
Getting Started with GPCP

John Gough

September 4, 2004

This document applies to GPCP version 1.3 for JVM
(Java Virtual Machine)

Figure 1: Distribution File Tree

1

1 INTRODUCTION 2

1 Introduction

Gardens Point Component Pascal (gpcp) is an implementation of the Component Pas-
cal Language, as defined in the Component Pascal Report from Oberon Microsys-
tems. It is intended that this be a faithful implementation of the report, except for those
changes that are explicitly detailed in the release notes. Any other differences in detail
should be reported as potential bugs.

The compiler produces either Microsoft.NET intermediate language or Java byte-
codes as output. Java byte codes are executed by a Java Virtual Machine (JVM). The
compiler can be bootstrapped on either platform. These notes refer to the JVM plat-
form. Details on the specifics of this implementation of Component Pascal are found
in the release notes that come with the distribution.

2 Installing and Testing the Compiler

Environment

The compiler requires the Java Runtime Environment, running on any compatible plat-
form. The released version of the compiler has been tested against version 1.4.2, but
works with earlier version also.gpcpis packaged with an InstallShield installer for the
Windows platform, or as atar -ed andgzip-ed archive for other platforms.

On the Windows platform, the archive is typically expanded into a root directory
named\gpcp and has several subdirectories. These include the binary files of the
compiler, the documentation, the program examples, the library symbol files, and the
source code of the compiler. If you plan to install both the.NET and theJVM ver-
sion you may wish to place the two distribution trees in distinguished folders such as
\gpcp-CLR and\gpcp-JVM

On UNIX platforms the system is usually installed in a shared directory, typically
/usr/local/gpcp . An environment variableCPROOTis defined to point to the
directory.

This section describes the steps required to install and try out the compiler

The distribution

The complete distribution tree is shown in Figure 1. The six first-level subdirectories
of the distribution are

* bin — the binary files of the compiler

* CP — the class file tree of the tools and libraries

* docs— the documentation, including this file

* examples— some example programs

* libs — contains the simple library files

* source— the source files

* work — a working directory to play around with

The bin directory needs to be on yourPATH. Typical commands to set this variables
are —

2 INSTALLING AND TESTING THE COMPILER 3

set PATH=%PATH%;C:\gpcp\bin

On UNIX systems the environment variables would typically be set using commands
such as —

PATH=$PATH:$CPROOT/gpcp/bin

WhereCPROOTis the root of thegpcpdistribution. The command file “cprun ” will
pass the environment variableCPSYMto the program, and will also set the class path.

The “CP” directory is the root of the class-file tree. This directory contains a sub-
directory for each module of the system. There are almost 250 class files in the tree, in
the initial distribution. However, when you run programs class files in thelocal class
file directory take precedence over those in theCPROOTdirectory.

The “libs ” directory contains the symbol files for the Component Pascal libraries.
There are three subdirectories under “libs ”. The first of these is empty in theJVM
version. The “JvmSystem ” directory is for the symbols files to interface to the Java
runtime. The “NetSystem ” directory contains the symbol files that allow Component
Pascal programs to access the base classes of the.NETsystem. This directory is empty
in theJVM version.

Running your first program

Go to the “work ” directory. With your favorite editor create the file (say) “hello.cp ”.

MODULE Hello;
IMPORT CPmain, Console;

BEGIN
Console.WriteString("Hello CP World");
Console.WriteLn;

END Hello.

Make sure that\gpcp\bin is on the executable path.
From the command line, type

> cprun gpcp hello.cp

the system should respond

Created file CP\Hello\Hello.class
#gpcp: <Hello> no errors
> _

The file “Hello.cps ” will have been created in the working directory. The “.cps ”
extension is the symbol file that declares the publicly accessible facilities of the pro-
gram. By defaultgpcpwill create a subdirectory in the working directory named “CP”,
with subdirectories for each module compiled. One or more class files will be created
and placed in the subdirectories. In our example there is only one class file produced.

You may now run the program by the command “cprun Hello ”. Note carefully
that the base class file has name “Hello ”, and the “cprun ” command is case sensitive.

The examples

The example programs are in three sub-directories under the examples directory. The
folder “hello ” holds some simple command line programs. “HelloWorld.cp ” is
an elaborate version of the “hello world ” canonical program. “Nqueens.cp ” is a
recursive backtracking version of the N-Queens problem solved for all board sizes from
8 to 13. “Hennessy.cp ” is a version of the Hennessy integer benchmarks.

3 BROWSING MODULES 4

A file “ README.txt ” gives instructions for compiling and running each of the
programs.

The folderApplet3 has an example applet written inComponent Pascal. The
applet calculates spoke-lengths for bicycle wheels with various geometries. It is an ex-
ample of use of the Abstract Window Toolkit, and how to write an applet in a language
other than Java.

3 Browsing Modules

TheBrowsetool has been included with this release. This tool can show the exported
interface for modules in either text or html format. Details on the use of this tool can
be found in the Release Notes.

4 Reporting Bugs

If you find a bug

If you find what you believe is a bug, please send a report to gpcp@qut.edu.au with
the detail of the event. It would be particularly helpful if you can send the code of the
shortest program which can illustrate the error.

If the compiler crashes

The compiler has an outer-level exception rescue clause (you can see this in the body of
procedure “CPascal.Compile() ”) which catches any exceptions raised during any
per-file compilation attempt. The rescue code displays a “<<compiler panic>> ”
message on the console, and attempts to create a listing in the usual way. In most cases
the rescue clause will be able to build an error message from the exception call chain,
and will send this both to the screen and to the listing file.

In almost all cases, the compiler panic will be caused by failed error recovery in
the compiler, so that the other error messages in the listing will point to the means of
programming around the compiler bug. Nevertheless, it is important to us to remove
such bugs from the compiler, so we encourage users who turn up error of this kind to
send us a listing of a (hopefully minimal) program displaying the phenomenon.

In order to see how such a rescue clause works, here is an example of a program
that deliberately causes a runtime error. When the program is run, the error is caught at
the outer level and an error message is generated. After generating the error message,
there is still the option of aborting the program with the standard error diagnostics.
This is done by re-raising the same exception, and this time allowing the exception to
propagate outwards to the invoking command line processor.

mailto:gpcp@qut.edu.au

4 REPORTING BUGS 5

MODULE Crash;
IMPORT CPmain, Console, RTS;

TYPE OpenChar = POINTER TO ARRAY OF CHAR;
VAR p : OpenChar;

PROCEDURE Catch;
BEGIN

p[0] := "a";(* line 9 *)
RESCUE (exc) (* exc is of typeRTS.NativeException *)

Console.WriteString("Caught Exception: "); Console.WriteLn;
Console.WriteString(RTS.getStr(exc)); Console.WriteLn;

(* THROW(exc) *)(* line 13*)
END Catch;

BEGIN
Catch()(* line 17 *)

END Crash.

When this program is compiled and run, the following is the result —

> cprun gpcp Crash.cp
Created file CP\Crash\Crash.class
#gpcp: <Crash> No errors
> cprun Crash
Caught Exception:

java.lang.NullPointerException > _

If the detailed stack trace is required, the exception may be re-raised by calling the
non-standard built-in procedureTHROW(), with the incoming exception as argument.
The comment in the source shows where to place the call. If this is done then a full
stack trace may be produced. For this example it is just —

Caught Exception:
java.lang.NullPointerException

Exception in thread "main" java.lang.NullPointerException
at CP.Crash.Crash.Catch(Crash.cp:9)
at CP.Crash.Crash.main(Crash.cp:17)

You may care to note that the stack trace produced by the system starts at the line
at which the exception was originally thrown, rather than the point at which it was
explicitly re-thrown. This behaviour is different on the.NETplatform.

Read the Release Notes!

There are a number of extensions to the language, many of these have been introduced
so that Component Pascal programs will to be able to access all of the facilities of the
Java Runtime Environment. Read the release notes to find out about all of these! In
particular, from version 1.2.4 there is built-in support for extensible arrays (vectors).

Posting to the Mail Group

There is a discussion group for users ofgpcp. You may subscribe by sending an email
to GPCP-subscribe@yahoogroups.com. The development team monitor traffic on the
group, and will post update messages to the group.

mailto:GPCP-subscribe@yahoogroups.com

	Introduction
	Installing and Testing the Compiler
	Browsing Modules
	Reporting Bugs

