Programming Language Extended
Rexx

Dallas Draft
November 1998

Caution: The developers of this standard have requested that holders of patents that may be required for
the implementation of the standard disclose such patents to the publisher. However, neither the
developers nor the publisher have undertaken a patent search to identify which, if any, patents may apply
to this standard.

As of the date of publication of this standard and following calls for identification of patents that may be
required for the implementation of the standard, no such claims have been made. No further patent
search is conducted by the developer or publisher in respect of any standard it processes. No
representation is made or implied that licenses are not required to avoid infringement in the use of this
standard.

Foreword
Purpose
History
0 Introduction
1 Scope, purpose, and application
1.1 Scope
1.2 Purpose
1.3 Application
1.4 Recommendation
2 Normative references
3 Definitions and document notation
3.1 Definitions
3.2 Document notation
3.2.1 Rexx Code
3.2.2 ltalics
4 Conformance
4.1 Conformance
4.2 Limits
5 Configuration
5.1 Notation

5.1.1 Notation for completion response and
conditions
5.2 Processing initiation

5.2.1 API_Start

5.3 Source programs and character sets
5.3.1 Syntactic_characters

5.3.2 Extra_letters

5.3.3 Other_blank_characters
5.3.4 Other_negators

5.3.5 Other_characters

5.4 Configuration characters and encoding
5.4.1 Config_SourceChar

5.4.2 Config_OtherBlankCharacters
5.4.3 Config_Upper

5.4.4 Config_Lower

5.4.5 Config_Compare

5.4.6 Config_B2C

5.4.7 Config_C2B

5.4.8 Config_Substr

5.4.9 Config_Length

5.4.10 Config_Xrange

5.5 Objects

5.5.1 Config_ObjectNew

5.5.2 Config_Array_Size

5.5.3 Config_Array_Put

11
11
11
12
12
12
12
12
12
12
12
12
14
14
14
14
14
14
15
15

15
15
15
16
16
17
17
17
17
17
17
17
18
18
18
18
18
18
19
19
19
19
19
19

5.5.4 Config_Array_ At

5.5.5 Config_Array_Hasindex
5.5.6 Config_Array Remove
5.6 Commands

5.6.1 Config_Command

5.7 External routines

5.7.1 Config_ExternalRoutine
5.7.2 Config_ExternalMethod
5.8 External data queue
5.8.1 Config_Push

5.8.2 Config_Queue

5.8.3 Config_Pull

5.8.4 Config_Queued

5.9 Streams

5.9.1 Config_Stream_Charin
5.9.2 Config_Stream_Position
5.9.3 Config_Stream_Command
5.9.4 Config_Stream_State
5.9.5 Config_Stream_Charout
5.9.6 Config_Stream_Qualified
5.9.7 Config_Stream_Unique
5.9.8 Config_Stream_Query
5.9.9 Config_Stream_Close
5.9.10 Config_Stream_Count
5.10 External variable pools
5.10.1 Config_Get

5.10.2 Config_Set

5.11 Configuration characteristics

5.11.1 Config_Constants
5.12 Configuration routines
5.12.1 Config_Trace_Query
5.12.2 Config_Trace_Input
5.12.3 Config_Trace_Output
5.12.4 Config_Default_Input
5.12.5 Config_Default_Output
5.12.6 Config_Initialization
5.12.7 Config_Termination
5.12.8 Config_Halt_Query
5.12.9 Config_Halt_Reset
5.12.10 Config_NoSource
5.12.11 Config_Time

5.12.12 Config_Random_Seed
5.12.13 Config_Random_Next
5.12.14 Config_Options

5.13 Traps

20
20
20
20
20
20
21
21
22
22
22
22
22
22
23
23
24
24
24
24
25
25
25
25
25
26
26
26
26
26
27
27
27
27
27
27
27
27
27
27
28
28
28
28
28

5.14 Variable pool

5.14.1 API_Set

5.14.2 API_Value

5.14.3 API_Drop

5.14.4 API_SetDirect

5.14.5 API_ValueDirect

5.14.6 API_DropDirect

5.14.7 API_ValueOther

5.14.8 API_Next

5.14.9 API_NextVariable

6 Syntax constructs

6.1 Notation

6.1.1 Backus-Naur Form (BNF)
6.1.2 Operands

6.1.3 Operators

6.1.4 Grouping

6.1.5 BNF syntax definition
6.1.6 Syntactic errors

6.2 Lexical

6.2.1 Lexical elements

6.2.1.1 Events

6.2.1.2 Actions and tokens
6.2.1.3 Source characters
6.2.1.4 Rules

6.2.2 Lexical level

6.2.3 Interaction between levels of syntax
6.2.3.1 Reserved symbols
6.2.3.2 Function nhame syntax
6.3 Syntax

6.3.1 Syntax elements

6.3.2 Syntax level

6.1 Syntactic information

6.1.1 VAR_SYMBOL matching
6.1.2 Trace-only labels

6.1.3 Clauses and line numbers
6.1.4 Nested IF instructions
6.1.5 Choice of messages
6.1.6 Creation of messages
6.1.6.1 Error message prefix
6.2 Replacement of insertions
6.3 Syntactic equivalence

7 Evaluation

7.1 Variables

7.1.1 Var_Empty

7.1.2 Var_Set

29
29
29
30
30
30
30
30
31
31
32
32
32
32
32
32
32
32
32
32
32
33
33
33
34
34
34
34
34
34
34
39
39
40
40
40
40
40
40
40
41
42
42
42
42

7.1.3
714
7.1.5
7.1.6
7.2

7.3

7.3.1
7.3.2
7.4

74.1
7.4.2
7.4.3
74.4
7.4.5
7.4.6
7.4.7
7.4.8
7.4.9

Var_Value
Var_Drop
Var_Expose
Var_Reset
Symbols
Value of a variable
Derived names
Value of a reserved symbol
Expressions and operators
The value of a term
The value of a prefix_expression

The value of a power_expression

The value of a multiplication
The value of an addition

The value of a concatenation
The value of a comparison

The value of an and_expression
The value of an expression

7.4.10 Arithmetic operations

7.5

7.5.1
7.5.2
7.5.3
754
7.5.5
7.5.6
7.1.1

Functions

Invocation

Evaluation of arguments

The value of a label

The value of a function

The value of a method

The value of a message term
Use of Config_ExternalRoutine

8 Directives

8.1
8.2

8.2.1
texts
8.3

8.4
8.5
8.6

Notation
Initializing

Program initialization and message

REQUIRES
CLASS
METHOD
ROUTINE

9 Instructions

9.1
9.2
9.3
9.4
9.5
9.5.1
9.5.2
9.5.3
9.5.4

Method initialization
Routine initialization
Clause initialization
Clause termination
Instruction
ADDRESS

ARG

Assighment

CALL

43
43
43
43
43
44
44
44
44
44
44
45
45
45
45
46
46
47
47
55
55
55
55
56
56
56
57
59
59
59

60
68
68
68
68
69
69
69
69
69
71
71
73
73
73

9.5.5 Command to the configuration
9.5.6 DO

9.5.7 DO loop tracing
9.5.8 DROP

9.5.9 EXIT

9.5.10 EXPOSE

9.5.11 FORWARD

9.5.12 GUARD

9.5.13 IF

9.5.14 INTERPRET

9.5.15 ITERATE

9.5.16 [Execution of labels
9.5.17 LEAVE

9.5.18 Message term
9.5.19 LOOP

9.5.20 NOP

9.5.21 NUMERIC

9.5.21.1 NUMERIC DIGITS
9.5.21.2 NUMERIC FORM
9.5.21.3 NUMERIC FUzZ
9.5.22 OPTIONS

9.5.23 PARSE

9.5.24 PROCEDURE

9.5.25 PULL
9.5.26 PUSH
9.5.27 QUEUE
9.5.28 RAISE

9.5.29 REPLY

9.5.30 RETURN

9.5.31 SAY

9.5.32 SELECT

9.5.33 SIGNAL

9.5.34 TRACE

9.5.35 Trace output

9.5.36 USE

9.6 Conditions and Messages

9.6.1 Raising of conditions

9.6.2 Messages during execution

10 Built-in functions

10.1 Notation

10.2 Routines used by built-in functions
10.2.1 Argument checking

10.2.2 Date calculations

10.2.1 Radix conversion

10.2.2 Raising the SYNTAX condition

74
76
71
78
78
78
79
79
79
79
79
80
80
80
80
80
80
80
80
81
81
81
84
85
85
85
85
85
86
86
86
87
87
88
88
89
89
90
91
91
91
91
94
97
97

10.1
10.1.1
10.1.2
10.1.3
10.14
10.1.5
10.1.6
10.1.7
10.1.8
10.1.9
10.1.10
10.1.11
10.1.12
10.1.13
10.1.14
10.1.15
10.1.16
10.1.17
10.1.18
10.1.19
10.1.20
10.1.21
10.1.22
10.1.23
10.1.24
10.1.25
10.1.26
10.1.27
10.1.28
10.1.29
10.1.30

10.2 Arithmetic built-in functions

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.3

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6

Character built-in functions

ABBREV
CENTER
CENTRE
CHANGESTR
COMPARE
COPIES
COUNTSTR
DATATYPE
DELSTR
DELWORD
INSERT
LASTPOS
LEFT
LENGTH
OVERLAY
POS
REVERSE
RIGHT
SPACE
STRIP
SUBSTR
SUBWORD
TRANSLATE
VERIFY
WORD
WORDINDEX
WORDLENGTH
WORDPOS
WORDS
XRANGE

ABS
FORMAT
MAX
MIN
SIGN
TRUNC

State built-in functions
ADDRESS
ARG
CONDITION
DIGITS
ERRORTEXT
FORM

97

97

98

98

98

98

99

99

99
102
102
102
103
103
103
103
104
104
104
104
105
105
106
106
107
107
107
108
108
108
108
108
108
109
111
112
112
112
112
112
113
113
113
113
114

10.3.7 FuUzz

10.3.8 SOURCELINE

10.3.9 TRACE

10.4 Conversion built-in functions
10.4.1 B2X

10.4.2 BITAND

10.4.3 BITOR
10.44 BITXOR
1045 C2D
10.4.6 C2X
10.4.7 D2C
10.4.8 D2X
1049 X2B
10.4.10 X2C
10.4.11 X2D

10.5 Input/Output built-in functions
10.5.1 CHARIN

10.5.2 CHAROUT

10.5.3 CHARS

10.54 LINEIN

10.5.5 LINEOUT

10.5.6 LINES

10.5.7 QUALIFY

10.5.8 STREAM

10.6 Other built-in functions
10.6.1 DATE

10.6.1 QUEUED

10.6.2 RANDOM

10.6.3 SYMBOL

10.6.4 TIME

10.6.1 VALUE

10.6.1 QUEUED

10.6.2 RANDOM

10.6.3 SYMBOL

10.6.4 TIME

10.6.5 VALUE

11 Built-in classes

11.1 Notation

11.2 Object, class and method
11.2.1 The object class
11.2.2 The class class
11.2.3 The method class
11.3 The string class

11.3.1 The array class

11.4 The supplier class

114
114
114
114
114
115
115
115
115
116
116
116
117
117
117
118
118
119
120
120
120
121
121
122
122
122
125
125
125
125
127
128
128
129
129
130
132
132
132
132
133
134
134
136
137

11.5 The message class
12 Provided classes
12.1 Notation

12.2 The Collection Classes
12.2.1 Collection Class Routines
12.2.2 The collection class
12.2.2.1 INIT

12.2.2.2 EXPOSED
12.2.2.3 FINDINDEX
12.2.24 AT

12.2.25 []

12.2.2.6 PUT

12.2.2.7 [J=

12.2.2.8 HASINDEX
12.2.2.9 ITEMS
12.2.2.10 REMOVE
12.2.2.11 REMOVEIT
12.2.2.12 MAKEARRYA
12.2.2.13 MAKEARRAYX
12.2.2.14 SUPPLIER
12.2.3 Class list
12.2.3.1 PUT

12.2.3.2 OF

12.2.3.3 INSERT
12.2.3.4 FIRST

12.2.3.5 LAST

12.2.3.6 FIRSTITEM
12.2.3.7 LASTITEM
12.2.3.8 NEXT

12.2.3.9 PREVIOUS
12.2.3.10 SECTION
12.2.4 Class queue
12.2.4.1 PUSH

12.2.4.2 PULL

12.2.4.3 QUEUE
12.2.4.4 PEEK

12.2.4.5 REMOVE
12.2.5 Class table
12.2.5.1 MAKEARRAY
12.2.5.2 UNION
12.2.5.3 INTERSECTION
12.2.5.4 XOR

12.2.5.5 DIFFERENCE
12.2.5.6 SUBSET
12.2.6 Class set

137
138
138
138
138
140
140
140
140
140
140
140
141
141
141
141
141
141
142
142
142
142
142
142
143
143
143
143
143
144
144
144
144
144
145
145
145
145
145
145
145
145
146
146
146

12.2.6.1
12.2.6.2
12.2.6.3
12.2.6.4
12.2.6.5
12.2.6.6

PUT

OF

UNION
INTERSECTION
XOR
DIFFERENCE

12.2.7 Class relation

12.2.7.1
12.2.7.2
12.2.7.3
12.2.7.4
12.2.7.5
12.2.7.6
12.2.7.7
12.2.7.8
12.2.7.9
12.2.7.10
12.2.7.11
12.2.7.12
12.2.7.13
12.2.7.14

PUT
ITEMS
MAKEARRAY
SUPPLIER
UNION
INTERSECTION
XOR
DIFFERENCE
SUBSET
REMOVEITEM
INDEX
ALLAT
HASITEM
ALLINDEX

12.2.8 The bag class

12.2.8.1
12.2.8.2
12.2.8.3
12.2.8.4
12.2.8.5
12.2.8.6

OF

PUT

UNION
INTERSECTION
XOR
DIFFERENCE

12.2.9 The directory class

12.2.9.1
12.2.9.2
12.2.9.3
12.2.9.4
12.2.9.5
12.2.9.6
12.2.9.7
12.2.9.8
12.2.9.9
12.2.9.10
12.2.9.11
12.2.9.12
12.2.9.13
12.2.9.14

AT
PUT
MAKEARRAY
SUPPLIER
UNION
INTERSECTION
XOR
DIFFERENCE
SUBSET
SETENTRY
ENTRY
HASENTRY
SETMETHOD
UNKNOWN

12.3 The stem class
12.1 The stream class

146
146
146
146
146
146
146
147
147
147
147
147
148
148
148
149
149
149
149
149
149
150
150
150
150
150
150
150
150
150
151
151
151
151
151
151
151
151
151
152
152
152
153
153
173

12.2 The alarm class
12.3 The monitor class
12.3.1 INIT

12.3.2 CURRENT
12.3.3 DESTINATION
12.3.4 UNKNOWN
Annex A

Rationale
Incompatibilities

Call

Concurrency

Guard

To be processed:
Annex B

Method of definition
Definitions
Conformance
Notation

Notation for completion response and
conditions
Source programs and character sets

Notation

Lexical level

Syntax level

Data Model

Evaluation (Definitions written as code)
Annex C

Bibliography

174
174
174
175
175
175
176
176
176
176
176
176
176
181
181
181
181
181

181
181
181
181
181
181
182
186
186

Foreword
Purpose
This standard provides an unambiguous definition of the programming language Rexx. Its purpose is to
facilitate portability of Rexx programs for use on a wide variety of computer systems.
History
The computer programming language Rexx was designed by Mike Cowlishaw to satisfy the following
principal aims:
- to provide a highly readable command programming language for the benefit of programmers and
program readers, users and maintainers;
- to incorporate within this language program design features such as natural data typing and control
structures which would contribute to rapid, efficient and accurate program development;
- to define a language whose implementations could be both reliable and efficient on a wide variety of
computing platforms.

In November, 1990, X3 announced the formation of a new technical committee, X3J18, to develop an
American National Standard for Rexx. This standard was published as ANSI X3.274-1996.

The popularity of "Object Oriented" programming, and the need for Rexx to work with objects created in
various ways, led to Rexx extensions and to a second X3J18 project which produced this standard. (Ed -
hopefully)

Committee lists
(Here)

This standard was prepared by the Technical Development Committee for Rexx, X3J18.
There are annexes in this standard; they are informative and are not considered part of this standard.

Suggestions for improvement of this standard will be welcome. They should be sent to the

Information Technology Industry Council, 1250 Eye Street, NW, Washington DC 20005-3922.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee
on Information Processing Systems, NCITS. Committee approval of this standard does not necessarily
imply that all committee members voted for its approval. At the time it approved this standard, the NCITS
Committee had the following members:

To be inserted
The people who contributed to Technical Committee J18 on Rexx, which developed this standard,
include:

1 Introduction
This standard provides an unambiguous definition
of the programming language Rexx.
1 Scope, purpose, and application
1.1 Scope
This standard specifies the semantics and syntax
of the programming language Rexx by specifying
requirements for a conforming language processor.
The scope of this standard includes
- the syntax and constraints of the Rexx
language;
- the semantic rules for interpreting Rexx
programs;
- the restrictions and limitations that a
conforming language processor may impose;
- the semantics of configuration interfaces.
This standard does not specify
- the mechanism by which Rexx programs are
transformed for use by a data-processing
system;
- the mechanism by which Rexx programs are
invoked for use by a data-processing system;
- the mechanism by which input data are
transformed for use by a Rexx program;
- the mechanism by which output data are
transformed after being produced by a Rexx
program;
- the encoding of Rexx programs;
- the encoding of data to be processed by Rexx
programs;
- the encoding of output produced by Rexx
programs;
- the size or complexity of a program and its
data that will exceed the capacity of any specific
data-processing system or the capacity of a
particular language processor;
- all minimal requirements of a data-processing
system that is capable of supporting a
conforming language processor;
- the syntax of the configuration interfaces.
1.1 Purpose
The purpose of this standard is to facilitate
portability of Rexx programs for use on a wide
variety of configurations.
1.1 Application
This standard is applicable to Rexx language
processors.
1.1 Recommendation
It is recommended that before detailed reading of
this standard, a reader should first be familiar with
the Rexx language, for example through reading
one of the books about Rexx. It is also
recommended that the annexes should be read in
conjunction with this standard.

13

1 Normative references

There are no standards which constitute provisions
of this American National Standard.

1 Definitions and document notation
Lots more for NetRexx

1.1 Definitions

1.1.1 application programming interface:

A set of functions which allow access to some Rexx
facilities from non-Rexx programs.

1.1.1 arguments:

The expressions (separated by commas) between
the parentheses of a function call or following the
name on a CALL instruction. Also the
corresponding values which may be accessed by a
function or routine, however invoked.

1.1.1 built-in function:

A function (which may be called as a subroutine)
that is defined in section nnn of this standard and
can be used directly from a program.

1.1.1 character string:

A sequence of zero or more characters.

1.1.1 clause:

A section of the program, ended by a semicolon.
The semicolon may be implied by the end of a line
or by some other constructs.

1.1.1 coded:

A coded string is a string which is not necessarily
comprised of characters. Coded strings can occur
as arguments to a program, results of external
routines and commands, and the results of some
built-in functions, such as D2C.

1.1.1 command:

A clause consisting of just an expression is an
instruction known as a command. The expression
is evaluated and the result is passed as a
command string to some external environment.
1.1.1 condition:

A specific event, or state, which can be trapped by
CALL ON or SIGNAL ON.

1.1.1 configuration:

Any data-processing system, operating system and
software used to operate a language processor.
1.1.1 conforming language processor:

A language processor which obeys all the
provisions of this standard.

1.1.1 construct:

A named syntax grouping, for example
"expression", "do_specification”.

1.1.1 default error stream:

An output stream, determined by the configuration,
on which error messages are written.

1.1.1 default input stream:

An input stream having a hame which is the null
string. The use of this stream may be implied.
1.1.1 default output stream:

An output stream having a hame which is the null

string. The use of this stream may be implied.
1.1.1 direct symbol:

A symbol which, without any modification, names a
variable in a variable pool.

1.1.1 directive:

Clauses which begin with two colons are directives.
Directives are not executable, they indicate the
structure of the program. Directives may also be
written with the two colons implied.

1.1.1 dropped:

A symbol which is in an unitialized state, as
opposed to having had a value assigned to it, is
described as dropped. The names in a variable
pool have an attribute of ‘dropped' or 'not-dropped'.
1.1.1 encoding:

The relation between a character string and a
corresponding number. The encoding of character
strings is determined by the configuration.

1.1.1 end-of-line:

An event that occurs during the scanning of a
source program. Normally the end-of-lines will
relate to the lines shown if the configuration lists
the program. They may, or may not, correspond to
characters in the source program.

1.1.1 environment:

The context in which a command may be executed.
This is comprised of the environment name, details
of the resource that will provide input to the
command, and details of the resources that will
receive output of the command.

1.1.1 environment name:

The name of an external procedure or process that
can execute commands. Commands are sent to
the current named environment, initially selected
externally but then alterable by using the
ADDRESS instruction.

1.1.1 error number:

A number which identifies a particular situation
which has occurred during processing. The
message prose associated with such a number is
defined by this standard.

1.1.1 exposed:

Normally, a symbol refers to a variable in the most
recently established variable pool. When this is not
the case the variable is referred to as an exposed
variable.

1.1.1 expression:

The most general of the constructs which can be
evaluated to produce a single string value.

1.1.1 external data queue:

A queue of strings that is external to REXX
programs in that other programs may have access
to the queue whenever REXX relinquishes control
to some other program.

1.1.1 external routine:

A function or subroutine that is neither built-in nor in

14

the same program as the CALL instruction or
function call that invokes it.

1.1.1 external variable pool:

A named variable pool supplied by the
configuration which can be accessed by the
VALUE built-in function.

1.1.1 function:

Some processing which can be invoked by name
and will produce a result. This term is used for
both Rexx functions (see nnn) and functions
provided by the configuration (see n).

1.1.1 identifier:

The name of a construct.

1.1.1 implicit variable:

A tailed variable which is in a variable pool solely
as a result of an operation on its stem. The names
in a variable pool have an attribute of 'implicit’ or
‘not-implicit'.

1.1.1 instruction:

One or more clauses that describe some course of
action to be taken by the language processor.
1.1.1 internal routine:

A function or subroutine that is in the same
program as the CALL instruction or function call
that invokes it.

1.1.1 keyword:

This standard specifies special meaning for some
tokens which consist of letters and have particular
spellings, when used in particular contexts. Such
tokens, in these contexts, are keywords.

1.1.1 label:

A clause that consists of a single symbol or a literal
followed by a colon.

1.1.1 language processotr:

Compiler, translator or interpreter working in
combination with a configuration.

1.1.1 notation function:

A function with the sole purpose of providing a
notation for describing semantics, within this
standard. No Rexx program can invoke a notation
function.

1.1.1 null clause:

A clause which has no tokens.

1.1.1 null string:

A character string with no characters, that is, a
string of length zero.

1.1.1 production:

The definition of a construct, in Backus-Naur form.
1.1.1 return code:

A string that conveys some information about the
command that has been executed. Return codes
usually indicate the success or failure of the
command but can also be used to represent other
information.

1.1.1 routine:

Some processing which can be invoked by name.

1.1.1 state variable:

A component of the state of progress in processing
a program, described in this standard by a named
variable. No Rexx program can directly access a
state variable.

1.1.1 stem:

If a symbol naming a variable contains a period
which is not the first character, the part of the
symbol up to and including the first period is the
stem.

1.1.1 stream:

Named streams are used as the sources of input
and the targets of output. The total semantics of
such a stream are not defined in this standard and
will depend on the configuration. A stream may be
a permanent file in the configuration or may be
something else, for example the input from a
keyboard.

1.1.1 string:

For many operations the unit of data is a string. It
may, or may not, be comprised of a sequence of
characters which can be accessed individually.
1.1.1 subcode:

The decimal part of an error number.

1.1.1 subroutine:

An internal, built-in, or external routine that may or
may not return a result string and is invoked by the
CALL instruction. If it returns a result string the
subroutine can also be invoked by a function call,
in which case it is being called as a function.
1.1.1 symbol:

A sequence of characters used as a name, see
nnn. Symbols are used to name variables,
functions, etc.

1.1.1 tailed name:

The names in a variable pool have an attribute of
'tailed' or 'non-tailed'. Otherwise identical names
are distinct if their attributes differ. Tailed names
are normally the result of replacements in the tail of
a symbol, the part that follows a stem.

1.1.1 token:

The unit of low-level syntax from which high-level
constructs are built. Tokens are literal strings,
symbols, operators, or special characters.

1.1.1 trace:

A description of some or all of the clauses of a
program, produced as each is executed.

1.1.1 trap:

A function provided by the user which replaces or
augments some normal function of the language
processor.

1.1.1 variable pool:

A collection of the names of variables and their
associated values.

1.1 Document notation

15

1.1.1 Rexx Code
Some Rexx code is used in this standard. This
code shall be assumed to have its private set of
variables. Variables used in this code are not
directly accessible by the program to be processed.
Comments in the code are not part of the
provisions of this standard.
1.1.1 Italics
Throughout this standard, except in Rexx code,
references to the constructs defined in section nnn
are italicized.
1 Conformance
1.1 Conformance
A conforming language processor shall not
implement any variation of this standard except
where this standard permits. Such permitted
variations shall be implemented in the manner
prescribed by this standard and noted in the
documentation accompanying the processor.
A conforming processor shall include in its
accompanying documentation
- alist of all definitions or values for the
features in this standard which are specified to
be dependent on the configuration.
- a statement of conformity, giving the complete
reference of this standard (ANSI X3.274-1996)
with which conformity is claimed.
1.1 Limits
Aside from the items listed here (and the assumed
limitation in resources of the configuration), a
conforming language processor shall not put
numerical limits on the content of a program.
Where a limit expresses the limit on a number of
digits, it shall be a multiple of three. Other limits
shall be one of the numbers one, five or twenty
five, or any of these multiplied by some power of
ten.
Limitations that conforming language processors
may impose are:
- NUMERIC DIGITS values shall be supported
up to a value of at least nine hundred and ninety
nine.
- Exponents shall be supported. The limit of
the absolute value of an exponent shall be at
least as large as the largest number that can be
expressed without an exponent in nine digits.
- String lengths shall be supported. The limit
on the length shall be at least as large as the
largest number that can be expressed without
an exponent in nine digits.- String literal length
shall be supported up to at least two hundred
and fifty.

- Symbol length shall be supported up to at
least two hundred and fifty.

5 Configuration

Any implementation of this standard will be functioning within a configuration. In practice, the boundary
between what is implemented especially to support Rexx and what is provided by the system will vary
from system to system. This clause describes what they shall together do to provide the configuration for
the Rexx language processing which is described in this standard.

We don't want to add undue "magic” to this section. It seems we will need the concept of a "reference" (equivalent to
a machine address) so that this section can at least have composite objects as arguments. (As it already does but
these are not Rexx objects)

Possibly we could unify "reference” with "variable pool number" since object one-to-one with its variable pool is a fair
model. That way we don't need a new primitive for comparison of two references.

JAVA is only a "reference" for NetRexx so some generalized JAVA-like support is needed for that. It would provide
the answers to what classes were in the context, what their method signatures were etc.

5.1 Notation

The interface to the configuration is described in terms of functions. The notation for describing the
interface functionally uses the name given to the function, followed by any arguments. This does not
constrain how a specific implementation provides the function, nor does it imply that the order of
arguments is significant for a specific implementation.

The names of the functions are used throughout this standard; the names used for the arguments are
used only in this clause and nnn.

The name of a function refers to its usage. A function whose name starts with

- Config_ is used only from the language processor when processing programs;

- APIL_is part of the application programming interface and is accessible from programs which are not

written in the Rexx language;

- Trap_ is not provided by the language processor but may be invoked by the language processor.
As its result, each function shall return a completion Response. This is a string indicating how the function
behaved. The completion response may be the character 'N' indicating the normal behavior occurred;
otherwise the first character is an indicator of a different behavior and the remainder shall be suitable as a
human-readable description of the function's behavior.

This standard defines any additional results from Config_ functions as made available to the language
processor in variables. This does not constrain how a particular implementation should return these
results.
5.1.1 Notation for completion response and conditions
As alternatives to the normal indicator 'N', each function may return a completion response with indicator
X' or 'S'; other possible indicators are described for each function explicitly. The indicator 'X' means that
the function failed because resources were exhausted. The indicator 'S' shows that the configuration was
unable to perform the function.
Certain indicators cause conditions to be raised. The possible raising of these conditions is implicit in the
use of the function; it is not shown explicitly when the functions are used in this standard.
The implicit action is
call #Raise 'SYNTAX', Message, Description
where:
#Raise raises the condition, see nnn.
Message is determined by the indicator in the completion response. If the indicator is 'X' then
Message is 5.1. If the indicator is 'S' then Message is 48.1.
Description is the description in the completion response.
The 'SYNTAX' condition 5.1 can also be raised by any other activity of the language processor.
5.1 Processing initiation
The processing initiation interface consists of a function which the configuration shall provide to invoke
the language processor.
We could do REQUIRES in a macro-expansion way by adding an argument to Config_SourceChar to specify the
source file. However, I'm assuming we will prefer to recursively "run" each required file. One of the results of that will
be the classes and methods made public by that REQUIRES subject.
5.1.1 API_Start
Syntax:

16

API_Start(How, Source, Environment, Arguments, Streams, Traps, Provides)

where:
How is one of 'COMMAND', 'FUNCTION', or 'SUBROUTINE' and indicates how the program is
invoked.

What does OOl say for How when running REQUIREC files?

Source is an identification of the source of the program to be processed.

Environment is the initial value of the environment to be used in processing commands. This has
components for the name of the environment and how the input and output of commands is to be
directed.

Arguments is the initial argument list to be used in processing. This has components to specify the
number of arguments, which arguments are omitted, and the values of arguments that are not
omitted.

Streams has components for the default input stream to be used and the default output streams to
be used.

Traps is the list of traps to be used in processing (see nnn). This has components to specify
whether each trap is omitted or not.

Semantics:

This function starts the execution of a Rexx program.

If the program was terminated due to a RETURN or EXIT instruction without an expression the
completion response is 'N'.

If the program was terminated due to a RETURN or EXIT instruction with an expression the indicator
in the completion response is 'R' and the description of the completion response is the value of the
expression.

If the program was terminated due to an error the indicator in the completion response is 'E' and the
description in the completion response comprises information about the error that terminated
processing.

If How was 'REQUIRED' and the completion response was not 'E', the Provides argument is set to
reference classes made available. See nnn for the semantics of these classes.

5.1 Source programs and character sets
The configuration shall provide the ability to access source programs (see nnn).
Source programs consist of characters belonging to the following categories:

- syntactic_characters;

- extra_letters;

- other_blank_characters;
- other_negators;

- other_characters.

A character shall belong to only one category.

5.1.1 Syntactic_characters

The following characters represent the category of characters called syntactic_characters, identified by
their names. The glyphs used to represent them in this document are also shown. Syntactic_characters
shall be available in every configuration:

17

- & ampersand;

- apostrophe, single quotation mark, single quote;

- * asterisk, star;

- blank, space;

- A-Z capital letters A through Z;

- colon;

-, comma;

- 0-9 digits zero through nine;

= equal sign;
! exclamation point, exclamation mark;
> greater-than sign;

- hyphen, minus sign;

< less-than sign;

- left bracket, left square bracket;

(left parenthesis;

- % percent sign;
- period, decimal point, full stop, dot;
-+ plus sign;

- ? question mark;

- quotation mark, double quote;

-\ reverse slant, reverse solidus, backslash;
-] right bracket, right square bracket;

-) right parenthesis;

- semicolon;

-/ slant, solidus, slash;

- a-z small letters a through z;

tilde, twiddle;
- underline, low line, underscore;
vertical line, bar, vertical bar.
5.1.1 Extra_letters
A configuration may have a category of characters in source programs called extra_letters. Extra_letters
are determined by the configuration.
5.1.1 Other_blank_characters
A configuration may have a category of characters in source progra