
Gardens Point Component Pascal — Release
Notes

John Gough

September 17, 2004

This document applies to GPCP version 1.3 for .NET
(Microsoft Common Language Runtime)

1 Introduction

Gardens Point Component Pascal (gpcp) is an implementation of theComponent Pas-
cal Language, as defined in the Component Pascal Report1 from Oberon Microsys-
tems. It is intended that this be a faithful implementation of the Report, except for
those changes that are explicitly detailed here. Any other differences in detail should
be reported as potential bugs.

The distribution consists of four programs, and a number of libraries. The pro-
grams are the compilergpcp, the make utilityCPMake, a module interface browser
tool Browse, and a tool for extracting public symbol metadata from assemblies written
in other.NET languagesN2cps. There will be other utilities added later.

The compiler produces either.NETCommon Intermediate Language (CIL) or Java
byte-codes as output. The compiler can be bootstrapped on either platform. These
release notes refer to the Microsoft.NET platform.

There are a number of syntactic extensions to theComponent Pascallanguage ac-
cepted by the compiler which are introduced to allow interworking with the native
libraries of the underlying platform. The guiding philosophy in such cases is to not
significantly extend the semantics of the constructs that form part of Component Pas-
cal, but rather to provide syntax for accessing features of other languages, which have
no direct counterpart inComponent Pascal.

2 Overall Structure

2.1 Input and Output files

In normal usage the compiler creates either three or four output files for every source
file. If the file “Hello.cp ” contains the moduleHello, and is compiled, then the output
files will be “Hello.cps ”, “ Hello.il ”, and either “Hello.dll ” or “ Hello.exe ”.

1The defining document is simply referred to throughout this document asthe Report.

1

2 OVERALL STRUCTURE 2

The “*.cps ” file is the symbol file which contains the metadata that describes the
facilities exported from the module. The “*.il ” file contains the Common Interme-
diate Language (CIL) representation of the program. The program executable will be
“ *.exe ” if the program contains an entry point (i.e. if the module importsCPmain),
otherwise the compilation will create a dynamic link library “*.dll ”. All of these
files are created in the current directory. If a listing file is created it will have filename
extension “.lst ”.

Be aware that the stem name of the output files comes from themodulename, and
not from the source-file name. Thus if moduleFoo is in source file “Hello.cp ” then
all of the output files will have stem name “Foo”.

It is possible to invoke the compiler so as to produce just the intermediate language
file, and to then manually invoke the intermediate language assembler “ilasm ”. The
assembler may then be used to produce any of its possible output formats.

2.2 Invoking the compiler

The compiler is invoked from the command line using the command syntax —

$> gpcp [options] files

The options are given in Figure 1.
UNIX-style options “–” may also be used. In theJVM versions the “–”form is the

expected default. Any number of files may be added in a white-space separated list.

2.3 Target choice

The compiler may choose its output language at runtime. The default output when
running on the.NETplatform is.NETassembler (CIL). The recognized options are —

/target=net this is the defaultCIL format
/target=jvm this causesJavabyte codes to be emitted
/target=dcf this chooses the Gardens Point “d-code” form

TheJavaoutput option produces eitherJVM class files directly, or produces assembly
language files for theJasminbyte code assembler.

The “dcf ” format is not yet available, but is intended to access the Gardens Point
native code generators on all the platforms for which Gardens Point Modula-2 (gpm)
implemented.

Output files

Running the compiler with the/nosym flag causes the input files to be parsed and
type-checked, but no output files are created except possibly a listing file.

If the compiler is run with the/noasm flag, the input files are parsed and type-
checked, and a symbol file is produced for each input file. No assembly language or
program executable file output is produced however.

If the compiler is run with the/nocode flag, the input files are parsed and type-
checked, and a symbol file and oneCIL assembly language file is produced for each
input file. No executable files are produced in this case.

If the compiler is run without any flags, the input files are parsed and type-checked,
and a symbol file, and a program executable (PE) file (either.DLL or .EXE) is produced
for each input file. If the default/debug flag is in effect then a textualCIL file (exten-
sion .il) is produced and thePE-file is created by theilasm tool. If the /nodebug

2 OVERALL STRUCTURE 3

/bindir= X placePE (and pdb) files in directory “X”
/copyright display the copyright notice
/debug emit debugging symbols (default)
/nodebug do not emit debugging symbols
/dostats emit timing and other statistics
/extras enable experimental compiler features
/help emit this usage prompt
/hsize= N set hashtable size, withN (0 .. 65000)
/ilasm use ilasm even with /nodebug
/list create an output listing if there are errors (default)
/list+ always create an output listing
/list- never create an output listing
/noasm produce a symbol file, but no il
/nocode create il output, but do not assemble
/nosym produce no output files, not even a symbol file
/nocheck produce code without arithmetic overflow checks
/strict disallow non-standard language constructs
/special used for creating symbol files for foreign interfaces
/symdir= X place symbol files in directory “X”
/target= X emit assembler output for platform “X”
/unsafe allow import ofSYSTEMfunctions
/v X.X .NET framework (v1.0| v1.1 | v1.2)
/verbose chatter on about progress during compilation
/version emit version information
/vserror errors are in Visual Studio format
/warn- suppress warning messages from the console
/nowarn same as /warn-
/whidbey target code for “Whidbey Preview” (same as v1.2)
/xmlerror errors are inXML format

Figure 1:gpcpoptions

flag is in effect then aPE-file is directly produced using thePEAPI component. This
behavior may be overridden by use of the/ilasm flag, which causes textualCIL to
be produced, even in the presence of the/nodebug flag.

Output files with “ /target=jvm ” option

If the compiler is run with the/target=jvm flag, the input files are parsed and type-
checked, and a symbol file and one or more class files will be produced. These class
files are written directly, and do not require the installation ofJasmin.

If, in addition, the/nocode flag is used, thenJasminassembly language (*.j)
files will be produced, butJasminwill not be invoked.

If, instead of/nocode the /jasmin flag is added,Jasminassembly language
files are produced for each input file. Following this, theJasminassembler will be au-
tomatically invoked to create the corresponding class files. Because a separate process
needs to be created for each invocation ofJasminthis is quite slow.

2 OVERALL STRUCTURE 4

2.4 Overflow checking

Ordinarily the compiler produces code that performs arithmetic overflow checks on
all operations. Narrowing assignments (such as assigning a long value to an integer
variable) are also range checked. Compiling with the/nocheck option removes these
checks. There is a very small speed gain if checks are turned off. Checks may also be
turned off on a per-procedure basis, as described in Section 4.13.

2.5 Listing output

The compiler, by default, produces a listing file only if there are compile-time errors or
warnings. It is possible to force the compiler to produce a listing, using the “/list+ ”
option. Equally, it is possible to prevent the creation of a listing file even if there are
errors, by using the “/list- ” option.

The listing file contains the complete listing of the program, with four digit line
numbers prepended. Errors are reported in the format shown in Figure 2

1 MODULE BarMod;
2 IMPORT FooMod;
3 TYPE
4 Bar* = POINTER TO ABSTRACT RECORD (FooMod.Foo)

**** ˆ Only ABSTRACT basetypes can have abstract extensions
5 i,j,k : INTEGER
6 END;
7 END BarMod.

Figure 2: Example error message

2.6 Statistics output

If the compiler is invoked with option/dostats then compile time statistics are
produced. Figure 3 is an example, compiling the programBrowse.

The meaning of the values written to the console is as follows.

* The compiler imports symbol files in dependency order, if necessary. The maxi-
mum recursion depth for this example turned out to be 3.

* The size of the hash-table, and the number of entries used is shown

* Import time is the time to read and process metainformation for all imports. In
this example moduleBrowseimports much of the compiler data structures.

* Source time is the time to read the source file into the internal buffer.

* Parse time is the time to parse the buffer, create the syntax tree and resolve all
identifiers.

* Analysis time is the time to do type checking, and dataflow analysis.

* SymWrite time is the time to write out metatdata to the symbol file.

2 OVERALL STRUCTURE 5

E:\gpcp-CLR\work> gpcp /dostats Browse.cp
#gpcp: created Browse.exe
#gpcp: <Browse> No errors
#gpcp: net version 1.2.x of June 2004+
#gpcp: 2281 source lines
#gpcp: import recursion depth 3
#gpcp: 855 entries in hashtable of size 8209
#gpcp: import time 63mSec
#gpcp: source time 110mSec
#gpcp: parse time 202mSec
#gpcp: analysis time 47mSec
#gpcp: symWrite time 16mSec
#gpcp: asmWrite time 219mSec
#gpcp: assemble time 281mSec
#gpcp: total time 938mSec

Figure 3: Compile statistics example

* AsmWrite time is the time to write out the assembly language (CIL) output.

* Assemble time is the time taken to spawn a new process and runilasm . As-
semble time is always zero if the direct toPE-file output path is selected by
/nodebug .

2.7 Setting the hash table size

The compiler uses closed hashing internally, with a default number of identifiers of
8209 in the current version. It is possible to increase the number of entries by means of
the/hsize= NUMBERoption. Numbers up to 66000 are meaningful to the program.

If the hash table overflows, the compiler gives an error message, with a hint to in-
crease the size. There is a example program with the distribution that creates a program
that will break the compiler, so that users may test this feature. The compilation fails
with “ /hsize=4000 ”, but succeeds with the default table size.

2.8 Choosing the Output Directories

By default all output files are created in the current directory. This behavior may be
overridden with the options/bindir and/symdir . The symbol file is placed in the
directory specified by the option/symdir= target-directory. Note carefully that if a
target directory is chosen that is not on theCPSYMpath thengpcpwill not be able to
find the symbol files automatically.

Program executable directories, and debug files in the case that debugging symbols
are being created may be placed in a specified directory using the/bindir= target-
directoryoption.

If the JVM target has been chosen then the/symdir option still applies, but
/bindir option does not. Instead, the root of the output class file hierarchy may
be specified using a syntactically similar/clsdir option.

2 OVERALL STRUCTURE 6

2.9 The Make utility

The compilation process withComponent Pascalguarantees type safety across sepa-
rately compiled module boundaries. Since interface meta-information resides in the
symbol files whichgpcpcreates, modules must be compiled in an order that respects
the partial order induced by the global importation graph. For complex programs, this
may be difficult to determine manually.

The utility CPMakereads symbol files, and if necessary source files, in order to
determine a valid order of compilation. The syntax for invocation is —

$> CPMake [options] moduleName

The module name may be given with or without a file-extension, but must be the name
of a module which imports moduleCPMain, that is, it must be abase module. The
module name given toCPMakeis case sensitive.

In general, when source files of a program have been modified only a subset of
the modules have to be recompiled.CPMakeis able to work out which modules must
be recompiled by checking the date stamps on the files, and also checking the module
hash-keys (“magic numbers”) in the symbol files. If a module has been edited, but
the public interface of the module has not changed a recompilation should compute
a new magic number that is the same as that expected by any previously compiled,
dependent modules. In this caseCPMakedetects that the dependent modules are still
consistent and do not require recompilation. This “domino-stopping” feature of the
program ensures that a conservative minimum of modules are recompiled.

The options accepted by the program are exactly the options accepted bygpcp,
except that an additional option/all forces compilation ofall modules in the local
directory irrespective of date stamps and magic numbers.

Hint:
If you useCPMaketo bootstrap the compiler, be aware
that output file-creation will fail if the output would over-
write any file of a loaded assembly. This means that you
cannot bootstrapgpcpusing an instance of the compiler
from the same directory, unless you use the “/nocode ”
option and then invokeilasm manually, or use the
“ /bindir=directory ” option.

2.10 Module Interface Browser

The programBrowsereads the symbol file of a module and displays the public inter-
face. This public interface is shown in a form similar to aComponent Pascalmodule.
This “module” shows all the types, variables and procedures that are exported from the
specified module. Only the exported fields of record types are shown. Any exported
procedures are shown as procedure headers only. The output fromBrowseis not a
properComponent Pascalmodule and will not compile usinggpcp. It simply shows
all of the identifiers that may be imported and used by a client module.

This program is invoked with the command —

$> Browse [options] moduleName

2 OVERALL STRUCTURE 7

The symbol file extension “.cps ” may optionally be included inmoduleName. As with
gpcp, any number of files may be added in a white-space separated list. TheBrowse
program sends its output to the console by default, and has the following options:

/all browse this and all imported modules
/full display full foreign names
/file write output to the file<moduleName>.bro
/html write html output to the file<moduleName>.html

The/all option produces output for all of the modules on the global imports graph of
the specified module. The/full option is only meaningful forFOREIGNmodules
where the output fromBrowsewill include the full external names for all procedures.
The default forBrowseis to only display the internal (Component Pascal) names. See
Section 7 for more on Foreign Language Interfaces. The/file option sends the
output to the file<moduleName>.bro instead of to the console. The/html option
produces hyperlinked html text in the file<moduleName>.html . In the html output
defining occurrences of identifiers are red and are anchored, while module names and
external types are blue and hyperlinked. Figure 4 is the html output from the command
“Browse /html ClassMaker ”.

MODULEClassMaker ;
IMPORT

RTS,
GPCPcopyright ,
Console ,
IdDesc ;

TYPE
Assembler* = POINTER TO ABSTRACT RECORD

END;

Assembler* = POINTER TO ABSTRACT RECORD
mod* : IdDesc.BlkId ;

END;

PROCEDURE (self:Assembler) Assemble *(),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Init *(),NEW,EMPTY;
PROCEDURE (self:ClassEmitter) Emit *(),NEW,ABSTRACT;
END ClassMaker .

Figure 4: Browse output fromgpcpsource fileClassMaker.cp

2.11 Symbol File Generator N2CPS

This program generates symbols files corresponding to.NET assemblies. Taken to-
gether with theBrowse tool, this makes the libraries of the.NET framework accessible
to Component Pascalusers. Usage is —

$> N2cps [options] assemblyName

where current options are /v for “verbose” and /w for “warnings”. Each specified as-
sembly will produce one or more symbol “*.cps ” files. For example, the main system
library assemblymscorlibwill producemscorlibSystem, mscorlibSystemReflection

3 LEXICAL ISSUES 8

and so on. It is prudent to ensure that you have theNetSystemsymbol files that exactly
correspond to the version of.NET that you have installed.

To synchronize, go to the\gpcp\source\N2CPS directory and run first the
NetCleanscript and then theNetMakescript.

Warning
The current release version ofN2CPScannot consume
the metadata for generic types in the Whidbey preview.
Do not attempt to runN2CPSon assemblies such as
mscorlib that contain generics.

3 Lexical Issues

3.1 Non-standard Keywords

In order to provide facilities for the foreign language interface there are a total of six
new keywords defined. These are all upper case names and cannot be used as program
identifiers.

DIV0 an additional arithmetic operator (C integer division)
REM0 an additional arithmetic operator (C integer remainder)
EVENT used to declare multicast delegate type for.NETevents
RESCUE used to mark a procedure-level exception catch block
ENUM used in dummy foreign modules in the.NETsystem
INTERFACE used in dummy foreign modules for defining interfaces
STATIC used to declare static features in dummy foreign modules

Only DIV0, REM0, EVENTandRESCUEmay be used in normal programs, the
remainder are used in dummy foreign definition modules.

The following new predefined identifiers have been added. These can be redefined,
but not at the outer lexical level. Definitions for these built-in identifiers are given
below.

UBYTE an unsigned 8-bit integer type
MKSTR function to convert aCP “string” to the native string type
BOX make a dynamically allocated copy of record or array
TYPEOF fetch the runtime type descriptor, for reflection
USHORT convert a value to unsiged byte, with range-check
REGISTER attaches a procedure to a (.NET) multicast delegate
DEREGISTER detaches a procedure from a multicast delegate
THROW procedure that (re)throws a native exception object
APPEND appends a new element to an extensible array (vector)
CUT shortens an extensible array to the given length

There are some other predefined identifiers used in the extended syntax, but these
are “context sensitive markers” and do not prevent the same names being used for
program identifiers.

3 LEXICAL ISSUES 9

Warning
Remember, if you use any of these non-standard key-
words or built-in identifiers, your program source will
not be portable to other implementations ofComponent
Pascal.

3.2 Common Language Specification names

Fully qualified names in the Common Language Specification (CLS) comprise four
parts.

* Assembly name – the assembly in which the class will be found

* Namespace name – this specifies the namespace of the class

* Class name – the class name

* Feature name – the field or method name.

An example might be –

[mscorlib]System.Exception::ToString

wheremscorlibis the assembly name,Systemis the namespace,Exceptionis the class
name, andToStringis a method name.

In this version ofgpcp, the compiler produces one assembly per module, and one
namespace per module. Both the assembly and the namespace names are the same as
the module name. Thus a type-bound procedure calledisString() bound to the type
UnaryX in moduleExprDescwould have theCLSname —

[ExprDesc]ExprDesc.UnaryX::isString

Procedures and variables at the module level are declared in theCLSas belonging
to a synthetic “class” that contains only static data and code. Thisimplicit static class
has the same name as the module. Thus variable “xId ” in module Foo will have the
somewhat boringCLSname —

[Foo]Foo.Foo::xId

Users of the compiler should almost never have to deal with explicitCLSnames.
If you do browse the assembler output of the compiler, you will notice that almost

all names are escaped with single quotes like’this’ . This is done to avoid clashes
with the many names that are reserved in the assembler.

All aspects of the default naming scheme may be overridden, if required. Such a
necessity might arise if theComponent Pascalcode must interface with a framework
that has particular naming patterns hardwired in. The details of the mechanisms for
overriding are given in Appendix 12.

3.3 Identifier syntax

The identifier syntax forComponent Pascalallows arbitrary use of the underscore (low-
line character). There is a further extension that is specific to the foreign language
interface of gpcp.

Occasionally, names that are imported from foreign modules will happen to clash
with CP reserved words. In this case, we may escape the reserve word detection by

4 SEMANTIC ISSUES 10

starting the identifier with the back-quote character, “‘ ”. Thus, if an imported mod-
ule has (say) a class with a field named “IF ”, then the field may be referenced as
“ ‘IF ” in the source of your program. You may notdefineidentifiers using this escape
mechanism, except in foreign definition modules. You may howeverrefer to imported
identifiers using this mechanism.

It may be important to know that the back-quote is stripped at the time that the
program is scanned. The presence of the escape simply suppresses the usual check
for reserved identifiers that normally follows identifier scanning. Thus the back-quote
is not used during any name matching of identifiers. A curious result of this strategy
is that if a program escapes an identifier that does not need it, the escaped and non-
escaped identifiers will refer to the same name.

4 Semantic Issues

4.1 DLLs and EXEs

The compiler can produce either stand-alone executables (.exe files) or dynamic link
libraries (.dll files). Executable files must have an entry point known to the runtime.
The entry point method optionally takes an array of native-strings as parameters. Any
such command line arguments are accessed through the libraryProgArgs.

If the source file contains the import of the special module nameCPmain, then
an executable file is produced as output. In this case the module body is named
“ .CPmain ”, and begins with a hidden call which saves any command line arguments
so that they may be later accessed by calls to theProgArgslibrary.

If, instead, the source file contains the import of the special module nameWinMain,
then again an executable file is produced as output. However, in this case thePE-
file produced is a Windows executable, and the module body is named “.WinMain ”.
Windows executables do not start a command window when launched.

If the source file does not import eitherCPmainor WinMainthen the module body
becomes the “class constructor” which is executed at the time that the dynamic link
library is loaded on demand.

If the compiler is invoked with the/nocode option, then only the assembler (CIL)
file is created. In this case the assemblerilasm may be invoked so as to create either
a .dll or an .exe file using the command “ilasm /DLL ” or “ ilasm /EXE ”. Of course,
it is an error to try to create an executable file if the source does not contain an entry
point.

4.2 Unimplemented constructs

There are a small number of constructs that are unimplemented or restricted in this
release of the compiler. These are —

* Module finalizers (unimplemented)

* Procedure variables (restricted)

* Uplevel access to reference parameters (inexact semantics)

All of these features were implemented in a prototype version of the compiler.
Module finalizers are intended to be run prior to unloading the module code. There

is no facility for doing this on either of thegpcptarget platforms.

4 SEMANTIC ISSUES 11

Procedure variables are restricted in the current release. Arbitrary procedures of
matching type may be assigned to procedure variables, and called in the usual way.
However assignment of procedure variables is only permitted if the two sides of the
assignment have the same type. That is, assignment of procedure values other than
literal procedures requiresname compatibility, rather than thestructural compatibility
specified in the language Report. This restriction will probably be removed in the next
major release.

Non-local variable access is permitted in an unrestricted way since release 1.1.6.
However, in the case of reference (VAR) parameters of unboxed2 type that are accessed
from within nested procedures the semantics of parameter passing is modified because
the actual parameters are passed bycopyingrather than byreference. The compiler
gives an explicit warning in these unusual circumstances.

4.3 Additional Arithmetic Operators

The usual arithmetic operatorsDIV andMOD in Pascal-family languages have well
defined semantics that are different to the division and remainder operators of imple-
mentations of C-family languages. InComponent Pascalthe operatorsDIV andMOD
are defined as follows —

i DIV j = bi/jc

(i DIV j) × j + (i MOD j) = i

wherei, j are integers,i/j denotes real division, andb . c is thefloor function.
Notice thatDIV always rounds toward negative infinity unlike most C-language

implementations (which normally round toward zero). The Pascal operators are math-
ematically preferred, but in case the alternative semantics are required for compatibility
reasons,gpcpintroduces alternatives.DIV0 denotes integer division with rounding to-
ward zero, whileREM0denotes the corresponding remainder operation.

i DIV0 j = RTZ(i/j)

(i DIV0 j) × j + (i MOD0 j) = i

wherei, j are integers,i/j denotes real division, andRTZ(.) is theRound-to-Zerofunc-
tion.

Warning
Remember, if you use any of these non-standard oper-
ators your program source will not be portable to other
implementations ofComponent Pascal.

4.4 Semantics of the WITH statement

The semantics of theWITH statement have been slightly modified so as to strengthen
the guarantees on the properties of the selected variable. In the code —

2 Component Pascaltypes that are unboxed in the.NET implementation are scalar values and record
types that are not extensible, do not extend another type, and are not defined as the anonymous bound type
of a pointer type.

4 SEMANTIC ISSUES 12

WITH x : TypeTi DO
... (* guarded region*)

| x : TypeTj DO
... (* guarded region*)

END;

the variablex is asserted to have the specified type throughout the so-calledguarded
region. The base language guarantees that the type of the selected variable cannot be
“widened” in the guarded region, but might possibly be narrowed. Ingpcpthe selected
variable is treated as a constant, and neither the type nor the value can be modified
either directly or indirectly. Any attempt to do so attracts a compile-time error message.

4.5 Extensible arrays: the vector types

From version 1.3 there is direct support for extensible array types. Values of these
vector types are dynamically allocated, and automatically extend their capacity when
an append operation is performed on an array that is already full. Vectors may be
declared to have any element type, and extend their length usingamortized doubling.

In most circumstances when a linked list would otherwise have been used the vector
types are faster, more memory efficient, and allow memory-safe indexing. Elements
of vectors may be accessed using the familiar index syntax, with index values checked
against theactive lengthof the array, rather than the arraycapacity.

Declaring vector types

Vectors are declared using the new syntax —

Type ::- ... - - other type constructors
| “VECTOR” “ OF” Type.

Variables of vector type are not automatically allocated. They must be explicitly allo-
cated using a variant of the built-inNEWprocedure which specifies the initial capacity.
Here is an example –

TYPE IntVec = VECTOR OF INTEGER;
VAR iVec : IntVec;

...
NEW(iVec, 16); (* Allocate vector with initial capacity 16*)

Built-in procedures

There are two new procedures defined on the vector types. The first of these appends
a new value of the declared element type to an existing vector. The signature of the
procedure is —

PROCEDURE APPEND(v :VectorOfEType, e : EType);

As noted above, vectors are reference types, so that the first argument may be passed
by value. The vector will double its length if there is no further space left in the array.

There is another built-in procedure which allows for theactive lengthof the vector
to be reduced. This has the effect of truncating the array at the given length. The
signature is —

PROCEDURE CUT(v :VectorOfEType, i : INTEGER);

4 SEMANTIC ISSUES 13

It is a runtime error if the requested new length of the vector is less than zero, or is
greater than the current active length.

A new version of the standard built-in functionLEN returns the active length of the
vector. There is no way of querying the current capacity of a vector datum.

As noted above, a new version of the standard built-in procedureNEWallocates
vectors of the specified initial capacity.

Assignment semantics

Vector values are references, so that an assignment of a vector value creates an alias
to the original r-value. If you really do have to make a value copy, here is a coding
pattern —

VAR a,b : SomeVecType;
...

NEW(b, LEN(a)); (* b is barely big enough*)
FOR i := 0 TO LEN(a)-1 DO APPEND(b, a[i]) END;

Note that in this case the value copyb will extend at the very next append operation,
since its initialcapacityis the same as theactive lengthof a. The active length ofa
may have been as little as one half of its capacity.

4.6 Implementing foreign interfaces

Component Pascaltypes may extend classes from the.NET CLS. Types which extend
CLSclasses may also declare that they implement interfaces3 from theCLS. The syntax
extension to access this feature hasBNF —

RecordDecl ::- “RECORD” [BaseType] [Fields] “ END” “ ; ” .
BaseType ::- “ [” QualifiedIdent{ “+” QualifiedIdent} “] ” .

The first qualified identifier, as in the Report, is the class that is extended by the type
being defined. Any additional qualified identifiers are the names of interfaces that the
type promises to implement. The compiler checks that this contract is honored. In
the case that interfaces are implemented, the base type may be left blank, or may be
explicitly set toANYREC.

The semantics of type-assertions are also relaxed whenever a reference is asserted
to be of some interface type. For non-interface types many erroneous type-checks can
be detected at compile time. However, there are almost no cases where an assertion that
a dynamically typed object belongs to some interface type can be rejected at compile
time.

Thus, interface types may beusedin Component Pascal. However, it is not possible
to defineinterface types usinggpcp.

4.7 EVENT types

Event types are declared ingpcpwith the same syntax as procedure types, but with the
keywordPROCEDUREreplaced byEVENT. Events are implemented as multicast del-
egate types in the.NET framework. If variables are declared to be of some event type,
then it is possible to use the new built-in proceduresREGISTERandDEREGISTERto
register or deregister callbacks on the multicast delegate.

The usage for registering a callback is —

3By “interface” in this context, we meanfully abstract class.

4 SEMANTIC ISSUES 14

REGISTER(target-variable, callback-method);

The target variable is the designator of the object, which must be of some event type.
The denotation of the callback method has two forms. If astatic procedureis to be
registered, then the simple procedure name is used. If the callback is intended to in-
voke a particular type-bound method on some particular object, then the syntax “ob-
ject.method” is used. This works for any type-bound procedure inComponent Pascal.
The usage for deregistering a callback is syntactically identical, but using the non-
standard built-in procedureDEREGISTERrather thanREGISTER. A callback may be
registered multiple times. The delegated calls are made in order of registration.

4.8 Unsigned Byte Type

The 8-bit type used in the.NETCommon Language Specification (CLS) is an unsigned
type. If Component Pascalis to be a full consumer ofCLS libraries then it must be
possible to declare variables and fields of such types inComponent Pascalprograms.
In order to facilitate this a new built-in typeUBYTEhas been introduced in version 1.2
of gpcp. Values of this type may be assigned to variables of larger integral types as
required. However, if values of this type are assigned to locations of the signed 8-bit
type BYTEa runtime range-check is required. Similarly if values of any signed type
are assigned to a location of unsigned byte type an explicit narrowing cast is required,
using the new built-in functionUSHORT().

4.9 Runtime type descriptors

A new function since version 1.2 returns runtime type descriptors. This allows easy
access to the facilities of thesystem reflectionlibraries. The function is overloaded,
and has the following signatures —

PROCEDURE TYPEOF(typename): RTS.NativeType;
PROCEDURE TYPEOF(IN s :anytype) : RTS.NativeType;

If the target is.NET, thenNativeTypeis an alias forSystem.Typeon the underlying
runtime. If the target is theJVM, then the return value will bejava.lang.Class.

The procedure with the first signature takes any type name as actual parameter.
The procedure with the second signature takes an actual parameter that is any variable
designator. If the type of the designator is statically known (perhaps because it denotes
an object of an inextensible type) then the compiler resolves the reference and no call
is needed to the runtime functionSystem.Object::GetType() .

4.10 Additional built-in functions

There are four additional built-in functions added to the implementation. One allows
convenient access to the underlying native string object type. The signature is —

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

Note that it is never necessary to use MKSTR when passing aliteral string to a formal
parameter of native string type. In the literal case the compiler does the conversion for
the programmer automatically.

Another handy function takes a record or array type, and makes a value copy onto
the heap, returning a pointer to the copy. There is a special case version also, forCLS
value classes. The signatures are —

4 SEMANTIC ISSUES 15

PROCEDURE BOX(s :CP-type) : POINTER TO CP-type;
PROCEDURE BOX(s :CLS-ValCls) : System.Object;

Here,CP-typeis aComponent Pascal-defined record, array or string type. The func-
tion copies the value so that modification of the boxed value does not affect the original
value. The function is particularly convenient for programs that manipulate character
data implemented as dynamically allocated arrays. Thus “BOX("hello") ” returns a
pointer to an array of characters of length 6, while “BOX(ptr1ˆ + ptr2ˆ) ” per-
forms a string concatenation and allocates a destination array of the required length. If
the function is applied to an array of fixed length the return value is an open array of the
same length. In the case of character arrays the use of the array “stringifier” mark “$”
on the argument ofBOXboxes a copy of the array which is truncated at the position of
the “nul ” character. Here is an example program fragment —

VAR str : ARRAY 16 OF CHAR;
ptr : POINTER TO ARRAY OF CHAR;

...
str := "Hello";
ptr := BOX(str); (* ptr points to an array of length 16*)
ptr := BOX(str$);(* ptr points to an array of length 6*)

Without theBOX function, the construction of a value copy of an open array would
require the following tedious construction —

VAR a,b : POINTER TO ARRAY OF CHAR;
...

NEW(b, LEN(a));
FOR i := 0 TO LEN(a) DO b[i] := a[i] END;

Using theBOX function, the same effect is achieved by “b := BOX(aˆ); ”.
The special case ofBOX applies to arguments that belong toCLSvalue classes as

used in the.NET base class libraries. In this case, for compatability with the libraries,
the function returns a “boxed” copy of the value class datum. Such boxed values are
treated by the system as having typeSystem.Object. Boxed values may be unboxed by
using the standard type-check syntax. Here is an example —

VAR datTim : Sys.DateTime; (* A CLS value type*)
objRef : Sys.Object; (* Native object type*)

...
objRef := BOX(Sys.DateTime.get_Now()); (* Boxing*)

...
datTim := objRef(Sys.DateTime); (* UnBoxing*)

Note that in the final statement of the fragment the type-check unboxes the object to
create a reference, and the assignment performs avalue copyas would be expected for
a value type.

As of version 1.2 a new built-in unsigned byte type has been introduced, for con-
formance with the.NET CLS. In order to coerce values of signed type to the new type
a new functionUSHORT(), analogous to the standardSHORT() function is also intro-
duced. This function has the signature —

PROCEDURE USHORT(s :AnyNumericType) : UBYTE;

It is a runtime error if the value of the parameter is not within the unsigned byte range.
The fourth new built-in function,TYPEOF, allows programs to access the reflec-

tion facilities of the underlying platform. The function was described in the previous
section.

4 SEMANTIC ISSUES 16

4.11 Deprecated features and warnings

The use of procedure variables and of super-calls are deprecated. Both attract compile-
time warning messages. Warnings are also issued in the case of procedures that are not
exported, and are not called (or assigned as procedure variables) within their defining
module. This situation is usually an error arising from failure to mark the procedure
for export.

4.12 Program executable verification

Component Pascalis a type-safe language. Every correct program is type-safe in the
same sense that is guaranteed by the.NETvirtual object system’s verifier. In principle
therefore, all output ofgpcpshould be verifiable.

You may test-verify the output of compilation by running the stand-alone program
executable verifier “peverify ” over the file. Figure 5 shows the result of running the
verifier over an example module.

D:\gpcp-CLR\work>peverify Browse.exe
Microsoft (R) .NET Framework PE Verifier Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001.

All Classes and Methods in Browse.exe Verified
D:\gpcp-CLR\work>_

Figure 5: Runningpeverify over an examplePE-file

Output might fail to verify if a manually constructed interface to a library does not
correspond to the internal metadata of the imported assembly. This potential problem
has largely gone away with the use of N2cps.

4.13 Unchecked arithmetic

By default, all arithmetic is overflow-checked, and all narrowing assignments are range
checked. Sometimes it is necessary to turn off this behaviour. There are two means to
do this. One of these is a custom attribute that is applied on a per-procedure basis.
Checks may also be turned off from the command line for all compilations in that
invocation.

The syntax of the custom attribute is a context sensitive marker that appears imme-
diately after the keywordBEGIN in a procedure or module body. The syntax is —

Body ::- “BEGIN” [“ [UNCHECKEDARITHMETIC] ”]
StatementSequence“END” identifier.

An example of the use of this construct, from the source of the compiler itself, is the
identifier hash function shown in Figure 6. This function performs a rotate-and-add
computation, in which bits are carried out of the sign bit back into the least significant
bit of the variable “tot ”. Overflow checking must be turned off, in order to prevent
very long identifiers from crashing the compiler.

5 EXCEPTION HANDLING 17

PROCEDURE hashStr(IN str : ARRAY OF CHAR) : INTEGER;
VAR tot : INTEGER;

idx : INTEGER;
len : INTEGER;

BEGIN [UNCHECKED_ARITHMETIC] (* Turn off overflow checks*)
len := LEN(str$);
tot := 0;
FOR idx := 0 TO len-1 DO

INC(tot, tot);
IF tot < 0 THEN INC(tot) END;
INC(tot, ORD(str[idx]));

END;
RETURN tot MOD size;

END hashStr;

Figure 6: Code of the hash function

Important note on parameter passing semantics for theJVM

The JVM version ofgpcp takes liberties with the precise semantics of parameter
passing almost everywhere. Actual parameters of unboxeda value type that are
passed to reference formals are passed by copying. In the case of formal param-
eters ofVARmode, actual values of unboxed value type are copied inand copied
out. In the case of formal parameters ofOUT mode the value is only copied out.
The current implementation method is necessary in order to obtain reasonable per-
formance on theJVM. The change will not affect the results of your program unless
you access the actual of a reference formal along two paths (either by having two
reference formals sharing the same actual argument value, or accessing a static vari-
able directly and through a parameter). You should not write programs that do this!
You might also care to know that with this change, the performance of code is good
if you have only one such copied parameter, but becomes poor if you have more
than one in any frequently called procedure.

In contrast, on the.NETplatform unboxed reference parameters are only passed
inexactly if they are non-locally accessed from within a nested procedure, as de-
scribed on page 11.

aUnboxed value types on theJVM platform are the built-in standard types such asCHARandINTE-
GER, together with the pointer types. Structures and arrays are always boxed at runtime in theJVM, and
are not affected by this semantic inexactness.

5 Exception Handling

Component Pascaldoes not define exception handling, but it is necessary to deal with
foreign libraries that may throw exceptions. There is one new keyword and one new
built-in procedure introduced to facilitate this.

6 FACILITIES OF THE CP RUNTIME SYSTEM 18

5.1 The RESCUE clause

Procedures, but not modules may include exactly oneRESCUEclause, at the end of
the procedure body. This has syntax —

ProcBody ::- “BEGIN” Statements
[“ RESCUE” “ (” ident“) ” Statements]
“END” ident.

The identifier introduced in the parentheses is of typeRTS.NativeException, and
must have a name that is distinct from every other identifier in the local scope.

If any exception is thrown in the body of the procedure, or if any exception is
unhandled in a procedure called from this procedure, then the rescue clause is entered
with the exception object in the named local variable. This variable is read-only within
the rescue clause, and is not known in the rest of the procedure body.

If the program has imported or defined any extensions of the native exception type,
filtering may be performed by using the usual type-test syntaxes. The compiler will
check that the rescue clause fulfills any contracts implied by the procedure signature.
For example, in the case of function procedures the rescue clause must explicitly return
a type-correct value, or explicitly throw another exception.

5.2 The THROW statement

Code may throw an exception by using the built-in procedure THROW. This procedure
has two signatures —

PROCEDURE THROW(x : RTS.NativeException);
PROCEDURE THROW(x : RTS.NativeString);

These may be used anywhere in the program. The first is useful for rethrowing an
exception from within a rescue clause. The second of these may be passed a literal
string, without requiring a call ofMKSTR() since the the compiler will automatically
coerce literal strings to formals of native string type. This call will throw an exception
object ofjava.lang.Exceptiontype, with the given string as embedded information. If

Warning
Remember, if you use any of these non-standard facilties
for exception handling your program source will not be
portable to other implementations ofComponent Pascal.

you want to create an exception object to abort program execution with a meaningful
string, you may also use the library function

RTS.Throw(msg : ARRAY OF CHAR);

Exceptions thrown by this library function can be caught by aRESCUEclause.

6 Facilities of the CP Runtime System

6.1 Supplied libraries

This release has a small number of libraries supplied. These are —

6 FACILITIES OF THE CP RUNTIME SYSTEM 19

* Consolewrites strings and numbers to the console

* StdInreads characters and whole lines from the console

* Error this library writes strings and number to the error stream

* ProgArgsprovides access to the command line arguments, if any

* GPTexta basic library for handling text formatting

* GPFilesdefines the supertype ofGPBinfFiles.FILEandGPTextFiles.FILE

* GPBinFilesreading and writing binary files

* GPTextFilesreading and writing text files

* RealStrformatting real numbers: based on theISO-Modula-2library

* RTSaccess to the facilities of the runtime system

* StringLibstring library, based on theISO-Modula-2library

For the most part these libraries are the ones that were required to bootstrap the
compiler. More will come later.

6.2 The runtime system (RTS)

The runtime system provides a variety of low-level access facilities. The source file for
this module, “RTS.cp ”, is not really the source. This file is a dummy, as is denoted by
the context-sensitive markSYSTEMappearing before the keywordMODULE. All such
“modules” are actually implemented in theC# file named “RTS.cs ”, and at runtime
are found in the assembly “RTS.dll ”.

The “source” ofRTSis shown in Figure 7. The four characterdefaultTargetstring
will hold “ net ” when running on the.NET platform, and “jvm ” when running under
the Java Runtime Environment. The wordSYSTEMin the first line of the definition
is a context sensitive mark, rather than a reserved word. This means that the word may
be used as an identifier elsewhere in the program.SYSTEMandFOREIGNhas slightly
different semantics on the.NETplatform, but are synonyms on theJVM version.

6.3 The ProgArgs library

The ProgArgs library provides access to the command line argument, if any. From
gpcprelease 1.3 it also provides access to the process environment. This is a system
library, with the following public interface —

SYSTEM MODULE ProgArgs;
PROCEDURE ArgNumber*() : INTEGER;
PROCEDURE GetArg*(num : INTEGER; OUT arg : ARRAY OF CHAR);
PROCEDURE GetEnvVar*(IN str : ARRAY OF CHAR;

OUT val : ARRAY OF CHAR);
END ProgArgs.

Note carefully that on the.NET platform GetEnvVarfetches an environment vari-
able, or an empty string. On theJVM platform the use of environment variables is
deprecated, and the procedure fetches the correspondingProperty String. Such prop-
erty strings are passed to the underlyingJavaprocess at startup, using options of the
form —

-D name=value

6 FACILITIES OF THE CP RUNTIME SYSTEM 20

SYSTEM MODULE RTS;
VAR defaultTarget- : ARRAY 4 OF CHAR;

TYPE CharOpen* = POINTER TO ARRAY OF CHAR;

TYPE NativeType* = POINTER TO RECORD END;
NativeObject* = POINTER TO RECORD END;
NativeString* = POINTER TO RECORD END;
NativeException* = POINTER TO RECORD END;

PROCEDURE getStr(x : NativeException) : CharOpen;
(* Get error message from Exception x*)

PROCEDURE StrToReal*(IN s : ARRAY OF CHAR;
OUT r : REAL;
OUT ok : BOOLEAN);

(* Parse array into an IEEE double REAL*)

PROCEDURE StrToInt*(IN s : ARRAY OF CHAR;
OUT i : INTEGER;
OUT ok : BOOLEAN);

(* Parse an array into a CP INTEGER*)

PROCEDURE StrToLong*(IN s : ARRAY OF CHAR;
OUT i : LONGINT;
OUT ok : BOOLEAN);

(* Parse an array into a CP LONGINT*)

PROCEDURE RealToStr*(r : REAL;
OUT s : ARRAY OF CHAR);

(* Decode a CP REAL into an array*)

PROCEDURE IntToStr*(i : INTEGER;
OUT s : ARRAY OF CHAR);

(* Decode a CP INTEGER into an array*)

PROCEDURE LongToStr*(i : LONGINT;
OUT s : ARRAY OF CHAR);

(* Decode a CP INTEGER into an array*)

PROCEDURE realToLongBits*(r : REAL) : LONGINT;
(* Convert IEEE double to longint with same bit pattern*)

PROCEDURE longBitsToReal*(l : LONGINT) : REAL;
(* Convert IEEE double to a longint with same bit pattern*)

RTS continues ...

Figure 7: Source of theRTSpseudo-module

6 FACILITIES OF THE CP RUNTIME SYSTEM 21

RTS continuation ...
PROCEDURE hiInt*(l : LONGINT) : INTEGER;
(* Get hi-significant word of long integer*)

PROCEDURE loInt*(l : LONGINT) : INTEGER;
(* Get lo-significant word of long integer*)

PROCEDURE Throw*(IN s : ARRAY OF CHAR);(* Abort execution*)

PROCEDURE GetMillis*() : LONGINT;(* Get time in milliseconds*)

PROCEDURE ClassMarker*(o : ANYPTR);(* Write class name*)

PROCEDURE GetDateString*(OUT str : ARRAY OF CHAR);
(* Get a date string in some native format*)

END RTS.

Figure 8: Source of theRTSpseudo-module, continued

6.4 The RealStr library

The RealStr library is a port toComponent Pascalof the ISO-Modula-2real number
formatting library. The interface to the library is shown in Figure 9.

The library contains procedures to transform real number values into fixed format
strings, floating format strings and the so-called “engineering” format in which expo-
nents are always a multiple of three. For the string parser,StrToReal, the recognized
format is given by the regular expression —

Number ::- [“ +” | “ - ”] dig {dig} [“ . ” {dig}] [“ E” [“ +” | “ - ”] dig {dig}] .

wheredig denotes a decimal digit.
TheRealStrlibrary will exactly round trip numbers viaRealToFloatandStrToReal,

provided a full 17 significant figures are specified forRealToFloat. So far as possible
the results of using moduleRealStrshould be identical on the two platforms.

6.5 The StringLib library

TheStringLib library reproduces the functionality of theISO Modula-2string library,
although the implementation has little similarity. The publicly accessible interface to
the library is shown in Figure 10.

The library contains the expected procedures for assigning, extracting, replacing,
deleting, concatenating and searching strings. As well, each of the procedures that
mutates a string value has a corresponding predicate function that tests if the operation
can be carried out exactly. This allows a guarded style of coding.

None of these routines raises program exceptions, but have sensible behaviour in
the case that the incoming arguments do not allow correct completion. For example,
in the case of theAssignprocedure, if the source string is too long for the supplied
destination the result is truncated to fit. Similarly, for theExtractprocedure the length

6 FACILITIES OF THE CP RUNTIME SYSTEM 22

MODULE RealStr;

(* Ignores any leading spaces instr. If the subsequent characters instr are in the *)
(* format of a signed real number, assigns a corresponding value to real. Argument*)
(* resreports whether conversion was successful. *)

PROCEDURE StrToReal*(str : ARRAY OF CHAR;
OUT real : REAL;
OUT res : BOOLEAN);

(* Converts the value of real to floating-point string form, withsigFigssignificant *)
(* digits and copies the possibly truncated result tostr. *)

PROCEDURE RealToFloat*(real : REAL;
sigFigs : INTEGER;
OUT str : ARRAY OF CHAR);

(* Converts the value of real to floating-point string form, withsigFigssignificant *)
(* digits, and copies the possibly truncated result tostr. The number is scaled with one*)
(* to three whole-number digits and an exponent that is a multiple of three. *)

PROCEDURE RealToEng*(real : REAL;
sigFigs : INTEGER;
OUT str : ARRAY OF CHAR);

(* Converts the value of real to fixed-point string form, rounded to the given place*)
(* relative to the decimal point, and copies the result tostr. *)

PROCEDURE RealToFixed*(real : REAL;
place : INTEGER;(* num. of frac. places*)

OUT str : ARRAY OF CHAR);

(* Converts the value ofrealasRealToFixedif the sign and magnitude can be shown*)
(* within the capacity ofstr, or otherwise asRealToFloat, and copies the possibly *)
(* truncated result tostr. The format is implementation-defined. *)

PROCEDURE RealToStr*(real: REAL; OUT str: ARRAY OF CHAR);
END RealStr.

Figure 9: Interface of the RealStr library

of the extracted string is the least of: (i) the requested character count, (ii) the number
of characters left in the source string, and (iii) the capacity of the destination array.

6.6 The SYSTEM facilities (.NET only)

TheSYSTEMmodule consists of three procedures. It must be explicitly imported, and
programs that import it will only compile if the command line argument “-unsafe ”
is in effect and the target is.NET. Programs which use any of these facilities will
be unverifiable. Furthermore, the careless use of these facilities may compromise the
correctness of the garbage collector. The module is useful for diagnostic testing, but
should never be used in deployed code.

The procedures are —

6 FACILITIES OF THE CP RUNTIME SYSTEM 23

MODULE StringLib;(* from GPM module StdStrings.mod*)

PROCEDURE CanAssignAll*(sLen : INTEGER;
IN dest : ARRAY OF CHAR) : BOOLEAN;

(* Check if an assignment is possible without truncation. *)

PROCEDURE Assign* (IN src : ARRAY OF CHAR;
OUT dst : ARRAY OF CHAR);

(* Assign as much as possible of src to dst, with terminating nul *)

PROCEDURE CanExtractAll*(len : INTEGER;
sIx : INTEGER;
num : INTEGER;

OUT dst : ARRAY OF CHAR) : BOOLEAN;
(* Check if extraction of ”num” chars starting at indexsIx is possible. *)

PROCEDURE Extract* (IN src : ARRAY OF CHAR;
sIx : INTEGER;
num : INTEGER;

OUT dst : ARRAY OF CHAR);
(* Extractnumcharacters starting fromsIx. Result is truncated if there *)
(* are fewer characters left, or the destination is too short. *)

PROCEDURE CanDeleteAll*(len,sIx,num : INTEGER) : BOOLEAN;
(* Check ifnumchars may be deleted starting fromsIx. len is the source length *)

PROCEDURE Delete*(VAR str : ARRAY OF CHAR;
sIx : INTEGER;
num : INTEGER);

(* Deletenumchars starting fromsIx. Less are deleted if there are lessnumaftersIx. *)

PROCEDURE CanInsertAll*(sLen : INTEGER;
sIdx : INTEGER;

VAR dest : ARRAY OF CHAR) : BOOLEAN;
(* Check ifsLenchars may be inserted intodeststarting fromsIdx. *)

PROCEDURE Insert* (IN src : ARRAY OF CHAR;
sIx : INTEGER;

VAR dst : ARRAY OF CHAR);
(* Insertsrcstring intodststarting fromsIx. Less chars are inserted if there is *)
(* insufficient space indst. dst is unchanged ifsIx is beyond the end ofdst. *)

PROCEDURE CanReplaceAll*(len : INTEGER;
sIx : INTEGER;

VAR dst : ARRAY OF CHAR) : BOOLEAN;
(* Check iflenchars may be replaced indststarting fromsIx. *)

StringLib continues ...

Figure 10: Interface to theStringLib library

6 FACILITIES OF THE CP RUNTIME SYSTEM 24

StringLib continuation ...
PROCEDURE Replace* (IN src : ARRAY OF CHAR;

sIx : INTEGER;
VAR dst : ARRAY OF CHAR);

(* Insert the characters ofsrc into dststarting fromsIx. Less chars are replaced if the*)
(* initial length ofdst is insufficient. The string length ofdst is unchanged. *)

PROCEDURE CanAppendAll*(len : INTEGER;
VAR dst : ARRAY OF CHAR) : BOOLEAN;

(* Check iflencharacters may be appended todst *)

PROCEDURE Append*(src : ARRAY OF CHAR;
VAR dst : ARRAY OF CHAR);

(* Append the chars ofsrcstring ontodst. Less characters are appended if the *)
(* length of the destination string is insufficient. *)

PROCEDURE Capitalize*(VAR str : ARRAY OF CHAR);

PROCEDURE FindNext* (IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;

bIx : INTEGER;(* Begin index*)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);

(* Find the first occurrence of the patternpat in str starting the search frombIx *)
(* If no match is foundfnd is false andposis bIx. Empty patterns match everywhere.*)

PROCEDURE FindPrev*(IN pat : ARRAY OF CHAR;
IN str : ARRAY OF CHAR;

bIx : INTEGER;(* Begin index*)
OUT fnd : BOOLEAN;
OUT pos : INTEGER);

(* Find the previous occurrence of the patternpat in str starting the search frombIx. *)
(* If no match is foundfnd is false andposis bIx. Empty patterns match everywhere.*)

PROCEDURE FindDiff* (IN str1 : ARRAY OF CHAR;
IN str2 : ARRAY OF CHAR;
OUT diff : BOOLEAN;
OUT dPos : INTEGER);

(* Find the index of the first char of difference between the two input strings. *)
(* If the strings are identicaldiff is false, anddPosis zero. *)

END StringLib.

Figure 11: Interface to theStringLib library

PROCEDURE ADR(IN obj : any type) : INTEGER;
PROCEDURE GET(IN adr : INTEGER; OUT dst : any basic type);
PROCEDURE PUT(IN adr : INTEGER; IN val : any basic type);

There is a demonstration program named\examples\hello\testadr.cp This
example demonstrates some of the capabilities of the library. Study the results, you may
find them surprising. Note, for example, thatADR(arr) is not equal toADR(arr[0]).

7 FOREIGN LANGUAGE INTERFACE 25

6.7 The StdIn library

In version 1.3 a new library is supplied that provides primitives for reading single
characters and whole lines from the standard input stream. This stream is connected
by default to the machine console, but may be redirected using the facilities of the
underlying platform libraries.

This library has very simple functionality, described by the foreign module shown
in Figure 12. In the first release the predicate functionMore always returns theTRUE

SYSTEM MODULE StdIn;
(* Read a line of text, discarding new-line*)
PROCEDURE ReadLn*(OUT arr : ARRAY OF CHAR);
PROCEDURE SkipLn*();(* Discard remainer of line*)
PROCEDURE Read*(OUT ch : CHAR);(* Fetch next character*)
PROCEDURE More*() : BOOLEAN;(* Return TRUE in gpcp v1.3!*)

END StdIn.

Figure 12: Source of theStdInpseudo-module

value. The team will restore the functionality when we figure out a way of making the
behaviour the same on the two execution platforms.

7 Foreign Language Interface

7.1 Accessing the underlying native types

As seen in Figure 7 theRTSmodule defines four type aliases. The binding of these
types to the native platform types is determined dynamically, at compile time. Thus, the
underlying types are accessible without any other import other thanRTS. At compiler-
runtime the compiler queries the target flag, or takes the default target value if there is
no target command option.

If the target is “net ” then NativeObject, NativeStringandNativeExceptionwill be
theCLR typesSystem.Object, System.StringandSystem.Exceptionrespectively.

If the target is “jvm ” then NativeObject, NativeStringandNativeExceptionwill be
theJavatypesjava.lang.Object, java.lang.Stringandjava.lang.Exceptionrespectively.

In any case, literal strings may be implicitly coerced to either the native string type,
or to the native object type. This saves a lot of clutter in code that interfaces to foreign
libraries. However, if the value of a charater arrayvariableneeds to be transformed to
a native string, the non-standard built-in function —

PROCEDURE MKSTR(IN s : ARRAY OF CHAR) : RTS.NativeString;

must be used. See the appendix for an extended example of using these facilities for
working with native string types.

7.2 Compiling dummy definition modules

As a convenience during bootstrapping, the compiler has been enhanced so as to allow
the construction of metainformation files for foreign language libraries. Such modules
must be compiled with the “/special ” option.

7 FOREIGN LANGUAGE INTERFACE 26

Foreign language interfaces are denoted by the context sensitive marksFOREIGN
or SYSTEMpreceding the keywordMODULE at the start of the file. Such “dummy”
modules do not contain the code of the foreign language facilities, but simply define
the interface to those facilities. Such modules must be compiled with the “/special ”
option. The system marker has special meaning in the.NETplatform, but has the same
semantics as foreign in theJVM platform.

When a dummy definition module is compiled there are a small number of syntactic
extensions and changes.

* Modules can be given an explicit external name

* Procedures can be given an explicit external name

* Features with “protected” scope may be defined

* Static features of classes may be defined

* Escaped identifiers may be defined

* Interface types may be defined

* Overloaded names may be given aliases

* Constructors may be given an alias

A module declaration of the form —

MODULE Foo["[blah]namespace"];

declares that this module will be found in.NET assembly “blah ” within namespace
“namespace ”. It is not necessary to use this mechanism if you write the foreign mod-
ule so that it has the default name as described in Section 3.2.

A procedure declaration of the form —

PROCEDURE (x : T)BarII*["Bar"](i,j : INTEGER);

declares that this type-bound procedure has the external name “Bar ” and the internal
(CP) name “BarII ”. This mechanism allows overloaded names in theCLSto be given
non-overloaded aliases in CP.

The mark “! ” is used to declare that a foreign name has protected scope. The mark
is placed in the same position in a declaration as the standard export markers “* ” and
“ - ”.

If a name clashes with aComponent Pascalkeyword, it should be defined using the
back-quote escape, as described on page 10.

Here is an example of the syntax that is required to define a foreign interface type.

TYPE Foo* = POINTER TO INTERFACE RECORD (*always empty*) END;

The keywordINTERFACEis reserved. Such types cannot declare any instance fields
in the record, nor can they define type-bound procedures which are not declaredAB-
STRACT.

Finally, constructors must be declared with the special name “.ctor ”. Declaring a
constructor is not necessary if only the no-arg constructor is required, sinceNEW(obj)
works in this case as for all other types inComponent Pascal(see Section 8.4 for more
detail). If access to constructors with arguments is required, then these may be given
a Component Pascalalias, and are marked as constructors by using the magic explicit
name. For the “/target=jvm ” version, the magic name is “<init> ”.

7 FOREIGN LANGUAGE INTERFACE 27

7.3 Accessing Static Features of Foreign Classes

If a class has been imported from a foreign definition, and the class has static members,
these may be accessed by means of a semantic extension to the designator grammar.

Normally, the syntactic construct —

QualifiedIdent{Selector}

is in error if the qualified identifier resolves to a type-identifier. However there are two
exceptional cases where this is legal ingpcp. If a designator begins —

TypeIdentifier“ . ” Identifier...

and the following is true —

The type identifier resolves to an imported, foreign type,and either
the identifier is a static field or constant of the type,or
the identifier is a static method of the named type

then this is a legal reference to the named static feature of the type.
In order to define such constructs in the syntax of dummy definitions the follow-

ing productions are added to the record syntax. Note that these extensions are only
recognised if the module is compiled with the “/special ” command-line option.

Record ::- “RECORD” [“ (” TypeId“) ”] {FieldList}
[“ STATIC” {StatFeature}] “ END”.

StatFeature ::- ProcHeading| StatConst| StatField.
StatConst ::- identifier“=” ConstExpression.
StatField ::- identifier“ : ” TypeId.

All undefined syntactic categories in the fragment have the same meaning as in the
unmodifiedComponent Pascalsyntax. In particular, procedure headings have the same
syntax as elsewhere in the language.

7.4 Accessing Nested Classes

TheCLSallows for class declarations to be nested within other classes. InComponent
Pascalsuch classes have names of the form

EnclosingClassName$NestedClassName

This compound name is a single identifier, as far asgpcp is concerned, and must not
have any embedded spaces. TheBrowse tooluses the same convention. As an example,
in the foreign module “System Windows Forms ” there is a class that browse displays
as —

Control$ControlCollection * =
POINTER TO EXTENSIBLE RECORD (mscorlib System.Object)
STATIC

PROCEDUREinit *(p0 : Control) :
Control$ControlCollection ,CONSTRUCTOR;

END;

In this example the nested classControlCollectionis enclosed by the classControl.
Figure 13 is an example program that accesses the nested class, and creates an instance
of the class. Note that the outer, enclosing object is constructed first, using the no-arg
constructor, and then is passed as an argument to the explicit constructor for the nested
class object.

8 CREATING AND USING FOREIGN DEFINITION MODULES 28

MODULE Nested;
IMPORT SWF := System_Windows_Forms_;
VAR ct : SWF.Control;

cc : SWF.Control$ControlCollection;
BEGIN

NEW(ct);(* Create outer object and pass to inner constructor*)
cc := SWF.Control$ControlCollection.init(ct);

...
END Nested.

Figure 13: Using a nested class

8 Creating and Using Foreign Definition Modules

This Section is only of relevance if you plan to write your own foreign definition mod-
ules. For most users the information in the previous section on the usage of these
facilities will be sufficient.

Hint:
This section is included for mainly historical reasons.
The need to write foreign definition modules has signif-
icantly decreased with the availablity of theN2CPSand
J2CPStools. It is usually easier to write the foreign lan-
guage code, use the tool to produce the symbol file, and
Browseto produce a human-readable version.
An exception occurs when the same module is required
for both platforms. In that case it may still be simpler
to write a foreign module, and then separately implement
the code inJavaandC# to match the shared definition.

8.1 Syntax of Foreign Definitions

The syntax of foreign definition is shown in Figure 14. Unless otherwise defined here,
the meanings of syntactic-category symbols is the same as in the Component Pascal
Report.

The syntax begins with the context sensitive markFOREIGNor SYSTEM. On the
.NET platform the system marker indicates that the code will be found in the runtime
system assembly. In theJVM, where each class file contains a single class, the marker
has the same semantic effect as the foreign marker.

8.2 Explicit package or namespace names

The way in which runtime names are generated from module names was described in
Section 3.2. In the case of theJVM we have the following correspondence —

8 CREATING AND USING FOREIGN DEFINITION MODULES 29

GPModule ::- Module| ForeignMod.
ForeignMod ::- (“FOREIGN” | “SYSTEM”) “ MODULE” ident[string] “ ; ”

ImportList DeclSeq“END” ident“ . ” .
DeclSeq ::- { “CONST” {ConstDecl“ ; ”}

| “TYPE” {TypeDecl“ ; ”}
| “VAR” {VarDecl“ ; ”}}

{ ProcHeading“ ; ” | MethodHeading“ ; ” }
ProcHeading ::- “PROCEDURE” IdentDef[“ [” string “] ”] [FormalPars] .
MethodHeading ::- “PROCEDURE” Receiver IdentDef[“ [” string “] ”]

[FormalPars] [“ , ” “ NEW”]
[“ , ” (“ ABSTRACT” | “EMPTY” | “EXTENSIBLE”)] .

TypeDecl ::- IdentDef“=” Type.
Type ::- [“ POINTER” “ TO”] [Attributes] “ RECORD” [Supers]

FieldList{“ ; ” FieldList}
[“ STATIC” StaticDecl{“ ; ” StaticDecl}] “ END”

| - - Other types as in the Report.
StaticDecl ::- IdList “ : ” Type| IdentDef“=” ConstExpr| ProcHeading.
Attributes ::- “ABSTRACT” | “EXTENSIBLE” | “ INTERFACE” .
Supers ::- “ (” [Qualident] {“+”Qualident}“) ” .

Figure 14: Syntax of foreign modules

Component Pascal Name JVM Name
MODULE ModNm; CP.ModNm // package name

TYPE Cls = RECORD...END; CP.ModNm.ModNm Cls
VAR varNm : Cls; CP.ModNm.ModNm.varNm
PROCEDURE ProcNm(); CP.ModNm.ModNm.ProcNm()
PROCEDURE (t:Cls)MthNm(); CP.ModNm.Cls.MthNm()

END ModNm.

Notice that in the JVM there are no features that are defined outside of classes, so
that the static featuresvarNmandProcNmare considered at runtime to belong to an
implicit static class with the same name as the module name. However, so far as an
importingComponent Pascalprogram is concerned, these features will be accessed by
the familiarModuleName.memberNamesyntax.

Component Pascal Name .NET CLS Name
MODULE ModNm; [ModNm]ModNm // namespace name

TYPE Cls = RECORD...END; [ModNm]ModNm.Cls

VAR varNm : Cls; [ModNm]ModNm.ModNm::varNm

PROCEDURE ProcNm(); [ModNm]ModNm.ModNm::ProcNm()

PROCEDURE (t:Cls)MthNm(); [ModNm]ModNm.Cls::MthNm()

END ModNm.

In the virtual object system of.NET the situation is similar, with an implicit static class
being defined with the same name as the module.

If, as a user, you are writing a foreign definition and plan to implement the library
yourself in eitherJavaor in C# (say), then you may define the foreign module in this
way and write the foreign code so as to match the default “name mangling” scheme. In
this case you may even use the same foreign definition for both versions ofgpcp, and

8 CREATING AND USING FOREIGN DEFINITION MODULES 30

implement a foreign module on each underlying platform. If on the other hand you are
planning to match a foreign definition to an existing library written inJavaor C#, then
you must override this default naming scheme.

The syntax —

“FOREIGN” “ MODULE” ident“ [” string “] ” “ ; ”

allows an arbitrary package or namespace name to be defined. For example, in order to
access the facilities of the packagejava.lang.Reflect a foreign module might
begin

FOREIGN MODULE java_lang_Reflect["java.lang.Reflect"];

Similarly, in order to access the facilities of the namespaceSystem.Reflectin the as-
semblymscorliba foreign module might begin

FOREIGN MODULE mscorlib_System_Reflect
["[mscorlib]System.Reflect"];

Note that the form of the literal string is different on the two platforms, and thus
any such foreign modules will be specific to a particular platform. Notice also that
there is no mechanism to explicitly give a name to an implicit static class.

8.3 Dealing with overloaded names

Each of the underlying platforms allows name overloading for methods. This feature is
deliberately not permitted inComponent Pascal. Nevertheless, it is necessary to gain
access to library methods that have overloaded names. The option of using explicit
external method names facilitates this. Suppose we have two methods, both of which
are namedAdd() , one with a single integer parameter, and the other with two. We
might define these as follows in a foreign definition.

PROCEDURE (this : Cls)AddI*["Add"](I : INTEGER),NEW;
PROCEDURE (this : Cls)AddII*["Add"](I,J : INTEGER),NEW;

Within the importingComponent Pascalprogram the two names are distinct, but the
program executable will correctly refer to the underlying overloaded methods. This
manually specified name-mangling is rather awkward, particularly in the case of pa-
rameters of object types.

Sincegpcprelease 1.1 users are able to access the unmangled names of overloaded
foreign methods directly. TheN2CPSandJ2CPStools create symbol files that have
overloaded names, and the compiler will match calls to the intended method. Because
this is a language extension, the compiler is strict about matching calls to methods
in the presence of automatic type coercions. If more than one method matches when
taking into account all legal coercions, gpcp will reject the program and require the
user to specify the intended coercions of the actual parameters.

8.4 Interfacing to constructors

If a foreign class has a “no-arg” constructor, then this will be implicitly called when-
ever an object is created by the use of the standard procedureNEW. However if it is
necessary to access constructors with arguments, then it is possible to define an alias
for the constructor in a foreign module. In every case the constructor will be accessed
by means of a static, value returning function that returns an object of the constructed
class. The fact that this is a constructormustbe made known togpcpsince the way
in which these methods are called differs from other methods. On each underlying

8 CREATING AND USING FOREIGN DEFINITION MODULES 31

platform there is a “magic” name that is used for calling a constructor. On theJVM the
name is “<init> ”, while on .NET the name is “.ctor ”. These two strings are used as
the explicit string that defines such a procedure in the foreign definition. An example
of an interface to a constructor with arguments, in the syntax used by theBrowsetool,
might be —

PROCEDURE Init*(width,height : INTEGER) : Rect,CONSTRUCTOR;

The identifier “CONSTRUCTOR” is not a reserved word, but a context sensitive mark that
may be used as an ordinary identifier elsewhere in the program.

Note that this declaration would normally appear in the static part of the record
defining the classRect. Calls to this procedure in aComponent Pascalprogram, such
as —

rec1 := F.Rect.Init(25,17);

would, depending on the target platform, translate into a call to one or the other of —

namespaceName.Rect::.ctor(int32,int32)
packageName.Rect.<init>(II)

Of course, if you extend a foreign class that does not have a public no-arg construc-
tor, then you will not be able to construct values of your own type usingNEW, since
this implicitly calls the no-arg constructor of its super-type. In this case, it is necessary
to define a new constructor signature for your extended type. Fromgpcprelease 1.2
there are two ways to do this. If the desired constructor has the same signature as the
constructor of the supertype, then the first method may be used. In the case of the
example above, the required syntax is shown in the following fragment —

TYPE MyRect* = POINTER TO RECORD (Mod.Rect) ... END;
...

PROCEDURE Init*(w,h : INTEGER) : MyRect,CONSTRUCTOR;

The constructor does not define a code body, and simply passes its arguments to the
super-type constructor with matching signature.

The new syntax ingpcpversion 1.2 is considerably more flexible. TheComponent
Pascalconstructor is not required to have the same signature as the constructor of the
super-type. An example of the syntax defining another constructor for the extended
type defined above is —

PROCEDURE MkMyRect*(Formals) : MyRect,BASE(actuals);
(* Local-declarations*)

BEGIN
(* Constructor body code*)
RETURN SELF;

END MkMyRect;

in the code the formal and actual parameter lists have been left un-elaborated.
The identifier “BASE” is a not a reserved word, but is a context sensitive mark. Of

all publicly available constructors for the super-type it specifies a call of the one with
signature matching the types of the “actuals” argument list. This super-type constructor
will be called as the first action of the constructor, before the new fields of the derived
object are initialized. Within the body of the constructor the object under construction
is denoted by the identifier “SELF”. The constructormustreturn this object along every
terminating path of the body. It is an error if the actual parameter expression types in
theBASEsuper-call do not choose a unique super-type constructor.

8 CREATING AND USING FOREIGN DEFINITION MODULES 32

8.5 Declaring static features of classes

Classes in foreign modules may be declared either as records or as pointers to records.
However, it is recommended that on theJVM platform the pointer form be always
used, as a helpful reminder to the user that at runtime the objects will be dynamically
allocated. On the.NET platform value classes should be declared as plain records,
with no explicit base type. On both platforms array types should be declared as point-
ers to arrays, again reminding the user that all arrays are dynamically (and explicitly)
allocated.

In order to access static features of foreign classes, the syntax extension of records
given in Figure 14 must be used. In the optional static section of a record declaration
we may define constants, static fields and static (i.e. non type-bound) procedures.

We may consider the following example —

CP Foreign Definition Component Pascal Usage
FOREIGN MODULE ModNm;

TYPE Cls = ModNm.Cls (* class name*)
POINTER TO RECORD

STATIC

statVar* : CHAR; ModNm.Cls.statVar

PROCEDURE StatProc(); ModNm.Cls.StatProc()

END;

END ModNm.

In this example we select the static member by qualifying the designator by the type-
name of the class.

Type-bound methods will be defined lexically outside of the record declaration in
the normalComponent Pascalway, remembering that only the heading is required.
On the.NET platform the distinction between virtual and instance methods is made
automatically. Instance methods areNEWbut notEXTENSIBLE. On theJVM platform
the possibility of optimizing the calls to such methods is left to theJIT to determine.

Note that the foreign modules which arise fromC# on the.NET platform or are
written in Javacan never have static features outside of classes. If you are writing
the foreign module yourself you may use the default class naming scheme described
in Section 3.2. However if you are matching an existing package, you will need to
use the explicit name override described earlier in this Section. This allows you to
control the package name, but does not allow you to name an implicit static class for
static features. Therefore you will need to use the mechanisms of this sub-section if
the package contains any static features.

8.6 Automatic module renaming

Programs written inC# that contain a single class definition only are often created in
files that take their name from the name of the class. If you try to match this same
structure inComponent Pascal, you run into a small difficulty on the.NET platform.
Suppose you want to export a classRenamefrom a module namedRename. In this
case the external class name in.NET will be “ [Rename]Rename.Rename ”, and this
name will clash with the name of the “synthetic static class”. In this circumstancegpcp
will automatically rename the static class, by pre-pending two underscore characters.
If the module with the renamed class is imported,gpcpwill find the renamed symbol
file. In both contextsgpcpwill issue a warning that the renaming is taking place —

9 INSTALLING AND TRYING THE COMPILER 33

C:\gpcp\work> gpcp Rename.cp UseRename.cp
1 MODULE Rename;

**** -------ˆ Warning: Default static class has name clash
**** Renaming static class to <__Rename>
#gpcp: <Rename> No errors, and one warning

2 IMPORT Rename, CPmain;
**** ---------ˆ Warning: Looking for a auto-renamed module
**** ---------ˆ Looking for module "Rename" in <__Rename.cps>
#gpcp: <UseRename> No errors, and one warning

9 Installing and Trying the Compiler

9.1 Installation

The compiler is packaged in a single installer file “setup.exe ”. If you use the installer
version (from version 1.1.4) you should not need to do anything other than make re-
sponses to the installer’s queries. Complete instructions for installing and trying out
the compiler are in the separate document “Getting Started with GPCP”.

Figure 15 is the complete folder hierarchy of the installed compiler. The six first-
level subdirectories of the distribution are

* bin — the binary files of the compiler

* docs— the documentation, including this file

* examples— some example programs

* libs — contains the simple library files

* source— the source files

* work — a working directory to play around with

The bin directory needs to be on yourPATH, and the environment variableCPSYM
must point to the “libs ” directory. Typical commands to set these variables are —

set CPSYM=.;C:\gpcp\libs;C:\gpcp\libs\NetSystem
set PATH=%PATH%;C:\gpcp\bin

Preferably these should be set in the system window of the control panel. If you use
the installer version, the paths should be set automatically during installation.

10 Future Releases

Release 1.2 still has a very limited range of libraries packaged with it, essentially only
those needed to bootstrap the compiler. The distribution is sufficient to try out the
compiler, and is being updated on a frequent basis. We expect new releases to contain
new tools and new libraries.

Updates are announced and available fromhttp://www.citi.qut.edu.au/
research/plas/projects/cp files

http://www.citi.qut.edu.au/research/plas/projects/cp_files
http://www.citi.qut.edu.au/research/plas/projects/cp_files

10 FUTURE RELEASES 34

Figure 15: Distribution File Tree

10.1 Change summary

Changes from 1.2.0

The following changes and corrections are included in the 1.2.x release.

* Support for boxing and unboxing ofCLSvalue types is included.

* The vector types have been included.

* The parser now allows return types and formal parameters to be anonymous
constructed types. The compiler gives a warning when the type so defined will
be inaccessible and hence useless.

* A string libraryStringLibhas been included.

* Some corrections have been made to theRealStrlibrary.

* The “WinMain ” pseudo-module introduced to mark base modules for windows
executables that do not start a console when launched.

10 FUTURE RELEASES 35

* Unsafe facilities in module “SYSTEM” introduced.

* Enhanced compatability between native strings, string literals and character lit-
erals.

* Correction to the semantics of subset inclusion tests, both versions.

Changes from 1.1.6

The following changes and corrections are included in the 1.2.0 release.

* The semantics of “super-calls” were incorrect in the case that the immediate
super-type did not define the method being overridden. In version 1.2 the nota-
tion “Fooˆ() ” denotes the overridden method no matter how distant it is in the
inheritance hierarchy.

* New options have been implemented for output directories.

* The default behavior for the “/nodebug ” option is to use the directPE-file
writer. This is significantly faster than going throughilasm . Unfortunately,
this new file-writer does not produce debug symbols at this stage. There is sepa-
rate documentation for thePEAPIcomponent included with this release.

* The permitted semantics for constructors with arguments is significantly en-
hanced. This is of some importance when deriving from types that do not have
public no-arg constructors.

Changes from 1.1.4

The following changes and corrections are included in the 1.1.6 release.

* Uplevel addressing of reference parameters is now permitted in the.NETrelease,
although this has inexact semantics in some cases.

* A number of corrections to theJVM code-emitter have been added.

* The new built-in functionBOXhas been added.

* Trapping of types that attempt to indirectly include themselves is improved.

* An automatic renaming scheme is implemented for modules that attempt to ex-
port types with the same name as the module on the.NETplatform.

Changes from 1.1.3

The following changes and corrections are included in the 1.1.4 release.

* The copyright notice has been revised.gpcpis still open source, but now has a
“FreeBSD-like” licence agreement.

* A correction to theJavaclass-file emitter now puts correct visibility markers on
package-public members. Appletviewer didn’t care, but most browsers objected!

* It is now permitted to export type-bound procedures of non-exported types, pro-
vided the procedure overrides an exported method of a super-type.

10 FUTURE RELEASES 36

* More line-markers are emitted toIL in .NET. This makes it possible to place a
breakpoint on the predicate of a conditional statement, and have the debugger
stop on the predicate rather than the next executable statement.

* The type-resolution code of “SymFileRW.cp ” has been radically revised. It is
believed that the code is now immune to certain problems caused by importing
foreign libraries with circular dependencies.

11 APPENDIX: WORKING WITH NATIVE STRINGS 37

11 Appendix: Working with Native Strings

There are some subtleties in converting to native strings. The following example
demonstrates several strategies. The example tries to call theEquals() method ofSys-
tem.Stringto compare with aComponent Pascalliteral string.

MODULE StringCompare;
IMPORT Sys := mscorlib System, CPmain;

VAR type : Sys.Type;
name : Sys.String;
ltNm : Sys.String;
sObj : Sys.Object;

BEGIN
name := type.get Name();

(*
* This attempt does not work, since literal strings may have several automatic
* coercions that match different overloads of the Equals() method
*)
IF name.Equals("Blah") THEN END;

(*
* Type assertions only apply to variables. This attempt caused a compiler
* exception in 1.1.4!
*)
IF name.Equals((Sys.String)"Blah") THEN END;

(*
* This next try is invalid syntax, thecastconstruct is a type-check, not a conversion
*)
IF name.Equals("Blah"(Sys.String)) THEN END;

(*
* Conversions use built-in functions. Here is a non-standard one that converts
* char-arrays to native strings. This works ...
*)
IF name.Equals(MKSTR("Blah")) THEN END;

(*
* In the case of assigments (or non-overloaded method calls), the compiler can
* work it out by itself without the MKSTR. Literal char arrays can be assigned to
* objects or strings. This works.
*)
ltNm := "Blah";(* gpcp automatically converts the string to System.String*)
IF name.Equals(ltNm) THEN END;

(*
* In the case of reference variables the type-assertion / cast syntax does work –
* the following two calls bind to different overloads.
*)
sObj := "Blah"; (* gpcp automatically converts the string to System.Object*)
IF name.Equals(sObj) THEN END;
IF name.Equals(sObj(Sys.String)) THEN END;

END StringCompare.

Curiously, these problems do not arise for theJVM version, since in theJavalibraries
the “equal ” predicate for thestring type overrides the predicate fromobject. In the
JVM case there is no overloading.

12 APPENDIX: OVERRIDING THE DEFAULT NAMING 38

12 Appendix: Overriding the Default Naming

The default naming scheme for the.NETversion of gpcp uses the module name as the
stem name for the output files, theCLRassembly name, the namespace name and the
dummy static class name. All of these defaults may be overridden as described here.
This may be necessary if another component expects a particular naming pattern.

Consider the following short program —

MODULE ModId; (* default naming will be used*)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “ModId.dll ”, the name of the dummy
static class will be “[ModId]ModId.ModId ”, and the name of the class that represents
the record type will be “[ModId]ModId.ClsId ”.

It is allowed to follow the module name with a bracketed string that specifies either
or both of the assembly name and the namespace name. A typical string would be —

MODULE ModId ["[AsmNm]SpcNm"]; (* both*)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “AsmNm.dll ”, the name of the dummy
static class will be “[AsmNm]SpcNm.ModId ”, and the name of the class that represents
the record type will be “[AsmNm]SpcNm.ClsId ”.

In the case that only the assembly name is specified, there is no namespace defined.

MODULE ModId ["[AsmNm]"]; (* assembly name only*)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “AsmNm.dll ”, the name of the dummy
static class will be “[AsmNm]ModId ”, and the name of the class that represents the
record type will be “[AsmNm]ClsId ”.

Conversely, if the namespace name is specified, but no assembly name, then the
assembly name is taken from the module identifier, as in the default case.

MODULE ModId ["SpcNm"]; (* namespace only*)
TYPE ClsId* = RECORD ... END;

END ModId;

In this case the name of the output file will be “ModId.dll ”, the name of the dummy
static class will be “[ModId]SpcNm.ModId ”, and the name of the class that represents
the record type will be “[ModId]SpcNm.ClsId ”.

There is just one special case remaining. In all of the previous cases the name of the
dummy static class is taken from the module identifier, with the symbol (metadata) file
using the same stem name. If the default name of the static dummy class clashes with
the name of an explicit class then the dummy static class will be renamed, as described
in Section 8.6.

12 APPENDIX: OVERRIDING THE DEFAULT NAMING 39

MODULE ClsId; (* module name clashes with class id*)
TYPE ClsId* = RECORD ... END;

END ClsId;

In this example the name of the output file will be still be “ClsId.dll ” but name
of the dummy static class will be renamed to “[ClsId]ClsId. ClsId ”, and the
name of the class that represents the record type will be “[ClsId]ClsId.ClsId ”.
The symbol file will have the name “ ClsId.cps ” and, as noted earlier, will be
automatically found by the compiler if the module name appears in an import list.

	Introduction
	Overall Structure
	Input and Output files
	Invoking the compiler
	Target choice
	Overflow checking
	Listing output
	Statistics output
	Setting the hash table size
	Choosing the Output Directories
	The Make utility
	Module Interface Browser
	Symbol File Generator N2CPS

	Lexical Issues
	Non-standard Keywords
	Common Language Specification names
	Identifier syntax

	Semantic Issues
	DLLs and EXEs
	Unimplemented constructs
	Additional Arithmetic Operators
	Semantics of the WITH statement
	Extensible arrays: the vector types
	Implementing foreign interfaces
	EVENT types
	Unsigned Byte Type
	Runtime type descriptors
	Additional built-in functions
	Deprecated features and warnings
	Program executable verification
	Unchecked arithmetic

	Exception Handling
	The RESCUE clause
	The THROW statement

	Facilities of the CP Runtime System
	Supplied libraries
	The runtime system (RTS)
	The ProgArgs library
	The RealStr library
	The StringLib library
	The SYSTEM facilities (.NET only)
	The StdIn library

	Foreign Language Interface
	Accessing the underlying native types
	Compiling dummy definition modules
	Accessing Static Features of Foreign Classes
	Accessing Nested Classes

	Creating and Using Foreign Definition Modules
	Syntax of Foreign Definitions
	Explicit package or namespace names
	Dealing with overloaded names
	Interfacing to constructors
	Declaring static features of classes
	Automatic module renaming

	Installing and Trying the Compiler
	Installation

	Future Releases
	Change summary

	Appendix: Working with Native Strings
	Appendix: Overriding the Default Naming

