Method
The write_string method writes a string into a stream.

IDL Syntax
void write_string(in string item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type string.

Example
CosStream_StreamIO myStream;

...

_write_string(myStream, ev, myString);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 27

write_unsigned_long Method

write_unsigned_long Method
The write_unsigned_long method writes unsigned long integer into a stream.

IDL Syntax
void write_unsigned_long(in unsigned long item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type unsigned long.

Example
CosStream_StreamIO myStream;

...

_write_unsigned_long(myStream, ev, myUnsignedLong);

Original Class
CosStream::StreamIO

28 Programmer’s Reference for Object Services

write_unsigned_short Method

write_unsigned_short Method
The write_unsigned_short method writes an unsigned short integer into a stream.

IDL Syntax
void write_unsigned_short(in unsigned short item);

Description
Streamable objects use this method to externalize their state data.

Intended Usage
This method is intended to be used by Streamable objects within their externalize_to-
stream method. It must be overridden by specialized StreamIO classes with a specific
implementation.

Parameters
item

The data to be written into the stream, of data type unsigned short.

Example
CosStream_StreamIO myStream;
unsigned short myUnsignedShort;

...

_write_unsigned_short(myStream, ev, myUnsignedShort);

Original Class
CosStream::StreamIO

Chapter 1. Externalization Service 29

somStream::MemoryStreamIO Class

somStream::MemoryStreamIO Class

The somStream::MemoryStreamIO implementation stores the data in the format native to
the process in which the buffer resides. The code page of the character data, the endian
format, and the floating point format can vary.

The somStream::MemoryStreamIO class is a subclass of the somStream::StreamIO
class. This class implements the read_<type>, write_<type> and other abstract methods
introduced in somStream::StreamIO Class. This class is a complete and usable
implementation of the OMG CosStream::StreamIO interface.

File Stem
somestio

Base
somStream::StreamIO

Metaclass
SOMClass

Ancestor Class
somStream::StreamIO Class

CosStream::StreamIO

SOMObject Class

New Methods
None.

30 Programmer’s Reference for Object Services

somStream::MemoryStreamIO Class

Overridden Methods
clear_buffer Method

get_buffer Method

read_boolean Method

read_char Method

read_double Method

read_float Method

read_long Method

read_octet Method

read_short Method

read_string Method

read_unsigned_long Method

read_unsigned_short Method

read_octet Method

set_buffer Method

somDefaultInit Method

somDestruct Method

write_boolean Method

write_char Method

write_double Method

write_float Method

write_long Method

write_octet Method

write_string Method

write_unsigned_long Method

write_unsigned_short Method

See somStream::StreamIO Class for a complete specification of these methods.

Chapter 1. Externalization Service 31

somStream::Streamable Class

somStream::Streamable Class

The somStream::Streamable class is an implementation of the CosStream::Streamable
interface. This class provides the methods necessary to convert the state data of an object
into and out of this externalized form.

The somStream::Streamable class also inherits from the somOS::ServiceBase class,
which supplies the implementation for IdentifiableObject.

File Stem
somestio

Base
somOS::ServiceBase

CosStream::Streamable

Metaclass
SOMClass

Ancestor Class
somOS::ServiceBase

CosObjectIdentity::IdentifiableObject

CosStream::Streamable

SOMObject Class

New Methods
externalize_to_stream Method

internalize_from_stream Method

32 Programmer’s Reference for Object Services

somStream::Streamable Class

Overridden Methods
somDefaultInit Method

somDestruct Method

Chapter 1. Externalization Service 33

externalize_to_stream Method

externalize_to_stream Method
The externalize_to_stream method writes the state data of a streamable object to a
stream.

IDL Syntax
void externalize_to_stream (in StreamIO stream);

Description
The externalize_to_stream method writes the object’s state data to a stream. This is done
through various calls to the write_<type> methods. The amount of data to be externalized
and the order in which it is externalized are determined by the object.

This method must be overridden by the object provider. The implementation should call
each parent externalize_to_stream method.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
stream

A stream object.

Original Class
CosStream::Streamable

34 Programmer’s Reference for Object Services

internalize_from_stream Method

internalize_from_stream Method
The internalize_from_stream method reads the state data of an object from a stream.

IDL Syntax
void internalize_from_stream (

in StreamIO stream,
in CosLifeCycle::FactoryFinder ff);

Description
The internalize_from_stream method reads the state data of an object from a stream.
This is done through various calls to the read_<type> methods. The amount of data to be
internalized and the order in which it is internalized are determined by the object.

This method must be overridden by the object provider. The implementation should call
each parent internalize_from_stream method.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
stream

A stream object.

ff
A LifeCycle factory finder. This parameter is provided only for use in calling the
read_object method.

Original Class
CosStream::Streamable

Chapter 2. Naming Service 35

Chapter 2. Naming Service

The Naming Service provides support for the OMG Naming Specification and IBM
Extended Naming enhancements. The services introduces two primary interfaces —
CosNaming::NamingContext and ExtendedNaming::ExtendedNamingContext — and
a number of secondary interfaces. Most of these are implemented in classes introduced in
the FileXNaming module — in particular CosNaming::NamingContext and Extended-
Naming::ExtendedNamingContext are implemented in FileXNaming::FileENC. LName
and LNameComponent are implemented separately.

The ExtendedNaming::ExtendedNamingContext interface introduces methods for
searching a naming context based on the property-values assigned to a name-binding. The
BNF for the constraint expression is provided in Appendix A, BNF for Naming Constraint
Language.

36 Programmer’s Reference for Object Services

LNameComponent Class

LNameComponent Class

The LNameComponent class provides support for OMG library name components.

Intended Usage
The OMG Names Library implements names as pseudo-objects. This provides a
convenient way of constructing CosNaming::Names, which otherwise have to be
assembled into a structure. The Names Library, also known as an LName, makes it easier
to build a compound name by constructing individual name components —
LNameComponents — which can then be inserted into the LName.

A client makes calls on pseudo-objects the same way as on ordinary objects. Pseudo-
object references cannot be passed across IDL interfaces.

The LNameComponent class is part of the OMG names library. The names library
consists of two interfaces: the LNameComponent, and the LName. Name components
consist of two elements: an ID, and a kind. This class defines methods to manipulate these
two elements in the LNameComponent, and for inserting LNameComponents into an
LName.

Also, see “LName Class” on page 43

File Stem
Inamec

Base Classes
SOMObject Class

Ancestor Classes
None.

New Methods
destroy Method
get_id Method
get_kind Method
set_id Method
set_kind Method

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• LNameComponent::NotSet is raised to indicate that the attribute has not been set.

Chapter 2. Naming Service 37

LNameComponent Class

Related Information
See LName Class on page 43.

Creating a Library Name Component
To create a Library Name Component pseudo-object use the following function:

CosNaming::LNameComponent create_lname_component();

The returned pseudo-object can then be operated on using the operations defined for the
LNameComponent class.

38 Programmer’s Reference for Object Services

destroy Method

destroy Method
Destroys the library name component.

IDL Syntax
void destroy();

Description
Destroys the library name component. It invokes the somFree Method to free the object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LNameComponent Class

Chapter 2. Naming Service 39

get_id Method

get_id Method
Retrieves the ID element of a library name component.

IDL Syntax
string get_id();

Description
A name component has the two elements ID and kind. The get_id method retrieves the ID
element of a library name component.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Return Value
A string is returned, which is the ID element of the target library name component.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

LNameComponent::NotSet is raised if the ID element has not been set in the target
library name component.

Original Class
LNameComponent Class

40 Programmer’s Reference for Object Services

get_kind Method

get_kind Method
Retrieves the kind element of a library name component.

IDL Syntax
string get_kind();

Description
A name component has the two elements id and kind. The get_kind method retrieves the
kind element of a library name component.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Return Value
A string is returned representing the kind element of the target library name component.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

LNameComponent::NotSet is raised if the kind element has not been set in the target
library name component.

Original Class
LNameComponent Class

Chapter 2. Naming Service 41

set_id Method

set_id Method
Sets the ID element of a library name component.

IDL Syntax
void set_id(in string ID);

Description
Sets the ID of a library name component.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
ID

A string to be used for the ID element of the name component.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LNameComponent Class

42 Programmer’s Reference for Object Services

set_kind Method

set_kind Method
Sets the kind element of a library name component.

IDL Syntax
void set_kind(in string kind);

Description
Sets the kind element of a library name component.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
kind

A string to be used for the kind.

Return Value
void

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LNameComponent Class

Chapter 2. Naming Service 43

LName Class

LName Class

The LName class provides support for OMG library names.

Intended Usage
The OMG Names Library implements names as pseudo-objects. A client makes calls on
pseudo-objects in the same way it makes calls on ordinary objects. Pseudo-object
references cannot be passed across IDL interfaces.The Names Library supports operations
to convert a Library Name into a value that can be passed to the Name Service through the
NamingContext interface.

The LName class is part of the OMG names library. The names library consists of two
interfaces: the LNameComponent, and the LName. Names consist of one or more name
components. Each component, except the last, is used to identify names of subcontexts.
The last component denotes a bound object. This class defines methods to manipulate
name components for a name.

File Stem
Iname

Base Classes
SOMObject Class

Ancestor Classes
None.

New Methods
delete_component Method
destroy Method
equal Method
from_idl_form Method
get_component Method
insert_component Method
less_than Method
num_components Method
to_idl_form Method

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

LName::NoComponent is raised for insert methods, with indicator i representing the ith
LNameComponent if the LNameComponent i –1 is undefined and if LNameComponent i

44 Programmer’s Reference for Object Services

LName Class

is greater than 1. This exception is also raised for get and delete methods if component i
does not exist.

LName::OverFlow is raised if resources cannot be allocated.

Related Information
See LNameComponent Class on page 36.

Creating a Library Name
To create a Library Name pseudo-object, use the following function:

LName create_lname();

The returned pseudo-object can then be operated on using the operations defined for the
LName class.

Chapter 2. Naming Service 45

delete_component Method

delete_component Method
Deletes a library name component from a library name.

IDL Syntax
CosNaming::LNameComponent delete_component(in unsigned long i);

Description
Deletes the ith name component from a library name. The first position is position 1. After a
delete operation has been performed without error, the compound name has one fewer
component, and components previously identified as i+1...n are now identified as i...n-1.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
i

The ith position for the delete; 1-origin.

Return Value
This method returns the deleted LNameComponent.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

LName::NoComponent is raised if component i does not exist.

Original Class
LName Class

46 Programmer’s Reference for Object Services

destroy Method

destroy Method
Destroys a library name.

IDL Syntax
void destroy();

Description
Destroys the library name. It invokes the somFree Method to free the object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LName Class

Chapter 2. Naming Service 47

equal Method

equal Method
Determines equality of another library name.

IDL Syntax
boolean equal(in CosNaming::LName lname);

Description
Determines equality of another library name. Two library names are equal if both have the
same number of components and if the id and kind elements are identical for every
component.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
Iname

The library name to be used for comparison.

Return Value
This method returns a Boolean value, indicating TRUE if equal, or FALSE if not.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LName Class

48 Programmer’s Reference for Object Services

from_idl_form Method

from_idl_form Method
Translates from an IDL form into a library name.

IDL Syntax
void from_idl_form(in CosNaming::Name name);

Description
CORBA specifies a library name as a pseudo-object; therefore, it cannot be passed across
an IDL interface. The from_idl_form method sets the component’s ID and kind elements of
the target library name from the name.

The CosNaming::NamingContext interface and the ExtendedNaming::Extended-
NamingContext interface define operations that return an CosNaming::Name structure.
Because the library name is a pseudo-object, this method sets the ID and kind elements of
the library name.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name to be used for the translation.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LName Class

Chapter 2. Naming Service 49

get_component Method

get_component Method
Retrieves a library name component from a library name.

IDL Syntax
CosNaming::LNameComponent get_component(in unsigned long i);

Description
Retrieves the ith library name component from a library name. The first position is position
1.

Clients typically use this method to retrieve a component from a library name object. Then
they use the get_id and get_kind methods to extract the ID and kind elements of the
component.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
i

The ith position for the retrieval; 1-origin.

Return Value
An LNameComponent is returned, which is the requested library name component.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• LName::NoComponent is raised if component i does not exist.

Original Class
LName Class

50 Programmer’s Reference for Object Services

insert_component Method

insert_component Method
Inserts a library name component into a library name.

IDL Syntax
CosNaming::LName insert_component(

in unsigned long i,
in CosNaming::LNameComponent lname_comp);

Description
Inserts a library name component into a library name. The library name component is
inserted after the specified position. The first position is position 1.

This method is used to insert a library name component into a library name. After a library
name object is created, clients can add more components to the library name.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
i

The ith position for the insert; 1-origin. The component is inserted immediately
preceding this position.

lname_comp
The library name component to be inserted.

Return Value
An LName is returned, which is the target library name.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

LName::NoComponent is raised if the LNameComponent i –1 is undefined and
LNameComponent i is greater than 1.

LName::OverFlow is raised if resources cannot be allocated.

Original Class
LName Class

Chapter 2. Naming Service 51

less_than Method

less_than Method
Determines order of another library name.

IDL Syntax
 boolean less_than(in CosNaming::LName lname);

Description
Tests for the order of the library name in relation to library name lname. Returns TRUE if:

• The number of components in the target library name is less than the number in the
passed argument lname.

• The number of components in the target equals the number in the passed argument ln
and there is it least one component whose ID and kind elements are lexically less than
the same fields of the corresponding component in the library name lname.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
Iname

The library name to be used for comparison.

Return Value
The method returns a Boolean value, indicating TRUE if the target library name is less than
the library name passed as an argument.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LName Class

52 Programmer’s Reference for Object Services

num_components Method

num_components Method
Retrieves the number of library name components in a library name.

IDL Syntax
unsigned long num_components();

Description
Retrieves the number of library name components in a library name.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Return Value
An unsigned long is returned, which is the number of library name components.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
LName Class

Chapter 2. Naming Service 53

to_idl_form Method

to_idl_form Method
Produces a CosNaming::Name for a library name suitable for transmitting to an IDL-
defined interface.

IDL Syntax
 CosNaming::Name to_idl_form();

Description
Produces a CosNaming::Name for the target library name. This operation produces a
structure that can be passed across an IDL request.

Several operations on naming contexts have arguments of type IDL structure
CosNaming::Name. Because library name is a pseudo-object, it cannot be passed across
an IDL interface. Clients can use this method to convert a library name to a CosNaming::-
Name structure and pass it across IDL interfaces.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Return Value
This method returns a CosNaming::Name from the target LName.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

CosNaming::InvalidName

Original Class
LName Class

54 Programmer’s Reference for Object Services

FileXNaming::FileBindingIterator Class

FileXNaming::FileBindingIterator Class

The FileXNaming::FileBindingIterator class provides support for OMG binding iteration.

Intended Usage
This class is instantiated and returned as an out parameter in the CosNaming::Naming-
Context::list method if the targeted naming context contains more name-object bindings
than requested.

File Stem
xnamingf

Base Classes
SOMObject Class

Ancestor Classes
CosNaming::BindingIterator Class

Types
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;

Chapter 2. Naming Service 55

FileXNaming::FileBindingIterator Class

New Methods
destroy Method
next_n Method
next_one Method

Overridden Methods
somDefaultInit Method
somDestruct Method

Exceptions
CORBA 1.1 standard exceptions.

56 Programmer’s Reference for Object Services

destroy Method

destroy Method
Destroys the iterator.

IDL Syntax
void destroy();

Description
Destroys the iterator and frees up allocated memory. It invokes the somFree Method to
free the object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
CosNaming::BindingIterator

Chapter 2. Naming Service 57

next_n Method

next_n Method
Retrieves at most the specified number of name-object bindings.

IDL Syntax
boolean next_n(

in unsigned long how_many,
out CosNaming::BindingList blist);

Description
Returns how_many bindings in the blist parameter. This method will return fewer bindings if
less than how_many bindings remain in the iterator. With the next_n operation, clients can
iterate through the bindings. Returns FALSE if there are no more bindings to return.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
how_many

The maximum number of bindings to be returned.

blist
The returned BindingList.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
CosNaming::BindingIterator

58 Programmer’s Reference for Object Services

next_one Method

next_one Method
Retrieves the next name-object binding.

IDL Syntax
boolean next_one(out CosNaming::Binding binding);

Description
Returns the next name-object binding in the binding parameter. A FALSE is returned if
there are no more bindings.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
binding

The returned Binding.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more bindings.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
CosNaming::BindingIterator

Chapter 2. Naming Service 59

FileXNaming::FPropertyBindingIterator Class

FileXNaming::FPropertyBindingIterator Class

The FileXNaming::PropertyBindingIterator class provides support for property binding
iteration.

Intended Usage
This class is instantiated and returned through the ExtendedNaming::ExtendedNaming-
Context::list_properties method if an extended naming context contains more property
bindings than requested.

File Stem
xnamingf

Base Classes
SOMObject Class

Ancestor Classes
ExtendedNaming::PropertyBindingIterator Class

Types
typedef struct PropertyBinding_struct {

CosNaming::Istring property_name;
boolean sharable;

} PropertyBinding;
typedef sequence<PropertyBinding> PropertyBindingList;

New Methods
destroy Method
next_n Method
next_one Method

Overridden Methods
somDefaultInit Method
somDestruct Method

60 Programmer’s Reference for Object Services

FileXNaming::FPropertyBindingIterator Class

Exceptions
CORBA 1.1 standard exceptions.

Chapter 2. Naming Service 61

destroy Method

destroy Method
Destroys the iterator.

IDL Syntax
void destroy();

Description
Destroys the iterator. It invokes the somFree Method to free the object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::PropertyBindingIterator Interface

Related Information
list_properties Method

62 Programmer’s Reference for Object Services

next_n Method

next_n Method
Retrieves a specified maximum number of property bindings.

IDL Syntax
boolean next_n(

in unsigned long how_many,
out ExtendedNaming::PropertyBindingList pblist);

Description
Returns how_many bindings in the pblist parameter.This method is used, in standard
CORBA fashion, to obtain the next several property bindings from the extended naming
context with which the targeted FPropertyBindingIterator is associated. Calling programs
should check the return value for decision making for further invocations on the iterator.
The method returns FALSE if there are no more property bindings to obtain.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
how_many

Maximum number of bindings to return.

pblist
The returned PropertyBindingList.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more property bindings and where TRUE indicates more property bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::PropertyBindingIterator Interface

Related Information
list_properties Method

Chapter 2. Naming Service 63

next_one Method

next_one Method
Retrieves the next property binding.

IDL Syntax
boolean next_one(out ExtendedNaming::PropertyBinding pbinding);

Description
Returns the next property binding in the pbinding parameter. This method is used, in
standard CORBA fashion, to obtain the next property binding from the extended naming
context for which the targeted PropertyBindingIterator is associated. Calling programs
should check the return value for decision making for further invocations on the iterator.
The method returns FALSE if there are no more bindings to obtain.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
pbinding

The returned PropertyBinding.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more property bindings and where TRUE indicates more property bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::PropertyBindingIterator Interface

Related Information
list_properties Method

64 Programmer’s Reference for Object Services

FileXNaming::FPropertyIterator Class

FileXNaming::FPropertyIterator Class

The FileXNaming::FPropertyIterator class provides support for extended naming property
iteration.

Intended Usage
This class is instantiated and outputted through the ExtendedNaming::Extended-
NamingContext::get_properties or ExtendedNaming::ExtendedNaming-
Context::get_all_properties methods if an extended naming context contains more
properties than requested.

File Stem
xnamingf

Base Classes
SOMObject Class

Ancestor Classes
ExtendedNaming::PropertyIterator Class

Types
typedef struct Property_struct {

PropertyBinding binding ;
any value;

} Property;
typedef sequence<Property> PropertyList;

New Methods
destroy Method
next_n Method
next_one Method

Overridden Methods
somDefaultInit Method
somDestruct Method

Chapter 2. Naming Service 65

FileXNaming::FPropertyIterator Class

Exceptions
CORBA 1.1 standard exceptions.

66 Programmer’s Reference for Object Services

destroy Method

destroy Method
Destroys the iterator.

IDL Syntax
void destroy();

Description
 Destroys the iterator. It invokes the somFree Method to free the object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::PropertyIterator Interface

Related Information
get_properties Method
get_all_properties Method

Chapter 2. Naming Service 67

next_n Method

next_n Method
Retrieves a specified maximum number of properties.

IDL Syntax
boolean next_n(

in unsigned long how_many,
out ExtendedNaming::PropertyList plist);

Description
Returns a specified maximum number of properties in the pl parameter.This method is
used, in standard CORBA fashion, to obtain the next several properties from the extended
naming context with which the targeted PropertyIterator is associated. Calling programs
should check the return value for decision making for further invocations on the iterator.
The method returns FALSE if there are no more properties to obtain, indicating to the
calling program that it should not invoke the method again.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
how_many

The maximum number of bindings.

plist
The returned PropertyList.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::PropertyIterator Interface

Related Information
get_properties Method
get_all_properties Method

68 Programmer’s Reference for Object Services

next_one Method

next_one Method
Retrieves the next property.

IDL Syntax
boolean next_one(out ExtendedNaming::Property property);

Description
Returns the next property in the property parameter. This method is used, in standard
CORBA fashion, to obtain the next property from the extended naming context for which
the targeted PropertyIterator is associated with. Calling programs should check the return
value for decision making for further invocations on the iterator. The method returns FALSE
if there are no more properties to obtain.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
property

The returned Property.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::PropertyIterator Interface

Related Information
get_properties Method
get_all_properties Method

Chapter 2. Naming Service 69

FileXNaming::FileIndexIterator Class

FileXNaming::FileIndexIterator Class

The FileXNaming::FileIndexIterator class provides support for ExtendedNaming index
iteration.

Intended Usage
This class is instatiated and returned from the ExtendedNaming::ExtendedNaming-
Context::list_indexes method if an extended naming context contains more indexes than
requested.

File Stem
xnamingf

Base Classes
SOMObject Class

Ancestor Classes
ExtendedNaming::IndexIterator Class

Types
typedef struct IndexDescriptor_struct {

CosNaming::Istring property_name;
TypeCode property_type;
unsigned long distance;

} IndexDescriptor;
typedef sequence<IndexDescriptor> IndexDescriptorList;

New Methods
destroy Method
next_n Method
next_one Method

Overridden Methods
somDefaultInit Method
somDestruct Method

70 Programmer’s Reference for Object Services

FileXNaming::FileIndexIterator Class

Exceptions
CORBA 1.1 standard exceptions.

Chapter 2. Naming Service 71

destroy Method

destroy Method
Destroys the iterator.

IDL Syntax
void destroy();

Description
 Destroys the iterator. It invokes the somFree Method to free the object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::IndexIterator Interface

Related Information
remove_index Method

72 Programmer’s Reference for Object Services

next_n Method

next_n Method
Retrieves a specified maximum number of index descriptors.

IDL Syntax
boolean next_n(

in unsigned long how_many,
out ExtendedNaming::IndexDescriptorList idxlist);

Description
Returns a specified maximum number of bindings.This method is used, in standard CORBA
fashion, to obtain the next several index descriptors from the extended naming context for
which the targeted IndexIterator is associated. Calling programs should check the return
value for decision making for further invocations on the iterator. The method returns FALSE
if there are no more index descriptors to obtain, indicating to the calling program that it
should not invoke the method again.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
how_many

The maximum number of bindings.

idxlist
The returned IndexDescriptorList.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::IndexIterator Interface

Related Information
remove_index Method

Chapter 2. Naming Service 73

next_one Method

next_one Method
Retrieves the next index descriptor.

IDL Syntax
boolean next_one(out ExtendedNaming::IndexDescriptor idx);

Description
Returns the next index descriptor in the p parameter. This method is used, in standard
CORBA fashion, to obtain the next index descriptor from the extended naming context with
which the targeted IndexIterator is associated. Calling programs should check the return
value for decision making for further invocations on the iterator. The method returns FALSE
if there are no more index descriptors to obtain.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
idx

The returned IndexDescriptor.

Return Value
This method returns a Boolean value where FALSE indicates to the client that there are no
more bindings and where TRUE indicates more bindings exist.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::IndexIterator Interface

Related Information
remove_index Method

74 Programmer’s Reference for Object Services

FileXNaming::FileENC Class

FileXNaming::FileENC Class

The FileXNaming::FileENC class provides support for the CosNaming::NamingContext
and the extensions introduced in the ExtendedNaming::ExtendedNamingContext
interfaces.

Intended Usage
The FileXNaming::FileENC class is the concrete implementation of the Extended-
Naming::ExtendedNamingContext interface.

File Stem
xnamingf

Base Classes
SOMObject Class

somOS::ServiceBase Class

Ancestor Classes
CosObjectIdentity::IdentifiableObject

CosNaming::NamingContext

ExtendedNaming::ExtendedNamingContext

Types
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;

enum BindingType {nobject, ncontext};

Chapter 2. Naming Service 75

FileXNaming::FileENC Class

struct Binding {
Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;

typedef string Constraint;
typedef sequence<CosNaming::Istring> IList;

typedef struct PropertyBinding_struct {
CosNaming::Istring property_name;
boolean sharable;

} PropertyBinding;
typedef sequence<PropertyBinding> PropertyBindingList;

typedef struct Property_struct {
PropertyBinding binding ;
any value;

} Property;
typedef sequence<Property> PropertyList;

typedef struct IndexDescriptor_struct {
CosNaming::Istring property_name;
TypeCode property_type;
unsigned long distance;

} IndexDescriptor;
typedef sequence<IndexDescriptor> IndexDescriptorList;

New Methods
add_index Method
add_properties Method
add_property Method
bind Method
bind_context_with_properties Method
bind_with_properties Method
find_all Method
find_any Method
find_any_name_binding Method
get_all_properties Method
get_features_supported Method
get_properties Method
get_property Method
list Method
list_indexes Method
list_properties Method
rebind_with_properties Method
rebind_context_with_properties Method
remove_all_properties Method
remove_index Method
remove_properties Method
remove_property Method
resolve_with_all_properties Method
resolve_with_properties Method
resolve_with_property Method

76 Programmer’s Reference for Object Services

FileXNaming::FileENC Class

_get_allowed_object_types Method
_get_allowed_property_names Method
_get_allowed_property_types Method

Overridden Methods
somDefaultInit Method
somDestruct Method

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name. Re-binding operations unbind the name, then rebinds the
name without raising this exception.

• CosNaming::NamingContext::CannotProceed{NamingContext ctx; Name
rest_of_name;}; is raised to indicate that the implementation has given up for some
reason. The client may be able to continue the operation using the returned naming
context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;}; is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName indicates that
the property name is invalid. A property name with length of zero is invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported indicates that the
implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName indicates
the property name is in conflict.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;} indicates that a property was not found.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression
indicates that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound; indicates that a
requested binding was not found.

Chapter 2. Naming Service 77

add_index Method

add_index Method
Identifies a property to be indexed.

IDL Syntax
 void add_index(in ExtendedNaming::IndexDescriptor idx);

Description
Identifies a property to be indexed. The index applies to any name-object bindings in the
targeted extended naming context or sub-extended naming contexts up to a depth of
distance, whose property name and property type are specified in idx. If distance is set to 0
this operation builds an index for only the targeted context. If distance is set to something
greater than 0, this operation operates recursively on all sub-contexts down to the depth
specified. Any properties added later to bindings in the target extended naming context or
relevant sub-extended naming contexts of this property name and type are automatically
added to the index.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
idx

The index descriptor to be added.

Return Value
 void

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

ExtendedNaming::ExtendedNamingContext::NotSupported{}; is raised to indicate that
implementation does not support this method.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

78 Programmer’s Reference for Object Services

add_properties Method

add_properties Method
Adds properties to name-object binding.

IDL Syntax
void add_properties(

in CosNaming::Name name,
in ExtendedNaming::PropertyList props);

Description
Adds properties to name-object binding. Adds or updates multiple properties, specified in
props, associated with a name-object binding specified by name, in a target extended
naming context. If a property already exists, the property is updated. If a property does not
already exist, a new property is associated with the binding (added).

Note: The sharable flag inside a property’s PropertyBinding is not supported at this time.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

props
The PropertyList to be added.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

- CosNaming::NamingContext::NotFound is raised to indicate that the name does
not identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of
the intermediate contexts cannot be resolved.

- CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue
the operation using the returned naming context.

- CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

- ExtendedNaming::ExtendedNamingContext::InvalidPropertyName; is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

- ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

- ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName; is
raised to indicate that the property is in conflict.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 79

add_property Method

add_property Method
Adds a property to name-object binding.

IDL Syntax
void add_property(

in CosNaming::Name name,
in ExtendedNaming::Property prop);

Description
Adds a property to binding. Adds or updates a single property, specified as prop,
associated with a name-object binding specified by name, in a target extended naming
context. If the property already exists the property is updated with the specified property,
prop. If the property does not already exist, then specified property is associated with the
binding (added).

Note: The sharable flag inside a property’s PropertyBinding is not supported at this time.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the binding.

prop
The Property to be added.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

80 Programmer’s Reference for Object Services

bind Method

bind Method
Creates a binding in a naming context.

IDL Syntax
void bind(

in CosNaming::Name name,
in SOMObject obj);

Description
Creates a binding to an object in a naming context. Binding a name and object into a
naming context creates a name-object association relative to the target naming context.
Once an object is bound, it can be found through the resolve operation. Naming contexts
that are bound using bind do not participate in name resolution when compound names are
resolved — bind_context should be used to bind naming context objects. This method
runs resolve to traverse a compound name.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name for the binding.

obj
The SOMObject to be bound.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name. Re-binding operations unbind the name, then rebinds the
name without raising this exception.

Original Class
CosNaming::NamingContext

Chapter 2. Naming Service 81

bind_context Method

bind_context Method
Creates a naming context binding.

IDL Syntax
void bind_context(

in CosNaming::Name name,
in CosNaming::NamingContext naming_context);

Description
Creates a naming context binding. Binding a name and a naming context object into a
naming context creates a name-object association relative to the target naming context.
Naming contexts that are bound using bind_context participate in name resolution when
compound names are resolved.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name for the binding.

naming_context
The naming context object to be bound.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name. Re-binding operations unbind the name, then rebinds the
name without raising this exception.

Original Class
CosNaming::NamingContext

82 Programmer’s Reference for Object Services

bind_context_with_properties Method

bind_context_with_properties Method
Creates a naming context object binding and associate properties.

IDL Syntax
void bind_context_with_properties(

in CosNaming::Name name,
in ExtendedNaming::ExtendedNamingContext obj,
in ExtendedNaming::PropertyList props);

Description
Binds a naming context with properties. Operates just like the CosNaming::-
NamingContext::bind_context operation in that it binds the specified naming context into
the target extended naming context. In addition, it defines properties associated with the
binding in props. Naming contexts bound using this operation participate in name resolution
when compound names are resolved.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the binding.

obj
The naming context object to be bound.

props
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client continues the operation using
the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name. Rebinding operations unbind the name, then rebind the
name without raising this exception.

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

Chapter 2. Naming Service 83

bind_context_with_properties Method

Original Class
ExtendedNaming::ExtendedNamingContext Interface

84 Programmer’s Reference for Object Services

bind_new_context Method

bind_new_context Method
Creates a new naming context in the same server as the target naming context on which
the operation was invoked and binds it to a supplied name.

IDL Syntax
CosNaming::NamingContext bind_new_context(in CosNaming::Name name);

Description
Creates a new naming context in the same process as the target naming context on which
the operation was invoked and binds it to a supplied name. The new naming context is
implemented in the same naming server as the target naming context in which it was bound.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name for the naming context object binding.

Return Value
This operation returns a new CosNaming::NamingContext bound to the supplied name.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name.

Original Class
CosNaming::NamingContext

Chapter 2. Naming Service 85

bind_with_properties Method

bind_with_properties Method
Creates a binding and associates properties to the binding.

IDL Syntax
void bind_with_properties(

in CosNaming::Name name,
in SOMObject obj,
in ExtendedNaming::PropertyList plist);

Description
Binds an object with properties. Operates just like the CosNaming::NamingContext::bind
operation in that it binds the specified obj into the target extended naming context. In
addition, it defines properties to be associated with the binding in prop (combination of
add_properties and bind). A property is replaced if it already exists.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

obj
The SOMObject to be bound.

plist
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• CosNaming::NamingContext::AlreadyBound is raised to indicate that an object is
already bound to the name. Rebinding operations unbind the name, then rebind the
name without raising this exception.

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

86 Programmer’s Reference for Object Services

bind_with_properties Method

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 87

destroy Method

destroy Method
Destroys a naming context.

IDL Syntax
void destroy();

Description
Destroys the naming context if the context is empty.

The naming context cannot contain bindings for this operation to succeed. It is the
responsibility of the client to ensure that all bindings have been removed from the naming
context before invoking this method . Use the unbind method to remove any bindings in
the naming context; for more information, refer to the “unbind Method” on page 118.

This method invokes the somFree Method to free the object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Exceptions
CosNaming::NamingContext::NotEmpty is raised is raised if the naming context contains
any bindings.

Original Class
CosNaming::NamingContext

88 Programmer’s Reference for Object Services

find_all Method

find_all Method
Retrieves all bindings satisfying property search constraints.

IDL Syntax
void find_all(

in ExtendedNaming::Constraint constraint,
in unsigned long distance,
in unsigned long how_many,
out CosNaming::BindingList blist,
out CosNaming::BindingIterator biterator);

Description
Outputs each CosNaming::Binding that satisfies the property search constraint specified
in constraint. It searches up to a depth of distance for all bindings that satisfy the given
constraint and puts them into the binding list, blist. If distance is set to 0, this operation
searches only the targeted context. Up to how_many name-object bindings are placed into
the binding list. If more than how_many objects are found to satisfy the constraint, the
remaining name-object bindings are placed into the binding iterator, biterator.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
constraint

The search constraint. This constraint is a string that must be formed in conformance
with the grammar specified in Appendix A, BNF for Naming Constraint Language.

distance
The search depth.

how_many
The maximum number of Bindings to put into blist.

blist
The outputted BindingList.

biterator
The outputted BindingIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that the search failed.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 89

find_all Method

Related Information
FileXNaming::FileBindingIterator Class

90 Programmer’s Reference for Object Services

find_any Method

find_any Method
Retrieves the first bound object that satisfies the given search constraint.

IDL Syntax
SOMObject find_any(

in ExtendedNaming::Constraint constraint,
in unsigned long distance);

Description
Returns the first bound SOMObject satisfying the property search constraint specified in
constraint. The returned SOMObject contains properties that satisfy the constraint. It
searches up to a depth of distance for a binding that satisfies the given constraint. If
distance is set to 0, this operation searches only the targeted context.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
constraint

The search constraint. This constraint is a string that must be formed in conformance
with the grammar specified in Appendix A, BNF for Naming Constraint Language.

distance
The search depth in the name graph.

Return Value
A SOMObject is returned, which satisfies the property search constraint.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that the search failed.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 91

find_any_name_binding Method

find_any_name_binding Method
Retrieves a name-object binding satisfying property search constraints.

IDL Syntax
void find_any_name_binding(

in ExtendedNaming::Constraint constraint,
in unsigned long distance,
out CosNaming::Binding binding);

Description
Returns a CosNaming::Binding satisfying the property search constraint specified in
constraint. The retrieved CosName::Binding is any name-object binding that contains
properties that satisfy constraint. It searches up to a depth of distance for a binding that
satisfies the given constraint. If distance is set to 0, this operation searches only the
targeted context.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
constraint

The search constraint. This constraint is a string that must be formed in conformance
with the grammar specified in Appendix A, BNF for Naming Constraint Language.

distance
The search depth in the Naming Service graph.

binding
The outputted Binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that a requested binding was not found.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

92 Programmer’s Reference for Object Services

get_all_properties Method

get_all_properties Method
Retrieves all properties for a name-object binding.

IDL Syntax
void get_all_properties(

in CosNaming::Name name,
in unsigned long how_many,
out ExtendedNaming::PropertyList props,
out ExtendedNaming::PropertyIterator rest);

Description
Returns all properties for a name-object binding. Returns the properties that are associated
with the name-object binding, specified by name, in the target extended naming context. If
the name-object binding contains more than how_many properties, then the remaining
properties are put in rest. Clients can iterate through the interator to retrieve the remaining
properties.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

how_many
The maximum number of properties to put into props.

props
The returned properties.

rest
The returned PropertyIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 93

get_all_properties Method

Related Information
ExtendedNaming::PropertyIterator Interface

94 Programmer’s Reference for Object Services

get_features_supported Method

get_features_supported Method
Retrieves the supported features.

IDL Syntax
unsigned short get_features_supported();

Description
Returns the supported features of an extended naming context. Gets a bit vector that
specifies the features this extended naming context implementation supports: 0 properties,
1 shared property, 2 searching, 3 indexing, 4 restrictions on object types, 5 restrictions on
property types, 6 restrictions on property names, 7 - 15 not used.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Return Value
An unsigned short bit vector is returned indicating supported features.

The return value contains 16 bits ordered as follows:

Individual bits are set TRUE if:

Bit Description
0

The naming context implements support for properties

1
The naming context implements support for property-sharing

2
The naming context implements support for searching on properties

3
The naming context implements support for creating indexes that are applied during
search operations

4
The naming context implements restrictions on the types of objects that can be bound
— see the allowed_object_types attribute to determine which object types can be
bound

5
The naming context implements restrictions on what property types can be created —
see the allowed_property_types attribute to determine which property types can be
used

6
The naming context implements restrictions on what property names can be used —
see the allowed_property_names attribute to determine which property names can be
used

7-15
unused

015

Chapter 2. Naming Service 95

get_features_supported Method

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

96 Programmer’s Reference for Object Services

get_properties Method

get_properties Method
Retrieves property values for the specified property name.

IDL Syntax
void get_properties(

in CosNaming::Name name,
in unsigned long how_many,
in ExtendedNaming::IList inames,
out ExtendedNaming::PropertyList props,
out ExtendedNaming::PropertyIterator rest);

Description
Returns a set of properties for a name-object binding. Returns the properties, with their
property names specified as inames, associated with the name-object binding specified by
name in the target extended naming context. If the name-object binding contains more than
how_many properties, the remaining properties are put in rest. Clients can iterate through
the iterator to retrieve the remaining properties.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

how_many
The maximum number of properties to put in props.

inames
The list of property names to be retrieved.

props
The returned properties.

rest
The returned PropertyIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

Chapter 2. Naming Service 97

get_properties Method

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::PropertyIterator Interface, which can be instantiated by this method.

98 Programmer’s Reference for Object Services

get_property Method

get_property Method
Retrieves the value of the specified property name.

IDL Syntax
void get_property(

in CosNaming::Name name,
in CosNaming::Istring pname,
out ExtendedNaming::Property prop);

Description
Returns a property (value of the property) for a name-object binding. Returns the property,
with its property name specified as pname, associated with the name-object binding
specified by name in the target extended naming context.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

pname
The property name to be returned.

prop
The returned property.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 99

list Method

list Method
Retrieves all of the bindings in a naming context.

IDL Syntax
void list(

in unsigned long how_many,
out CosNaming::BindingList blist,
out CosNaming::BindingIterator biterator);

Description
Returns all of the bindings in a naming context. Returns at most how_many number of
bindings in blist. If the naming context contains additional bindings, a BindingIterator is
returned, and the calling program can iterate through the remaining bindings. If the naming
context does not contain additional bindings, the BindingIterator is a NIL object reference.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
how_many

The maximum number bindings to install into the BindingList.

blist
The returned BindingList.

biterator
The returned BindingIterator.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
CosNaming::NamingContext

Related Information
FileXNaming::FPropertyBindingIterator Class

100 Programmer’s Reference for Object Services

list_indexes Method

list_indexes Method
Retrieves all defined indexes.

IDL Syntax
void list_indexes(

in unsigned long how_many,
out Extended::Naming IndexDescriptorList idxlist,
out IndexIterator rest);

Description
Returns all indexes defined in the target extended naming context. If any bindings in the
target extended naming context have properties that are part of indexes in a parent context,
those indexes are not listed. Up to how_many indexes are placed into the idxlist. If more
than how_many indexes are found, the remaining indexes are put into the rest.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
how_many

The maximum number of indexes to return.

idxlist
The returned IndexDescriptorList.

rest
The returned IndexIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate that
implementation does not support this method.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::IndexIterator Interface

Chapter 2. Naming Service 101

list_properties Method

list_properties Method
Retrieves all PropertyBindings for a name-object binding.

IDL Syntax
void list_properties(

in CosNaming::Name name,
in unsigned long how_many,
out ExtendedNaming::PropertyBindingList pblist,
out ExtendedNaming::PropertyBindingIterator rest);

Description
Returns all PropertyBindings for a name-object binding. Returns all of the
PropertyBindings (a structural part of an ExtendedNaming::Property) that are
associated with a name-object binding specified by name, in the target extended naming
context. If the name-object binding contains more than how_many PropertyBindings, the
remaining PropertyBindings are put in rest.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

how_many
The maximum number of PropertyBindings to return.

pblist
The returned PropertyBindingList.

rest
The returned PropertyBindingIterator.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Related Information
FileXNaming::FPropertyBindingIterator Class

102 Programmer’s Reference for Object Services

new_context Method

new_context Method
Creates an unbound new naming context in the same process as the target naming context
on which the operation was invoked.

IDL Syntax
CosNaming::NamingContext new_context();

Description
Creates an unbound new naming context in the same process as the target naming context
on which the operation was invoked. The new naming context is not bound to any name.

See bind_new_context Method on page 84..

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Return Value
This operation returns a FileXNaming::FileENC (derived from CosNaming::Naming-
Context) that is unbound.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
CosNaming::NamingContext

Chapter 2. Naming Service 103

rebind Method

rebind Method
Recreates a binding in a naming context even if the name is already bound in the naming
context.

IDL Syntax
void rebind(

in CosNaming::Name name,
in SOMObject obj);

Description
Recreates a name binding in a naming context, even if the name is already bound in the
naming context. Rebinding a name and object into a naming context recreates a name-
object association relative to the target naming context. Naming contexts that are bound
using rebind do not participate in name resolution process when compound names are
resolved.

If an object is already bound with the same name, the bound object is replaced by the
passed argument obj. If the name-object binding does not exist, the rebind method
behaves like the bind method.

Clients can use the rebind method to replace an existing binding. They can use this
method instead of the unbind and bind methods.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name to be re-bound.

obj
The SOMObject to be re-bound.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

Original Class
CosNaming::NamingContext

104 Programmer’s Reference for Object Services

rebind_context Method

rebind_context Method
Recreates a binding to a naming context, even if the name is already bound in the naming
context.

IDL Syntax
void rebind_context(

in CosNaming::Name name,
in CosNaming::NamingContext naming_context);

Description
Recreates a binding to a naming context, even if the name is already bound in the naming
context. Re-binding a name and a naming context object into a naming context recreates a
name-object association relative to the target naming context. Naming contexts that are
bound using rebind_context participate in name resolution when compound names are
resolved.

This method is used to bind or replace a subcontext. If a context is already bound in a
context, the bind operation raises the AlreadyBound exception. However, the rebind
method replaces the bound object with the passed object.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name to be re-bound.

naming_context
The NamingContext object to be re-bound to the name.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name cannot
be resolved into a naming context to perform binding. If a compound name is passed
as an argument for the bind operation, it traverses multiple contexts. A NotFound
exception is raised if any of the intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

Original Class
CosNaming::NamingContext

Chapter 2. Naming Service 105

rebind_context_with_properties Method

rebind_context_with_properties Method
Recreates a naming context object binding and associates properties.

IDL Syntax
void rebind_context_with_properties(

in CosNaming::Name name,
in ExtendedNaming::ExtendedNamingContext obj,
in ExtendedNaming::PropertyList props);

Description
Rebinds a naming context with properties. Operates just like the CosNaming::-
NamingContext::rebind_context operation in that it rebinds the specified naming context
into the target extended naming context. In addition, it defines the properties in
PropertyList props to be associated with the binding. If a property is already associated
with the binding, it replaces the existing property with the new property. If the property is not
already associated with the binding, a new property is associated. Existing properties
associated with the binding that are not specified in props remain intact. Naming contexts
bound using this operation participate in name resolution when compound names are
resolved.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the binding.

obj
The naming context to be bound.

props
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

• ExtendedNaming::ExtendedNamingContext::IllegalConstraintExpression is raised
to indicate that a constraint expression could not be parsed.

• ExtendedNaming::ExtendedNamingContext::BindingNotFound is raised to indicate
that a requested binding was not found.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

106 Programmer’s Reference for Object Services

rebind_with_properties Method

rebind_with_properties Method
Recreates a name-object binding and associate properties.

IDL Syntax
void rebind_with_properties(

in CosNaming::Name name,
in SOMObject obj,
in ExtendedNaming::PropertyList props);

Description
Rebinds an object with properties. Operates just like the CosNaming::NamingContext::-
rebind in that the specified SOMObject obj is rebound into the target extended naming
context. In addition, it defines the properties in prop to be associated with the binding. If a
property is already associated with the binding, it replaces the existing property with the
new property. If the property is not already associated with the binding, a new property is
then associated. Existing properties associated with the binding that are not specified in
prop remain intact.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding for rebinding.

obj
The SOMObject to be bound.

props
The PropertyList to associated with the binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this method.

• ExtendedNaming::ExtendedNamingContext::ConflictingPropertyName is raised to
indicate that the property name is in conflict.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 107

remove_all_properties Method

remove_all_properties Method
Removes all properties associated with name-object binding.

IDL Syntax
void remove_all_properties(in CosNaming::Name name);

Description
Removes all properties associated with name-object binding. Resolves name in the target
extended naming context and removes all properties associated with the binding.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

108 Programmer’s Reference for Object Services

remove_index Method

remove_index Method
Removes a specified index.

IDL Syntax
void remove_index(in ExtendedNaming::IndexDescriptor idx);

Description
Removes a specified index from the target extended naming context. The distance is
ignored in idx.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
idx

The index to be removed.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 109

remove_properties Method

remove_properties Method
Removes a set of properties associated with name-object binding.

IDL Syntax
 void remove_properties(

in CosNaming::Name name,
in ExtendedNaming::IList plist);

Description
Removes a set of properties associated with name-object binding. Resolves name in the
target extended naming context and removes the properties whose property names are
specified by plist.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

plist
A list of property names for removal.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound{NotFoundReason why; Name
rest_of_name;} is raised to indicate that the name does not identify a binding. If a
compound name is passed as an argument for the bind operation, it traverses multiple
contexts. A NotFound exception is raised if any of the intermediate contexts cannot be
resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
implementation does not support this method.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

110 Programmer’s Reference for Object Services

remove_property Method

remove_property Method
Removes a property associated with name-object binding.

IDL Syntax
 void remove_property(

in CosNaming::Name name,
in CosNaming::Istring prop);

Description
Removes a property associated with name-object binding. Resolves name in the target
extended naming context and removes the property whose property name is specified by
prop.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

prop
The property name.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

• ExtendedNaming::ExtendedNamingContext::NotSupported is raised to indicate
that implementation does not support this method.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 111

resolve Method

resolve Method
Retrieves a SOMObject bound to a name.

IDL Syntax
 SOMObject resolve(in CosNaming::Name name);

Description
Retrieves the object bound to name n in the target naming context. Because names can be
compound, name resolution can traverse multiple naming contexts.The given name must
exactly match the bound name. The Naming Service does not return the type of object.
Clients are responsible for narrowing the resolved object to the appropriate type. Clients
typically cast the returned object to a more specialized interface.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name for the name-object binding.

Return Value
This operation returns a SOMObject bound to the supplied name.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind operation, it
traverses multiple contexts. A NotFound exception is raised if any of the intermediate
contexts cannot be resolved.

CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

CosNaming::NamingContext::InvalidName is raised to indicate that the name is invalid.
A name with a length of zero is invalid. (This exception may be raised upon further
implementation restrictions.)

Original Class
CosNaming::NamingContext

112 Programmer’s Reference for Object Services

resolve_with_all_properties Method

resolve_with_all_properties Method
Resolves a name-object binding (returns an object associated with a name) and obtains all
associated properties.

IDL Syntax
SOMObject resolve_with_all_properties(

in CosNaming::Name name,
in unsigned long how_many,
out ExtendedNaming::PropertyList props,
out ExtendedNaming::PropertyIterator rest);

Description
Resolves a name-object binding (returns an object associated with a name) and outputs all
associated properties. Operates just like the CosNaming::NamingContext::resolve
operation in that it resolves the specified name-object binding, specified by name, in the
target extended naming context. In addition, it outputs all properties associated with name-
object binding. If the name-object binding contains more than how_many properties, the
remaining properties are put in rest. This method is a combination of the resolve method
and get_all_properties method.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

how_many
The maximum number of properties to put into props.

props
The returned properties.

rest
The returned PropertyIterator.

Return Value
A SOMObject is returned, which is the resolved object.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

Chapter 2. Naming Service 113

resolve_with_all_properties Method

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::PropertyIterator Interface

114 Programmer’s Reference for Object Services

resolve_with_properties Method

resolve_with_properties Method
Resolves a name-object binding (returns an object associated with a name) and obtains a
set of associated properties.

IDL Syntax
SOMObject resolve_with_properties(

in CosNaming::Name name,
in unsigned long how_many,
in ExtendedNaming::IList inames,
out ExtendedNaming::PropertyList props,
out ExtendedNaming::PropertyIterator rest);

Description
Resolves a name-object binding (returns an object associated with a name) and outputs a
set of associated properties. Operates just like the CosNaming::NamingContext::resolve
operation in that it resolves the specified name-object binding, specified by name, in the
target extended naming context. In addition, it defines properties to be returned, with their
property names specified as inames. If the name-object binding contains more than
how_many properties, the remaining properties are put in rest (combination of resolve and
get_properties).

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

how_many
The maximum number of properties to put into props.

inames
List of property names.

props
The returned properties.

rest
The returned PropertyIterator.

Return Value
A SOMObject is returned, which is the resolved object.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

Chapter 2. Naming Service 115

resolve_with_properties Method

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A
propertExtendedNaming::ExtendedNamingContexty name with a length of zero is
invalid.

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Related Information
ExtendedNaming::PropertyIterator Interface

116 Programmer’s Reference for Object Services

resolve_with_property Method

resolve_with_property Method
Resolves a name-object binding (returns an object associated with a name) and obtains an
associated property value.

IDL Syntax
SOMObject resolve_with_property(

in CosNaming::Name name,
in CosNaming::Istring prop,
out any pvalue);

Description
Resolves a name-object binding (returns an object associated with a name) and outputs the
associated property value. Operates just like the CosNaming::NamingContext::resolve
operation in that it resolves the specified name-object binding, specified by name, in the
target extended naming context. In addition, it retrieves the value of the property prop
associated with name.

Applications can use this method to resolve a name and to obtain the value of the specified
property name in one invocation. You can achieve the same functionality with the resolve
and get_property methods.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Parameters
name

The name of the name-object binding.

prop
The property name.

pvalue
The returned property value.

Return Value
A SOMObject is returned, which is the resolved object.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

• CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind
operation, it traverses multiple contexts. A NotFound exception is raised if any of the
intermediate contexts cannot be resolved.

• CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

• CosNaming::NamingContext::InvalidName is raised to indicate that the name is
invalid. A name with a length of zero is invalid. (This exception may be raised upon
further implementation restrictions.)

• ExtendedNaming::ExtendedNamingContext::InvalidPropertyName is raised to
indicate that the property name is invalid. A property name with a length of zero is
invalid.

Chapter 2. Naming Service 117

resolve_with_property Method

• ExtendedNaming::ExtendedNamingContext::PropertyNotFound{CosNaming
Istring property_name;}; is raised to indicate that a property was not found.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

118 Programmer’s Reference for Object Services

unbind Method

unbind Method
Removes a name-SOMObject binding.

IDL Syntax
void unbind(in CosNaming::Name name);

Description
Removes a binding from a context.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

Parameters
name

The name for the name-object binding.

Exceptions
CORBA 1.1 standard exceptions and the following user exceptions:

CosNaming::NamingContext::NotFound is raised to indicate that the name does not
identify a binding. If a compound name is passed as an argument for the bind operation, it
traverses multiple contexts. A NotFound exception is raised if any of the intermediate
contexts cannot be resolved.

CosNaming::NamingContext::CannotProceed is raised to indicate that the
implementation has given up for some reason. The client may be able to continue the
operation using the returned naming context.

CosNaming::NamingContext::InvalidName is raised to indicate that the name is invalid.
A name with a length of zero is invalid. (This exception may be raised upon further
implementation restrictions.)

Original Class
CosNaming::NamingContext

Chapter 2. Naming Service 119

_get_allowed_object_types Method

_get_allowed_object_types Method
Retrieves a list of types of objects that can be bound.

IDL Syntax
sequence<TypeCode> _get_allowed_object_types();

Description
Retrieves a list of types of objects that can be bound into the target extended naming
context. An empty list implies no restrictions. This implementation places no restrictions on
object types.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Return Value
An sequence<TypeCode> is returned containing the allowed object types.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

120 Programmer’s Reference for Object Services

_get_allowed_property_names Method

_get_allowed_property_names Method
Retrieves a list of names of properties that can be added.

IDL Syntax
sequence<string>_get_allowed_property_names();

Description
Retrieves a list of names of properties that can be added to the target extended naming
context. An empty list implies no restrictions.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Return Value
An sequence<string> is returned indicating the allowed property names.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

Chapter 2. Naming Service 121

_get_allowed_property_types Method

_get_allowed_property_types Method
Retrieves a list of the types of the properties that can be added.

IDL Syntax
sequence<TypeCode> _get_allowed_property_types();

Description
Retrieves a list of the types of the properties that can be added to the target extended
naming context. An empty list implies no restrictions. This implementation places no
restrictions on the type of the allowed property.

Intended Usage
This method is intended to be used by client applications. It is not typically overridden.

This method is not defined in the OMG standard.

Return Value
An sequence<TypeCode> is returned indicating the allowed property types.

Exceptions
CORBA 1.1 standard exceptions.

Original Class
ExtendedNaming::ExtendedNamingContext Interface

122 Programmer’s Reference for Object Services

_get_allowed_property_types Method

Chapter 3. Object Services Server 123

Chapter 3. Object Services Server

The Object Services Server is responsible for instituting persistent object references and
managing object metastate on behalf of the SOMobjects object services. The Object
Services Server is composed of several parts: the server-object, an object services base
class and its specializations, and the server program. The object services base class and
its specializations contain operations that allow the Object Services Server to exchange
metastate information with the object and to properly initialize it during the object lifecycles.
The service base class also provides the implementation for the Object Identity Service.
This chapter describes the somOS::Server class, of which the server-object is an instance,
and the somOS::ServiceBase class and its specializations.

124 Programmer’s Reference for Object Services

somOS Module

somOS Module

The somOS module contains five classes:

• somOS::Server to maintain object references and metastate persistently and to
reactivate passivated objects automatically

• somOS::ServiceBase to contain operations that allow the somOS::Server to
exchange metastate with the object, to properly initialize and uninitialize it during the
object lifecycles, and to provide the notion of object identity

• somOS::ServiceBasePRef to automatically create and destroy persistent references
for objects

• somOS::ServiceBaseCORBA to support objects that have a persistent reference, but
do not have persistent state

• somOS::ServiceBasePRefCORBA, which is similar to ServiceBaseCORBA, but for
which creating a persistent reference should be automatic.

The following is the structure for holding the metastate of a single service:

 typedef struct metastate_struct {
 service_id_e svc_id;
 unsigned short version_major;
 unsigned short version_minor;
 any service_metastate;
 } metastate_struct_t;

where:

 typedef enum service_id {
 somOSNaming,
 somOSEvents,
 somOSLifeCycle,
 somOSPersistence,
 somOSSecurity,
 somOSObjectIdentity,
 somOSTransactions,
 somOSConcurrecny,
 somOSExternalization,
 somOSAttributePersistence,
 somOSLastEnum
 } service_id_e;

Note: The above enum type service_id_e defines one constant for each standard OMG
service. However, you can extend it to define a constant for a nonstandard service by
adding a new constant just before somOSLastEnum. The Interface Repository must
be updated based on the modified IDL. The Object Services Server then appropriately
handles the metastate of the new service.

Chapter 3. Object Services Server 125

somOS::Server Class

somOS::Server Class

The somOS::Server class is a specialization of SOMDServer. It maintains object
references persistently, maintains persistent metastate, and automatically reactivates
passivated objects.

Intended Usage
The somOS::Server maintains persistent references and metastate for objects that are
explicitly registered with it. The references are created, deleted, and queried using
make_persistent_ref, delete_ref, and has_persistent_ref, respectively. An object’s
metastate is stored and restored using store_metastate and restore_metastate. The
metastate of a single service for an object is stored using store_service_metastate.
Objects are passivated by calling passivate_object and passivate_all_objects.

The somOS::Server participates in the exportation and importation of object references.
This is accomplished by specializing SOMDServer and providing unique implementations
of the somdRefFromSOMObj and somdSOMObjFromRef methods.

File Stem
somos

Base Class
SOMDServer

Metaclass
SOMMSingleInstance

Ancestor Classes
SOMDServer

New Methods
delete_ref Method
has_persistent_ref Method
make_persistent_ref Method
passivate_all_objects Method
passivate_object Method
restore_metastate Method

126 Programmer’s Reference for Object Services

somOS::Server Class

store_metastate Method
store_service_metastate Method

Overridding Methods
somdRefFromSOMObj Method
somdSOMObjFromRef Method

Chapter 3. Object Services Server 127

delete_ref Method

delete_ref Method
Deletes a persistent reference of an object.

IDL Syntax
void delete_ref(in SOMobject referenced_object);

Description
To delete a persistent reference that has been created using make_persistent_ref. It does
not delete the in-memory object. If there is no reference to an object then the user-defined
exception SysAdminException::ExNotfound is raised.

Parameters
referenced_object

A pointer to a SOMObject class object.

Exceptions
One of the following user-defined exceptions is raised if the method fails:

SysAdminException::ExNotfound
Persistent reference does not exist.

SysAdminException::ExFailed
Failed for internal reason.

SysAdminException::ExFileIO
Failed because of file I/O.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase. The ostest

class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
OSServer = _GetInstanceManager (temp, &ev);

// Get the instance manager of the object.
pers = _make_persistent_ref (OSServer, &ev, temp);
_delete_ref (OSServer, &ev, pers);

// Destroy the persistent reference of the object in
// somOS::Server. Now, methods such as passivate() and
// store_metastate() cannot be called because there is no
// persistent reference.

Original Class
somOS::Server Class

Related Information
make_persistent_ref Method
has_persistent_ref Method

128 Programmer’s Reference for Object Services

has_persistent_ref Method

has_persistent_ref Method
Queries the server for a specified object as to whether the server is maintaining this object
persistently.

IDL Syntax
boolean has_persistent_ref(in SOMObject referenced_object);

Description
The has_persistent_ref method returns TRUE, if the Object Services Server maintains the
given object persistently, that is, the Server persistently maintains the metastate which is
used to reactivate the object, if necessary.

Intended Usage
To query whether the server is maintaining an object persistently.

Parameters
referenced_object

A pointer to a SOMObject object.

Return Value
Returns TRUE if the object is persistently maintained by the server; otherwise, FALSE is
returned.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase which defines a

new method "Hello" which prints "Hello, World!" message. The
ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;
boolean Result;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);

OSServer = _GetInstanceManager (temp, &ev);
// Get the instance manager of the object.

Result = _has_persistent_ref (OSServer, &ev, temp);
// Result is FLASE because temp is a transient (DSOM) reference.

pers = _make_persistent_ref (OSServer, &ev, temp);
Result = _has_persistent_ref (OSServer, &ev, pers);

// Result is TRUE.

_delete_ref (OSServer, &ev, pers);
Result = _has_persistent_ref (OSServer, &ev, pers);

// Result is FALSE.

Original Class
somOS::Server Class

Chapter 3. Object Services Server 129

has_persistent_ref Method

Related Information
make_persistent_ref Method
delete_ref Method

130 Programmer’s Reference for Object Services

make_persistent_ref Method

make_persistent_ref Method
Makes a persistent object reference for an object.

IDL Syntax
SOMObject make_persistent_ref(in SOMObject referenced_object);

Description
A persistent reference is created for referenced_object. If a persistent reference already
exists, no action is taken, and the operation is considered successful.

Intended Usage
This method must be called prior to calling other methods for maintaining persistent
metastate; for example, before the store_metastate method.

Parameters
referenced_object

A pointer to a SOMObject class object.

Return Value
The make_persistent_ref method returns OBJECT_NIL if, and only if, the operation is
unsuccessful. The object pointer returned by the make_persistent_ref method must be
used in the subsequent method invocations on the object. In particular, the object pointer
returned by somNewNoInit or somdCreate must be discarded after the object has been
registered with the server using make_persistent_ref.

Exceptions
The user-defined exception SysAdminException::ExExists occurs if a reference already
exists for the input object. Note that the operation is considered successful in this case.

The following user-defined exceptions may be raised if the method fails:

SysAdminException::ExNotfound
Unable to find class name of object

SysAdminException::ExFileIO
Failed for internal reason

SysAdminException::ExFailed
Failed because of file I/O

Example
/* Let "ostest" be a subclass of somOS::ServiceBase which defines a

new method "Hello" which prints "Hello, World!" message. The
ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

Chapter 3. Object Services Server 131

make_persistent_ref Method

OSServer = _GetInstanceManager (temp, &ev);
// Get the instance manager of the object.

pers = _make_persistent_ref (OSServer, &ev, temp);

// Verification of the call.
if (_is_nil (pers, &ev))

// pers is_nil if, and only if, the call fails.
{

printf("make_persistent_ref failed\n");
somdExceptionFree(&ev);
return;

}
release(temp, &ev);

// Release the transient proxy because it is not needed.

_Hello (pers, &ev);
// pers is a persistent reference and must be used subsequently.

_somdTargetFree (pers, &ev);
// Destroy the remote object but not its proxy or
// persistent reference.

_Hello (pers, &ev);
// Object will be reactivated and the hello() method
// will be executed on the reactivated object.

Original Class
somOS::Server Class

Related Information
delete_ref Method
has_persistent_ref Method

132 Programmer’s Reference for Object Services

passivate_all_objects Method

passivate_all_objects Method
Passivates all the in-memory objects that previously have been registered with the server.

IDL Syntax
void passivate_all_objects();

Description
The passivate_all_objects method passivates all objects.

Intended Usage
Passivates all objects. This method is useful when you are bringing down a server; allows
active objects in the server a chance to store themselves prior to in-memory state loss.

Exceptions
One of the following user-defined exceptions is raised if the method fails:

SysAdminException::ExNotfound
Failed because a persistent reference could not be found, probably because
make_persistent_ref has not been called.

SysAdminException::ExFailed
Failed for internal reason.

SysAdminException::ExFileIO
Failed because of file I/O.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase which defines

a new method "Hello" which prints "Hello, World!" message.
The ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers, temp2, pers2;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
temp2 = _somdCreate (&ev, "ostest", FALSE);
OSServer = _GetInstanceManager (temp, &ev);

// Get the instance manager of the object.
pers = _make_persistent_ref (OSServer, &ev, temp);
pers2 = _make_persistent_ref (OSServer, &ev, temp2);

_passivate_all_objects (OSServer, &ev);
// ALL objects registered with OSServer are passivated.

if (ev._major != NO_EXCEPTION)
return; // Failed to passivate all objects.

_Hello (pers, &ev);
_Hello (pers2, &ev);

// Objects will be reactivated and the hello() method
// will be executed on reactivated objects.

Chapter 3. Object Services Server 133

passivate_all_objects Method

Original Class
somOS::Server Class

Related Information
passivate_object Method

134 Programmer’s Reference for Object Services

passivate_object Method

passivate_object Method
Passivates an object that previously has been registered with the server.

IDL Syntax
void passivate_object(in SOMObject referenced_object);

Description
The passivate_object method passivates an in-memory object by capturing its metastate,
storing the captured metastate on the persistent storage, performing
uninit_for_object_passivation on the object, and destroying the in-memory object.

Parameters
referenced_object

A pointer to a SOMObject class object.

Exceptions
One of the following user-defined exceptions is raised if the method fails:

SysAdminException::ExNotfound
Failed because a persistent reference could not be found, probably because
make_persistent_ref has not been called.

SysAdminException::ExFailed
Failed for internal reason.

SysAdminException::ExFileIO
Failed because of file I/O.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase which defines a

new method "Hello" which prints "Hello, World!" message. The
ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;
boolean Result;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
OSServer = _GetInstanceManager (temp, &ev);

// Get the instance manager of the object.
pers = _make_persistent_ref (OSServer, &ev, temp);

_passivate_object (OSServer, &ev, pers);
// pers must have a persistent reference prior to this call.

_Hello (pers, &ev);
// Object will be reactivated and the hello() method will be
// executed on the reactivated object.

Original Class
somOS::Server Class

Chapter 3. Object Services Server 135

passivate_object Method

Related Information
passivate_all_objects Method

136 Programmer’s Reference for Object Services

restore_metastate Method

restore_metastate Method
Restores the metastate of an object that has been previously stored.

IDL Syntax
void restore_metastate(in SOMObject referenced_object);

Description
The restore_metastate method finds the metastate of the specified object that has been
previously stored and calls reinit on the specified object to reinitialize the object using the
metastate. The reinit method on the specified object usually initializes the state of the
object needed by the object services associated with it.

Intended Usage
This method should be called on an object after the metastate of the object has been
stored. This method should be called whenever it is appropriate to bring the object’s state
back to the one stored persistently.

Parameters
reference_object

A pointer to a SOMObject class object.

Exceptions
One of the following user-defined exceptions is raised if the method fails:

SysAdminException::ExNotfound
Failed because a persistent reference could not be found, probably because
make_persistent_ref has not been called.

SysAdminException::ExFailed
Failed for internal reason.

SysAdminException::ExFileIO
Failed because of file I/O.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase. The ostest

class must be registered with the server. */
#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
OSServer = _GetInstanceManager (temp, &ev);

// Get the instance manager of the object.
pers = _make_persistent_ref (OSServer, &ev, temp);

// Object must have persistent reference before
// store_metastate() can be called.

...

// Store the metastate using, e.g., store_metastate()
// or passivate_object().

Chapter 3. Object Services Server 137

restore_metastate Method

...

_restore_metastate (OSServer, &ev, pers);
// OSServer calls gets metastate from persistent storage
// and calls reinit on object pers to reinitialize it.

Original Class
somOS::Server Class

Related Information
store_metastate Method

138 Programmer’s Reference for Object Services

somdRefFromSOMObj Method

somdRefFromSOMObj Method
Returns an object reference corresponding to the specified SOM object.

IDL Syntax
SOMDObject somdRefFromSOMObj(in SOMObject somobj);

Description
The somdRefFromSOMObj method is overridden to return special object references for
objects registered with the somOS::Server.

Intended Usage
The somdRefFromSOMObj method creates a reference to a SOM object in a server, to be
exported to a client as a proxy. This method is called by DSOM as part of converting the
results of a local method call into a result message for a remote client, whenever the result
contains a pointer to an object local to the server. Although this method usually is not called
directly, you may need to call it directly under the following circumstance. Assume that an
object is registered with the server, although it is not exported. In this case, the
somdRefFromSOMObj method can be invoked on the somOS::Server directly. Because
the somOS::Server does not distinguish whether the request is initiated by the SOMOA or
some other object, the result is the same.

Parameters
receiver

A pointer to a SOMDServer object.

env
A pointer to the Environment structure for the method caller.

somobj
A pointer to the SOM object for which a DSOM reference is to be created.

Return Value
The somdRefFromSOMObj method returns a dsom reference for the specified SOM
object. If the object is registered with the somOS::Server, it contains special reference
data needed to maintain the lifecycle of persistent objects.

Original Class
Server

Related Information
somdSOMObjFromRef Method
somdRefFromSOMObj Method in SOMDServer class

Chapter 3. Object Services Server 139

somdSOMObjFromRef Method

somdSOMObjFromRef Method
Returns the SOM object that corresponds to the specified object reference.

IDL Syntax
SOMObject somdSOMObjFromRef(in SOMDObject objref);

Description
The somdSOMObjFromRef method is overridden to handle the special somOS::Server
object references. If the reference belongs to somOS::Server, it returns the SOM object
associated with it. If the object is passivated, it reactivates the object and returns the
reactivated object. Otherwise, this method on the parent is called to return the associated
SOM object.

Intended Usage
When an object is used in an in or inout argument to a method request entering the server
process from another process, the SOMOA invokes somdSOMObjFromRef on the
somOS::Server. This serves as the dual to exporting a reference.

Parameters
receiver

A pointer to a SOMDServer object.

env
A pointer to the Environment structure for the method caller.

objref
A pointer to the DSOM object reference to the SOM object.

Return Value
The somdSOMObjFromRef method returns the SOM object (possibly reactivated)
associated with the supplied object reference.

Original Class
Server

Related Information
somdRefFromSOMObj Method
somdSOMObjFromRef Method in SOMDServer class

140 Programmer’s Reference for Object Services

store_metastate Method

store_metastate Method
Stores the metastate of an object.

IDL Syntax
void store_metastate(in SOMObject referenced_object);

Description
The store_metastate calls capture on the specified object to obtain its metastate and
stores the metastate on the persistent storage. The capture method of the specified object
usually captures the metastate of all the services associated with it.

Intended Usage
This method should be called on an object after the object has been registered with the
somOS::Server; for example, by using make_persistent_ref or an instance of
somOS::ServiceBase class. It should be called if it is considered appropriate to
persistently store the metastate of object services associated with the object.

Parameters
referenced_object

A pointer to a SOMObject class object.

Exceptions
One of the following user-defined exceptions is raised if the method fails:

SysAdminException::ExNotfound
Failed because a persistent reference could not be found, probably because
make_persistent_ref has not been called.

SysAdminException::ExFailed
Failed for internal reason.

SysAdminException::ExFileIO
Failed because of file I/O.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase. The ostest

class must be registered with the server. */
#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
OSServer = _GetInstanceManager (temp, &ev);

// Get the instance manager of the object.
pers = _make_persistent_ref (OSServer, &ev, temp);

// Object must have persistent reference before
// store_metastate() can be called.

_store_metastate (OSServer, &ev, pers);
// OSServer calls capture on object pers to get its metastate
// and stores it persistently.

Chapter 3. Object Services Server 141

store_metastate Method

Original Class
somOS::Server Class

Related Information
restore_metastate Method

142 Programmer’s Reference for Object Services

store_service_metastate Method

store_service_metastate Method
Stores the metastate of a single service of an object to the persistent storage.

IDL Syntax
void store_service_metastate(

in SOMObject referenced_object,
in service_id_e somos_service_id,
in any service_metadata);

Description
The store_service_metastate method persistently stores the given metastate of a single
service for the specified object.

Intended Usage
Call this method on an object after the object has been registered with the somOS::Server;
for example, using make_persistent_ref for an instance of somOS::ServiceBase class.
Call it when considered appropriate to persistently store the metastate of an object service
associated with the object. It is the caller’s responsibility to free the memory allocated to
store the metadata.

Parameters
referenced_object

A pointer to an object reference.

somos_service_id
The service for which to store the metastate.

service_metadata
A pointer to the metastate data of the service.

Exceptions
One of the following user-defined exceptions is raised if the method fails:

SysAdminException::ExNotfound
Failed because a persistent reference could not be found, probably because
make_persistent_ref has not been called.

SysAdminException::ExFailed
Failed for internal reason.

SysAdminException::ExFileIO
Failed because of file I/O.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase. The ostest

class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;
somOS_service_id_e id = somOS_somOSNaming;
any service_metadata;

SOM_InitEnvironment (&ev);

Chapter 3. Object Services Server 143

store_service_metastate Method

SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);

OSServer = _GetInstanceManager (temp, &ev);
// Get the instance manager of the object.

pers = _make_persistent_ref (OSServer, &ev, temp);
// Object must have persistent reference before
// store_service_metastate() can be called.

service_metadata._type = TC_short;
service_metadata._value = (short *) SOMMalloc(sizeof(short));

// Allocate space for metadata.
service_metadata._value = 5;

// Initialize metadata.

_store_service_metastate (OSServer, &ev, pers, id,
&service_metadata);

// service_metadata is store as the metadata for service id
// for object pers.

SOMFree(service_metadata._value);

Original Class
somOS::Server Class

Related Information
store_metastate Method
restore_metastate Method

144 Programmer’s Reference for Object Services

somOS::ServiceBase Class

somOS::ServiceBase Class

The somOS::ServiceBase class is the base-class for the Object Services Server. The
somOS::ServiceBase contains operations that allow the somOS::Server to exchange
metastate with the object, to properly initialize and uninitialize it during the object lifecycles,
and to provide the notion of object identity.

File Stem
somos

Base Class
SOMObject

Metaclass
SOMClass

Ancestor Classes
CosObjectIdentity::IdentifiableObject

Types
typedef sequence <metastate_struct_t> metastate_t;
typedef unsigned long ObjectIdentifer

New Methods
capture Method
init_for_object_copy Method
init_for_object_creation Method
init_for_object_reactivation Method
is_identical Method
reinit Method
uninit_for_object_destruction Method
uninit_for_object_move Method
uninit_for_object_passivation Method
_get_constant_random_id Method

Chapter 3. Object Services Server 145

somOS::ServiceBase Class

Overridding Methods
somDestruct Method

146 Programmer’s Reference for Object Services

capture Method

capture Method
Obtains the metastate of an object.

IDL Syntax
void capture(inout metastate_t metadata);

Description
The capture method obtains the metastate of an object. The metastate of an object is
defined by the metastate of the services associated with the object.

Instances of somOS::ServiceBase have private metastate that provides the object identity
characteristics needed to support the implementation of OMG-defined
CosObjectIdentity::IdentifiableObject. The somOS::ServiceBase provides an
implementation of capture that captures its object identity metastate. Therefore, it is
important that subclasses of somOS::ServiceBase that override capture also call their
parent’s implementation of capture.

Intended Usage
The capture method should be overridden and all subclasses of somOS::ServiceBase
should call their parents implementation of capture. This methods enables the object’s
metastate to be captured in metadata. metadata is a sequence of metastate_struct_t.
Each element of the sequence contains the metastate of a service. The service_metastate
field of a service is filled by the capture method. The capture method must explicitly
allocate memory to hold the service_metastate data (including type code). The server
frees this memory.

Parameters
metadata

A partially initialized sequence to hold the metastate of the object.

Example
The following example is for class programmers:

/* In a subclass called ostest of somOS::ServiceBase ... */
#include <somd.h>
#include "ostest.ih"
SOM_Scope void SOMLINK capture(ostest somSelf, Environment *ev,

somOS_ServiceBase_metastate_t* meta_data)
{

ostestData *somThis = ostestGetData(somSelf);
ostestMethodDebug("ostest","capture");
ostest_parent_somOS_ServiceBase_capture(somSelf, ev, meta_data);

// Insert code here to capture metadata in meta_data. For
// example, ...
meta_data->_buffer[somOS_somOSNaming].service_metastate._type =

TypeCode_copy(TC_long);
meta_data->_buffer[somOS_somOSNaming].service_metastate._value =

SOMMalloc(sizeof (long));

*((long *) (meta_data->_buffer[somOS_somOSNaming].
service_metastate._value)) = somThis->MyVariable;

...

}

Note: If you are a client programmer, do not call this this method directly.

Chapter 3. Object Services Server 147

capture Method

Original Class
somOS::ServiceBase

Related Information
reinit Method

148 Programmer’s Reference for Object Services

GetInstanceManager Method

GetInstanceManager Method
Obtains a reference to the instance manager of an object.

IDL Syntax
SOMObject GetInstanceManager ();

Description
The GetInstanceManager method obtains a reference to the instance manager of an
object. If the object does not have an instance manager, OBJECT_NIL is returned.

Intended Usage
A client that needs to register an object and maintain its life cycle with the Object Services
Server must obtain a reference to the server (instance manager) using the
GetInstanceManager method. This method usually is not overridden by the class
programmer.

Return Value
Returns an object reference to the instance manager of the input object.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase which defines a

new method "Hello" which prints "Hello, World!" message. The
ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
SOMDServer OSServer;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

OSServer = _GetInstanceManager (temp, &ev);

if (_is_nil(OSServer, &ev))
 return;

// Return if there is no instance manager associated with
// temp object.

Original Class
somOS::ServiceBase

Chapter 3. Object Services Server 149

init_for_object_copy Method

init_for_object_copy Method
Enables the object to perform initialization on itself after it has been created as a part of the
copy operation.

IDL Syntax
SOMObject init_for_object_copy();

Description
The init_for_object_copy method performs initialization when an object is copied.

Intended Usage
The init_for_object_copy method is an abstract method that must be overridden if special
initilization is required when an object is copied. SOMobjects Version 3.0 does not
implement this method. However, you may want to supply this method when the object
copy feature is added in the future.

Return Value
Returns the object reference of the copied object.

Original Class
somOS::ServiceBase

Related Information
somDestruct Method

150 Programmer’s Reference for Object Services

init_for_object_creation Method

init_for_object_creation Method
Enables the object to perform initialization on itself after it is created the first time and
establishes the instance’s identtity.

IDL Syntax
SOMObject init_for_object_creation();

Description
The init_for_object_creation method performs initialization at the time of object creation,
including establishing the instance’s identity. Note that the identity of the object is not
persistent unless make_persistent_ref is called on the somOS::Server for the instance.

Intended Usage
The init_for_object_creation method must be overridden to perform proper initialization at
the time of object creation. For example, you can register the object in any frameworks or
containers to which the object should belong. You also can allocate any memory the object
requires or create and initialize a persistent reference for the object.

It is important that subclasses of somOS::ServiceBase that override
init_for_object_creation ensure that their parent’s init_for_object_creation is called in
the override.

Return Value
Returns the object reference of the newly created object.

Example
The following example is for class programmers:

/* In the ostest subclass of somOS::ServiceBase ... */
#include <somd.h>
#include "ostest.ih"

SOM_Scope SOMObject SOMLINK init_for_object_creation(ostest somSelf,
Environment *ev)

{

ostestData *somThis = ostestGetData(somSelf);
ostestMethodDebug("ostest","init_for_object_creation");

ostest_parent_somOS_ServiceBase_init_for_object_creation
(somSelf, ev);

// Insert code here to perform initialization. For example,
...
somThis->MyVariable = (long *) SOMMalloc (sizeof(long));
*(somThis->MyVariable) = VALUE_AT_THE_CREATE_TIME;
...
return (somSelf);

}

The following example is for client programmers:

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
ostest temp, pers;

Chapter 3. Object Services Server 151

init_for_object_creation Method

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

pers = _init_for_object_creation(temp, &ev);
// Subsequently use pers and discard temp,
// if the method creates a persistent reference.

Original Class
somOS::ServiceBase

Related Information
uninit_for_object_destruction Method

152 Programmer’s Reference for Object Services

init_for_object_reactivation Method

init_for_object_reactivation Method
Enables the object to perform initialization after it has been re-activated.

IDL Syntax
SOMObject init_for_object_reactivation();

Description
The init_for_object_reactivation method performs reinitialization at the time of object
reactivation.

Intended Usage
The init_for_object_reactivation method is an abstract method. It must be overridden to
perform proper reinitialization at the time of object reactivation. For example, you can
allocate any memory the object requires. Unlike the init_for_object_creation method, you
may not have to register the object with frameworks or create a persistent reference. The
server calls this method when an object is reactivated; for example, when a method is
called on an already passivated object.

Return Value
Returns the object reference of the re-activated object.

Example
The following example is for class programmers:

/* In the ostest subclass of somOS::ServiceBase ... */

#include <somd.h>
#include "ostest.ih"

SOM_Scope SOMObject SOMLINK init_for_object_reactivation(ostest
somSelf, Environment *ev)

{

ostestData *somThis = ostestGetData(somSelf);
ostestMethodDebug("ostest","init_for_object_reactivation");

// Insert code here to perform reactivation. For example, ...
somThis->MyVariable = (long *) SOMMalloc (sizeof(long));
*(somThis->MyVariable) = VALUE_AT_THE_REACTIVATION_TIME;
...

ostest_parent_somOS_ServiceBase_init_for_object_reactivation
(somSel, ev);

return (somSelf);

}

Note: If you are a client programmer, do not call this method directly.

Original Class
somOS::ServiceBase

Related Information
uninit_for_object_passivation Method

Chapter 3. Object Services Server 153

is_identical Method

is_identical Method
Determines if two objects are identical.

IDL Syntax
boolean is_identical(in IdentifiableObject other_object);

Description
Determines if two objects are identical.

Parameters
other_object

Identity comparison requires two objects: a target object and some other object. The
is_identical method is invoked on a target object and compares the identity of the target
object to the other_object.

Return Value
Returns TRUE if the object and the other_object are identical; otherwise, the operation
returns FALSE.

Example
/* Let "ostest" be a subclass of ServiceBase.

The ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
ostest temp, pers, pers2;
ObjectIdentifier id;
boolean Result;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

pers = _init_for_object_creation(temp, &ev);
pers2 = _init_for_object_creation(temp, &ev);

Result = _is_identical(pers, pers2);
// Result is TRUE.

Exceptions
CORBA 1.1 standard exceptions.

• If the other_object is not a subclass of somOS::ServiceBase, then the BAD_PARAM
CORBA standard exception is raised.

Original Class
CosObjectIdentity::IdentifiableObject

154 Programmer’s Reference for Object Services

reinit Method

reinit Method
Reinitializes an object’s metastate.

IDL Syntax
void reinit(in metastate_t metadata);

Description
The reinit method initializes the metastate of the object, based on metadata. For the
somOS::ServiceBase class, this method reinitializes the identity metastate of the instance.

Intended Usage
The reinit method should be overridden. This method enables the object’s metastate to be
reinitialized based on metadata. The somOS::Server calls this method every time an
object is reactivated. If you are a client programmer, do not call this method directly.

Parameters
metadata

A sequence holding the metadata of services.

Example
The following example is for class programmers:

/* In a subclass called ostest of somOS::ServiceBase ... */

#include <somd.h>
#include "ostest.ih"

SOM_Scope void SOMLINK reinit(ostest somSelf, Environment *ev,
somOS_ServiceBase_metastate_t*
meta_data)

{

ostestData *somThis = ostestGetData(somSelf)
ostestMethodDebug("ostest","reinit");

ostest_parent_somOS_ServiceBase_reinit(somSelf, ev, meta_data);

// Insert code here to perform reinitialization using metadata.
// For example, ...

somThis->MyVariable =
*((long *)(meta_data->_buffer[somOS_somOSNaming].

service_metastate._value));
...

}

Note: If you are a client programmer, do not call this method directly.

Original Class
somOS::ServiceBase

Related Information
capture Method

Chapter 3. Object Services Server 155

somDestruct Method

somDestruct Method
This method is overridden to remove the entry for this object, if any, in the reference data
table of the server.

IDL Syntax
void somDestruct(int octet dofree, inout somDestructCtrl ctrl);

Description
The overridden somDestruct method attempts to remove the entry for this object from the
reference data table of the server (if it exists) prior to actually destroying the in-memory
object. The attempt to remove an entry is considered to be successful if the server does not
exist or if no entry exists in the reference data table.

Intended Usage
The server calls this method to destroy the in-memory object. If this method is called on a
proxy, it destroys both the proxy and its target object. Call the init_for_object_destruction
method before calling this method.

Parameters
receiver

A pointer to an object.

dofree
A boolean that indicates whether the caller wants the object storage freed after
uninitialization of the current class has been completed. Passing 1 (true) indicates that
the object storage should be freed.

ctrl
A pointer to a somDestructCtrl data structure. SOMobjects uses this data structure to
control the uninitialization of the ancestor classes, thereby ensuring that no ancestor
class receives multiple uninitialization calls. If a user invokes somDestruct on an
object directly, a NULL (that is, zero) ctrl pointer can be passed. This instructs the
receiving code to obtain a somDestructCtrl data structure from the class of the object.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase.

The ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.ih"

Environment ev;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

pers = _init_for_object_creation(temp, &ev);
// Subsequently use pers and discard temp,
// if the method creates a persistent reference.

...

_somDestruct(pers, 1, NULL);
// Destroys both the proxy and target objects.

156 Programmer’s Reference for Object Services

somDestruct Method

Original Class
somOS::ServiceBase

Related Information
uninit_for_object_destruction Method

Chapter 3. Object Services Server 157

uninit_for_object_destruction Method

uninit_for_object_destruction Method
Enables the object to perform uninitialization on itself prior to being destroyed.

IDL Syntax
void uninit_for_object_destruction();

Description
The uninit_for_object_destruction method performs uninitialization prior to destroying an
object.

Intended Usage
The uninit_for_object_destruction method is an abstract method. Override it if some
uninitialization must be performed prior to object destruction. For example, you may need to
register the object in any frameworks or containers in which the object has been registered,
or you may need to free previously allocated memory, or destroy the persistent reference (if
appropriate) for the object.

Example
The following example is for class programmers:

/* In the ostest subclass of somOS::ServiceBase ... */

#include <somd.h>
#include "ostest.ih"

SOM_Scope void SOMLINK uninit_for_object_destruction(ostest
somSelf, Environment *ev)

{

ostestData *somThis = ostestGetData(somSelf);
ostestMethodDebug("ostest","init_for_object_destruction");

// Insert code here to perform destruction. For example, ...
SOMFree(somThis->MyVariable);
...

ostest_parent_somOS_ServiceBase_uninit_for_object_destruction
(somSelf, ev);

return (somSelf);

};

The following example is for client programmers:

/* Let "ostest" be a subclass of ServiceBase.
The ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.ih"

Environment ev;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

158 Programmer’s Reference for Object Services

uninit_for_object_destruction Method

pers = _init_for_object_creation(temp, &ev);
// Subsequently use pers and discard temp,
// if the method creates a persistent reference.

...

_uninit_for_object_destruction(pers, &ev);
// If persistent reference was created for pers then it is not
// automatically destroyed by this method call.

_somDestruct(pers, 1, NULL);
// Destroys both the proxy and target objects.

Original Class
somOS::ServiceBase

Related Information
init_for_object_creation Method

Chapter 3. Object Services Server 159

uninit_for_object_move Method

uninit_for_object_move Method
Enables the object to perform uninitialization on itself prior to being destroyed as a part of
the move operation.

IDL Syntax
void uninit_for_object_move();

Description
The init_for_object_move method performs initialization when an object is moved.

Intended Usage
The init_for_object_move method is an abstract method that must be overridden if special
initilization is required when an object is moved. SOMobjects Version 3.0 does not
implement this method. However, you may want to supply this method when the object
move feature is added in the future.

Original Class
somOS::ServiceBase

160 Programmer’s Reference for Object Services

uninit_for_object_passivation Method

uninit_for_object_passivation Method
Enables the object to perform uninitialization on itself prior to being passivated.

IDL Syntax
void uninit_for_object_passivation();

Description
The uninit_for_object_passivation method performs uninitialization when an object is
passivated.

Intended Usage
The uninit_for_object_passivation method is called just before passivating an object. The
somOS::Server calls this method on the object when it is passivated using
passivate_object or passivate_all_objects on the server. Override this method if you
must perform additional uninitialization as compared to the default implementation. For
example, you can free any memory that was allocated at the time of object creation or
reactivation. You must treat this method as an uninitializer or destructor. Therefore, if you
override this method, be sure to call the parent’s uninitializer.

Example
The following example is for class programmers:

/* In the ostest subclass of somOS::ServiceBase ... */

#include <somd.h>
#include "ostest.ih"

SOM_Scope void SOMLINK uninit_for_object_passivation(ostest
somSelf, Environment *ev)

{

ostestData *somThis = ostestGetData(somSelf);
ostestMethodDebug("ostest","init_for_object_passivation");

ostest_parent_somOS_ServiceBase_uninit_for_object_passivation
(somSelf, ev);

// Insert code here to perform passivation. For example, ...
SOMFree(somThis->MyVariable);
...
return (somSelf);

}

Note: If you are a client programmer, do not call this method directly.

Original Class
somOS::ServiceBase

Chapter 3. Object Services Server 161

_get_constant_random_id Method

_get_constant_random_id Method
Returns the value of the constant_random_id attribute.

IDL Syntax
readonly attribute ObjectIdentifier constant_random_id;

Description
Gets the constant_random_id attribute value.

The constant_random_id attribute value is initialized when a somOS::ServiceBase
instance is created.

Intended Usage
The returned value usually is used for a first-order identity comparison. If two
constant_random_id values have the same value, that does not ensure that the two
objects are identical. This is an indication that they might be identical. Use the is_identical
method to establish absolute identity.

This method typically is not overridden.

Return Value
ObjectIdentifier

constant_random_id attribute value.

Example
/* Let "ostest" be a subclass of somOS::ServiceBase.

The ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
ostest temp, pers;
CosObjectIdentity_ObjectIdentifier id;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

pers = _init_for_object_creation(temp, &ev);
// Subsequently use pers and discard temp,
// if the method creates a persistent reference.

id = __get_constant_random_id(pers, &ev);

Exceptions
CORBA 1.1 standard exceptions.

Original Class
CosObjectIdentity::IdentifiableObject

162 Programmer’s Reference for Object Services

somOS::ServiceBasePRef Class

somOS::ServiceBasePRef Class

somOS::ServiceBasePRef class is derived from somOS::ServiceBase. Objects derived
from this class automatically invoke make_persistent_ref during
init_for_object_creation. This specialization also automatically invokes delete_ref during
uninit_for_object_destruction.

This class automatically registers the object with the server-object and requests the
creation of a persistent reference for it when the object is created. This class also
automatically destroys the persistent object reference for the object when the object is
destroyed.

Intended Usage
If you want to automatically create and destroy object references for instances of your
class, mix-in somOS::ServiceBasePRef.

File Stem
somos

Base Class
somOS::ServiceBase

Metaclass
SOMClass

Ancestor Classes
somOS::ServiceBase
SOMObject
CosObjectIdentity::IdentifableObject

Chapter 3. Object Services Server 163

somOS::ServiceBasePRef Class

New Methods
None.

Overridding Methods
init_for_object_creation
uninit_for_object_destruction

164 Programmer’s Reference for Object Services

init_for_object_creation Method

init_for_object_creation Method
Enables the object to perform initialization on itself after it is created the first time.

IDL Syntax
SOMObject init_for_object_creation();

Description
The default implementation of the init_for_object_creation method registers the object
with the server by calling make_persistent_ref.

Intended Usage
The init_for_object_creation method performs routine initialization needed for the objects
derived from somOS::ServiceBasePRef class. It must be overridden to perform proper
initialization at the time of object creation. For example, you can register the object in any
frameworks or containers to which the object should belong. You also can allocate any
memory the object requires.

Return Value
Returns the object reference of the newly created object.

Example
The following example is for class programmers:

/* In the ostest subclass of somOS::ServiceBasePRef ... */
#include <somd.h>
#include "ostest.ih"

SOM_Scope SOMObject SOMLINK init_for_object_creation(ostest somSelf,
Environment *ev)

{

ostestData *somThis = ostestGetData(somSelf);
ostestMethodDebug("ostest","init_for_object_creation");
ostest_parent_somOS_ServiceBasePRef_init_for_object_creation

(somSelf, ev);
// Insert code here to perform initialization. For example,
...
somThis->MyVariable = (long *) SOMMalloc (sizeof(long));
*(somThis->MyVariable) = VALUE_AT_THE_CREATE_TIME;
...
return (somSelf);

}

The following example is for client programmers:

#include <somd.h>
#include <somos.h>
#include "ostest.h"

Environment ev;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

pers = _init_for_object_creation(temp, &ev);
// Subsequently use pers and discard temp

Chapter 3. Object Services Server 165

init_for_object_creation Method

// because pers is a persistent reference.

Original Class
somOS::ServiceBase

Related Information
uninit_for_object_destruction Method

166 Programmer’s Reference for Object Services

uninit_for_object_destruction Method

uninit_for_object_destruction Method
Enables the object to perform uninitialization on itself prior to being destroyed.

IDL Syntax
void uninit_for_object_destruction();

Description
The default implementation of the uninit_for_object_destruction method removes the
persistent reference of an object in the server by calling delete_ref on the server.

Intended Usage
The uninit_for_object_destruction method performs routine uninitialization needed for
the objects derived from the somOS::ServiceBasePRef class. It must be overridden if
additional uninitialization must be performed before object destruction. For example, you
may need to register the object in any Frameworks or containers in which the object has
been registered. Or you may need to free previously allocated memory.

Example
The following example is for class programmers:

/* In the ostest subclass of somOS::ServiceBasePRef ... */

#include <somd.h>
#include "ostest.ih"

SOM_Scope void SOMLINK uninit_for_object_destruction(ostest
somSelf, Environment *ev)

{

ostestData *somThis = ostestGetData(somSelf);
ostestMethodDebug("ostest","init_for_object_destruction");

// Insert code here to perform destruction. For example, ...
SOMFree(somThis->MyVariable);
...

ostest_parent_somOS_ServiceBasePRef_uninit_for_object_destruction
(somSelf, ev);

return (somSelf);

}

The following example is for client programmers:

/* Let "ostest" be a subclass of ServiceBasePRef.
The ostest class must be registered with the server. */

#include <somd.h>
#include <somos.h>
#include "ostest.ih"

Environment ev;
ostest temp, pers;

SOM_InitEnvironment (&ev);
SOMD_Init (&ev);

temp = _somdCreate (&ev, "ostest", FALSE);
// temp is a transient (DSOM) reference.

Chapter 3. Object Services Server 167

uninit_for_object_destruction Method

pers = _init_for_object_creation(temp, &ev);
// Subsequently use pers and discard temp
// because pers is a persistent reference.

...
_uninit_for_object_destruction(pers, &ev);

// Persistent reference is automatically destroyed.

_somDestruct(pers, 1, NULL);
// Destroys both the proxy and target objects.

Original Class
somOS::ServiceBase

Related Information
init_for_object_creation Method

168 Programmer’s Reference for Object Services

somOS::ServiceBaseCORBA Class

somOS::ServiceBaseCORBA Class

somOS::ServiceBaseCORBA class is a specialization of somOS::ServiceBase to
support objects that have a persistent reference but do not have persistent state; namely,
objects that are CORBA-compliant. When a method is invoked on an instance that has
been passivated and reactivated, an INV_OBJREF standard exception is raised.

Intended Usage
If your class does not maintain the state for its instances persistently and you must maintain
strict compliance with CORBA, then you must mix-in your class with the somOS::-
ServiceBaseCORBA class. Having done so, when a method is invoked on an instance of
your class that has been passivated and reactivated, an INV_OBJREF standard exception
is raised.

File Stem
somos

Base Class
somOS::ServiceBase

Metaclass
SOMClass

Ancestor Classes
ServiceBase
SOMObject
CosObjectIdentity::IdentifiableObject

New Methods
None.

Chapter 3. Object Services Server 169

somOS::ServiceBaseCORBA Class

Overridding Methods
init_for_object_reactivation

170 Programmer’s Reference for Object Services

init_for_object_reactivation Method

init_for_object_reactivation Method
Raises the INV_OBJREF standard exception.

IDL Syntax
SOMObject init_for_object_reactivation();

Description
The init_for_object_reactivation method raises the INV_OBJREF standard exception to
support CORBA-compliance for instances of the somOS::ServiceBaseCORBA class.

Intended Usage
The server calls this method when an object is reactivated; for example, when a method is
called on an already passivated object. Because an exception is raised, the server fails to
reactivate the object, and the invoked method is not executed.

Return Value
Returns an exception.

Original Class
ServiceBaseCORBA

Chapter 3. Object Services Server 171

somOS::ServiceBasePRefCORBA Class

somOS::ServiceBasePRefCORBA Class

somOS::ServiceBasePRefCORBA is a specialization of somOS::ServiceBase. This
class is similar to ServiceBaseCORBA, but persistent references are created
automatically. The somOS::ServiceBasePRefCORBA class inherits from
somOS::ServiceBasePRef and ServiceBaseCORBA. For object instances of this class,
calling init_for_object_reactivation raises the INV_OBJREF standard exception.

Intended Usage
Use for objects having a persistent reference but no persistent state; namely, CORBA-
compliant objects and persistent references that are automatically created and destroyed.

File Stem
somos

Base Class
somOS::ServiceBasePRef
ServiceBaseCORBA

Metaclass
SOMClass

Ancestor Classes
ServiceBasePRef
ServiceBaseCORBA
ServiceBase
SOMObject
CosObjectIdentity::IdentifiableObject

172 Programmer’s Reference for Object Services

somOS::ServiceBasePRefCORBA Class

New Methods
None.

Overridding Methods
init_for_object_reactivation

Chapter 3. Object Services Server 173

init_for_object_reactivation Method

init_for_object_reactivation Method
Raises the INV_OBJREF standard exception.

IDL Syntax
SOMObject init_for_object_reactivation();

Description
The init_for_object_reactivation method raises the INV_OBJREF standard exception to
support CORBA-compliance for instances of ServiceBasePrefCORBA class.

Intended Usage
The server calls this method when an object is reactivated; for example, when a method is
called on an already passivated object. Because an exception is raised, the server fails to
reactivate the object, and the invoked method is not executed.

Return Value
Returns the object pointer of the specified object.

Original Class
somOS::ServiceBasePRefCORBA

174 Programmer’s Reference for Object Services

init_for_object_reactivation Method

Appendix A. BNF for Naming Constraint Language 175

Appendix A. BNF for Naming Constraint Language

The Naming Service allows searches based on properties attached to a name object
binding. Service providers register their service and use properties to describe the service
offered. Potential clients can then use a constraint expression to describe the requirements
that service providers must satisfy. Constraints are expressed in a constraint language.
Using the constraint language, you can specify arbitrarily complex expressions that involve
property names and potential values.

The constraint language described below is an excerpt from Appendix B of the Common
Object Services Specification Volume 1 (OMG Document Number 94-1-1). It has been
slightly modified to support future enhancements.

ConstraintExpr : Expr
;

Expr : Expr "or" Expr
| Expr "and" Expr
| Expr "xor" Expr
| '(' Expr ')'
| NumExpr Op NumExpr
| StrExpr Op StrExpr
| NumExpr Op StrExpr
;

NumExpr : NumExpr "+" NumTerm
| NumExpr "-" NumTerm
| NumTerm
;

NumTerm : NumFactor
| NumTerm "*" NumFactor
| NumTerm "/" NumFactor
;

NumFactor : Num
| Identifier
| '(' NumExpr ')'
| '-' NumFactor
;

StrExpr : StrTerm
| StrExpr "+" StrTerm
;

StrTerm : String
| '(' StrExpr ')'
;
;

Op : "==" | "<=" | ">=" | "!=" | "<" | ">"
;

Identifier : Word
;

Word : Letter { AlphaNum }+
;

AlphaNum : Letter
| Digit
| "_"
;

String : "'" { Char }* "'"
;

Num : { Digit}+
| { Digit}+ "." { Digit}*
;

Char : Letter
| Digit
| Other
;

176 Programmer’s Reference for Object Services

Letter : a | b | c | d | e | f | g | h | i
| j | k | l | m | n | o | p | q | r
| s | t | u | v | w | x | y | z | A
| B | C | D | E | F | G | H | I | J
| K | L | M | N | O | P | Q | R | S
| T | U | V | W | X | Z
;

Digit : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
;

Other : <Sp> | ~ | ! | @ | # | $ | % | ^ | &
| * | (|) | - | _ | = | + | [| {
|] | } | ; | : | " | \ | | | , | <
| . | > | / | ?
;

Sp : " "
;

The following precedence relations hold in the absence of parentheses, in the order of
lowest to highest:

• or and xor

• and

• not

• + and -

• * and /

• Otherwise, left-to-right precedence

The following are some example constraints:

(1) name == 'ashoo'
(2) name == 'ashoo' and pet == 'flakes'
(3) Fee <= 5 or LowFreq >= 20
(4) DeviceType == 'Car' and Cost < 30000 and color == 'white'

and Year > 1990

 Index 177

Index

_get_allowed_object_types method 119
_get_allowed_property_names 120
_get_allowed_property_types method 121

A
add_index method 77
add_properties method 78
add_property method 79
already_streamed method 4

B
bind method 80
bind_context method 81
bind_context_with_properties method 82
bind_new_context method 84
bind_with_properties 85
BNF

for Naming Constraint Language 175
precedence relations 176
search constraint 175

C
capture method 146
class

FileXNaming::FileBindingIterator 54
FileXNaming::FileENC 74
FileXNaming::FileIndexIterator 69
FileXNaming::PropertyBindingIterator 59
LName 43
LNameComponent 36
somOS::Server 125
somOS::ServiceBase 144
somOS::ServiceBaseCORBA 168
somOS::ServiceBasePRef 162
somOS::ServiceBasePRefCORBA 171
somStream::MemoryStreamIO 29
somStream::Streamable 31
somStream::StreamIO 2

clear_buffer method 5

D
delete_component method 45

delete_ref method 127
destroy method

for FileXNaming::FileBindingIterator 56
for FileXNaming::FileENC 87
for FileXNaming::FileIndexIterator 71
for FileXNaming::FPropertyBindingIterator 61
for FileXNaming::FPropertyIterator 66
for LName 46
for LNameComponent 38

E
equal method 47
externalize_to_stream method 33

F
FileXNaming::FileBindingIterator class 54
FileXNaming::FileENC class 74
FileXNaming::FileIndexIterator class 69
FileXNaming::PropertyBindingIterator class 59
find_all method 88
find_any method 90
find_any_name_binding method 91
from_idl method 48

G
get_all_properties method 92
get_buffer method 6
get_component method 49
get_constant_random_id method 161
get_features_supported method 94
get_id method 39
get_kind method 40
get_properties method 96
get_property method 98
GetInstanceManager method 148

H
has_persistent_ref method 128

I
init_for_object_copy method 149
init_for_object_creation method

for somOS::ServiceBase 150

178 Programmer’s Reference for Object Services

for somOS::ServiceBasePRef 164
init_for_object_reactivation method

for somOS::ServiceBase 152
for somOS::ServiceBaseCORBA 170
for somOS::ServiceBasePRefCORBA 173

insert_component method 50
internalize_from_stream method 34
is_identical method 153

L
less_than method 51
list method 99
list_indexes method 100
list_properties method 101
LName class 43
LNameComponent class 36

M
make_persistent method 130
method

_get_allowed_object_types 119
_get_allowed_property_names 120
_get_allowed_property_types 121
add_index 77
add_properties 78
add_property 79
already_streamed 4
bind 80
bind_context 81
bind_context_with_properties 82
bind_new_context 84
bind_with_properties 85
capture 146
clear_buffer 5
delete_component 45
delete_ref 127
destroy

for FileXNaming::FildBindingIterator 56
for FileXNaming::FileENC 87
for FileXNaming::FileIndexIterator 71
for FileXNaming::FPropertyBindingIterator

61
for FileXNaming::FPropertyIterator 66
for LName 46
for LNameComponent 38

equal 47
externalize_to_stream 33

find_all 88
find_any 90
find_any_name_binding 91
from_idl 48
get_all_properties 92
get_buffer 6
get_component 49
get_constant_random_id 161
get_features_supported 94
get_id 39
get_kind 40
get_properties 96
get_property 98
GetInstanceManager 148
has_persistent_ref 128
init_for_object_copy 149
init_for_object_creation

for somOS::ServiceBase 150
for somOS::ServiceBasePRef 164

init_for_object_reactivation
for somOS::ServiceBase 152
for somOS::ServiceBaseCORBA 170
for somOS::ServiceBasePRefCORBA 173

insert_component 50
internalize_from_stream 34
is_identical 153
less_than 51
list 99
list_indexes 100
list_properties 101
make_persistent 130
new_context 102
next_n

for FileXNaming::FildBindingIterator 57
for FileXNaming::FileIndexIterator 72
for FileXNaming::FPropertyBindingIterator

62
for FileXNaming::FPropertyIterator 67

next_one
for FileXNaming::FildBindingIterator 58
for FileXNaming::FileIndexIterator 73
for FileXNaming::FPropertyBindingIterator

63
for FileXNaming::FPropertyIterator 68

num_components 52
passivate_all_objects 132

 Index 179

passivate_object 134
read_boolean 7
read_char 8
read_double 9
read_float 10
read_long 11
read_octet 12
read_short 13
read_string 14
read_unsigned_long 15
read_unsigned_short 16
rebind 103
rebind_context 104
rebind_context_with_properties 105
rebind_with_properties 106
reinit 154
remove_all_properties 107
remove_index 108
remove_properties 109
remove_property 110
reset 17
resolve 111
resolve_with_all_properties 112
resolve_with_properties 114
resolve_with_property 116
restore_metastate 136
set_buffer 18
set_id 41
set_kind 42
somDestruct 155
somdRefFromSOMObj 138
somdSOMObjFromRef 139
store_metastate 140
store_service_metastate 142
to_idl_form 53
unbind 118
uninit_for_object_destruction

for som::ServiceBase 157
for somOS::SeviceBasePRef 166

uninit_for_object_move 159
uninit_for_object_passivation 160
write_boolean 19
write_char 20
write_double 21
write_float 22
write_long 23

write_octet 24
write_short 25
write_string 26
write_unsigned_long 27
write_unsigned_short 28

N
Naming Service

BNF
for Naming Constraint Language 175
precedence relations 176
search constraint 175

new_context method 102
next_n method

for FileXNaming::FileBindingIterator 57
for FileXNaming::FileIndexIterator 72
for FileXNaming::FPropertyBindingIterator 62
for FileXNaming::FPropertyIterator 67

next_one method
for FileXNaming::FileBindingIterator 58
for FileXNaming::FileIndexIterator 73
for FileXNaming::FPropertyBindingIterator 63
for FileXNaming::FPropertyIterator 68

num_components method 52

P
passivate_all_objects method 132
passivate_object method 134

R
read_boolean method 7
read_char method 8
read_double method 9
read_float method 10
read_long method 11
read_octet method 12
read_short method 13
read_string method 14
read_unsigned_long method 15
read_unsigned_short method 16
rebind method 103
rebind_context method 104
rebind_context_with_properties method 105
rebind_with_properties method 106
reinit method 154
remove_all_properties method 107
remove_index method 108

180 Programmer’s Reference for Object Services

remove_properties method 109
remove_property method 110
reset method 17
resolve method 111
resolve_with_all_properties method 112
resolve_with_property method 116
resolve_with_propteries method 114
restore_metastate method 136

S
set_buffer method 18
set_id method 41
set_kind method 42
somDestruct method 155
somdRefFromSOMObj method 138
somdSOMObjFromRef method 139
somOS module 124
somOS::Server class 125
somOS::ServiceBase class 144
somOS::ServiceBaseCORBA class 168
somOS::ServiceBasePRef class 162
somOS::ServiceBasePRefCORBA class 171
somStream::MemoryStreamIO class 29
somStream::Streamable class 31
somStream::StreamIO class 2
store_metastate method 140
store_service_metastate method 142

T
to_idl_form method 53

U
unbind method 118
uninit_for_object_destruction method

for somOS::ServiceBase 157
for somOS::ServiceBasePRef 166

uninit_for_object_move method 159
uninit_for_object_passivation method 160

W
write_boolean method 19
write_char method 20
write_double method 21
write_float method 22
write_long method 23
write_octet method 24
write_short method 25
write_string method 26

write_unsigned_long method 27
write_unsigned_short method 28

 Index 181

Printed in U.S.A.

.

