
Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
Appendix C

Using PEAPI to Write PE Files

John Gough & Diane Corney

Version 1.0 (1 September 2002)

C.1 Introduction

Chapter 11 ofCompiling for the .NET Common Language Runtime “Skipping the As-
sembler: Using Reflection.Emit” discusses the use of the library “Reflection.Emit”
to create program executable module (PEM) files directly. In that Chapter the short-
comings of that approach were discussed.

This appendix details another approach based on a managed component,PEAPI,
created by Diane Corney.PEAPI supplies an application programming interface that
allowsPE-files to be directly created.PEAPI is entirely managed code, and is written
in C#. It has been used as a backend forgpcp, with promising results. It is relatively
well tested for those parts of the functionality that are required forgpcp, but is intended
to be able to emit all features ofPE-files. Testing of those features not directly used by
gpcp is ongoing. The authors will update the source as required.

Like gpcp, PEAPI is open source software, and is released under the same license.
This Chapter is intended to fulfil two purposes: it is a guide to the use ofPEAPI, with
the interface togpcp as a running example. In addition, this Chapter is intended as a
brief introduction to the design and implementation of the component.

Performance

Compilers usingPEAPI are fast. As a rough rule of thumb,gpcp can write out aPE-
file in the same time as it writes out a textual-IL file. Compared to the conventional
approach, this implies a time saving equal to the entire time spent in creating a new
process forilasm, reading theIL text and creating the output file.

Figure C.1 lists the time taken to compile the roughly 40k lines ofComponent
Pascal in the 46 files of thegpcp source. The time in seconds is for a single processor

i

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
ii APPENDIX C. USING PEAPI TO WRITE PE FILES

Writing textual IL files 4.2
Writing IL, then invokingilasm 11.5
Writing PE files usingPEAPI 4.0

Figure C.1: Time in seconds to runCPMake /all ongpcp source

2001 Intel Pentium machine with 512M of memory. The final row thus corresponds to
a compilation speed of well over 500k lines per minute.

Figure C.2 lists the compilation times for the three largest single modules ofgpcp.
In each case the compilation time of each module compiled on it own is about 1100mSec.
Most of this time is the JIT penalty. The times quoted in the Figure are the result of
a multi module compilation, with the measured module being second on the argument
list. In this way the module named in the first argument suffers the penalty, and the
measured module finds the code already JIT-ed.

Output Mod-1 Mod-2 Mod-3
Writing textual IL files 160 220 161
Writing IL, then invokingilasm 631 691 610
Writing PE files usingPEAPI 160 241 150

Figure C.2: Time to compile each of three large modules, milli-seconds

Limitations

CurrentlyPEAPI does not create program data base (PDB) files for the debugger. Since
the format of thePDB files is not public it does not seem possible to create such files
with an open-source managed component. There are several other possibilities that are
being considered.PEAPI could use the unmanaged interface to create debug files, or it
could use the public debug format used by the “Rotor” shared sourceCLI implementa-
tion. It is hoped to resolve this issue before the next release ofPEAPI.

C.2 PEAPI Structure

The file format ofPE-files is based around a set of tables. It is not necessary to under-
stand the format of these files in order to usePEAPI. There are at least two excellent
references for those who choose to explore under the hood of the file format, and the
source code ofPEAPI is helpful also. Rather, it is the goal of this Section to describe
the internal data structures of the component, in order to understand how theAPI is
used.

As various calls to the methods ofPEAPI are made, the component builds a tree-
like representation of the module. Classes, fields, methods and code are added to the
internal representation by the method calls. Finally, when all the features of the module

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.2. PEAPISTRUCTURE iii

have been added a call to theWritePEFile method builds the tables and writes the
binary file to the output stream.

The containment hierarchy of entities in an assembly is roughly thus —

* EachPE-file contains exactly oneModule

* PE-files that declare anAssembly contain an assembly manifest

* Modules define zero or moreClassDef s

* ClassDef s containFieldDef s andMethodDef s

* MethodDef s contain aCILInstructions buffer

* CILInstructions referenceMethodDef s andMethodRef s

* CILInstructions referenceFieldDef s andFieldRef s

* MethodRef s andFieldRef s are contained inClassRef s

* ClassRef s belong toAssemblyRef s andModuleRef s

It is the task ofPEAPI to allow for the definition of each of these kinds of entity, and
their association with their enclosing container.

Assemblies and Modules

The root of the tree-like structure constructed byPEAPI is an object ofPEFile type.
This object contains a module definition, and optionally defines an assembly also. Files
that define an assembly contain an assembly manifest. This root object ofPEFile class
is the object on which the final call ofWritePEFile is made.

All name resolution for classes is based on a particularResolutionScope. Reso-
lution scope is represented by an abstract class. There are four concrete classes that
derive from this class. The relationship of these types is shown in Figure C.3. In all

Resolution-
Scope

Assembly

Module

AssemblyRef

ModuleRef

Figure C.3: Class hierarchy for theresolution scope descriptors

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
iv APPENDIX C. USING PEAPI TO WRITE PE FILES

of these class hierarchy diagrams black rectangles denote abstract classes. Extensible
classes are shown unshaded, while sealed classes are shown lightly shaded.

When a particular file is compiled, names that are resolved in the scope of the
definitions of that file have aModule object representing their resolution scope. This
corresponds to the default case in textual-CIL in which dotted names are unqualified —

NameSpaceName.ClassName

Names that are resolved with respect to some external assembly have anAssemblyRef
object to represent their resolution scope. This corresponds to the use of names in
textual-CIL that are qualified by an assembly name —

[SomeAssembly]NameSpaceName.ClassName

Names that are resolved with respect to another module in the same assembly as the
current module have aModuleRef object to represent their resolution scope. This cor-
responds to the use of names in textual-CIL that are qualified by a module reference —

[.module FileName]NameSpaceName.ClassName

The call interface for the creation of all of these objects is described in Section C.3.

Type Descriptors

All types in PEAPI are represented in the tree by objects that derive from the ab-
stract classPEAPI.Type. The rich hierarchy of derived classes is shown in Figure C.4.
Figure C.4 is actually slightly simplified by the omission of theMethPtrType andCus-

Type

Class

PtrType

Array

PrimitiveType

ManagedPtr

Unmanaged-

ZeroBased-

Ptr

Array

BoundArray

SystemClass

ClassDef

ClassRef

Figure C.4: Class hierarchy for thePEAPI Type descriptors

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.2. PEAPISTRUCTURE v

tomModifiedType classes.
The classClass is another abstract type, with two directly derived extensions.

ClassDef s are always associated with the currentPEFile object or, in the case of a
nested classes, with anotherClassDef within which the class is nested.ClassRef s are
associated with anAssemblyRef or with a ModuleRef. System types are a specializa-
tion of theClassRef class, and represent the built-in types from theSystem namespace
of the “mscorlib” assembly. This particular class is not exposed to theAPI.

Primitive types have built-in type descriptors that are created byPEAPI, and are
named static constant values of the type.

Pointer types occur as objects derived from the abstractPtrType class. OnlyMan-
agedPtr types are used in verifiable code.

Finally, two concrete classes are derived from the abstractArray class. Zero-based
arrays are the array types that are built-in to the framework, while bound arrays are
managed by theSystem.Array facilities of mscorlib. When array descriptor objects are
created, the type descriptor object for the element type is specified.

Members and Features

Class objects haveMember andFeature objects associated with them. The class hi-
erarchy for the various descriptor classes is shown in Figure C.5. Members include

MethodDef

MethodRef

FieldDef

FieldRef

Field

Method

Member

Property

Feature

Event

Figure C.5: Class hierarchy for theMembers andFeatures of classes

methods and fields.MethodDef objects are associated with class definitions, and in
the case of managedCIL methods, will have instruction buffers added to them after
their creation.MethodRef objects are associated with class references and have var-
ious associated attributes, but no code.FieldDef andFieldRef objects are associated
with class definitions and class references respectively.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
vi APPENDIX C. USING PEAPI TO WRITE PE FILES

There are two kinds ofFeature, both of which are associated with class definitions
only. ClassDef s may have event or property objects added to them. These features
associate particular specified methods with the semantics of the feature. In the case of
Event features, the conventional methods are theadd * andremove * methods. For
Property features, the methods include the optional “getter” and “setter” methods.

Method structure

Methods have a variety of attributes associated with them. InPEAPI these attributes
may be attached at the time of object creation, or may be attached to the method de-
scriptorsafter the descriptor has been created.

The relevant attributes are —

* CallConv attributes, such asInstance andVararg

* ImplAttr attributes, such asIL andSynchronised

* MethAttr attributes, including the accessibility attributes such asPrivate and
Public, and other semantic markers such asStatic, Virtual andFinal

All Method objects have associated call conventions. However the implementation
attributes and method attributes only apply toMethodDef s.

When aMethod object is created and added to aClass, a minimum of three ar-
guments need to be supplied to the constructor call. These are the method name, the
return type descriptor, and formal argument information. In the case ofMethodRef s the
formal argument information is simply an array ofType descriptors. ForMethodDef s,
by contrast, an array of objects ofParam class is passed. Each element of the formal
parameter descriptor array specifies the argument type, as is the case forMethodRef
creation. However, in theMethodDef case thename of the formal argument, and some
parameter attribute information needs to be included as well.

Representing the Code

If a MethodDef has theIL attribute in its implementation attributes, and does not have
theAbstract attribute in its method attributes, then it requires a code buffer into which
instructions may be placed. The code buffer is of the typeCILInstructions. Instruc-
tions, labels and other markers are added to this buffer in sequence. The type that
represents instructions internally in the buffer is not exposed to theAPI.

The instruction enumerations

Instructions are separated into a small number of categories, according to the argu-
ment types that the insertion method requires. Each instruction category defines an
enumeration for the permitted instruction codes.

Instructions without argument take their operands from the abstract machine eval-
uation stack. The instructions are defined by theOp enumeration. This includes by far
the largest number of instruction op-codes.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.2. PEAPISTRUCTURE vii

Instructions that take a label as argument take an operation code from theBranchOp
enumeration, and include all of the branch operations. The label argument is supplied
as an object of the classCILLabel. Example instructions are “beq”, “ brfalse” and
“leave”.

Instructions that load and store fields and field addresses take an operation code
from theFieldOp enumeration. They take a second argument that is an object ofField
class. Referring to Figure C.5, it may be seen that this object may be either aFieldDef
or aFieldRef.

Instructions that take an integer argument take an operation code from theIntOp
enumeration. These instructions include constant loading, and the loading and storing
of formal arguments and locals. Example instructions are “ldc.i4”, “ ldarg” and
“stloc”.

Instructions that take aMethod object as operand take their operation code from the
MethodOp enumeration. The operand may be either a method reference or definition.
These instructions include the “call”, “ ldftn” and “newobj” instructions.

Instructions that take aType object as argument take an opcode from theTypeOp
enumeration. Examples of such instructions include “castclass”, and “newarr”.

Finally, there are three special cases that do not fit into any of the previous cate-
gories. These are the instructions that load constants oflong, float anddouble type.
The instructions are “ldc.i8”, “ ldc.r4” and “ldc.r8”. Each takes an argument of
the specified type.

Labels and branches

Labels in the code buffer are represented by objects of theCILLabel class. The creation
of these labels, and the placing of the labels in the buffer are separate operations. In
the case of a forward branch the label object must be constructed first, and then passed
as the argument of aBranchOp instruction. At some later stage the label will be added
to the buffer to mark the target position.

For backward jumps the order is reversed. The newly constructed label object will
be placed in the buffer immediately following construction. The branch instructions
that reference the label will be added to the buffer at some later point.

In the CLR all branch instructions appear in two versions. One, with a short
displacement, may be used for branch offsets that fit in a single byte. The long-
displacement version takes up more space in the file. When textual-CIL is emitted, it is
not easily possible to determine whether the short or long version is required.PEAPI
solves this problem by defining only the long-displacement versions in the enumera-
tion. In the implementation it is always the short-displacement version that is initially
added to the buffer. During semantic processingPEAPI computes the actual displace-
ments. If a displacement is too large to fit in a single byte the short branch instruction
is replaced by the corresponding long version, and all displacements are recomputed.

Structured exception blocks

There are two mechanisms withinPEAPI to define structured exception handling blocks.
The start and end of the blocks may be marked in the instructions buffers. This is proba-

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
viii APPENDIX C. USING PEAPI TO WRITE PE FILES

bly the simpler mechanism to use, and corresponds to the preferred method of marking
such blocks in textual-CIL. The alternative mechanism is to mark the beginning and
ending of each block with ordinary labels, and declare the boundaries to each region
by passing the boundary labels as arguments to the block constructors.

Becausetry andcatch blocks may be nested,PEAPI keeps a stack of blocks that
have been opened but not yet closed. When the end of a block is marked, the limits
of the block’s extent are finally known, and the block is popped from the stack. If the
completed block is declared to be atry block a reference to the popped block is returned
to the called, so that later exception handling blocks may be logically associated with
the code region contained within the block.

C.3 The Call Interface

This Section discusses the call interface ofPEAPI. Many of the key methods of theAPI
are discussed here, but coverage is not complete. In order to use the interface additional
documentation is needed. This additional information may be found in the source of
the component, or in the hypertext documentation derived from it. The relevant html
files are part of the distribution package.

PEAPI defines a public interface that allows objects of the various classes to be
created and associated with each other. For the most part the object creation methods
return references to the newly created objects. This facilitates a style of use where the
client of theAPI takes responsibility for retaining some state information. An example
may make the pattern clearer.

When aMethodDef has an instruction buffer added, it is necessary for the client to
retain a reference to the buffer. There is a method tocreate the buffer (ofCILInstruc-
tions class) and attach it to the specifiedMethodDef. However, there is no “get Buffer”
method toretrieve the buffer associated with a particularMethodDef. In practice clients
hold a reference to the buffer, and dispatch their instruction-insertion methods on this
reference.

Creating a Root Object

The root object of the tree thatPEAPI builds is ofPEFile class. There are three separate
constructor methods that create these objects —

public PEFile(string name, bool isDLL, bool hasAssembly)

This constructor creates the output file for the compilation, and initializes the data. In
particular, an object ofModule class is created as the default resolution scope for the
module. The name parameter specifies both the module name and the filename, with
the first Boolean argument specifying if the file will have extension “DLL” or “ EXE”.
The final Boolean specifies if the output file will define an assembly, and therefore
contain an assembly manifest. By default, this constructor creates a file in the current
working directory.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.3. THE CALL INTERFACE ix

An alternative constructor has an fourth argument of string type that specifies the
directory in which thePE-file will be created. If the final argument is the empty string
the output file will be created in the current directory.

The final constructor has an alternative fourth argument supplies a reference to an
output stream. This constructor does not create a file.

Most of the operations that add children to the root object are dispatched directly
on thePEFile object. However, if theModule object is needed then it may be retrieved
by the call —

public Module GetThisModule()

Similarly, in the event that the file defines anAssembly object, this may be retrieved by
the call —

public Assembly GetThisAssembly()

Declaring Resolution Scopes

The creation of aPEFile object implicitly creates aModule resolution scope, and per-
haps anAssembly resolution scope as well. Other resolution scopes need to be created
in order to be able to refer to external modules or assemblies.

External assemblies are attached to the root object by calls to the following instance
method —

public AssemblyRef AddExternAssembly(string asmName)

The argument specifies the name of the external assembly.PEAPI always creates an
assembly reference for the system assembly “mscorlib”. The AddExternAssembly
method checks for this particular string, so that explicit calls to get the “mscorlib”
assembly do not create duplicate descriptors.

External modules are attached to the root object by calls to the following instance
method —

public ModuleRef AddExternModule(string name)

The argument specifies the name of the external module.
If a module defines an assembly, and adds one or more external modules, then

there is the possibility of “exporting” any public classes that are defined in the external
modules. TheAddExternClass method called on aModuleRef object adds a class, and
adds the newClassRef to the export table of the current assembly.

Note that the client code calling these object creation methods must retain the object
references that are returned. There are no exposed “lookup” methods to extract such
references from the root object.

Creating ClassDefs and ClassRefs

Creating class definitions

New class descriptors are created by theAddClass methods. Calls that are dispatched
on the root object, or on other class definition objects createClassDef objects.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
x APPENDIX C. USING PEAPI TO WRITE PE FILES

The most frequently used methods to createClassDef s are called on the root ob-
ject. These create class definition descriptors that are attached to the currentModule
resolution scope. There are three such methods —

public ClassDef AddClass(TypeAttr at, string ns, string nm)

The arguments to this method specify the type attributes, the namespace name and the
class name1. Classes defined by this method will implicitly derive fromSystem.Object.

The second of the methods has the signature —

public ClassDef AddValueClass(TypeAttr at, string ns, string nm)

The arguments to this method specify the type attributes, the namespace name and
the class name. In this case the constructed method will implicitly derive fromSys-
tem.ValueType.

The third method for creating an un-nested class definition takes a fourth argument
of Class type. The actual argument is the explicitClassRef or ClassDef that will be
the super-type of the class being defined.

The type-attribute value is a enumerated type that is partly exclusive values and
partly bit-values that may be combined by addition. The attributes declare the visibilty
of the class. They also declare whether the class is abstract, sealed, and so on, and the
layout kind.

If class creation methods are called on existingClassDef objects then nested classes
are defined. The semantics of the creation methods otherwise mirror those that are
called on the root object.

All of the methods that createClassDef s provide for an initial value for the type
attributes to be specified. There are a number of other methods that allow additional
information to be added to an existingClassDef object. Methods allow the attributes
to be modified, or for layout information to be supplied in the case of explicit layout
being specified.

It will be noticed that a single super-type is able to be nominated at the time that a
ClassDef object is created. If such a class implements interfaces, then these need to be
added later, using the following method —

public void AddImplementedInterface(Class iClass)

The argument specifies the interface that theClassDef is to implement. The actual
parameter may be either aClassRef or aClassDef, but for semantic correctness must
correspond to an interface class.

ClassDef descriptors for nested classes are defined in the same way as other class
definitions, except that theAddClass methods are dispatched on theClassDef object of
the outer, enclosing class.

1It is worth recalling that as far as theCLI is concerned, classes have “dotted names”. The separation
of the name into a possibly dotted namespace name and a simple class identifier is a matter of convenience
only.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.3. THE CALL INTERFACE xi

Creating class references

Class references may be attached toAssemblyRef andModuleRef objects. The meth-
ods to create theseClassRef objects are similar to those that createClassDef objects,
except that neither type attribute nor a super-type may be specified.

If a class reference from another module is exported from a module that defines
an assembly, then it is possible to export nested classes as well. An exported class
reference is created by a call of theAddExternClass method dispatched on an external
ModuleRef.

cRef = modRef.AddExternClass(att,nsp,"Outer",fil,false);

A subsequent call ofAddNestedClass will declare a nested class from the same module,
and add it to the export table of the current assembly.

nRef = cRef.AddNestedClass(att,"Inner");

Creating descriptors for value classes

In order to create descriptors for value classes it is usual to call one of theAddValue-
Class methods, rather thanAddClass. This is because the super-type is set at the time
of descriptor creation, and is not otherwise accessible from theAPI. Of course, it is
also possible to use theAddClass method that takes an explicit super class, and pass in
the descriptor forSystem.ValueType.

Creating descriptors for other Types

As well as the types that are declared asCLR classes, there are a number of other types
that need descriptors. Figure C.4 on page iv represents the various possibilties.

Firstly, if the descriptor of a primitive type is needed no method call is necessary.
All of the primitive types have their descriptors exposed as static constants of thePrim-
itiveType class.

Managed and unmanaged pointer types are created by calls to the relevant construc-
tor method. The managed case constructor has the following signature —

public ManagedPointer(Type baseType)

WherebaseType is the bound type of the pointer.
This constructor is frequently called, even in verifiable code. For example, theCLR

type of a reference-mode formal parameter of typeargTp will be “managed pointer to
typeargTp”, often denoted as “argTp&”. The type descriptor of this type would need
to be constructed as part of the generation of formal argument type-arrays. If this is
the type of then-th argument of a method signature, then the formal argument type
descriptor would be constructed by a call such as —

arg[n] = new ManagedPointer(argTD);

whereargTD is the type descriptor of the typeargTp.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xii APPENDIX C. USING PEAPI TO WRITE PE FILES

Array type descriptors are constructed by calls to the appropriate constructor. For
example, the descriptor for a zero-based array of theint type would be returned by the
call —

new ZeroBasedArray(PrimitiveType.Int32)

Bound arrays are, as expected, more complicated. If all of the lower array bounds of a
multi-dimensional array are zero the following constructor method may be used —

public BoundArray(Type elTp, int dims, int[] size)

whereelTp is the type descriptor of the (final) element type,dims is the number of
dimensions, andsize is the array of lengths of each dimension. Note that not all sizes
need be specified, in the event that an array is desired that is ragged in the final dimen-
sions. For example, an array declared inC# as —

new int[4,3,2]

would require a call to theBoundArray constructor with arguments —

new BoundArray(PrimitiveType.Int32, 3, lenA)

wherelenA is the arrayint[] = f4,3,2g. The bound array descriptor defines a three
dimensional array of size4� 3� 2. On the other hand, the array declared inC# as —

new int[4,3,]

would require a call to theBoundArray constructor with arguments —

new BoundArray(PrimitiveType.Int32, 3, lenA)

where lenA is the arrayint[] = f4,3g. In this case the bound array descriptor defines
a two dimensional array of size4� 3 with elements of typeint[]. This is a “ragged”
array, since the lengths in the final dimension may be different for each of the twelve
rank-2 elements.

There is a corresponding constructor that takes two integer arrays, specifying lower
and upper bounds in each dimension rather than size —

public BoundArray(Type elTp, int dims, int[] loIx, int[] hiIx)

Adding fields

Fields are declared by means of a number ofAddField methods. Fields are normally
added to classes, but may also be declared outside of classes, as static fields of modules.

Fields are declared associated with a particular structure by calling anAddField
method on the containing object. Calls onClassDef or PEFile objects createFieldDef
objects. Calls onClassRef or ModuleRef objects createFieldRef objects.

Calls that createFieldDef objects may either supply a string with the name of the
field and the type descriptor, or may supply a field attribute value from theFieldAttr

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.3. THE CALL INTERFACE xiii

enumeration as well.FieldDef objects may have their initial attribute values modified
by use of theAddFieldAttr method.

Calls that createFieldRef objects may supply the name and type of the field only.
A typical method, that creates a newFieldRef and adds it to an existingClassRef has
the signature —

public FieldRef AddField(string name, Type fdTp)

Using system classes

We refer to classes belonging to theSystem namespace of the “mscorlib” assembly as
System Classes. Classes corresponding to the primitive types are treated specially by
PEAPI, and are represented internally by objects that belong to a subclass ofClassRef.

The reason for this is thatPEAPI constructs an implicit import of the “mscorlib”
assembly, and constructs class definitions for the built-in types. Calls to add new class
references to the system namespace need to be treated differently, to eliminate the
possibility of duplicate table entries.

Adding features to ClassDefs

ClassDef s may haveFeatures associated with them. There are two concrete subclasses
of the abstract feature class:Event andProperty.

Figure C.6 shows the correspondence between the definition of an event in textual-
CIL and thePEAPI calls that are made to generate the same effect usingPEAPI. In this
FigurepeFl is the root object of the compilation, andEt is the name of the event class,
assumed to be defined elsewhere. On the right-hand-sideEtD is the type descriptor for
theEt type, andV is the type descriptorPrimitiveType.Void. The details of the code for
the add and remove methods have been elided on both sides of the Figure.

On the right of the Figure, there are a number of local variables that hold refer-
ences to the variousPEAPI objects between their definitions and uses. ThusfD is the
FieldDef of the private backing fieldf, aD andrD are theMethodDef descriptors of the
add and remove methods, and so on. In the interests of simplicity (and column width)
it has been assumed that the class definition in the Figure is not within a.namespace
declaration. This is the origin of the empty string as the first argument in theAddClass
call.

The definition ofProperty features is similar, withPEAPI methods that add the
“getter”, “setter” and “other” methods to the property, analogous to theAddAddon
method ofEvent features.

Creating MethodDefs and MethodRefs

Method definitions

MethodDefs are created by invokingAddMethod on an object ofClassDef type, or
directly on the rootPEFile object. In the first case the method is defined as belonging
to the specified class, while in the second case the method will belong to the current
module, but be outside of any class definition.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xiv APPENDIX C. USING PEAPI TO WRITE PE FILES

ClassDef cD;

FieldDef fD;

MethodDef aD, rD;

Event eD;

.class public Cls f cD = peFl.AddClass("","Cls");

... ...

.field private class Et ’f’ fD = cD.AddField("f",EtD);

... ...

// define arg array for add/remove
Param[] arr = new Param[1];

arr[0] = new Param(0,"",EtD);

string aS = "add f";

.method public void // create ‘add’ MethodDef in ClassDef
add f(class Et)f aD = clsD.AddMethod(aS,V,arr);

... ...

g // end method
string rS = "remove f";

.method public void // create ‘remove’ MethodDef in Class
remove f(class Et)f rD = clsD.AddMethod(rS,V,arr);

... ...

g // end method
// create Event property

.event Et ’f’ f eD = cD.AddEvent("f",EtD);

.addon instance void // attach Addon method to Event
cls::add f(class Et) eD.AddAddon(aD);

.removeon instance void // attach RemoveOn method to Event
cls::remove f(class Et) eD.AddRemoveOn(rD);

g // end event
g // end class

Figure C.6: Defining an event in textual-CIL (left) andPEAPI (right)

There is an option to either specify method attributes at the time of creation, or
to add them later. Creating a method with the default attributes requires only three
arguments —

public MethodDef AddMethod(string name, Type retType, Param[] pars)

The version with attributes allows the method attributes, belonging to theMethAttr
enumeration, and implementation attributes, belonging to theImplAttr enumeration, to
be specified.

As noted earlier,Param objects specify the name type and mode of the parameters.
These are usually created by use of the constructor —

public Param(ParamAttr mode, string parName, Type parType)

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.3. THE CALL INTERFACE xv

The parameter attribute enumeration specifiesDefault, In, Out, Opt, where any combi-
nation of the last three may be specified.

Method references

MethodRefs are created by invokingAddMethod on an object ofClassRef type, or on
an object ofModuleRef class. In the first case the method is defined as belonging to
the specified class, while in the second case the method will belong to the specified
module, but be outside of any class definition.

The signature of theAddMethod method is the same in each case —

public MethodRef AddMethod(string name, Type retType, Type[] pars)

Note carefully that in this case only the parameter types are specified, so the names and
attributes of the parameters are unspecified.

For all methods, the calling conventions may be specified by a call to a method
AddCallConv. However, in the case of “vararg” methods this is only part of the story.
As well as specifying that the method has theVararg call convention it is necessary to
specifywhich arguments are optional. In the case ofMethodDef s, this is specified by
theOpt value in the parameter mode declaration. However, forMethodRef s there is no
mode information associated with the parameters, so other means are required. In this
case a separate method is required, in which the types of the mandatory and optional
formal parameters are separately listed —

public MethodRef AddVarArgMethod
(string name, Type retType, Type[] pars, Type[] optPars)

Setting attributes

Attributes of methods may be added after theMethod object has been created. There
are three classes of attributes for methods, defined by separate enumerations in the
interface.

Method attributes, belonging to theMethAttr enumeration specify the accessibility
of the method, that is whether the method is private, public, family and so on. This
attribute also specifies if the method is static, final or abstract, the overriding behaviour
of the method, and whether the method name has special significance to the runtime.
TheMethAttr attributes may only be added toMethodDef s.

Implementation attributes, belonging to theImplAttr enumeration specify whether
the code is managed or unmanged, and if the method is synchronised. It is also possible
to mark a method asnot available for inlining. TheImplAttr attributes may only be
added toMethodDef s.

Call convention attributes, take values defined in theCallConv enumeration. The
attribute value can specify any of a wide variety of native call conventions, as well
as theVararg case discussed earlier. This attribute is also used to specify that the
method is anInstance method (and hence expects to be passed athis reference), or is an
explicit instance method in which thethis reference appears as “arg0” of a conventional
argument list.CallConv attributes may be added to anyMethod.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xvi APPENDIX C. USING PEAPI TO WRITE PE FILES

Adding code to MethodDefs

Code is added toMethodDef s by attaching a code-buffer to the descriptor. This is done
by the calling the following method —

public CILInstructions CreateCodeBuffer()

on aMethodDef object.
As noted previously, the method returns a reference to the code buffer, so that the

reference may be the receiver of the various calls that add instructions. The buffer is
implemented as an expansible array, so that the buffer length will adjust as required to
hold additional instructions.

Instructions are added by the various methods discussed in the Section “The in-
struction enumerations” on page vi. Except for the branch instructions the instruction
opcode specifed in the method call will be precisely the instruction placed in the buffer.
In the case of the integer instructions, for example, the short or long form of the instruc-
tion must be precisely specified. In the case of the branch instructions, the short-branch
form of the instruction is always placed in the buffer initially, and is changed to the
long-branch form later, if necessary.

Saying what you mean

In the case of the integer instructions there is an alternative interface that off-loads
some processing from the caller. Some users may find these facilities convenient. All
of the following methods dispatch on an object ofCILInstructions type.

The method —
public void PushInt(int i)

loads the specified integer onto the evaluation stack. The method will choose whichever
legal instruction is shortest, whether it be one of the single-byte “ldc.i4.*” opcodes,
the two-byte “ldc.i4.s”, or the five-byte “ldc.i4” instruction.

Similar methods that automatically choose the best integer instruction areLoadLo-
cal, LoadLocalAdr, StoreLocal, LoadArg, LoadArgAdr, andStoreArg.

Branches and labels

Label objects, of classCILLabel are allocated by a call to the method —

public CILLabel NewLabel()

This method returns a reference to the unique label, so that may be used in subsequent
branch instructions. The label is placed into the code buffer by a call to the method —

public void CodeLabel(CILLabel lab)

The label appears in the code buffer as a marker only, and does not take up any code
space in the subsequentPE-file.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.3. THE CALL INTERFACE xvii

In the event that a label needs to be allocated and then immediately placed in the
buffer at the current position, the two calls ofNewLabel andCodeLabel may be com-
bined into a single call of the method —

public CILLabel NewCodedLabel()

Branch instructions are inserted into the table by means of the following method —

public void Branch(BranchOp inst, CILLabel lab)

As mentioned above, the declaration of theBranchOp enumeration inPEAPI only
defines the names of the long-displacement branch instructions. Internally, the com-
ponent always places the corresponding short-displacement instruction in thePE-file,
unless the displacement is computed as being outside the single-byte range.

Switch statements

The implementation of switch statements require anarray of label objects to be allo-
cated, one for each separate branch of the switch, including a separate label for the
default branch. The “switch” of CIL takes an array of label objects as argument, in a
call to the method —

public void Switch(CILLabel[] labs)

The labs array has one element percase in the switch. Thus, in general, the labels of
the allocated array may appear in multiple positions in thelabs array.

Consider the sample switch statement in Figure C.7. Encoding this statement will

switch (exp) f
case 3: case 6: case 9: Foo(); break;
case 4: case 7: case 10: Bar(); break;
case 5: case 8: case 11: Fzz(); break;
default : Bzz();

}

Figure C.7: Example switch statement

require allocation of an array of four labels for the four branches, plus another label to
be used as the destination of the break statements. The array of labels that is passed
to the switch instruction, on the other hand, will have nine elements. This follows
from the fact that the ordinal of the smallest case is three, and of the largest case is
eleven. It is the responsibility of thePEAPI client to construct this array, presumably
by traversing theAST structure representing the switch statement.

Figure C.8 shows the textual-CIL on the left, and the correspondingPEAPI method
calls on the right. In the Figure it has been assumed that the array of four labels is
namedlab, and the index-zero element is used as the default label. It is also assumed

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xviii APPENDIX C. USING PEAPI TO WRITE PE FILES

ldloc.1 // exp value buf.LoadLocal(1);

ldc.i4.3 // offset buf.PushInt(3);

sub buf.Instr(Op.Sub);

switch (buf.Switch(table);

lb01, lb02, lb03,

lb01, lb02, lb03,

lb01, lb02, lb03)

br lb04 // goto default
lb01: buf.CodeLabel(lab[1]);

call Cls::Foo() buf.MethInstr(MethOp.Call, fooD);

br lb05 // break buf.Branch(BranchOp.Br, xLab);

lb02: buf.CodeLabel(lab[2]);

call Cls::Bar() buf.MethInstr(MethOp.Call, barD);

br lb05 // break buf.Branch(BranchOp.Br, xLab);

lb03: buf.CodeLabel(lab[3]);

call Cls::Fzz() buf.MethInstr(MethOp.Call, fzzD);

br lb05 // break buf.Branch(BranchOp.Br, xLab);

lb04: // default buf.CodeLabel(lab[0]);

call Cls::Bzz() buf.MethInstr(MethOp.Call, bzzD);

lb05: // exit label buf.CodeLabel(xLab);

Figure C.8: Example switch statement in textual-CIL (left) andPEAPI calls (right)

that the table of labels is computed into the arraytable. Note in both cases that the table
dispatch indexes from zero, so the case value of the first case, three in the example, is
subtracted from the selector expressionexp before the dispatch.

Structured Exception Handling

Since structured exception handling blocks may be textually nested,PEAPI maintains
a stack of currently open exception handling blocks. At the time that a block is entered
it is not necessary to specify what kind of block it is to become. Markers for the start
of blocks are pushed on the stack by a call to a method —

public void StartBlock()

The receiver for this call is the current code buffer object.
When the end of a block is reached in the code buffer, the current position is

marked, and a handler block object is created. At this stage it is necessary to spec-
ify what kind of block is to be created. The methods to mark the block-ends are named
End*Block. These methods take different arguments, depending on the block type.

The end of a try block is marked by a call to the method —

public TryBlock EndTryBlock()

This method returns a reference to the try-block object associated with the created
handler-block object.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.4. GPCP’SPEUTIL TREE-WALKER xix

The end of a catch block is marked by a call to the method —

public void EndCatchBlock(Class exc, TryBlock blk)

The first argument is the class descriptor for the type that the block is intended to catch.
Of course this will normally represent a sub-type ofSystem.Exception. The second
argument is the try-block with which this catch is to be associated. This reference
will have been returned by a previous call toEndTryBlock. Fault blocks have similar
behaviour to catch blocks, except that no filtering on exception type is performed. In
this case only the associated try-block is specified —

public void EndFaultBlock(TryBlock blk)

The end of a finally block is marked by a call to the method —

public void EndFinallyBlock(TryBlock blk)

In this case the only argument is the try-block with which the finally is to be associated.
The end of a filter block is marked by a call to the method —

public void EndFilterBlock(CILLabel flt, TryBlock blk)

The code labelflt is the starting label of the predicate code that controls entry to the
handler block. As usual, the associated try-block needs to be specified. The predicate
code that starts at labelflt is responsible for popping the exception object from the
evaluation stack, and computing the Boolean value. The predicate code must always
end with the “endfilter” instruction, with the evaluation stack empty except for the
Boolean filter result value. Of course, as usual, the filter block itself must end with a
“leave” instruction.

C.4 GPCP’s PeUtil Tree-walker

There are, in effect, four backends forgpcp. The compiler can produce either textual
CIL or PE-files for the.NET platform. It can also produce either textualJasmin assem-
bler or directly create class files for theJVM platform. The choice of output format is
determined from command-line options.

The functionality of output file creation is factored between theTree-walker mod-
ules and theFile-utility modules. The compiler driver code creates a target-specific
tree-walker object depending on the command line options, and callsEmit() on this
object. The target-specific tree-walker then creates a output format specificfile-emitter
object depending on other command line options. The output behaviour is thus spe-
cialized by dispatching virtual methods on the target emitter object, which in turn dis-
patches virtual methods on the file format object. Figure C.9 shows the class hierarchy
for the tree-walker modules.

In these class hierarchy diagrams, abstract classes are shown in black, while the
shaded boxes correspond to sealed classes.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xx APPENDIX C. USING PEAPI TO WRITE PE FILES

ClassMaker.
ClassEmitter

JavaBase.

MsilBase.
ClassEmitter

ClassEmitter

MsilMaker.
MsilEmitter

JavaMaker.

JavaMaker.

JavaMaker.

JavaMaker.

JavaWorklist

JavaRecEmit

JavaModEmit

JavaEmitter

JVM target

.NET target

Figure C.9: Class hierarchy for theTree-walker classes

The tree-walker for the.NET target is of classMsilMaker.MsilEmitter. Only one
object of this class is created for each run of the compiler. The situation with theJVM
target is rather more complicated. An object of the classJavaMaker.JavaWorklist is
created for each run of the compiler, once the target is known. However, separate
objects of classJavaMaker.JavaModEmitter or JavaMaker.JavaRecEmitter are created
for each of the multiple output files arising from each input source file. Our concern in
this appendix is only with the.NET platform, of course.

The same tree-walker (in fileMsilMaker.cp) traverses theAST to produce either
CIL or aPE-file as output. All actual fileIO is performed by one of two utility mod-
ulesIlasmUtil andPeUtil. The moduleMsilUtil defines an abstract classMsilFile with
a large number of abstract methods. The abstract class has two concrete extensions
IlasmFile (in moduleIlasmUtil) andPeFile (in modulePeUtil). The compiler creates a
file-emitter object of one or other concrete class, depending on the command line op-
tions. All of the calls to the abstract methods of theMsilFile class are thus dispatched to
the code that emits the appropriate output file. Figure C.10 shows this class hierarchy.

IlasmUtil.
IlasmFile

PeUtil.
PeFile

MsilUtil.
MsilFile

Figure C.10: Class hierarchy for theFile-emitter classes

The methods of classIlasmFile emit textualCIL to a file. The corresponding meth-
ods of classPeFile call methods ofPEAPI.

A consequence of using the same tree-walker for bothCIL andPE-files is that the
order in which nodes are visited is necessarily the same for each case. Since theCIL
emitter writes to the output file “on the fly” as the methods are called, this is the more

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.4. GPCP’SPEUTIL TREE-WALKER xxi

constrained version. The order in which objects are created by calls toPEAPI is less
constrained, since no output is actually produced until theWritePEFile() method of
classPEAPI.PEFile is called.

There are a small number of other types that mirror the relationship between the
various*File types. For example, there is an abstractLabel class that is sometimes
held in objects of the programAST. In modulePeUtil a concrete extensionPeLab is
defined. This new class holds a single field of typePEAPI.CILLabel. In the module
IlasmUtil the corresponding concrete typeILabel has a single field of integer type. This
integer determines the numeric suffix of the textualCIL labels – “lbNNN”.

PeFile Emitter State

The emitter object carries state information about the traversal.
Some nodes of the programAST need to hold references toPEAPI objects. For

example, when the first reference to an imported class is made, a call to one of the
AddClass methods ofPEAPI creates a class descriptor, and associates it with the ap-
propriateAssemblyRef object. TheAddClass method returns a reference to the newly
createdClassRef object. Other references to the same class must use the same refer-
ence, either as thethis of a call, or as an argument. It is therefore necessary to associate
the returnedPEAPI ClassRef reference with thegpcp’s Type descriptor object in the
AST.

The mechanism for associatingPEAPI object references withgpcp’s AST descrip-
tors is as follows. EveryIdnt descriptor object and everyType descriptor object con-
tains a target extension field “tgXtn”. These fields will be of different types, for dif-
ferent target platforms, and will have different types for different concrete subtypes of
the abstractIdnt andType types. The extension field is declared to be ofObject type
so every use of the field must use a narrowing cast. This design feature is necessary in
order to separate the specifics of each target from the shared type declarations of the
front-endAST.

The target extension fields ofAST nodes holdalmost all the state that is needed
to call thePEAPI methods. However, there are a small number ofPE-file entities
that have no correspondingAST descriptor. References to runtime system (RTS) helper
routines are of this kind. There are also some shared descriptors that are used so univer-
sally that it makes sense to hold them locally, rather than having to repeatedly navigate
through theAST objects.

The state information held in the emitter object has fields that are inherited from
the abstractMsilFile parent class, and other fields that are specific to thePeFile class.

Inherited fields

Inherited fields hold the name of the module under compilation, and the name of the
output file. There is also a field ofProcInfo class that holds information about the
current method being emitted.

TheProcInfo class contains method state that is used in both textualCIL andPE-file
formats. It is here that the current stack depth is tracked, and the state of the temporary

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xxii APPENDIX C. USING PEAPI TO WRITE PE FILES

variable allocator is maintained2.

PE-specific fields

The PE-file-specific fields of the emitter state, and their purpose is shown in Fig-
ure C.11. As described earlier, the elements of the state exist for two main purposes.

Field Type Purpose
peFl PEAPI.PEFile Structure holds file information, and the

AssemblyDef for this assembly.
clsS PEAPI.ClassDef Dummy static class for this assembly.
clsD PEAPI.ClassDef Descriptor of class currently being emitted.
pePI PeUtil.PProcInfo PE-file-specific state for the method cur-

rently being emitted.
nmSp System.String Name-string for current namespace.

rts PEAPI.AssemblyRef Reference to theComponent Pascal run-
time system assembly[RTS].

cprts PEAPI.ClassRef Reference to theComponent Pascal run-
time helper class[RTS]CP rts.

progArgs PEAPI.ClassRef Reference to theComponent Pascal pro-
gram argument class[RTS]ProgArgs.

Figure C.11: Components of thePeFile state

There are fields that referencePEAPI objects corresponding to runtime system classes
that have no correspondingAST objects. Secondly, there are objects that refer toPEAPI
descriptors that are used repeatedly. One example is the fieldclsD that holds the
PEAPI.ClassDef object for the output class currently being emitted. Another is the
field that holds a reference to the “dummy static class” to which the static procedures
of theComponent Pascal module are bound. This dummy static class has no concrete
representation in theAST. The existence of this dummy class in thePE-file is an artifact
of the mapping fromComponent Pascal to theCLR.

ThePeUtil.PProcInfo object holds state information for the method definition cur-
rently being emitted. Of course, this field will benil throughout theAST traversal
except while a method definition is being emitted.

The information that needs to be persisted while a method definition is being emit-
ted is shown in Figure C.12. The fieldmthD holds a reference to the currentMethodDef
descriptor. The fieldcode holds a reference to the instruction buffer of the definition.
Note that there is no way of extracting the buffer reference from theClassDef refer-
ence, so it is necessary to hold this reference in the client.

The final field,tryB, holds a reference to the currentPEAPI.TryBlock, if the code
emission sequence is currently in a structured exception handling catch block. These
blocks are held on a stack withinPEAPI, to account for the possibility of nested blocks.

2Recall that all uses of a particular local variable in theCLR must be of the same type. The utility that
allocates temporary local variables therefore needs to track the currently allocated and free local variables,
and theCLR data-types to which they have been bound.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.4. GPCP’SPEUTIL TREE-WALKER xxiii

Field Type Purpose
mthD PEAPI.MethodDef The current method definition.
code PEAPI.CILInstructions Instruction buffer ofmthD.
tryB PEAPI.TryBlock Current try block (ornil).

Figure C.12: Components of thePProcInfo state

Creating Descriptors

Descriptors must be generated by calls toPEAPI methods for all of the assemblies,
classes and methods that need to appear in thePE-file. It is legal to create descriptors
for entities that are not referenced in the file. However, it is bad policy to do so, since
this practice needlessly expands the file size and slows down loading and JIT-ing.

Most compilers will have many descriptors in theirAST representation that are
unreferenced. This is almost inevitable, given the usual mechanisms for loading meta-
data from symbol or header files. There are at least two ways to avoid passing on any
such unnecessary metadata to thePE-file. Firstly, it is possible to mark the usedAST
metadata during the semantic analysis phase of the compilation. Another possibility is
to create thePEAPI descriptors in a demand-driven manner.gpcp adopts the second
approach.

Example – creating descriptors for RTS routines

gpcp emits calls to about 30 different runtime helper routines known to the compiler
(as opposed to being explicitly imported by the source code). These include runtime
routines that convert between theCLR string type andComponent Pascal’s array of
CHAR type. There are four separate routines that concatenate the various combinations
of String and character arrays. There are also routines that generate runtime exception
messages for failedcase (“switch”) andwith (“type-case”) statements.

It would be possible to generatePEAPI.MethodRef descriptors for all of these
methods at initialization time3, but this would insert unneeded metadata in thePE-
file. Thus a demand driven approach is used. The various runtime helpers are accessed
by means of an index value known to the front-end. A call to the methodgetMethod
is passed the index of the required method, and returns the correspondingMethodRef
descriptor.

Generation of a case statement trap4 in textualCIL is shown in Figure C.13. The
call to the runtime system helper method “[RTS]CP rts::caseMesg” is the instruc-
tion of interest here. The tree-walker will make a dispatched call to the abstract method
MsilFile.StaticCall with the index ofcaseMesg as argument. In theIlasmFile override
of this abstract method the index will select the text string shown in the second line of
the code fragment. ThePeFile override of the abstract method is shown in Figure C.14.

3For an explanation of why it is necessary to repeat this initialization for every new output file, see the
sidebox on page xxv.

4In Component Pascal it is a runtime error if no case of acase statement is selected, and there is no
explicit default case defined.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xxiv APPENDIX C. USING PEAPI TO WRITE PE FILES

ldloc.1 // Push index of erroneous case
call string [RTS]CP_rts::caseMesg(int32)
newobj instance void

[mscorlib]System.Exception::.ctor(string)
throw // Throw the exception object

Figure C.13: TextualCIL for case trap generation

The routine simply fetches the required method descriptor by callinggetMethod. It

PROCEDURE (os : PeFile)StaticCall(s : INTEGER);
VAR mth : PEAPI.Method;

BEGIN
mth := os.getMethod(s);
os.pePI.code.MethInst(opc_call, mth);

END StaticCall;

Figure C.14: ThePeFile version ofStaticCall

then passes the descriptor to thePEAPI methodMethInst. This method appends a new
MethodOp instruction to the current code buffer. The demand driven magic is all in the
getMethod routine.

The proceduregetMethod is backed by an array of method descriptors. The array
initially holds nil at each index value. The procedure begins with a simple fetch of
the selected array element. If the fetched array element isnil a case statement selects
code that creates the required method descriptor, and stores it in the array. For all
subsequent references to the same array element the stored value is returned with no
further computation required.

The relevant branch of thecase statement for our example is shown in Figure C.15.
In this case the needed routine has a single argument, so it is necessary to create an
array of PEAPI.Type of length one. The descriptor for the runtime system class is
fetched from thePeFile state, as described in Figure C.11. The new method descriptor
is added to this class with theAddMethod call. The first argument is the string holding
the method name. The second argument is the descriptor of the method return type,
System.String in this case. The final argument is the array of parameter types.

The other branches of thecase statement ingetMethod are similar. As might be
expected, in the real code the creation and initialization of the parameter arrays is
abstracted away into another method, rather than being inline as shown in Figure C.15.

Finally, it should be noted that references to system routines, such as the construc-
tors forSystem.Exception should be created on demand in a similar way.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.4. GPCP’SPEUTIL TREE-WALKER xxv

PROCEDURE (os : PeFile)getMethod(ix : INTEGER) : MethodRef;
(* “os” is the named this *)

VAR tArr : POINTER TO ARRAY OF PEAPI.Type;
...
mth := rHelper[ix]; (* look up descriptor array *)
IF mth = NIL THEN (* must create new MethodRef *)

CASE ix OF
...
| caseMesg :

NEW(tArr, 1); (* allocate length-one array *)
tArr[0] := int32D; (* int32D is TypeRef for int32 *)
mth := os.cprts.AddMethod("caseMesg",strgD,tArr)

... (* strgD is TypeRef for String *)
END; (* case *)

END; (* if *)
RETURN mth;

END getMethod;

Figure C.15: Demand creation of RTS method descriptor

Avoid this Nasty Gotcha!
When the first version of thePEAPI-based emitter forgpcp was written the code

fell into a plausible but nasty trap.gpcp accepts any number of source file names
on the command line, compiling each in turn. It seemed a plausible design decision
to persist references to the runtime system method and class descriptors between
files. The idea was to not have to repeatedly callAddClass andAddMethod for
the same classes and methods for each source file compilation. Unfortunately this
plausible strategy does not work. Worse still, it leads to extremely non-intuitive
error behaviour.

The problem is that within thePE-file every reference is implemented by a table
index. Whenever a new output file descriptor is allocated the table index allocation
sequence is reset. It follows that descriptors that are persisted between files will
have indices that refer to their ordinal position in the previous file. The resulting
PE-files will almost certainly have totally nonsensical references.

ClassDefs and ClassRefs

Types that are explicitly referenced in the source code of the file being compiled are
represented by nodes in the programAST. In this case the nodes themselves are able
to hold references to thePEAPI descriptor objects using their generic target extension
“tgXtn” fields.

As before, these type descriptors are best generated on demand. In the case of
gpcp the importation of metadata from the symbol files of imported modules clutters
theAST symbol tables with unreferenced descriptors. Only the used types need have

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xxvi APPENDIX C. USING PEAPI TO WRITE PE FILES

target extension objects allocated to them by calls toPEAPI methods.
There are two functions that do all of the work. A methodtyp(t), wheret is an

AST Type descriptor, returns thePEAPI type descriptor of its argument. If necessary it
creates that descriptor. This method may be called on anyAST type. The other method,
cls(t), returns thePEAPI class descriptor of its argument. In this caset must be anAST
record type.

Target extensions for AST type descriptors

The “tgXtn” target extension fields for primitive types, arrays, pointers and enumera-
tions simply hold thePEAPI Type reference. The state for record and procedure types
is more complicated, as multiple descriptors need to be created for eachAST type.

AST record types correspond toPEAPI Class types. These are represented by a
structure with the fields shown in Figure C.16. In this case, as well as theClassDef or

Field Type Purpose
clsD PEAPI.Class CLR class representing this record.

newD PEAPI.Method No-arg constructor for this class.
cpyD PEAPI.Method Deep copy method for this class.
boxD PEAPI.Class Corresponding boxed class (value class only).
vDlr PEAPI.Field Singleton field of boxed class (value class only).

Figure C.16: Fields of theRecXtn structure for records

ClassRef it is necessary to hold references to the no-arg constructor, and to the field-
by-field copy method. These last two fields arenil in the event that the semantics of
the type forbid these operations. Note that all other methods of these types are explicit
in the source code, and thus have their ownAST descriptors to hold their own target
extensions. InComponent Pascal the no-arg constructor and the value-copy operations
are implicit, and do not have concrete representation in theAST.

Procedure types in theAST correspond toCLR delegate types. Delegates arePEAPI
Class types, and have two runtime managed methods. The state for these types is
represented by a structure with the fields shown in Figure C.17. The first of the methods

Field Type Purpose
clsD PEAPI.Class CLR class representing this delegate type.

newD PEAPI.Method Constructor for this class.
invD PEAPI.Method Invoke method for this delegate.

Figure C.17: Fields of theDelXtn structure for procedure types

is the constructor method, which takes anObject as its first argument. As its second
argument the constructor takes thenative int returned by the immediately preceeding
“ldftn” instruction. The second method is namedInvoke, and has a signature that
matches that of the procedure values that the delegate encapsulates.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.4. GPCP’SPEUTIL TREE-WALKER xxvii

Creating the descriptors

As described above, type descriptors are created on demand, as a side-effect of calling
the typ() andcls() functions. The code of thetyp method is shown in Figure C.18.
In this code, if the target extension field isnil the MkTyXtn method is invoked. This

PROCEDURE (pf : PeFile)typ(tTy : Api.Type) : PEAPI.Type;
(* Returns (and maybe creates) the PEAPI.Type for the AST type tTy *)
VAR xtn : ANYPTR; (* aka System.Object *)

BEGIN
IF tTy.tgXtn = NIL THEN (* create new descriptor *)

pf.MkTyXtn(tTy) END;(* MkTyXtn selects on AST type *)
xtn := tTy.tgXtn; (* fetch extension field *)
WITH xtn : PEAPI.Type DO (* Type-case statement... *)

RETURN xtn; (* Base, Array, Pointer, Enum *)
| xtn : RecXtn DO (* “elsif xtn is RecXtn do ...” *)

RETURN xtn.clsD; (* tTy is an AST Record type *)
| xtn : DelXtn DO (* “elsif xtn is DelXtn do ...” *)

RETURN xtn.clsD; (* tTy is an AST Procedure type *)
END;

END typ;

Figure C.18: Demand creation of type descriptors

allocates a type descriptor of whateverPEAPI type corresponds to the particularAST
type. Finally, a type-case statement returns the target extension field or the appropriate
class of the target extension object.

The code insideMkTyXtn is specialized according to theAST type. Type descriptors
of Base type correspond to primitive types of theCLR. The target extension fields are
assigned by accessing the built-in type descriptors ofPEAPI. For example the field for
theAST base descriptor for theCHAR type is assigned by —

t.tgXtn := PEAPI.PrimitiveType.Char;

The other base types are similar.
AST type descriptors ofArray type createPEAPI types by calls to thePEAPI Zer-

oBasedArray constructor. In theC# syntax the call would be —

t.tgXtn = new PEAPI.ZeroBasedArray(this.typ(t.elemTp));

where the constructor argument is the type descriptor of the element type. Note the
recursive call of thetyp method here.

The creation of the type descriptors for pointer types is slightly more complicated,
since it depends on certain artifacts of theComponent Pascal to CLR mapping. It may
be helpful to review Chapter 4 ofCompiling for the .NET Common Language Runtime
in this context.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xxviii APPENDIX C. USING PEAPI TO WRITE PE FILES

If the bound type of the pointer type is an array type, then the target extension field
of the pointer type is simply copied from the target extension field of the bound type5.

If the bound type is a record type, then two different cases arise. If the bound type
is implemented by a reference surrogate, that is, by areference class in theCLR, then
the record and pointer type share the same runtime representation. In that case, the
target extension field of the pointer type is copied from theclsD field of theRecXtn
reference of the record type. On the other hand, if the bound type is represented in the
CLR by avalue class then the pointer type is represented by the corresponding named,
boxed type. The target extension field of the pointer type is therefore copied from the
boxD field of theRecXtn reference of the record type.

The last of the type kinds with scalar target extension field, is the enumerations. If
an enumeration is defined in a different assembly aTypeRef must be created. In order
to do this it is first necessary to fetch the correspondingAssemblyRef descriptor. This is
done by another method,asm, which returns theAssemblyRef reference held in theAST
module descriptor. In keeping with our demand-driven strategy, the function creates the
AssemblyRef if necessary, by a call toAddExternAssembly. The target extension field
is finally created thus —

t.tgXtn := this.asm(mod).AddValueClass(nsNm, tyNm);

In this assignmentmod is the AST module descriptor, andnsNm, tyNm are strings
respectively holding the namespace and typename of the enumeration type. If it is a
TypeDef that is being created, rather than aTypeRef, a differentAddValueClass method
is dispatched, this time on thePEFile object. Note carefully that enumerations arevalue
classes, so it is convenient to use one of theAddValueClass methods, rather than the
usual calls toAddClass.

MethodDefs and MethodRefs

As code is generated for methods of a module, method references and method defi-
nitions need to be generated. Withgpcp, even in the case of method definitions it is
possible that a used occurrence of theMethodDef object might occur before the defi-
nition of the method. Therefore, as before, a demand-driven approach is used for the
creation ofMethod descriptors.

DuringAST traversal definitions are emitted for every method defined in the source
of the module. If noMethodDef object has been created for theAST procedure descrip-
tor, then aMethodDef object is allocated and stored in the target extension field of the
AST object. In any case, once theMethodDef object has been retrieved theMethAttr
andImplAttr attributes are added, and a code buffer allocated. Subsequent traveral of
theAST for the procedure body adds instructions to this buffer.

As instructions are added to the code buffer for the current method, references to
other methods are used as arguments toMethodOp instructions. ThePEAPI method
descriptor for the target method is extracted from theAST descriptor by a call to another
utility methodmth.

5In verifiable codearray of T is implemented by a reference surrogate, and uses the sameCLR type as
pointer to array of T.

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
C.4. GPCP’SPEUTIL TREE-WALKER xxix

For PE-files theMethod descriptor objects are created in a demand-driven way.
In the case of textual-CIL output the text-strings that hold the signature information
of methods are created in a similar demand-driven way. A procedureMkCallAttr in
the MsilUtil module is called from the tree-walker. This procedure calls the abstract
procedureNumberParams. In moduleIlasmUtil the overriding procedure numbers the
formal parameters of the called method, and computes the signature string of the called
method. In modulePeUtil the overriding procedure numbers the formal parameters of
the called method, and creates aMethodDef or MethodRef object, as appropriate.

PeUtil.NumberParams retrieves theClass object with which the called procedure
is associated. A type-case statement dispatches the appropriate factory procedure —

with clsD : PEAPI.ClassDef do
methD := MkMethDef(...);

| clsD : PEAPI.ClassRef do
methD := MkMethRef(...);

end;

If the target procedure is an instance method or a constructor, then the appropriate call
convention marker must be added —

if ... then methD.AddCallConv(PEAPI.CallConv.Instance) end;

Within theMkMthDef andMkMthRef procedures the formal parameter arrays are
created. These will be arrays ofParam or Type objects respectively. In the case of
formal parameters that are passed by reference, it is at this point that the managed
pointer descriptorType objects are created from the type descriptors of the formal types
in theAST, as described on page xi.

Notes

Details on the structure and format ofPE-files may be found in Partition II of theECMA
standard for theCLI. Serge Lidin’s excellent bookThe ILASM Assembler, Microsoft
Press, 2002, is another invaluable resource.

There is a useful trick to help with debugging compiler backends that usePEAPI.
Given that the output files have no debug information, it is sometimes difficult to find
exactly where a problem originates. If thePE-file is “round-tripped” throughildasm
andilasm then the graphical debugger of the Software Development Kit will be able
to step through thePE-file line-by-line, if necessary. Of course, this will be line-by-line
through the textual-CIL. But that is usually all that is needed to locate a problem. First,
disassemble the file —

ildasm /out=file.out file.DLL

Then re-assemble the file, using the /debug command-line flag —

ilasm /DLL /debug file.out

Html documentation is supplied as part of the distribution ofPEAPI. As well,
for those needing to access the component fromComponent Pascal, thegpcp-format

Copyright K.J.Gough 2002

A
U

G
.2

00
2.

D
R

A
F

T
xxx APPENDIX C. USING PEAPI TO WRITE PE FILES

symbol file is included in the currentgpcp distribution. This symbol file is named
“PEAPI .cps”. The symbol file was created by running theN2CPS tool over the
“PEAPI.dll” file. A browsable html rendering of this symbol file has been created
using thegpcp standardBrowse tool.

