
Introduction

The cover of the May, 1994 issue of Byte Maga-
zine declared: “Object-oriented computing has
failed.” However, Udel’s story inside [20] is not
nearly as inflammatory. It describes the situation as
we know it: despite all of its promise, software
reuse in object-oriented programming has yet to
reach its full potential. A major impediment to
reuse is the inability to evolve a compiled class
library without abandoning the support for the
already compiled applications. The underlying
cause of this problem is that the typical object-ori-
ented model has elements that are not part of the
interface model of the linkage editor/loader. There-
fore, an object-oriented model must be carefully
designed so that class-library transformations that
should not break already compiled applications,
indeed, do not break such applications.

The System Object Model (SOM) is so designed.
The next section gives an overview of SOM, after
which we return to the problem of producing and
supporting release-to-release binary compatible
class libraries. This paper presents the SOM solu-
tion to this problem.

The SOM Model

In SOM [5,12,19], classes are objects whose
classes are called metaclasses. A class is different
from an ordinary object because a class has (in its
instance data) an instance method table defining
the methods to which instances of the class
respond. During the initialization of a class object,
a method is invoked on it that informs the class of
its parents. This allows the class to build an initial
instance method table. Once this is done, other
methods are invoked on the class to override inher-
ited methods or add new instance methods.

When diagraming class hierarchies, this paper uses
the convention that metaclasses are drawn with
three concentric circles, ordinary classes (i.e.,
classes that are not metaclasses) are drawn with
two concentric circles, and ordinary objects (i.e.,
objects that are not classes) are drawn with a single
circle. The initial state of an example SOM pro-
gram is depicted in Figure 1. There are four objects
SOMObject (a class), SOMClass (a metaclass),
Dog (an ordinary class), and Rover (an ordinary
object). There are two relations among objects that
one must understand.

Release-to-Release Binary Compatibility in SOM

Ira R. Forman
Michael H. Conner
Scott H. Danforth

Larry K. Raper
IBM Object Technology Products

11400 Burnet Road
Austin, Texas 78758

Abstract SOM (IBM’s System Object Model) removes a major impediment to reuse in Object-Oriented
Programming by facilitating the programming of release-to-release binary compatible class libraries. This
is accomplished by supporting a large number of compatibility preserving transformations. Taken together
these transformations compose a discipline for programming evolving class libraries.

.

First, there is the instance of relation between
objects and classes depicted by the dashed arrow
from an object to its class. When convenient the
inverse relation, class of, is also used. SOMObject
is an instance of SOMClass and SOMClass is the
class of itself. An object’s class is important
because an object responds only to the methods
that are supported by its class (that is, the methods
that the class introduces or inherits).

Second, there is a relation between classes called
the subclass of relation, which is depicted by the
solid arrow from a class to each of its parents.
SOMClass is a subclass of SOMObject. SOMOb-
ject has no parents.

SOMObject introduces the methods to which all
SOM objects respond. As a subclass of SOMOb-
ject, SOMClass is an object but in addition intro-
duces the methods to which all classes respond.
For example, SOMClass introduces the somNew
method, which creates instances of a class. Also,

Set of Objects

Set of Classes

Set of Metaclasses

Dog

ordinary object class metaclass

subclass-of instance-ofLegend:

Figure 1. Example of various SOM objects.

SOMClass

SOMObject

Rover

the methods responsible for creating and modify-
ing instance method tables are introduced. All
metaclasses in SOM are ultimately derived from
SOMClass. (Similar arrangements of classes are
also used in CLOS[11,15], ObjVlisp[4], Dylan[1],
and Proteus[17].) SOMClass and SOMObject are
the two most important classes of the SOM kernel.

Interfaces to SOM objects are described using IDL,
an object interface definition language defined by
the Common Object Request Broker Architecture
(CORBA [13]) standard of the Object Manage-
ment Group (OMG). SOM IDL is a CORBA-com-
pliant version of IDL used to allow SOM class
descriptions to be supplied in addition to object
interface definitions. (That is, the interface to a
class is described by the IDL alone, SOM IDL
allows additional information about the implemen-
tation to be added.) The SOMobjects Toolkit has
tools called emitters that translate SOM IDL into
language-specific bindings for the corresponding

classes of SOM objects (e.g., for C programmers
this means that emitters produce header files for
both the users of the class and the implementor of
the class).

Below is the basic structure of an IDL definition
for an object interface named Dog. At the same
time, it is a SOM IDL description of a class Dog
that supports this interface. The #ifdef and
#endif (which, for simplicity, are omitted from
subsequent examples) are part of the IDL language
and are used to hide the SOM class implementation
section from non-SOM IDL compilers.

interface Dog : SOMObject {
<method and attribute declarations here>

#ifdef __SOMIDL__
implementation {
metaclass = SOMClass;
<instance variable declarations here>

};
#endif

};

In this example the interface Dog inherits from the
SOMObject interface, and at the same time, the
class Dog is declared to be a subclass of SOMOb-
ject. CORBA and SOM support multiple inherit-
ance; additional parents of Dog can be listed
alongside SOMObject in a comma-separated list.
The actual methods and instance variables of Dog
are not relevant to the current discussion. As illus-
trated here, the implementation section can explic-
itly indicate a metaclass to be associated with the
class of objects that support the interface being
defined. This association is not necessarily direct,
however. For reasons that will become clear, the
actual class of the class described by any given
SOM IDL is, in general, a subclass of the indicated
metaclass.

The Library Compatibility Problem

With SOM there is an important distinction
between the term API (application programming
interface) and ABI (applications binary interface).
The API is the interface that a programmer uses,
while the ABI refers to the specific conventions on
which running programs depend. API compatibil-
ity ensures that applications can be recompiled
successfully; ABI compatibility ensures that com-

piled applications continue to run successfully.

Let us consider the predicament of a software ven-
dor that is selling a software library; the customers
of the library vendor use the library to develop
applications. The library vendor gives the custom-
ers a description of the API to the library (e.g.,
header files or OMG IDL) and the compiled library
in the form of a dynamically linked library (DLL).
The interface to the (compiled) DLL is called the
ABI. The advantage of using a DLL (to both the
library vendor and the application producer) is that
multiple applications may run with one copy of the
DLL present, which vastly reduces the memory
requirements and improves response time. This
paper is aimed at one facet of flexibility of soft-
ware; an excellent overview may be found in [2].

A problem arises when the library vendor wishes
to evolve the library (Figure 2). The library vendor
must maintain release-to-release binary compati-
bility, because it is impossible for the application
producer to recompile the already distributed cop-
ies of the application.

The problem is couched in the terms of a library
vendor, an application vendor, and dynamically
linked libraries, because we wish to emphasize the
relevance of our work to this area. In reality, the
problem and our solution are much more general.
The granularity goes down to the individual pro-
grammer who provides libraries for others or even
herself. Whenever a library is changed one must
consider the impact on the applications that are
already using the library.

Application

Library 1.0

dll

ABI

Figure 2. A release-to-release binary compatible
library revision supports compiled applications.

Application

Library 1.1

dll

ABI

tion from the real problem: the compiler/linker
combination does not properly support subclassing
across the binary interface.

Defining Release-to-Release Binary
Compatibility

Creating an effective definition of release-to-
release binary is not simple. Consider this direct
attack on the problem. Let

A L
mean application A is combined to library L

and let

SAT(P, S)
mean program P satisfies specification S

Straw-man Definition. L1 is a RRBC-successor to
L0 if

SAT(A L0, S)
implies

SAT(A L1, S)

for all reasonable functional specifications S for all
applications A using library L.

The problems with this definition characterize the
difficulties of supporting the evolution of binary
class libraries. First, the operator symbol-
izes many different implementations (one for each
compiler/linker/loader combination). Second, there
is no satisfactory definition of “reasonable func-

Pragmatically, a revision to a library is release-to-
release binary compatible if all the applications
that depend on the library still work. Because of a
lack of precise specifications for both the library
and the application, this is a subjective judgement.
For example, one can repair a defect in the library
only to find that application programmers consider
it a feature.

Now this a bit abstract; let’s take as an example
how C++ fails to support release-to-release binary
compatibility. Figure 3 depicts the situation where
class X (from the class library) is subclassed in the
application with class Y. With release 1.0 of the
library, the application runs perfectly; in particular,
fmethod can be invoked on iY, an instance of class
Y. Now let us consider what happens when the
library vendor makes the seemingly innocuous
change of adding a new method (hmethod) to
class X, which is invoked from fmethod. Now
because the application was built with the old
library definition, the method table for Y has a
pointer to gmethod in its second entry. However,
when the fmethod is invoked on iY, it tries to sub-
sequently invoke hmethod, which in class X is the
second entry in the method table. The result is that
gmethod is called when hmethod was specified.

This situation is both familiar and frustrating to the
users of C++. What makes this problem even more
insidious is the fact that it appears that the problem
is in class X, which is called the base class in C++.
Because of this example and others like it, the
myth of the “fragile base class problem” has arisen.
The poor base class is blamed, diverting our atten-

Application

Library 1.0

dll

ABI

Application

Library 1.1

dll

ABI

X
fmethod

gmethod

Figure 3. An incompatibility produced by the typical C++ compiler.

iY

X
fmethod

gmethod

iY

hmethod

Y Y

tional specification.” Third, establishing the impli-
cation of lines 3 to 5 of the definition is tantamount
to proving program equivalence, an unsolvable
problem. Fourth, even if program equivalence
were not unsolvable, defect removal implies some
functions of the new library are not equivalent.
Fifth, even if “reasonable functional specification”
could be satisfactorily defined, real software prod-
ucts rarely have satisfactory formal specifications.
Sixth, for a generally available class library prod-
uct, one cannot know the set of applications using
the library (this simply means that for generally
available libraries, a successor must support all
possible applications).

In light of the above difficulties, the only recourse
is to develop an engineering discipline for software
libraries. This discipline should be based on trans-
formations that are guaranteed to be compatibility
preserving. This means that a library revision is
compatible if only these transformations are used
to derived it from the old library. The engineering
discipline, then, requires a careful justification for
those revisions that are not attained by the transfor-
mations.

The goal of this engineering discipline for com-
piled libraries can be stated as:

Only application alteration

necessitates recompilation

This implies that if the evolution of the class
library does not require changes to the application
source, then the application should not require
recompilation.

In terms of our straw-man definition, these trans-

formation produce compatible RRBC-successors.
But because the straw-man definition is not formal,
each transformation must be independently justi-
fied. In addition, enumerating the transformations
of this discipline is not enough. Because compiled
libraries must be accommodated, we must require
that the technology for binding applications to
libraries must support the transformations. Now as
we shall see, for procedural programming, current
linkage editors are adequate, but for object-ori-
ented programming, SOM provides the most com-
plete set of transformations.

Procedural Programming

For procedural programming (the style that pre-
ceded object-oriented programming), the constitu-
ents of an applications programming interface are
procedures as depicted in Figure 4. Applications
make procedure calls and linkage editors ensure
that each procedure call is bound to the appropriate
procedure implementation.

With this ABI, the problem of release-to-release
binary compatibility reduces to the question of:

Is each procedure of the new library a more com-
plete implementation of its predecessor?

This implies that there are five transformations
available to our engineering discipline:

Transformation 0:
The procedure can be reimplemented to
provide better performance for the same
functional interface. (Note that we ignore
any pathological real-time situation where
a better performing implementation fails to
meet its specification.)

Figure 4. Procedure libraries evolve safely by adding new procedures.

Application

Procedure Library 1.0

ABI

P1 P2

Application

Procedure Library 1.1

ABI

P1 P2 P3

Transformation 1:
The domain of the procedure can be
enlarged to return values for inputs for
which it previously aborted, failed to
return (infinite loop or deadlock).

Transformation 2:
On systems where the calling conventions
indicate the number of parameters, the
number of parameters of a procedure can
be increased.

Transformation 3:
Addition of new procedures.

Transformation 4:
Retraction of private procedures.

Our engineering discipline says that as long as only
these transformations are applied the new proce-
dure library is an release-to-release binary compat-
ible revision of the old library. Of course, there are
good reasons for making changes that are outside
these transformations; these must be carefully ana-
lyzed for their impact on applications using the old
libraries.

Object-Oriented Programming

The richness of Object-Oriented Programming
adds new facets to the ABI. Besides the ABI of
procedural libraries, OOP applications subclass the
classes of the library (see Figure 5). The new
aspects of the problem give rise to a new engineer-
ing discipline needed to ensure release-to-release
binary compatibility of a class library and thus, the
continued functioning of the dependent applica-
tions.

Figure 5. Applications subclass from class libraries which evolve by adding new classes.

Application

Class Library 1.0

ABI

Application

Class Library 1.1

ABI

C2C1 C2C1 C4

C3

The additional transformations required to support
our engineering discipline are:

Transformation 5:
Addition of new instance variables to
objects

Transformation 6:
Addition of new methods to classes

Transformation 7:
Insertion of new classes into the hierarchy

Transformation 8:
Migration of a parent class downward in
the class hierarchy

Transformation 9:
Migration of a method upward in the class
hierarchy

Transformation 10:
Retraction of private methods

Transformation 11:
Retraction of private instance data

Transformation 12:
Reorder the methods of a class

Transformation 13:
Reorder the instance variables of an object

Note that Transformation 8 is included in the list
for completeness. It is attainable as a combination
of Transformation 6 and Transformation 7. In addi-
tion, it may seem counterintuitive that migration of
a parent downward leaves the library compatible,
but moving the parent downward just means that
the new parents supports the functionality of the
old parent.

The need for these additional transformations is
directly caused by permitting subclassing across
the ABI. SOM is designed to support these addi-
tional transformations.

When classes are first class objects

SOM allows and encourages the definition and
explicit use of metaclasses. In this wider ABI, our
engineering discipline requires an additional trans-
formation.

Transformation 14:
The class of a class (i.e., its metaclass con-
straint) can be moved downward in the
class hierarchy.

This transformation is similar to Transformation 8
in that when migrating the metaclass downward
the new metaclass supports all the functionality of
the old metaclass. However, there is a constraint on
the appropriateness of a new metaclass.

Consider the simple single-inheritance example
illustrated by Figure 6. In this figure, X is an
instance of XMeta; we assume that XMeta supports
a method bar and that X supports a method foo that
uses the expression bar(class(self)). That is, the
method foo invokes a method on the class of the
object on which foo is operating. Now consider
what happens when X is subclassed by Y, a class
that has an explicit metaclass declared in its SOM
IDL as in Figure 6. If the class hierarchy were to be
formed as in Figure 6, then an invocation of foo on
an instance of Y would fail because YMeta does not
support bar. This situation is referred to the as
metaclass incompatibility.

SOM does not allow hierarchies with metaclass
incompatibilities. Instead, SOM builds derived
metaclasses that prevent this problem from occur-
ring [6]. The actual SOM class hierarchy that
results for Y is depicted in Figure 7, where SOM
has automatically built the metaclass DerivedMeta-
class; this ensures that the invocation of foo on
instances of Y do not fail. This example shows that
the metaclass statement in the SOM IDL is treated
as a constraint on the actual metaclass. The derived
metaclass can be viewed as the minimal metaclass
supporting the constraints of metaclass compatibil-
ity.

interface X {
...
void foo();
implementation{
metaclass = XMeta

};
};
where

foo()
{...
 bar(class(self));
 ...};

interface Y:X {
...
implementation{
metaclass = YMeta

...

X

iX

bar

foo

Figure 6. Example of a metaclass incompatibility.

XMeta YMeta

iY

Y

bar

foo

Figure 7. Example of a derived metaclass.

YMetaXMeta

DerivedMetaclass

Y

X

iX

iY

Several papers [3,10] have called this situation the
metaclass compatibility problem, but none go
beyond a characterization of the compatibility con-
dition required on the metaclass statement. In SOM
there is no such problem; in a situation where the
explicitly declared metaclass is not compatible
with the parents of the class, an appropriate meta-
class is constructed -- this is the derived metaclass.
Because class construction is a dynamic activity in
SOM, this derivation is actually accomplished at
runtime with no need for prior description in IDL.

Now all languages have to solve the metaclass
incompatibility problem. For example, C++ solves
the problem by not having metaclasses. Smalltalk
solves the problem by not allowing metaclasses to
be explicitly named. CLOS has a rule for checking
compatibility at class construction time that elimi-
nations the possibility of a metaclass incompatibly
(but failure of the check causes a runtime failure).
Only SOM handle metaclass incompatibility with-
out restricting the programmer.

How Derived Metaclasses Support
Binary Libraries

SOM relieves programmers of the responsibility
for getting the metaclass right when defining a new
class. At first glance, this might seem to be merely
a useful (though very important) convenience. But,
in fact, it is essential to the support of release-to-
release binary compatible libraries in SOM.
Although a programmer might, at one time, know
the metaclasses of all classes above a new subclass,
and, as a result, be able to explicitly derive an
appropriate metaclass for the new class, SOM must
guarantee that this new class still executes cor-
rectly when any of its ancestor class’s implementa-
tions are changed (and this could include a choice
of different metaclasses). Thus, a SOM program-
mer never needs to consider a newly defined
class’s ancestors’ metaclasses. Instead, explicit
metaclasses should only be used to add in desired
behavior for a new class. Anything else that is
needed is done automatically [19].

Figure 8 contains a specific example. The applica-
tion and the two libraries in the upper part of the
diagram work correctly together. If the Library A
evolves by inserting a new metaclass (which
should be acceptable as it is moving the metaclass

constraint downward), the metaclass incompatibil-
ity depicted in Figure 6 is attained.

Figure 9 shows how the lower half of Figure 8
looks when built dynamically by the SOM kernel.
This example makes one further point. The meta-
class incompatibility can arise across libraries.
There is no way for a metaclass programmer to
know about how metaclasses are used in applica-
tions. Without the notion of the derived metaclass,
there is no way for the application programmer to
avoid the situation. Yet it is very valuable to com-
pose metaclasses as is shown in [8].

A comparison of support in several
object models

Now when choosing a programming system in
which to produce compiled libraries one needs to
consider which transformations are supported.
Table 1 gives such a comparison for several object
models1. The Smalltalk and C++ columns are
generic, but the Delta/C++ refers to the C++ com-
piler from Silicon Graphics [16,18] and OBI refers
to the research work of Sun Microsystems [9].

In Table 1, ✔ means the transformation is sup-
ported and ✖ means it is not. In the cases where the
transformation has no meaning to that technology,
Table 1 has an “n/a” entry.

Note that none of these technologies (including
SOM) support Transformation 2. This is not an
impediment to evolving a class library, because
one can define a new method (with a new name)
having the expanded signature while retaining the
old method. Now, the compiled applications run as
expected while new applications use the new
method.

1. We exclude Microsoft’s COM [14] because it is an
interface model, not an object model and it’s ABI
forbids subclassing between library and application.
If our analysis technique is applied to COM, one
sees that it supports only Transformations 0 to 4,
which places it in the category of procedural pro-
gramming rather than object-oriented programming.

Application

Library A 1.0 Library B 1.0

iY

Application

Library A 1.1 Library B 1.0

iX

bar

Y

ABI

ABI

Figure 8. Example of a meta-
class incompatibility arising

in library use.

fooX

iY

iX Y

foo
X

supXMeta

YMeta
XMeta

YMeta

supXMeta

Application

Library A 1.1

bar

foo

Library B 1.0

X

iY

iX

DerivedMetaclass

Y

Figure 9. SOM prevents the
Metaclass Incompatibility.

supXMeta

YMetaXMeta

a. Because of overloading in C++, this box gets a formal ✖, because adding new parameters is defining a
new method. One might think this is not a problem, because overloading allows multiple procedures with
the same name. However, this causes an answer for procedures that is different than that for methods.
b. However, SOM does support procedures and methods that are defined to have a variable number of
parameters.
c. With compiled Smalltalk, addition of instance variables requires recompilation of applications.
d. One should bear in mind that OBI is a research project that had the additional goal of supporting multiple
versions of a class.
e. Because this is a C++ approach, one must ensure that private members that have not been exposed by
friend specifications.
f. Objective-C supports direct access interface to instance data making this box ✖. Brad Cox informs us that
wise Objective-C programmers avoid use of this facility (and by doing so, turn this box to a ✔.)

Table 1: Comparison of Support for Compiled Class Libraries

Transformation Smalltalk
Generic

C++
SOM Delta/C++ OBI

Objective-
C

0: improve performance ✔ ✔ ✔ ✔ ✔ ✔

1: eliminate failures ✔ ✔ ✔ ✔ ✔ ✔

2: add parameter ✖ ✖a ✖b ✖ ✖ ✖

3: add procedure n/a ✔ ✔ ✔ ✔ ✔

4: retract private
procedure

n/a ✔ ✔ ✔ ✔ ✔

5: add instance variable ✖c ✖ ✔ ✔ ✔ ✖

6: add new method ✔ ✖ ✔ ✔ ✔ ✔

7: insert new class ✔ ✖ ✔ ✔ ✔ ✖

8: migrate parent
downward

✔ ✖ ✔ ✔ ✖d ✖

9: migrate method
upward

✔ ✖ ✔ ✔ ✔ ✔

10: retract private
method

n/a ✖ ✔ ✔e ✔ n/a

11: retract private data n/a ✖ ✔ ✔ ✔ n/a

12: reorder methods n/a ✖ ✔ ✔ ✖d ✔

13: reorder instance
variables

✖ ✖ ✔ ✔ ✖d ✖f

14: migrate metaclass
constraint downward

✖ n/a ✔ n/a n/a ✖

Our presentation has been informal; e.g., we have
not defined the criteria for a complete set of trans-
formations that are compatibility preserving (for
that matter, neither has compatibility preserving
been formally defined). Usually lack of complete-
ness of a transformation set implies lack of suffi-
ciency. For the problem of evolution of class
libraries, this is not the case. Clearly, SOM is not
complete, because Transformation 2 is not sup-
ported. But as we argue above, this is not a serious
impediment to evolving a class library.

Experience

The SOM technology described here is more than a
theory; it has been heavily used both within IBM
and throughout the OS/2 development community
for over three years. Numerous OS/2 applications
and system facilities such as IBM’s LAN Server,
MMPM/2, Ultimail, IBM Works, and even the OS/
2 Workplace Shell (the desktop user interface for
OS/2) are built on the SOM technology. Even mod-
erately-sized applications such as these contain
dozens, and in some cases hundreds of SOM
classes. These applications were developed inde-
pendently and have evolved, even while SOM
itself has been evolving.

Figure 10 shows the progression of the SOM tech-
nology and the OS/2 operating system. The debut
of SOM 1.0 occurred in April 1992; it was an
essential part of the first 32-bit OS/2 2.0 release.
Although the 1.0 level of SOM provided only a
basic single-inheritance programming capability
most of the RRBC features described in this paper
were already present. In fact, it was the very pres-

ence of the RRBC features in the early SOM that
permitted the technology to evolve.

The 2.0 level of SOM made a significant leap in
terms of new features and new capabilities. This
was the first attempt of any commercial product to
embrace the fledgling CORBA 1.1 standard. For
SOM this meant a new definition language for
SOM interfaces, extensions to the base object
model itself (such as multiple inheritance), and
changes in the infrastructure to support distribution
via an Object Request Broker (ORB), known as
DSOM. Because the product cycles of the OS/2
and SOM development teams were entirely inde-
pendent, SOM 2.0 appeared in a separately
licensed product called the SOMobjects Developer
Toolkit. In addition to offering the basic SOM pro-
gramming tools the toolkit also included a broad
set of application frameworks and sample pro-
grams. When installed on any OS/2 2.0 or 2.1 sys-
tem, the SOM toolkit completely superceded the
earlier level of SOM still found there. So, although
none of the OS/2 SOM applications yet took
advantage of the new features of SOM 2.0, all of
the frameworks derived from SOM continued to
work without recompilation, while newly devel-
oped frameworks exploiting SOM 2.0 ran in the
same environment.

In October of 1994, SOMobjects Toolkit release
2.1 became generally available; this release of
SOM corrected some reported defects (the SOM
developers are no more perfect or omniscient than
anyone else) and added many performance
enhancements. This time, the OS/2 Warp product
cycle and the SOM product cycle coincided more
favorably and the 2.1 level of SOM was included

1.0

OS/2

OS/2 Warp

2.12.0

OS/2

April 1992 September 1993 October 1994

2.0 2.1

Figure 10. Evolution of SOMobjects Toolkit and the OS/2 Workplace Shell.

as an integral element of Warp. The most signifi-
cant thing to note is that the OS/2 Warp Workplace
Shell started its development (in Boca Raton, Flor-
ida) using the SOM 2.0 kernel, while the SOM
team in Austin, Texas, completed the 2.1 effort.
Only late in the Warp development (July, 1994) did
the Workplace Shell development team receive the
new SOM 2.1 kernel. Because of SOM’s RRBC
they were able to test without recompiling; allow-
ing the SOM development team the independence
of action necessary to fulfill its product require-
ments without impacting the schedule of the of the
Workplace Shell development team.

This experience is only one of many similar expe-
riences that might be cited as empirical proof of the
efficacy of the SOM packaging technology. But the
more fundamental point is that because of the
RRBC emphasis in SOM such evolutionary devel-
opment of independently shippable binary class
libraries should be viewed as the norm.

Many other groups are now recognizing the neces-
sity of RRBC in the OO marketplace. Because this
capability is the sine qua non of independently
developed component objects, SOM has been
selected by Component Integrations Labs as the
underlying mechanism for the OpenDoc frame-
work. Other organizations believe it too. The Tool
Integration Standards Committee (a group of vend-
ers that create tools for Intel platforms, that
includes IBM, Borland, Novel, Microsoft,
Metaware, and others as members) in October,
1994 agreed to adopt the SOM kernel and its ABI,
as a standard solution for binary object interopera-
bility and release-to-release binary compatibility.

An Unsolved Problem

When we began this work, we understood that the
set of transformations implies a definition of “rea-
sonable functional specification.” However, we
have not yet discovered that definition from which
the transformations would then be proved as com-
patibility preserving. We would appreciate hearing
from anyone who solves (or has solved) this prob-
lem.

Conclusion

SOM facilitates the evolution of class libraries by
supporting transformations that are compatibility
preserving. These transformations form the foun-
dation of an engineering discipline for class librar-
ies. Although the transformation set is necessary
for the discipline, we must still show that the set is
sufficient for a library evolution. We have created
numerous release-to-release binary compatible
libraries cumulatively exercising all of the trans-
formations. There is one library of special note.
The SOM 2.0 DLL is release-to-release binary
compatible with the SOM 1.0 DLL that is shipped
with OS/2. That is, we practice what we preach --
we have produced a nontrivial revision of a very
complex library that is release-to-release binary
compatible with its predecessor.

Acknowledgments

We would like to thank Liane Acker, Arindam
Banerji, Ravi Condamoor, Nissim Francez, Kevin
Greene, Duane Hughes, Shmuel Katz, Vinoj
Kumar, Cun Xiao, and the OOPSLA reviewers for
their comments. In addition, we thank Brad Cox,
Ted Goldstein, and Andy Palay for their coopera-
tion.

References
1. Apple Computer Dylan: An object-oriented

dynamic language (1992).

2. Banerji, A., Kulkarni, D. and Cohn, D. “A
Framework for Building Extensible C++
Class Libraries” USENIX C++ Technical
Conference (1994).

3. Briot, J.-P. and Cointe, P. “Programming with
Explicit Metaclasses in Smalltalk-80” OOP-
SLA ‘89 Conference Proceedings (October 1-
6, 1989) 419-431.

4. Cointe, P. “Metaclasses are First Class: the
ObjVlisp Model” OOPSLA ‘87 Conference
Proceedings (October 4-8, 1987) 156-165.

5. Danforth, S., Koenen, P. and Tate, B. Objects
for OS/2 Van Nostrand Reinhold (1994).

6. Danforth, S. and Forman, I.R. “Derived Meta-
classes in SOM” Proceedings of the 1994
Conference on Technology of Object-Oriented
Languages and Systems Versailles, France
(April 1994)

7. Danforth, S.H. and I.R. Forman “Reflections
on Metaclass Programming in SOM” Pro-
ceedings of OOPSLA’94, Portland, Oregon
(October 23-26, 1994).

8. Forman, I.R., S.H. Danforth, and H.H. Mad-
duri “Composition of Before/After Meta-
classes in SOM” Proceedings of OOPSLA’94,
Portland, Oregon (October 23-26, 1994).

9. Goldstein, T. C. and Sloane, A.D. “The Object
Binary Interface -- C++ Objects for Evolvable
Shared Class Libraries” USENIX C++ Tech-
nical Conference 1994.

10. Graube, N. “Metaclass Compatibility” OOP-
SLA ‘89 Conference Proceedings (October 1-
6, 1989) 305-316.

11. Kiczales, G., des Rivieres, J., and Bobrow, D.
G. The Art of the Metaobject Protocol The
MIT Press, Cambridge, Massachusetts (1991).

12. Lau, C. Object-Oriented Programming for
SOM and DSOM Van Nostrand Reinhold
(1994).

13. Object Management Group The Common
Object Request Broker: Architecture and
Specification OMG Document Number
91.12.1 Revision 1.1.

14. OLE 2 Programmer’s Reference Volume One
Microsoft Press (1994).

15. Paepcke, A. (ed.) Object-Oriented Program-
ming: The CLOS Perspective The MIT Press,
Cambridge, Massachusetts (1993).

16. Palay, A.J. “C++ in a Changing Environment”
USENIX C++ Technical Conference 1992.

17. Russinoff, D.M. “Proteus: A Frame-Based
Nonmontonic Inference System” Object-Ori-
ented Concepts, Databases, and Applications
Kim, W. and Lochovsky, F.H. (ed.) ACM
Press, New York (1989) 127-150.

18. Silicon Graphics CASEVision Promotional
Brochure (August 1993).

19. SOMobjects Developers Toolkit -- User’s
Guide and Reference Manual IBM Corp.,
Armonk, N.Y. (1993).

20. Udel, J. Componentware Byte (May 1994) 46-
56.

